JPH0455702A - Interference-signal processing method for absolute-length measuring machine - Google Patents
Interference-signal processing method for absolute-length measuring machineInfo
- Publication number
- JPH0455702A JPH0455702A JP2166508A JP16650890A JPH0455702A JP H0455702 A JPH0455702 A JP H0455702A JP 2166508 A JP2166508 A JP 2166508A JP 16650890 A JP16650890 A JP 16650890A JP H0455702 A JPH0455702 A JP H0455702A
- Authority
- JP
- Japan
- Prior art keywords
- interference signal
- wavelength
- time
- light source
- interference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Instruments For Measurement Of Length By Optical Means (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〈産業上の利用分野〉
本発明は、波長(周波数)可変光源を用いてアブソリュ
ートな測長を行う場合の干渉縞数の計数方法の改善に関
する。DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an improvement in a method for counting the number of interference fringes when performing absolute length measurement using a variable wavelength (frequency) light source.
〈従来の技術〉
従来、波長(周波数)可変光源を用いてアブソリュート
な測長を行う場合に、光源としてはファブリベロータイ
プのレーザダイオードを用いて、駆動電流を変動させた
時のモードホップ間における連続した波長の変動を使用
してきた。この方法では、駆動電流の変化に対しての波
長の変化はリニアであり、絶対距離は光源波長(周波数
)を連続かつ単調に変化させ、その時の干渉信号の位相
変化量から求めることができる。これに対して、近年開
発の進められている波長可変レーザダイオード(以下、
単に波長可変LDという)を使用すると、周波数(波長
)の変化量を10倍から100倍にも大きくとれるので
、測長精度を向上させることができるという利点を持っ
ている。<Conventional technology> Conventionally, when performing absolute length measurement using a variable wavelength (frequency) light source, a Fabry-Bello type laser diode is used as the light source, and the difference between mode hops when the drive current is varied is measured. Continuous wavelength variations have been used. In this method, the change in wavelength with respect to the change in drive current is linear, and the absolute distance can be determined from the amount of phase change of the interference signal by continuously and monotonically changing the light source wavelength (frequency). In contrast, wavelength tunable laser diodes (hereinafter referred to as
Using a variable wavelength LD (simply referred to as a wavelength tunable LD) allows the amount of change in frequency (wavelength) to be increased by 10 to 100 times, which has the advantage of improving length measurement accuracy.
〈発明が解決しようとする課題〉
しかしながら上記従来技術に示す波長可変LDを用いて
アブソリュートな測長を行う場合、波長変化用の電流(
以下、単に同調電流という)の変化に対する波長の変化
が、第8図中■に示すようにリニアでないため、干渉信
号の位相の変化もリニアではなく、又、同調電流の変化
に対して出射パワーも変化するため(第8図中■)、干
渉信号の振幅も一定ではない、したがって、干渉縞数の
計数時、干渉縞の周期間隔が周波数に応じて変化するの
で、時間軸上で端数部の時間がら位相の端数を測定しよ
うとすると誤差が発生し、絶対長(光路長差ンを高精度
に求めることができないという課題があった。<Problem to be solved by the invention> However, when performing absolute length measurement using the wavelength tunable LD shown in the above-mentioned prior art, the current for wavelength change (
Since the change in the wavelength with respect to the change in the tuning current (hereinafter simply referred to as the tuning current) is not linear as shown in ■ in Figure 8, the change in the phase of the interference signal is also not linear, and the output power (■ in Figure 8), the amplitude of the interference signal is also not constant. Therefore, when counting the number of interference fringes, the periodic interval of the interference fringes changes depending on the frequency, so the fractional part on the time axis When attempting to measure the fraction of the phase based on the time, an error occurs and the absolute length (optical path length difference) cannot be determined with high precision.
本発明は、上記従来技術の課題を踏まえてなされたもの
であり、波長の変化が時間に対してリニアでない波長(
周波数)可変光源を用いて高精度な絶対長を求めること
ができるアブソリュート測長器の干渉信号処理方法を提
供することを目的としたものである。The present invention has been made based on the above-mentioned problems of the prior art.
The purpose of the present invention is to provide an interference signal processing method for an absolute length measuring device that can obtain a highly accurate absolute length using a frequency-variable light source.
く課題を解決するための手段〉
上記課組を解決するための本発明の干渉信号処理方法は
、波長可変光源あるいは周波数可変光源を用いたマイケ
ルソン形の干渉計を利用したアブソリュート測長器にお
いて、前記光源の周波数あるいは波長を連続かつ単調に
変化させた時に発生した干渉信号の上下の包路線を求め
て、この上下の包路線の中央値から前記干渉信号の零レ
ベルを求め、この零レベルと前記干渉信号との交点から
干渉信号の零クロス点を求めて、この干渉信号の隣り合
う零クロス点における位相差が180°であることを利
用して、前記干渉信号の零クロス点の時刻とこの時刻で
の位相積算値との相関曲線を求めて、波長変化中で一定
の波長変化間における位相積算値を前記相関曲線から求
めることにより、前記マイケルソン形の干渉計の内反射
鏡間の光路長差を求めるようにしたことを特徴とするも
のである。Means for Solving the Problems〉 The interference signal processing method of the present invention for solving the above tasks uses an absolute length measuring device using a Michelson type interferometer using a variable wavelength light source or a variable frequency light source. , find the upper and lower envelopes of the interference signal generated when the frequency or wavelength of the light source is continuously and monotonically changed, find the zero level of the interference signal from the median of these upper and lower envelopes, and calculate the zero level of the interference signal. Find the zero-crossing point of the interference signal from the intersection of By finding a correlation curve between the phase integrated value and the phase integrated value at this time, and finding the phase integrated value between constant wavelength changes during the wavelength change from the correlation curve, This feature is characterized in that the optical path length difference between the two is determined.
く作用〉
本発明によると、波長変化中で一定の波長変化間におけ
る位相積算値を干渉信号の零クロス点の時刻とこの時刻
での位相積算値との相関曲線がら求めるようにしており
、波長(周波数)可変光源の周波数が時間に対して直線
的に変化しなくても精度良く干渉信号の位相積算値を求
めることができるので、高精度な絶対測長を行うことが
できる。According to the present invention, the phase integrated value during a certain wavelength change is determined from the correlation curve between the time of the zero crossing point of the interference signal and the phase integrated value at this time. (Frequency) Even if the frequency of the variable light source does not change linearly with respect to time, the phase integrated value of the interference signal can be determined with high accuracy, so highly accurate absolute length measurement can be performed.
〈実施例〉 以下、本発明を図面に基づいて説明する。<Example> Hereinafter, the present invention will be explained based on the drawings.
第1図は本発明のアブソリュート測長器の干渉信号処理
方法を実施するための波長可変LDを用いたアブソリュ
ート測長器の装置構成図である。FIG. 1 is a diagram showing the configuration of an absolute length measuring device using a wavelength tunable LD for implementing the interference signal processing method for an absolute length measuring device of the present invention.
第1図において、1は波長可変LDであり、駆動電流回
路2からの定電流を波長可変LDIの活性域に、又、同
調電流回路3からのノコギリ波状の同調を流を波長可変
LDIの回折格子部にそれぞれ流すことにより、連続し
て変化する波長を繰返し発生することができる。4はベ
ルチェ素子であり、波長可変LDIを加熱又は冷却する
ことができる。5は温度検出端であり、波長可変LDI
の温度を測定し、温度調節計6を介してベルチェ素子4
ヘフイードバツクして、波長可変LDIの温度を一定に
保つようにしている。7はコリメータレンズであり、波
長可変LDIの出射光がコリメートされ平行光とされる
。8はアイソレータであり、後述の干渉計からの反射光
が波長可変LDlに戻って、発振が不安定になるのを防
いでいる。In Fig. 1, reference numeral 1 denotes a wavelength tunable LD, which supplies a constant current from a drive current circuit 2 to the active region of the wavelength tunable LDI, and transmits a sawtooth wave tuning from a tuning current circuit 3 to the diffraction of the wavelength tunable LDI. By flowing the light through each of the grating sections, continuously changing wavelengths can be repeatedly generated. 4 is a Vertier element, which can heat or cool the wavelength tunable LDI. 5 is a temperature detection end, which is a wavelength variable LDI
The temperature of the Vertier element 4 is measured via the temperature controller 6.
The temperature of the wavelength tunable LDI is kept constant by feedback. Reference numeral 7 denotes a collimator lens, which collimates the light emitted from the variable wavelength LDI and converts it into parallel light. Reference numeral 8 denotes an isolator, which prevents reflected light from an interferometer (described later) from returning to the wavelength tunable LDl, thereby preventing oscillation from becoming unstable.
アイソレータ8を通った光は、ハーフミラ−9で2つに
分岐される0反射光はエタロン10に導かれる。波長可
変LDIの波長が変化した場合に、エタロン10の光路
長で定まる特定の波長毎に光がエタロンlOを透過する
ので、その透過光を集光レンズ11で集光して、光検出
器12で検出し、アンプ13で電気信号に変換する。一
方、ハーフミラ−9の透過光は、ハーフミラ−14で更
に2つに分岐される0反射光は光学系内でその位置を固
定した直角プリズム15で反射させて干渉計の参照光と
なる。ハ、−フミラー14の透過光は位置の測定対象で
ある直角プリズム16で反射させて干渉計の被験光とな
る。直角プリズム15.16からの参照光及び被験光は
ハーフミラ−14で合波されて干渉信号となり、集光レ
ンズ17で集光して、光検出器18で検出され、アンプ
19で電気信号に変換される。The light passing through the isolator 8 is split into two by a half mirror 9, and the zero reflected light is guided to an etalon 10. When the wavelength of the wavelength tunable LDI changes, light passes through the etalon IO for each specific wavelength determined by the optical path length of the etalon 10, so the transmitted light is collected by the condenser lens 11 and sent to the photodetector 12. The signal is detected by the amplifier 13 and converted into an electrical signal by the amplifier 13. On the other hand, the transmitted light of the half mirror 9 is further split into two by the half mirror 14, and the 0 reflected light is reflected by a right angle prism 15 whose position is fixed within the optical system and becomes a reference light of the interferometer. C. The light transmitted through the mirror 14 is reflected by the right angle prism 16 whose position is to be measured, and becomes test light for the interferometer. The reference light and test light from the right angle prisms 15 and 16 are combined by a half mirror 14 to become an interference signal, focused by a condenser lens 17, detected by a photodetector 18, and converted into an electrical signal by an amplifier 19. be done.
ここで、第2図は第1図装置から得られる電気信号を示
している。(イ)図は同調電流回路3から波長可変LD
Iに流す同調電流と同じ変化をする電圧信号であり、ノ
コギリ波状を呈している。Here, FIG. 2 shows an electrical signal obtained from the device shown in FIG. (a) The figure shows the wavelength variable LD from the tuning current circuit 3.
This is a voltage signal that changes in the same way as the tuning current flowing through I, and has a sawtooth wave shape.
(ロ)図はアンプ13で得られるエタロン透過光信号で
ある。エタロンは自身の光路長で決まる一定のF SR
(Free 5pectral Ranae )毎の光
の波長(あるいは周波数)に対して透過率が高くなり、
図中、下に伸びたピークの間隔がその波長(あるいは周
波数)を示している。ただし、図では装置の回路の特性
上、マイナス側が透過光の存在を表している。(ハ)図
はアンプI9で得られる干渉計の出力信号(g(t))
である、ただ、し、図では装置の回路の特性上、マイナ
ス側が干渉信号の出ていることを示している。なお、干
渉信号の振幅は、同調を流回路3の同調電流によって変
化する出射パワーの変化と波長可変LDIのスペクトル
線幅の変化によって、又、干#信号の周波数は波長可変
LDIの波長の変化が直線状でないためにそれぞれ変調
される。又、(ロ)図及び(ハ)図において、波が密に
なっている部分は、(イ)図に示すノコギリ波で零レベ
ルに戻すのを短時間で行っているためであり、この部分
は信号処理には使用されない。(b) The figure shows an etalon transmitted optical signal obtained by the amplifier 13. The etalon has a constant FSR determined by its own optical path length.
The transmittance increases for each wavelength (or frequency) of light,
In the figure, the interval between peaks extending downward indicates the wavelength (or frequency). However, in the figure, due to the characteristics of the circuit of the device, the negative side represents the presence of transmitted light. (c) The figure shows the interferometer output signal (g(t)) obtained by amplifier I9.
However, due to the characteristics of the device's circuit, the diagram shows that the negative side is where the interference signal is coming from. The amplitude of the interference signal is determined by the change in the output power that is changed by the tuning current of the tuning circuit 3 and the change in the spectral line width of the wavelength tunable LDI, and the frequency of the interference signal is determined by the change in the wavelength of the wavelength tunable LDI. are not linear, so they are modulated. Also, in Figures (B) and (C), the part where the waves are dense is because the sawtooth wave shown in Figure (B) returns to the zero level in a short time, and this part is not used for signal processing.
このような構成において、第3図に示す信号処理のフロ
ーチャートを用いて、以下に本発明のアブソリュート測
長器の干渉信号処理方法を順次説明する。In such a configuration, the interference signal processing method of the absolute length measuring device of the present invention will be sequentially explained below using the signal processing flowchart shown in FIG.
(1)第2図(イ)に示す同tIt流と同じ変化をする
電圧信号において、同調電流回路3の同調電流が成畝と
なる点(図中、T点)をデータ読込開始のトリガに用い
て、アンプ13及び19からそれぞれエタロン透過光信
号(第2図(ロ))と干渉信号(第2図(ハ))を一定
時間毎にN個取り込み、A/D変換して数値データとし
て保持する。(1) In the voltage signal that changes in the same way as the tIt flow shown in Figure 2 (a), use the point at which the tuning current of the tuning current circuit 3 reaches its peak (point T in the diagram) as the trigger for starting data reading. is used to capture N etalon transmission optical signals (Fig. 2 (b)) and interference signals (Fig. 2 (c)) from amplifiers 13 and 19 at regular intervals, A/D convert them, and convert them into numerical data. Hold.
(2)第2図(ロ)に示すエタロン透過光信号において
、同調電流に対する波長可変LDIの周波数特性から予
めわかっている周波数可変範囲をエタロンのFSRで除
算した商kに1を加えた個数(この実總例では、0,1
.2.・・・・・・、k)の極小点(Mo 、M+ 、
M2 、・・・・・・、 Mt >の時刻(N個のデー
タ中の何個目か、t (No )、 t (H+ 1゜
t[H,)、・・・・・・、t(Hb))を求める。(2) In the etalon-transmitted optical signal shown in FIG. 2 (b), the number (1) is calculated by adding 1 to the quotient k obtained by dividing the frequency variable range, which is known in advance from the frequency characteristics of the wavelength-tunable LDI with respect to the tuning current, by the FSR of the etalon. In this working example, 0,1
.. 2.・・・・・・, k) minimum point (Mo , M+ ,
M2 , ......, Mt > time (what number among N data, t (No), t (H+ 1°t[H,), ......, t( Find Hb)).
(3)第2図(ハ)に示す干渉信号において、エタロン
透過光信号(第2図(ロ))の極小点MO〜Mkの時刻
の間にある極大点P。〜Plの時刻と極小点VO〜Vt
の時刻を求める。(3) In the interference signal shown in FIG. 2(c), a maximum point P between the times of the minimum points MO to Mk of the etalon transmitted optical signal (FIG. 2(b)). ~Pl time and minimum point VO~Vt
Find the time of.
(4)極大点P0〜P1の時刻とその時刻に対する干渉
信号の値を用いて最小自乗法により、極大点を結ぶ線形
近似式を求めて包絡線を得る。なお、線形近似式の次数
は極大点の個数によって決定する。ただし、波長可変L
DIの周波数特性から上限を訣めておく。(4) Using the time of the maximum points P0 to P1 and the value of the interference signal for that time, a linear approximation equation connecting the maximum points is determined by the least squares method to obtain an envelope. Note that the order of the linear approximation equation is determined by the number of local maximum points. However, wavelength variable L
Find out the upper limit based on the frequency characteristics of DI.
時刻tにおける線形近似式の値を
y = P (t) ・・・■
と示す、(第4図参照)
(5)上記(4)項と同様に極小点■。〜VINの時刻
において、極小点を結ぶ線形近似式を求めて包路線を得
る。The value of the linear approximation equation at time t is expressed as y = P (t)...■ (see Figure 4) (5) Minimum point ■ as in item (4) above. At the time of ~VIN, a linear approximation equation connecting the minimum points is found to obtain the envelope line.
時刻tにおける線形近似式の値を
y = V (t) ・・・■
と示す、(第4図参照)
(6)上記0式及び0式から得られる上下の包絡線の中
央値から干渉信号の仮想的な零レベルy=Z(t) −
(P(t) +V[t) ) /2=−・■を求める0
次に、干渉信号(g(t))と零レベル(Z(t))の
交わる零クロス点の時刻Z。−、−29を求める。(第
4図参照)
(7)上記(6)項で得られた零クロス点の時刻z、、
Z、、・・・・・・+2g間の位相差はπ(180°)
であるので、零クロス点の時刻Z0における位相を0.
零クロス点の時刻Z、における位相をπ、・・・・・・
、零クロス点の時刻zgにおける位相をqπと順次位相
積算値を与えて、零クロス点の時刻に対する位相積算値
を用いて最小自乗法により、線形近似式を求める。The value of the linear approximation formula at time t is expressed as y = V (t)...■ (see Figure 4) (6) The interference signal is calculated from the median value of the upper and lower envelopes obtained from the above equations 0 and 0. virtual zero level y=Z(t) −
Find (P(t) +V[t) ) /2=-・■0
Next, time Z of the zero cross point where the interference signal (g(t)) and the zero level (Z(t)) intersect. Find -, -29. (See Figure 4) (7) Time z of the zero cross point obtained in the above (6),
The phase difference between Z, ... +2g is π (180°)
Therefore, the phase of the zero cross point at time Z0 is set to 0.
The phase at time Z of the zero cross point is π,...
, the phase at time zg of the zero cross point is given as qπ and the phase integrated values are sequentially given, and a linear approximation equation is determined by the least squares method using the phase integrated values for the times of the zero cross points.
時刻tにおける線形近似式の値を
y=θ(1) ・・・■
と示す、(第5図参照)
(8)上記(2)項から得られたエタロン透過光信号の
極小点M0とMkの時刻t(No)とt(Hk)におけ
る位相値を前記0式からそれぞれ求め、その位相差Δθ
を求める。The value of the linear approximation equation at time t is expressed as y=θ(1)...■ (see Figure 5) (8) Minimum points M0 and Mk of the etalon transmitted light signal obtained from the above (2) The phase values at times t(No) and t(Hk) of are obtained from the above equation 0, and the phase difference Δθ
seek.
位相差へ〇は、
Δθ=θ(t(Hk ))−〇(i(Ha ))
・・・■で表される。(第6図参照)
(9)上記(8)項で求めたエタロン透過光信号の極小
点M0とMkの時刻t(Ha)とt(Hk)における位
相値の差Δθから干渉計の絶対長(光路長差)ΔLを求
める。絶対長ΔLは次式で求められる。〇 to phase difference is Δθ=θ(t(Hk))−〇(i(Ha))
...Represented by ■. (Refer to Figure 6) (9) The absolute length of the interferometer is determined from the difference Δθ in the phase values at times t(Ha) and t(Hk) between the minimum points M0 and Mk of the etalon-transmitted light signal obtained in item (8) above. (Optical path length difference) ΔL is determined. The absolute length ΔL is determined by the following formula.
ΔL=cXΔθ/(4πxΔνxkxNair )・・
・■
ただし、
C:真空中での光速
Δν:エタロンのFSR(周波数)
Nair :空気の屈折率
である。ΔL=cXΔθ/(4πxΔνxkxNair)...
・■ However, C: Speed of light Δν in vacuum: FSR (frequency) of etalon Nair: Refractive index of air.
以上が本発明のアブソリュート測長器の干渉信号処理方
法であるが、ここで、第7図に本発明による測長結果の
具体例を示す。The above is the interference signal processing method of the absolute length measuring device according to the present invention. Here, a specific example of the length measurement result according to the present invention is shown in FIG.
エタロンのFSR(Δν)を5Gl(Z、周波数可変範
囲をエタロンのFSR(Δν)で除算した商(k)を8
とすると、干渉縞の1周期は、前記0式より、
ΔL=3X10” X2π
/(4πx 5 x 10’ x8x1.o003)=
3.75m
となる、又、第7図より直線性誤差(基準長23關と8
3mの2点を結んだ直線からの測定値の誤差)は46μ
mであるので、干渉縞端数部の計数精度は、
0.046/3.75=0.0123−約1/80した
がって、干渉縞の1周期3.75Bを約1/80の精度
で読み取れていることになる。The FSR (Δν) of the etalon is 5Gl (Z, the quotient (k) of dividing the frequency variable range by the FSR (Δν) of the etalon is 8
Then, one period of the interference fringe is calculated from the above equation 0 as follows: ΔL=3X10"X2π/(4πx 5 x 10' x8x1.o003)=
3.75m. Also, from Figure 7, the linearity error (reference length 23 and 8
The error in the measurement value from a straight line connecting two 3m points is 46μ
m, the counting accuracy of the fractional part of the interference fringe is 0.046/3.75 = 0.0123 - approximately 1/80. Therefore, one period of the interference fringe, 3.75B, can be read with an accuracy of approximately 1/80. There will be.
なお、周波数(波長)可変光源を使用したアブソリュー
ト測長器の装置構成は、第1図の装置構成に限るしので
はなく、波長(周波数)可変光源の出射光をエタロン及
び干渉計に導く構成とされたものであれば良く、更に一
定の周波数又は波長間隔で信号を発生ずる装置はエタロ
ンに限るものではなく、ガスの吸収セル等を用いても良
い。Note that the device configuration of an absolute length measuring device using a variable frequency (wavelength) light source is not limited to the device configuration shown in Figure 1, but may also include a configuration in which the emitted light from the variable wavelength (frequency) light source is guided to an etalon and an interferometer. Further, the device for generating signals at fixed frequency or wavelength intervals is not limited to an etalon, and a gas absorption cell or the like may be used.
又、エタロン透過光信号を電気回路上で微分してゼロク
ロス点を検出することにより、エタロン透過光信号の極
小点M0〜Mkの時刻t(No)〜t (Hk)を求め
たり、干渉信号を交流結合して零クロス点Zo〜zqの
時刻を直接求めたりすることにより、演算器部分の負担
を減少できるので、処理スピードの向上を計ることがで
きる。In addition, by differentiating the etalon transmitted light signal on an electric circuit and detecting the zero cross point, it is possible to obtain the times t(No) to t (Hk) of the minimum points M0 to Mk of the etalon transmitted light signal, and to detect the interference signal. By directly determining the times of zero cross points Zo to zq by AC coupling, the load on the arithmetic unit can be reduced, and the processing speed can be improved.
〈発明の効果〉
以上、実施例と共に具体的に説明したように、本発明に
よれば、波長変化中で一定の波長変化間における位相積
算値の差を干渉信号の零クロス点の時刻とこの時刻での
位相積算値との相関曲線から求めるようにしており、波
長(周波数)可変光源の波長が時間に対して直線的に変
化しなくても精度良く干渉信号の位相積算値を求めるこ
とができるので、高精度な絶対測長を行うことができる
。<Effects of the Invention> As specifically explained above in conjunction with the embodiments, according to the present invention, the difference in the phase integrated value between a constant wavelength change during a wavelength change is calculated from the time of the zero cross point of the interference signal and the time of the zero cross point of the interference signal. It is calculated from the correlation curve with the phase integrated value at time, and it is possible to accurately calculate the phase integrated value of the interference signal even if the wavelength of the wavelength (frequency) variable light source does not change linearly with time. Therefore, highly accurate absolute length measurement can be performed.
又、干渉信号の零クロス点から、零クロス点の時刻とそ
の時刻での位相積算値との相関曲線を求めているので、
光源の出射パワーが波長と共に変化しても影響が少なく
てすむ等の効果を有するアブソリュート測長器の干渉信
号処理方法を実現することができる。Also, since the correlation curve between the time of the zero crossing point and the phase integrated value at that time is obtained from the zero crossing point of the interference signal,
It is possible to realize an interference signal processing method for an absolute length measuring device that has effects such as having little effect even if the output power of the light source changes with the wavelength.
第1図は波長可変LDを用いたアブソリュート測長器の
一実施例を示す構成図、第2図は第1図装置から得られ
る電気信号を示す図、第3図は本発明のアブソリュート
測長器の干渉信号処理方法を示す信号処理のフローチャ
ート、第4図は第1図装置から得られる干渉信号の値を
用いて求めた線形近似式(包絡線)、零レベル及び零ク
ロス点を示す図、第5図及び第6図は零クロス点2゜〜
Zq+エタロン透過光信号の極小点M0及びMkにおけ
る時間−位相積算値の相関曲線を示す図、第7図は本発
明による測長結果の具体例を示す図、第8図は波長可変
LDにおける同調電流と波長及び出射パワーの関係を示
す図である。
1・・・波長可変レーザダイオード、2・・・駆動を流
口路、3・・・同調電流回路、4・・・ベルチェ素子、
5・・・温度検出端、6・・・温度調節計、7・・・コ
リメータレンズ、8・・・アイソレータ、9.14・・
・ハーフミラ−10・・・エタロン、11.17・・・
集光レンズ、12.18・・・光検出器、13.19・
・・アンプ、15.16・・・直角プリズム。
第2図
干渉信号の値
第4図
第5図
第6図
第7図
第8図
同調電流
AFig. 1 is a configuration diagram showing an embodiment of an absolute length measuring device using a wavelength tunable LD, Fig. 2 is a diagram showing an electric signal obtained from the device shown in Fig. 1, and Fig. 3 is an absolute length measuring device of the present invention. Fig. 4 is a signal processing flowchart showing the interference signal processing method of the device; Fig. 4 is a diagram showing the linear approximation formula (envelope), zero level, and zero cross point obtained using the interference signal value obtained from the device in Fig. 1; , Figures 5 and 6 are zero cross point 2°~
A diagram showing the correlation curve of the time-phase integrated value at the minimum points M0 and Mk of the Zq + etalon transmitted light signal, FIG. 7 is a diagram showing a specific example of the length measurement results according to the present invention, and FIG. 8 is a diagram showing the tuning in the wavelength tunable LD. FIG. 3 is a diagram showing the relationship between current, wavelength, and output power. DESCRIPTION OF SYMBOLS 1... Tunable wavelength laser diode, 2... Driving flow path, 3... Tuning current circuit, 4... Vertier element,
5... Temperature detection end, 6... Temperature controller, 7... Collimator lens, 8... Isolator, 9.14...
・Half mirror 10... etalon, 11.17...
Condensing lens, 12.18... Photodetector, 13.19.
...Amplifier, 15.16...Right angle prism. Figure 2 Interference signal value Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Tuning current A
Claims (1)
ソン形の干渉計を利用したアブソリュート測長器におい
て、前記光源の周波数あるいは波長を連続かつ単調に変
化させた時に発生した干渉信号の上下の包絡線を求めて
、この上下の包絡線の中央値から前記干渉信号の零レベ
ルを求め、この零レベルと前記干渉信号との交点から干
渉信号の零クロス点を求めて、この干渉信号の隣り合う
零クロス点における位相差が180°であることを利用
して、前記干渉信号の零クロス点の時刻とこの時刻での
位相積算値との相関曲線を求めて、波長変化中で一定の
波長変化間における位相積算値を前記相関曲線から求め
ることにより、前記マイケルソン形の干渉計の両反射鏡
間の光路長差を求めるようにしたことを特徴とするアブ
ソリュート測長器の干渉信号処理方法。In an absolute length measurement device that uses a Michelson type interferometer using a variable wavelength light source or a variable frequency light source, the upper and lower envelopes of the interference signal generated when the frequency or wavelength of the light source is continuously and monotonically changed are measured. Find the zero level of the interference signal from the median value of the upper and lower envelopes, find the zero cross point of the interference signal from the intersection of this zero level and the interference signal, and calculate the adjacent zero cross points of this interference signal. Using the fact that the phase difference at a point is 180°, a correlation curve between the time of the zero-crossing point of the interference signal and the phase integrated value at this time is obtained, and the correlation curve between a constant wavelength change during a wavelength change is calculated. An interference signal processing method for an absolute length measuring device, characterized in that an optical path length difference between both reflecting mirrors of the Michelson type interferometer is determined by determining a phase integrated value from the correlation curve.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2166508A JPH0455702A (en) | 1990-06-25 | 1990-06-25 | Interference-signal processing method for absolute-length measuring machine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2166508A JPH0455702A (en) | 1990-06-25 | 1990-06-25 | Interference-signal processing method for absolute-length measuring machine |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0455702A true JPH0455702A (en) | 1992-02-24 |
Family
ID=15832647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2166508A Pending JPH0455702A (en) | 1990-06-25 | 1990-06-25 | Interference-signal processing method for absolute-length measuring machine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0455702A (en) |
-
1990
- 1990-06-25 JP JP2166508A patent/JPH0455702A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3279116B2 (en) | Laser Doppler velocimeter | |
JP3151581B2 (en) | Lightwave rangefinder | |
JPH07181007A (en) | Interferometer applied measuring device | |
JPH0749207A (en) | Absolute interferometry method and laser interferometer suitable for this method | |
JPS63111489A (en) | Device for measuring displacement of reflective intensity target moving from reference position | |
JP2828162B2 (en) | Interferometric measurement method for absolute measurement and laser interferometer device suitable for this method | |
CN112146853B (en) | Narrow linewidth laser frequency drift detection device based on double-fiber interferometer | |
JPH01502296A (en) | Laser interferometric distance meter that measures length using an interferometer method | |
JPS60256079A (en) | Minute displacement measuring apparatus using semiconductor laser | |
US20030011780A1 (en) | Device for the non-contacting measurement of an object to be measured, particularly for distance and/or vibration measurement | |
JP2725434B2 (en) | Absolute length measuring method and absolute length measuring device using FM heterodyne method | |
JPH0455702A (en) | Interference-signal processing method for absolute-length measuring machine | |
JPH03255903A (en) | Interference signal processing method of absolute length measuring instrument | |
JPH03277945A (en) | gas detection device | |
JP2521872B2 (en) | Frequency modulation optical fiber displacement measuring device | |
JPH03269302A (en) | absolute length measuring device | |
JP2687631B2 (en) | Interference signal processing method of absolute length measuring device | |
JP5088915B2 (en) | Displacement measuring device | |
CN108709506B (en) | Optical fiber displacement sensing probe and optical fiber displacement sensing system | |
EP1055938A2 (en) | Light source means and light wave range finder | |
JPH0875434A (en) | Surface form measuring device | |
JPH0763506A (en) | Interferometer | |
JPH0816602B2 (en) | Displacement measuring device | |
SE526267C2 (en) | Optical measuring device | |
JPH1096601A (en) | Light wave interferometer |