[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JPH044563B2 - - Google Patents

Info

Publication number
JPH044563B2
JPH044563B2 JP56070720A JP7072081A JPH044563B2 JP H044563 B2 JPH044563 B2 JP H044563B2 JP 56070720 A JP56070720 A JP 56070720A JP 7072081 A JP7072081 A JP 7072081A JP H044563 B2 JPH044563 B2 JP H044563B2
Authority
JP
Japan
Prior art keywords
lens
master lens
zoom
range
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56070720A
Other languages
Japanese (ja)
Other versions
JPS57186872A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP56070720A priority Critical patent/JPS57186872A/en
Priority to DE3217884A priority patent/DE3217884C2/en
Publication of JPS57186872A publication Critical patent/JPS57186872A/en
Priority to US06/623,082 priority patent/US4611244A/en
Priority to US07/502,813 priority patent/USRE33830E/en
Publication of JPH044563B2 publication Critical patent/JPH044563B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/282Autofocusing of zoom lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/673Focus control based on electronic image sensor signals based on contrast or high frequency components of image signals, e.g. hill climbing method

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)
  • Lens Barrels (AREA)

Description

【発明の詳細な説明】 本発明はビデオカメラのオートフオーカス装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an autofocus device for a video camera.

従来、ビデオカメラに装備されているフオーカ
ス装置はいわゆる二重像合致方式などの三角測量
の原理を用いてカメラと被写体間の距離を計測
し、その後に計測した距離にピントを合わせるよ
うにレンズの前玉部分をモータであらかじめ距離
軸上で較正された位置まで移動させる方法が採用
されている。
Traditionally, focus devices installed in video cameras measure the distance between the camera and the subject using the principle of triangulation, such as the so-called double image matching method, and then adjust the lens to focus on the measured distance. A method is adopted in which the front lens is moved by a motor to a pre-calibrated position on the distance axis.

この方式あるいは類似の方式は通常距離たとえ
ば1m〜∞の被写体に対するオートフオーカス機
能を得ることができるが、被写体がこれ以下、た
とえばレンズから数cmしか離れていない場合のク
ローズアツプ撮影、いわゆるマクロ撮影には無力
である。
This method or a similar method can usually obtain an autofocus function for subjects at a distance of 1 m to ∞, but when the subject is less than this distance, for example, only a few centimeters from the lens, close-up photography, so-called macro photography, is possible. is powerless.

この方式がマクロ撮影時にオートフオーカス動
作できない理由は主に以下の3点である。
There are three main reasons why this method cannot perform autofocus during macro photography.

(1) 三角測量方式あるいはその類似の方式では数
cm〜∞もの大きな距離範囲にわたる精度の良い
距離測定ができない。
(1) In triangulation or similar methods, the number
Accurate distance measurement over a large distance range from cm to ∞ is not possible.

すなわち三角測量方式は鏡の振れ角を距離に
対応、較正して使用するものであるが、数cm〜
∞を測定するための鏡の振れ角幅は数十度必要
となり、非現実的な値となる。
In other words, the triangulation method uses the deflection angle of the mirror to correspond to the distance and is calibrated.
To measure ∞, the deflection angle width of the mirror needs to be several tens of degrees, which is an unrealistic value.

(2) 数cm先の被写体に対しては三角測量用ユニツ
トとレンズのバララツクスが大きくなり、測定
した距離が必ずしも撮像すべき被写体までの距
離ではない確率が著しく増大する。
(2) For objects that are several centimeters away, the variation between the triangulation unit and the lens increases, and the probability that the measured distance is not necessarily the distance to the object to be imaged increases significantly.

(3) オートフオーカス装置はレンズの前玉部分の
距離リングを回転制御することによりピント合
わせするが、通常マクロ域のピント合わせはズ
ームリングを用いて行なうため、オートフオー
カス装置ではマクロ域のピント合わせができな
い。
(3) Autofocus devices focus by controlling the rotation of the distance ring on the front element of the lens, but since focusing in the macro area is usually done using a zoom ring, autofocus devices focus only in the macro area. Unable to focus.

これらの理由は原理上から見れば超高精度の鏡
振れ角較正制御、パララツクス補正手段、ズーム
リングにもオートフオーカス信号を送り制御する
などの手段を用いれば解決可能に見えるが、現在
のところその実現は不可能に近く、マクロ撮影時
はオートフオーカス機能を停止させるものが提案
されていることからも知ることができる。
In principle, these reasons seem to be solvable by using ultra-high precision mirror shake angle calibration control, parallax correction means, and control by sending an autofocus signal to the zoom ring, but at present. This is nearly impossible to achieve, as evidenced by the fact that some proposals have been made to disable the autofocus function during macro photography.

また、特開昭49−115322号公報記載のように、
フオーカシングレンズと前側に設けた場合には、
被写体距離が短いほどフオーカシングレンズの繰
出量が大きくなるため、レンズ部の大きさにより
最至近距離が制限され、逆に後側に設けた場合に
は、レンズ部の大きさによる制限は解決されるも
ののフオーカシングレンズの移動量が被写体距離
およびズーム倍率の両方に応じるため、調整その
ものが困難である。
Also, as described in Japanese Patent Application Laid-Open No. 49-115322,
When installed in front of the focusing lens,
The shorter the subject distance, the greater the amount of focusing lens extension, so the size of the lens section limits the closest distance.On the other hand, if it is placed at the rear, the limitations due to the size of the lens section are resolved. However, the adjustment itself is difficult because the amount of movement of the focusing lens depends on both the subject distance and the zoom magnification.

本発明の目的は、上記従来技術に鑑みて、マク
ロ撮影可能なビデオカメラのオートフオーカス装
置を提供するにある。
SUMMARY OF THE INVENTION In view of the above-mentioned prior art, an object of the present invention is to provide an autofocus device for a video camera that is capable of macro photography.

本発明では、 レンズ系後部に配置され、所定の可動範囲で前後
に移動可能にされたマスターレンズを有し、ズー
ム倍率が所定の範囲で可変のズームレンズと、 マスターレンズの後方に配置されズームレンズ
より得られた光学像を電気信号に変換する撮像素
子、および上記電気信号を処理してビデオ信号を
得る信号処理回路からなるカメラ回路と、 カメラ回路より出力されたビデオ信号に基づい
て垂直走査周期ごとに焦点正合度を検出する焦点
量検出回路と、 マスターレンズを前後に移動させる駆動手段
と、 焦点量検出回路により検出された焦点正合度に
応じて、駆動手段を介してマスターレンズの位置
を制御してピント合わせする合焦手段と、 ズーム倍率が変化可能な所定の範囲全部にわた
つて、マスターレンズが上記所定の可動範囲の全
範囲で移動可能にされた第1の状態と、 ズーム倍率が大きいほどマスターレンズの可動
範囲がより制限され、この制限された可動範囲の
最至近端における合焦可能な最至近距離がズーム
倍率によらずに一定にされた第2の状態と のいずれかに上記マスターレンズの移動可能範囲
を切換る切換手段と、 が設けられるので、ビデオカメラの操作者が使用
状況に応じて、 超近接まで自動合焦が可能な第1の状態と、ズ
ーム倍率が変化しても合焦可能な最至近距離が一
定である従来の自動合焦カメラと同様な第2の状
態とを 切換選択することができる。
The present invention has a master lens that is placed at the rear of the lens system and is movable back and forth within a predetermined movable range, and a zoom lens whose zoom magnification is variable within a predetermined range; A camera circuit includes an image sensor that converts an optical image obtained from a lens into an electrical signal, and a signal processing circuit that processes the electrical signal to obtain a video signal, and performs vertical scanning based on the video signal output from the camera circuit. A focus amount detection circuit that detects the degree of focus accuracy every cycle, a driving means that moves the master lens back and forth, and a position of the master lens via the driving means according to the degree of focus accuracy detected by the focus amount detection circuit. a first state in which the master lens is movable over the entire predetermined movable range over the entire predetermined range in which the zoom magnification can be changed; The larger the magnification, the more the master lens's movable range is restricted, and the second state is such that the closest focusable distance at the closest end of this restricted movable range is kept constant regardless of the zoom magnification. Either one is provided with switching means for switching the movable range of the master lens, so that the operator of the video camera can switch between the first state, which allows automatic focusing up to extremely close range, and the zoom state, depending on the usage situation. It is possible to switch between the second state, which is similar to a conventional automatic focusing camera, in which the closest focusing distance remains constant even when the magnification changes.

以下本発明の一実施例を第1図のシステム構成
ブロツク図、および第2図の特性図を用いて説明
する。
An embodiment of the present invention will be described below with reference to the system configuration block diagram shown in FIG. 1 and the characteristic diagram shown in FIG. 2.

第1図で1はズームレンズであり、マスタレン
ズの一部あるいは全部を移動することによりピン
ト合わせ動作可能な構造を有する。
In FIG. 1, reference numeral 1 denotes a zoom lens, which has a structure that enables focusing by moving part or all of a master lens.

2はビデオカメラの撮像素子、信号処理回路な
どから成るカメラ回路、3は焦点量検出回路、4
は差分検出回路、5はモータ駆動回路、6はズー
ムレンズ1の上記ピント合わせ構造を駆動するモ
ータ、7はズームレンズ1のズーム位置、すなわ
ち焦点距離を検出するため、ズームレバーに連動
して回転するポテンシヨメータなどのズーム位置
検出器、8は移動範囲計算回路、9は上記ピント
合わせ構造がいかなる距離に正合しているかを検
出するためのレンズ位置検出器であり、10はこ
の構成が通常距離範囲のオートフオーカス動作を
するのか、それともマクロ域の動作をするのかを
設定するための押釦スイツチである。
2 is a camera circuit consisting of a video camera image sensor, a signal processing circuit, etc.; 3 is a focus amount detection circuit; 4
5 is a differential detection circuit, 5 is a motor drive circuit, 6 is a motor that drives the focusing structure of the zoom lens 1, and 7 is rotated in conjunction with the zoom lever to detect the zoom position of the zoom lens 1, that is, the focal length. 8 is a movement range calculation circuit; 9 is a lens position detector for detecting at what distance the focusing structure is properly aligned; 10 is a zoom position detector such as a potentiometer; This is a push button switch for setting whether to perform autofocus operation in the normal distance range or macro range operation.

先ず、押釦スイツチ10により同図の構造が通
常距離範囲、たとえば至近距離1cm〜∞の範囲で
オートフオーカス動作をする場合につき説明す
る。ズームレンズ1に入射する被写体像がカメラ
回路2で撮像ビデオ信号となり、焦点量検出回路
3に入力する。焦点量検出回路3は撮影中の画面
のピント具合、すなわち画面のりんかくのシヤー
プさに対応する上記撮像ビデオ信号の高域周波数
成分の量を一枚の画面周期、たとえば1/60秒毎に
差分検出回路4に入力する。従つて、モータ駆動
回路5でモータ6によりズームレンズ1のピント
合わせ構造を移動しながら上記機能を動作させる
と差分検出回路4の出力には、もしモータ8の回
転方向がピントが合つてゆく方向であれば正の、
逆にピントがボケてゆる方向なら負の電圧出力が
得られるわけであり、この出力が正ならばモータ
8の回転方向をそのままに保ち、負であればモー
タ8の回転方向を逆転することにより第1図の構
成がオートフオーカス装置を構成していることが
わかる。ここで注目すべきは、ズームレンズ1の
ピント合わせはマスタレンズ系の一部あるいは全
部を移動することにより行なつていることであ
り、この場合、マスタレンズの位置とその位置で
ピントの合う被写体距離は第2図中のイ,ロ,ハ
に示すごとく、∞距離の被写体はズーム倍率によ
らぬ一定値(図中イ)であるが、その他の距離
(至近距離1mの場合は図中ハの2mの場合は図
中ロのようにズームレンズ1のズーム倍率すなわ
ち焦点距離に依存していることである。すなわ
ち、焦点距離が最大(ズーム倍率が最大)たとえ
ば同図A2の値のときは1m〜∞の通常距離範囲
の中にある被写体にピントを合わせるためのマス
タレンズ位置の移動範囲は同図中の0〜B2であ
るが、焦点距離が最小(ズーム倍率が最小)たと
えば同図A1の値のときは同じ距離範囲をカバー
するためのマスタレンズ位置の移動範囲は同図中
の0〜B1という小さな値で良い。この焦点距離
の違いによる移動範囲の違いはほぼズームレンズ
1のズーム倍率の2乗に比例する。すなわち6倍
のズームレンズの場合は約36倍の移動範囲の違い
となるわけであり、撮像中の被写体の動き、ある
いはカメラのパン操作などに起因すると差分検出
回路6の誤動作などによるモータ移動方向の誤判
断によるボケ方向への動きを最小限にとどめるた
め、通常距離範囲のオートフオーカス動作では、
ズームレンズ1のズーム環に連動するズーム位置
検出器7により焦点距離を検出し、これを第2図
の特性を計算式あるいは表として内蔵する移動範
囲計算回路8に入力することにより、マスタレン
ズ位置を検出するレンズ位置検出器9の出力を参
照しつつモータ駆動回路5を介してモータ6を制
御し、ズームレンズ1のピント合わせ構造の移動
範囲を必要最小限の値の範囲内に留めるのが良
い。
First, a case will be described in which the structure shown in the figure performs an autofocus operation in a normal distance range, for example, a close range of 1 cm to ∞ using the push button switch 10. A subject image incident on a zoom lens 1 is converted into a captured video signal by a camera circuit 2 and inputted to a focus amount detection circuit 3. The focus amount detection circuit 3 detects the amount of the high frequency component of the imaged video signal corresponding to the focus condition of the screen during shooting, that is, the sharpness of the screen link, at each screen period, for example, every 1/60 second. It is input to the difference detection circuit 4. Therefore, if the motor drive circuit 5 operates the above function while moving the focusing structure of the zoom lens 1 using the motor 6, the output of the difference detection circuit 4 will indicate that if the rotational direction of the motor 8 is the direction in which the focus is being focused. If then positive,
On the other hand, if the focus is blurred in any direction, a negative voltage output is obtained. If this output is positive, the rotational direction of the motor 8 is kept as it is, and if it is negative, the rotational direction of the motor 8 is reversed. It can be seen that the configuration shown in FIG. 1 constitutes an autofocus device. What should be noted here is that focusing of zoom lens 1 is performed by moving part or all of the master lens system, and in this case, the position of the master lens and the subject that is in focus at that position are As shown in A, B, and C in Figure 2, the distance for objects at ∞ distance is a constant value regardless of the zoom magnification (A in the figure), but for other distances (close-up distance of 1 m, H in the figure) In the case of 2 m, it depends on the zoom magnification, that is, the focal length, of the zoom lens 1, as shown in B in the figure.In other words, when the focal length is the maximum (the zoom magnification is maximum), for example, the value of A2 in the figure, The movement range of the master lens position to focus on a subject within the normal distance range of 1 m to ∞ is 0 to B2 in the same figure, but the focal length is the minimum (minimum zoom magnification), for example in the same figure. When the value of A is 1 , the movement range of the master lens position to cover the same distance range can be as small as 0 to B 1 in the figure.The difference in movement range due to this difference in focal length is almost the same as that of a zoom lens. It is proportional to the square of the zoom magnification of 1.In other words, in the case of a 6x zoom lens, the difference in movement range is approximately 36x, and this difference is due to the movement of the subject during imaging or the panning operation of the camera. In order to minimize movement in the blurring direction due to misjudgment of the motor movement direction due to malfunction of the difference detection circuit 6, etc., in autofocus operation in the normal distance range,
The focal length is detected by the zoom position detector 7 linked to the zoom ring of the zoom lens 1, and the master lens position is determined by inputting this into the movement range calculation circuit 8 which incorporates the characteristics shown in FIG. 2 as a calculation formula or table. The motor 6 is controlled via the motor drive circuit 5 while referring to the output of the lens position detector 9 that detects the lens position, and the movement range of the focusing structure of the zoom lens 1 is kept within the minimum necessary value range. good.

また、この場合、第2図にズームレンズ1の可
動領域をYとして示すように、合焦可能な最至近
距離がズーム倍率によらず1mの一定値となるた
め、ズーム倍率によらず合焦可能な最至近距離が
一定な従来の前玉フオーカス方式カメラと同様な
操作特性をもつことになり、従来カメラの操作に
慣れた人にも違和感を生じさせることがない。
In addition, in this case, as shown in FIG. 2 as the movable area of the zoom lens 1 as Y, the closest distance that can be focused is a constant value of 1 m regardless of the zoom magnification. It has the same operating characteristics as a conventional front-element focus type camera in which the closest possible distance is constant, so even people who are used to operating conventional cameras will not feel any discomfort.

次に押釦スイツチ10により第1図の構成がマ
クロ域、すなわち数cm〜1m(あるいわそれ以上
の距離)のオートフオーカス装置として動作する
場合(領域Yに領域Xを加えた領域をズームレン
ズ1の可動領域とした場合)につき説明する。ズ
ームレンズ1の如くマスタレンズ移動によるピン
ト合わせを行なう場合、いわゆるマクロ操作は焦
点距離がいかなる値の場合も可能であるが、説明
を簡単にするため、焦点距離が最小値A1、すな
わちズーム倍率が最小の場合につき説明する。焦
点距離がA1の場合、通常距離範囲の撮影には、
前述の如くマスタレンズの移動範囲は0〜B1
制限できるが、逆に移動範囲をこれに制限せず、
ズーム倍率が最大値の場合の移動範囲を0〜B2
とした場合はピント合わせの可能な距離範囲がほ
ぼ通常距離範囲ピント合わせの至近距離/ズーム倍率の
2乗〜∞す なわち、至近距離1m、ズーム倍率6倍のときは
約2.8cm〜∞となる。言いかえれば押釦スイツチ
10によりマクロ域のオートフオーカス動作が指
定された場合、移動範囲計算回路8のマスタレン
ズ移動範囲を0〜B2とすることにより第1図の
構成はマクロ域から∞領域までの全域を切替えな
しに連続にオートフオーカス動作が可能である。
Next, when the configuration shown in FIG. 1 operates as an autofocus device in the macro range, that is, several centimeters to 1 meter (in other words, a distance longer than that) using the push button switch 10, the zoom lens 1 movable area) will be explained. When focusing is performed by moving the master lens as in zoom lens 1, so-called macro operation is possible at any focal length, but for the sake of simplicity, the focal length is set to the minimum value A 1 , that is, the zoom magnification. The case where is the minimum will be explained. When the focal length is A 1 , for shooting in the normal distance range,
As mentioned above, the movement range of the master lens can be limited to 0 to B1 , but conversely, the movement range is not limited to this,
Set the movement range when the zoom magnification is at its maximum value from 0 to B 2
In this case, the distance range in which focusing is possible is approximately the normal distance range (close range for focusing/zoom magnification squared) to ∞, that is, when the close distance is 1 m and the zoom magnification is 6 times, it is approximately 2.8 cm to ∞. In other words, when autofocus operation in the macro area is specified by the push button switch 10, by setting the master lens movement range of the movement range calculation circuit 8 from 0 to B2 , the configuration shown in FIG. Continuous autofocus operation is possible without switching over the entire range.

以上第1図および第2図を用いて説明したよう
に本発明によれば押釦スイツチ10の開閉により
マスタレンズ位置の移動範囲を変えることにより
通常距離範囲、マクロ域両方のオートフオーカス
を行なうことができる。なお上述の説明ではマク
ロ域のオートフオーカス動作を最小焦点距離の場
合につき説明したが、焦点距離が別の値であつて
も焦点距離の増加に従つてマクロ動作時の最至近
距離が大きな値となつてゆくのを許せば同様の機
能が得られることは明白である。
As explained above with reference to FIGS. 1 and 2, according to the present invention, autofocus is performed in both the normal distance range and the macro range by changing the movement range of the master lens position by opening and closing the push button switch 10. I can do it. In the above explanation, autofocus operation in the macro range was explained for the case of the minimum focal length, but even if the focal length is a different value, the closest distance during macro operation becomes larger as the focal length increases. It is clear that a similar function can be obtained by allowing it to develop.

また、上述の説明ではマクロ動作時のマスタレ
ンズ移動範囲を0〜B2とし、無限遠被写体まで
ピント合わせ可能としたが、移動範囲の下限を0
でない有限の値とすることによりレンズの移動範
囲を狭くすることによりマクロ動作時のオートフ
オーカスの誤動作を減じる手段としてもよい。
In addition, in the above explanation, the master lens movement range during macro operation was set to 0 to B 2 , making it possible to focus up to infinity, but the lower limit of the movement range was set to 0.
It is also possible to reduce malfunctions of autofocus during macro operation by narrowing the movement range of the lens by setting it to a finite value.

また、上述の説明では押釦スイツチ10は焦点
距離に関係なく開閉できるが、一般消費者を対象
とする家庭用ビデオカメラなどでは操作の単純化
による操作性向上を行なうため押釦スイツチ10
をズームレバーが特定の値あるいは範囲でしか開
閉出来ない構造とするものも良い。また、上述の
説明ではズームレンズ1の変倍構造につき特に説
明しなかつたが、これが通常の変倍機構であつて
もよいし、いわゆるマクロ機能付のものであつて
も良い。
Further, in the above explanation, the push button switch 10 can be opened and closed regardless of the focal length, but in home video cameras and the like aimed at general consumers, the push button switch 10 is used to improve operability by simplifying operations.
It is also good to have a structure in which the zoom lever can only be opened and closed within a specific value or range. Further, although the above description did not specifically explain the variable power structure of the zoom lens 1, this may be a normal variable power mechanism or may have a so-called macro function.

また、第1図の構成にモータ6を直接回転させ
るための操作スイツチなどを追加し、手動操作に
よるピント合わせを可能とする構成としても良
く、この場合、手動と自動の切替スイツチを兼備
する必要があるのは言うまでもない。
Additionally, an operation switch for directly rotating the motor 6 may be added to the configuration shown in Fig. 1 to enable manual focusing. In this case, it is necessary to have both a manual and automatic switching switch. Needless to say, there is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるビデオカメラのオートフ
オーカス装置の一実施例を示すブロツク図、第2
図はその動作を説明するための特性図である。 1:ズームレンズ、2:カメラ回路、3:焦点
量検出回路、4:差分検出回路、5:モータ駆動
回路、6:モータ、7:ズーム位置検出器、8:
移動範囲計算回路、9:レンズ位置検出器、1
0:押釦スイツチ。
FIG. 1 is a block diagram showing an embodiment of an autofocus device for a video camera according to the present invention, and FIG.
The figure is a characteristic diagram for explaining the operation. 1: Zoom lens, 2: Camera circuit, 3: Focus amount detection circuit, 4: Difference detection circuit, 5: Motor drive circuit, 6: Motor, 7: Zoom position detector, 8:
Movement range calculation circuit, 9: Lens position detector, 1
0: Push button switch.

Claims (1)

【特許請求の範囲】 1 レンズ系後部に配置され、所定の可動範囲で
前後に移動可能にされたマスターレンズを有し、
ズーム倍率が所定の範囲で可変のズームレンズ
と、 マスターレンズの後方に配置されズームレンズ
より得られた光学像を電気信号に変換する撮像素
子、および上記電気信号を処理してビデオ信号を
得る信号処理回路からなるカメラ回路と、 カメラ回路より出力されたビデオ信号に基づい
て垂直走査周期ごとに焦点正合度を検出する焦点
量検出回路と、 マスターレンズを前後に移動させる駆動手段
と、 焦点量検出回路により検出された焦点正合度に
応じて、駆動手段を介してマスターレンズの位置
を制御してピント合わせする合焦手段と、 ズーム倍率が変化可能な所定の範囲全部にわた
つて、マスターレンズが上記所定の可動範囲の全
範囲で移動可能にされた第1の状態と、 ズーム倍率が大きいほどマスターレンズの可動
範囲がより制限され、この制限された可動範囲の
最至近端における合焦可能な最至近距離がズーム
倍率によらずに一定にされた第2の状態と のいずれかに上記マスターレンズの移動可能範囲
を切換る切換手段と、 からなることを特徴とするビデオカメラのオート
フオーカス装置。 2 上記焦点量検出回路は、上記ビデオ信号の高
周波成分量に基づいて焦点正合度を検出すること
を特徴とする特許請求の範囲第1項記載のビデオ
カメラのオートフオーカス装置。 3 上記切換手段により切換えられた第2の状態
では、マスターレンズの前後方向位置とズーム倍
率とに応じて、マスターレンズの移動可能範囲の
制限が行われることを特徴とする特許請求の範囲
第1項記載のビデオカメラのオートフオーカス装
置。
[Claims] 1. A master lens disposed at the rear of the lens system and movable back and forth within a predetermined movable range;
A zoom lens whose zoom magnification is variable within a predetermined range, an image sensor placed behind the master lens that converts an optical image obtained from the zoom lens into an electrical signal, and a signal that processes the electrical signal to obtain a video signal. A camera circuit consisting of a processing circuit, a focus amount detection circuit that detects the degree of focus accuracy for each vertical scanning period based on the video signal output from the camera circuit, a driving means for moving the master lens back and forth, and a focus amount detection circuit. A focusing means controls the position of the master lens for focusing via a driving means in accordance with the degree of focus accuracy detected by the circuit, and a focusing means controls the master lens over a predetermined range in which the zoom magnification can be changed. The first state is movable over the entire predetermined movable range, and the larger the zoom magnification is, the more the movable range of the master lens is restricted, and focusing is possible at the closest end of this limited movable range. a switching means for switching the movable range of the master lens between a second state in which the closest distance is constant regardless of the zoom magnification; scum device. 2. The autofocus device for a video camera according to claim 1, wherein the focus amount detection circuit detects the degree of focus accuracy based on the amount of high frequency components of the video signal. 3. In the second state switched by the switching means, the movable range of the master lens is limited depending on the longitudinal position of the master lens and the zoom magnification. An autofocus device for a video camera as described in Section 1.
JP56070720A 1981-05-13 1981-05-13 Auto-focusing device of video camera Granted JPS57186872A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP56070720A JPS57186872A (en) 1981-05-13 1981-05-13 Auto-focusing device of video camera
DE3217884A DE3217884C2 (en) 1981-05-13 1982-05-12 Automatic focusing system for a video camera
US06/623,082 US4611244A (en) 1981-05-13 1984-06-21 Auto-focus system for video camera
US07/502,813 USRE33830E (en) 1981-05-13 1990-04-02 Auto-focus system for video camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56070720A JPS57186872A (en) 1981-05-13 1981-05-13 Auto-focusing device of video camera

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP63251759A Division JPH021692A (en) 1988-10-07 1988-10-07 Auto-focus device for video camera

Publications (2)

Publication Number Publication Date
JPS57186872A JPS57186872A (en) 1982-11-17
JPH044563B2 true JPH044563B2 (en) 1992-01-28

Family

ID=13439673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56070720A Granted JPS57186872A (en) 1981-05-13 1981-05-13 Auto-focusing device of video camera

Country Status (3)

Country Link
US (2) US4611244A (en)
JP (1) JPS57186872A (en)
DE (1) DE3217884C2 (en)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143310A (en) * 1983-12-30 1985-07-29 Asahi Optical Co Ltd Automatic focusing device of zoom lens
JPH067216B2 (en) * 1984-04-04 1994-01-26 キヤノン株式会社 Auto focus device
GB2181262B (en) 1985-10-02 1989-12-13 Canon Kk Automatic focusing system
US4812911A (en) * 1986-01-28 1989-03-14 Canon Kabushiki Kaisha Adapter with built-in shutter
US4748509A (en) * 1986-09-18 1988-05-31 Victor Company Of Japan, Ltd. Focusing control and indication of information relating to an object
JP2535845B2 (en) * 1986-10-08 1996-09-18 キヤノン株式会社 Automatic focusing device
JP2528844B2 (en) * 1986-12-12 1996-08-28 株式会社日立製作所 Automatic focusing device
US4994842A (en) * 1987-02-06 1991-02-19 Minolta Camera Kabushiki Kaisha Camera having a converter-attachable zoom lens
KR910009562B1 (en) * 1987-02-06 1991-11-21 가부시기가이샤 히다찌세이사꾸쇼 Automatic focusing apparatus for use in video camera and the like
JPS63202186A (en) * 1987-02-17 1988-08-22 Canon Inc Focal length discriminator
DE3855466T2 (en) * 1987-02-25 1997-01-23 Konishiroku Photo Ind Still video camera
US5003400A (en) * 1987-08-19 1991-03-26 Hitachi, Ltd. Focusing apparatus of video camera or the like
US4814889A (en) * 1987-10-07 1989-03-21 General Electric Company Automatic focussing system
US4816859A (en) * 1988-03-28 1989-03-28 Chinon Kabushiki Kaisha Zoom lens focusing apparatus
JPH0212213A (en) * 1988-06-30 1990-01-17 Asahi Optical Co Ltd Electronic control camera with macrophotographing and normal photographing function
DE3921614C2 (en) * 1988-06-30 1998-09-17 Asahi Optical Co Ltd Method for operating an electronically controlled camera
US5291232A (en) * 1988-06-30 1994-03-01 Asahi Kogaku Kogyo Kabushiki Kaisha Device for controlling an operation of a movable member
US5235374A (en) * 1988-06-30 1993-08-10 Asahi Kogaku Kogyo Kabushiki Kaisha Electronically controlled camera having macro and normal operational modes
US5227828A (en) * 1988-10-18 1993-07-13 Asahi Kogaku Kogyo Kabushiki Kaisha Automatic focusing device for camera lens
US4920420A (en) * 1988-11-10 1990-04-24 Hitachi, Ltd. Automatic focusing system
JPH0313073A (en) * 1989-06-09 1991-01-22 Canon Inc Automatic focus adjusting device
US5218444A (en) * 1990-04-18 1993-06-08 Sony Corporation Zoom and auto focus controls for video camera
JPH0473628A (en) * 1990-07-13 1992-03-09 Toshiba Corp Automatic focusing device
JP3116370B2 (en) * 1990-11-06 2000-12-11 ソニー株式会社 Imaging device
JPH05183795A (en) * 1991-12-28 1993-07-23 Sony Corp Image pickup device
CN1039274C (en) * 1993-05-20 1998-07-22 株式会社金星社 Zoom tracking apparatus and method in video camera
JPH0822027B2 (en) * 1994-04-25 1996-03-04 株式会社日立製作所 Camera with autofocus device
JPH09211298A (en) * 1996-02-02 1997-08-15 Canon Inc Focus control unit and automatic focus control unit
DE19939117B4 (en) * 1998-08-19 2011-02-03 Fujinon Corp. TV lens control device
JP3728241B2 (en) * 2001-12-20 2005-12-21 キヤノン株式会社 Focus adjustment apparatus, imaging apparatus, focusing method, program, and storage medium
US7598997B2 (en) * 2004-01-14 2009-10-06 Ricoh Company, Ltd. Imaging apparatus and focus control method based on a number of automatic focus scan stages, and recording medium storing a program for executing such a method
US20050207486A1 (en) * 2004-03-18 2005-09-22 Sony Corporation Three dimensional acquisition and visualization system for personal electronic devices
JP2006171588A (en) * 2004-12-20 2006-06-29 Casio Comput Co Ltd Imaging apparatus and program
US9363487B2 (en) * 2005-09-08 2016-06-07 Avigilon Fortress Corporation Scanning camera-based video surveillance system
JP6027308B2 (en) * 2011-07-19 2016-11-16 株式会社エルモ社 Imaging apparatus and control method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139724A (en) * 1978-04-21 1979-10-30 Asahi Optical Co Ltd Device for focusing zoom lens

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3967056A (en) * 1973-02-26 1976-06-29 Minolta Camera Kabushiki Kaisha Automatic focusing apparatus
JPS49141841U (en) * 1973-04-04 1974-12-06
JPS5647533B2 (en) * 1973-12-14 1981-11-10
US4161756A (en) * 1976-03-19 1979-07-17 Jos. Schneider & Co. Optische Werke Control system for varifocal objective
AT345581B (en) * 1976-11-15 1978-09-25 Eumig ADJUSTMENT DEVICE FOR A PANRATIC LENS
JPS5482229A (en) * 1977-12-14 1979-06-30 Canon Inc Automatic focus control camera
US4152061A (en) * 1978-05-01 1979-05-01 Gordon Gary B Self-focusing camera apparatus and method
AT361294B (en) * 1978-06-15 1981-02-25 Bolex Int Sa CAMERA
JPS6053943B2 (en) * 1978-11-30 1985-11-28 キヤノン株式会社 Camera focus detection device
JPS5930891Y2 (en) * 1979-02-16 1984-09-03 旭光学工業株式会社 Electric autofocus camera
JPS5651164A (en) * 1979-10-03 1981-05-08 Hitachi Ltd Automatic focusing device
JPS56104704U (en) * 1980-01-15 1981-08-15

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54139724A (en) * 1978-04-21 1979-10-30 Asahi Optical Co Ltd Device for focusing zoom lens

Also Published As

Publication number Publication date
DE3217884A1 (en) 1982-12-09
JPS57186872A (en) 1982-11-17
DE3217884C2 (en) 1987-05-07
USRE33830E (en) 1992-02-25
US4611244A (en) 1986-09-09

Similar Documents

Publication Publication Date Title
JPH044563B2 (en)
US7830422B2 (en) Lens apparatus, image-pickup apparatus, and image-pickup system
JP4846004B2 (en) Imaging system and lens apparatus
US8514314B2 (en) Camera system
KR100213641B1 (en) Distance measuring apparatus of camera
US7616875B2 (en) Imaging device
JP5320855B2 (en) Lens barrel and camera system
US9152018B2 (en) Image pickup lens, image pickup apparatus, and control method of the image pickup apparatus
JP5656507B2 (en) Shooting system
JP3257702B2 (en) Camera device and variable power control device
JP5170266B2 (en) Imaging device and camera body
JP2583874B2 (en) Autofocus device and driving method of zoom lens group
US20110069217A1 (en) Image pickup apparatus having autofocus function, and lens unit
JP2981481B2 (en) Video camera with automatic focusing means
JP2650625B2 (en) Video camera with automatic focusing means
JP3429050B2 (en) Focus adjustment device for TV camera
JP4543301B2 (en) Automatic focusing device and method
JPH09181957A (en) Video camera with automatic focus means
JPH0114747B2 (en)
JPH0541828A (en) Focus device for video camera
JPH021692A (en) Auto-focus device for video camera
JP2833188B2 (en) Imaging device
JP2007240566A (en) Focus detecting device, optical apparatus and camera
JPH08304884A (en) Parallax correcting device for camera
JP2517939B2 (en) Camera with zoom function