JPH04237016A - Light control device - Google Patents
Light control deviceInfo
- Publication number
- JPH04237016A JPH04237016A JP551791A JP551791A JPH04237016A JP H04237016 A JPH04237016 A JP H04237016A JP 551791 A JP551791 A JP 551791A JP 551791 A JP551791 A JP 551791A JP H04237016 A JPH04237016 A JP H04237016A
- Authority
- JP
- Japan
- Prior art keywords
- crystal substrate
- light
- optical
- directional coupler
- applied voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 claims abstract description 56
- 230000010287 polarization Effects 0.000 claims abstract description 25
- 239000013078 crystal Substances 0.000 claims abstract description 21
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 239000012535 impurity Substances 0.000 claims abstract description 15
- 230000000694 effects Effects 0.000 claims abstract description 8
- 230000005684 electric field Effects 0.000 claims abstract description 6
- 230000008878 coupling Effects 0.000 claims description 5
- 238000010168 coupling process Methods 0.000 claims description 5
- 238000005859 coupling reaction Methods 0.000 claims description 5
- 238000002347 injection Methods 0.000 abstract description 2
- 239000007924 injection Substances 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 8
- 230000005540 biological transmission Effects 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910003327 LiNbO3 Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は光通信,光計測に使用さ
れる光制御デバイスに関し、特に光シャッター機能とし
て使用される光導波路スイッチを有する光制御デバイス
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical control device used in optical communication and optical measurement, and more particularly to an optical control device having an optical waveguide switch used as an optical shutter function.
【0002】0002
【従来の技術】光通信システムの実用化が進むにつれ、
さらに大容量や多機能を持つ高度のシステムが求められ
ており、より高度の光信号の発生や光伝送路の切り替え
、交換などの新たな機能の付加が必要とされている。
現在の実用システムでは光信号は直接半導体レーザや発
光ダイオードの注入電流を変調することによって得られ
ているが、直接変調では緩和振動などの効果のため10
GHz前後以上の高速変調が難しいこと、波長変動が発
生するためコヒーレント光伝送方式には適用が難しいな
どの欠点がある。これを解決する手段としては、外部変
調器を使用する方法があり、特に基板中に形成した光導
波路により構成した導波形の光変調器は、小型、高効率
,高速という特長がある。一方、光伝送路の切り替えや
ネットワークの交換機能を得る手段としては光スイッチ
が使用される。現在実用されている光スイッチは、プリ
ズム、ミラー、ファイバーなどを機械的に移動させるも
のであり、低速であること、信頼性が不十分、形状が大
きくマトリクス化に不適等の欠点がある。これを解決す
る手段として開発が進められているものはやはり光導波
路を用いた導波形の光スイッチであり、高速、多素子の
集積化が可能、高信頼等の特長がある。特にニオブ酸リ
チウム(LiNbO3 )結晶等の強誘電体材料を用い
たものは光吸収が小さく低損失であること、大きな電気
光学効果を有しているため高効率である等の特長があり
、従来からも方向性結合器型光変調器・スイッチ、全反
射型光スイッチ、マッハツェンダ型光変調器等の種々の
方式の光制御素子が報告されている。このような導波形
の光制御素子を光シャッターとして使用する際、挿入損
失の偏光依存性が小さく、かつ適当な電圧に於いて入射
光の偏光状態によらず充分なクロストークを持つことが
要求される。[Background Art] As the practical use of optical communication systems progresses,
In addition, advanced systems with larger capacity and multiple functions are required, and there is a need to add new functions such as generation of more sophisticated optical signals and switching and exchanging optical transmission lines. In current practical systems, optical signals are obtained by directly modulating the injection current of semiconductor lasers or light-emitting diodes, but direct modulation is difficult to achieve due to effects such as relaxation oscillation.
It has drawbacks such as the difficulty of high-speed modulation at around GHz or higher, and the difficulty of applying it to a coherent optical transmission system due to wavelength fluctuations. One way to solve this problem is to use an external modulator. In particular, a waveguide-type optical modulator constructed from an optical waveguide formed in a substrate has the advantage of being small, highly efficient, and fast. On the other hand, optical switches are used as means for switching optical transmission lines and providing network switching functions. Optical switches currently in use mechanically move prisms, mirrors, fibers, etc., and have drawbacks such as slow speed, insufficient reliability, large size, and unsuitability for matrix formation. A waveguide type optical switch using an optical waveguide is currently being developed as a means to solve this problem, and has features such as high speed, ability to integrate multiple elements, and high reliability. In particular, materials using ferroelectric materials such as lithium niobate (LiNbO3) crystals have features such as low light absorption and low loss, and high efficiency due to large electro-optic effects. Various types of optical control elements have been reported, including directional coupler type optical modulators/switches, total internal reflection type optical switches, and Mach-Zehnder type optical modulators. When using such a waveguide type optical control element as an optical shutter, it is required that the polarization dependence of the insertion loss is small and that there is sufficient crosstalk regardless of the polarization state of the incident light at an appropriate voltage. be done.
【0003】図5は従来の光制御デバイスの平面図を示
し、光シャッタを方向性結合器型の光導波路1aにより
構成する際に挿入損失の偏光依存性を小さくするために
図6に示すように各入射光の偏光に対する不純物量Cと
完全結合長LC(近接した2本の光導波路1aのポート
1から入射した光が完全にポート4から出射するのに必
要な光導波路長)の関係を求め各入射光の偏光状態にお
いて、完全結合長が一致する不純物量Cにより光導波路
1aを形成していた。FIG. 5 shows a plan view of a conventional optical control device. In order to reduce the polarization dependence of insertion loss when an optical shutter is constructed using a directional coupler type optical waveguide 1a, as shown in FIG. The relationship between the impurity amount C and the complete coupling length LC (the optical waveguide length necessary for the light incident from port 1 of two adjacent optical waveguides 1a to completely exit from port 4) for each incident light polarization is expressed as follows. The optical waveguide 1a was formed with an impurity amount C whose perfect bond lengths matched each other in the polarization state of each incident light.
【0004】0004
【発明が解決しようとする課題】上述した従来の光制御
デバイスは、光導波路1aの上に形成された制御電極4
aに印加した電圧に対する図5に示すポート1からの入
射光がポート4から出射される出射光量は図7に示すよ
うにTE,TMの各偏光に対して最もクロストークの良
い状態にするためにスイッチング電圧(VTM,VTE
,VTM2)が異なるという問題点があった。[Problems to be Solved by the Invention] The conventional optical control device described above has a control electrode 4 formed on the optical waveguide 1a.
The amount of light incident on port 1 and exiting from port 4 shown in Figure 5 for the voltage applied to a is determined in order to achieve the best crosstalk for each polarization of TE and TM as shown in Figure 7. switching voltage (VTM, VTE
, VTM2) are different.
【0005】[0005]
【課題を解決するための手段】本発明の光制御デバイス
は、電気光学効果を有する強誘電体の結晶基板と、光軸
が平行な1対の光導波路を前記結晶基板に不純物を注入
して形成した方向性結合器と、この方向性結合器の上に
バッファ層を介して設けた1対の制御電極とを有し、前
記光導波路の一方から入射した光が前記光導波路の他方
から出射されるのに必要な前記制御電極に印加する印加
電圧を電界成分が前記結晶基板に垂直な偏光モードと前
記結晶基板に平行な偏光モードとに対して一致し、かつ
前記印加電圧が零のとき前記各偏光モードに対して前記
入射光と前記出射光との光量がほぼ一致するように前記
方向性結合器の長さと前記不純物の注入量とを設定する
。[Means for Solving the Problems] The optical control device of the present invention includes a ferroelectric crystal substrate having an electro-optic effect and a pair of optical waveguides whose optical axes are parallel to each other by implanting impurities into the crystal substrate. and a pair of control electrodes provided on the directional coupler via a buffer layer, the light entering from one of the optical waveguides exiting from the other of the optical waveguides. When the electric field component matches the polarization mode perpendicular to the crystal substrate and the polarization mode parallel to the crystal substrate, and the applied voltage is zero, The length of the directional coupler and the amount of impurity implanted are set so that the amounts of the incident light and the output light are approximately equal for each of the polarization modes.
【0006】[0006]
【実施例】次に、本発明について図面を参照して説明す
る。図1は本発明の一実施例の平面図である。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be explained with reference to the drawings. FIG. 1 is a plan view of one embodiment of the present invention.
【0007】本実施例は、電気光学効果を有する強誘電
体の結晶基板2と、光軸が平行な1対の光導波路1を結
晶基板2に不純物を注入して形成した方向性結合器5と
、方向性結合器5の上にバッファ層3を介して設けた1
対の制御電極4とを有し、光導波路1のポート1から入
射した光が光導波路1のポート2から出射されるのに必
要な制御電極4に印加する印加電圧を電界成分が結晶基
板2に垂直な偏光モード(TMモード)と結晶基板2に
平行な偏光モード(TEモード)とに対して一致し、か
つ、印加電圧が零のとき各偏光モードに対して入射光と
出射光との光量がほぼ一致するように方向性結合器5の
長さおよび不純物の注入量を設定する。This embodiment is a directional coupler 5 in which a ferroelectric crystal substrate 2 having an electro-optic effect and a pair of optical waveguides 1 whose optical axes are parallel are formed by implanting impurities into the crystal substrate 2. and 1 provided on the directional coupler 5 via the buffer layer 3.
A pair of control electrodes 4 are provided, and the electric field component is applied to the control electrode 4 necessary for the light incident from port 1 of the optical waveguide 1 to be emitted from the port 2 of the optical waveguide 1. The polarization mode perpendicular to the crystal substrate 2 (TM mode) and the polarization mode parallel to the crystal substrate 2 (TE mode) coincide, and when the applied voltage is zero, the incident light and the output light for each polarization mode are the same. The length of the directional coupler 5 and the amount of impurity implanted are set so that the amounts of light are almost the same.
【0008】図2は本実施例の方向性結合器の不純物量
と結合長との関係を示す相関図、図3は本実施例の方向
性結合器の結合長と印加電圧との関係を示す相関図、図
4は本実施例の印加電圧と各偏光に対する出射光量を示
す相関図である。FIG. 2 is a correlation diagram showing the relationship between the amount of impurity and the bond length of the directional coupler of this example, and FIG. 3 shows the relationship between the bond length and applied voltage of the directional coupler of this example. Correlation Diagram FIG. 4 is a correlation diagram showing the applied voltage and the amount of emitted light for each polarized light in this example.
【0009】本実施例は、光軸(Z軸)と平行に切り出
したニオブ酸リチウムの結晶基板2を用い、不純物とし
てTi(チタン)を膜厚45nmでスパッタにより成膜
した後、フォトリソグラフィにより方向性結合器5の光
導波路幅及び光導波路間の幅を9μmとし、温度として
1050℃,8時間にて熱拡散を行なって光導波路を形
成した。この条件ではTE偏光およびTM偏光に対する
完全結合長は、それぞれ18mm,30mmであり、こ
の条件下で結合長が23mmの方向性結合器5を形成す
ると入射光の偏光状態に拘わらずポート1から入射した
光は、ポート3,4から約1:4の比率で出射され、ポ
ート4から出射される光量はポート3から出射される光
量より約0.7dB程、損失が増えるが損失の偏光依存
性のない状態を実現出きる。In this example, a lithium niobate crystal substrate 2 cut parallel to the optical axis (Z-axis) is used, and after forming a film of Ti (titanium) as an impurity to a thickness of 45 nm by sputtering, a film is formed by photolithography. The optical waveguide width of the directional coupler 5 and the width between the optical waveguides were set to 9 μm, and thermal diffusion was performed at a temperature of 1050° C. for 8 hours to form an optical waveguide. Under these conditions, the complete coupling lengths for TE polarized light and TM polarized light are 18 mm and 30 mm, respectively.If a directional coupler 5 with a coupling length of 23 mm is formed under these conditions, the incident light will enter from port 1 regardless of its polarization state. The light emitted from ports 3 and 4 is emitted at a ratio of approximately 1:4, and the amount of light emitted from port 4 has an increase in loss by approximately 0.7 dB compared to the amount of light emitted from port 3, but the loss is polarization dependent. It is possible to achieve a state without
【0010】このような特性を持つ方向性結合器型光導
波路上の制御電極によるTM偏光の光吸収を避けるため
に、光学的に透明なバッファ層としてSiO2 膜を成
膜したのち制御電極を方向性結合器上にブォトリソグラ
フィーにより、金属膜をパタンニング,エッチングして
作製する。この制御電極に電圧を印加すると、ポート1
から入射した光は図4に示すようにポート4から出射し
TE偏光,TM偏光でほぼ一致したスイッチング電圧と
なり、充分なクロストーク特性を得ることができる。In order to avoid light absorption of TM polarized light by the control electrode on the directional coupler type optical waveguide having such characteristics, after forming an SiO2 film as an optically transparent buffer layer, the control electrode is A metal film is patterned and etched on the sexual coupler using photolithography. When voltage is applied to this control electrode, port 1
As shown in FIG. 4, the incident light is output from the port 4, and the switching voltages for the TE polarized light and the TM polarized light are almost the same, and sufficient crosstalk characteristics can be obtained.
【0011】[0011]
【発明の効果】以上説明したように本発明は、光導波路
の一方から入射した光が光導波路の他方から出射される
のに必要な制御電極に印加する印加電圧を電界成分が結
晶基板に垂直な偏光モードと結晶基板に平行な偏光モー
ドとに対して一致し、かつ印加電圧が零のとき各偏光モ
ードに対して光導波路の入射光と出射光との光量がほぼ
一致するように方向性結合器の長さと不純物の注入量と
を設定することにより、損失の偏光依存性がなく各偏光
に対して同一の印加電圧で充分なクロストーク特性が得
られるという効果を有する。Effects of the Invention As explained above, the present invention enables the applied voltage to be applied to the control electrode necessary for light incident from one side of the optical waveguide to be emitted from the other side of the optical waveguide to have an electric field component perpendicular to the crystal substrate. The directionality is such that the polarization mode parallel to the crystal substrate matches the polarization mode parallel to the crystal substrate, and the amount of light entering the optical waveguide and the light outputting it almost match for each polarization mode when the applied voltage is zero. By setting the length of the coupler and the amount of impurity implanted, there is an effect that there is no polarization dependence of loss and sufficient crosstalk characteristics can be obtained with the same applied voltage for each polarization.
【図1】本発明の一実施例の平面図である。FIG. 1 is a plan view of an embodiment of the present invention.
【図2】本実施例の方向性結合器の不純物量と結合長と
の関係を示す相関図である。FIG. 2 is a correlation diagram showing the relationship between the amount of impurities and the bond length of the directional coupler of this example.
【図3】本実施例の方向性結合器の結合長と印加電圧と
の関係を示す相関図である。FIG. 3 is a correlation diagram showing the relationship between the coupling length and applied voltage of the directional coupler of this example.
【図4】本実施例の印加電圧と各偏光に対する出射光量
を示す相関図である。FIG. 4 is a correlation diagram showing the applied voltage and the amount of emitted light for each polarized light in this example.
【図5】従来の光制御デバイスの一例を平面図である。FIG. 5 is a plan view of an example of a conventional light control device.
【図6】従来例の方向性結合器の不純物量と結合長との
関係を示す相関図である。FIG. 6 is a correlation diagram showing the relationship between the amount of impurities and the bond length of a conventional directional coupler.
【図7】従来例の印加電圧と各偏光に対する出射光量を
示す相関図である。FIG. 7 is a correlation diagram showing the applied voltage and the amount of emitted light for each polarized light in a conventional example.
【符号の説明】 1 光導波路 2 強誘電体の結晶基板 3 バッファ層 4 制御電極 5 方向性結合器[Explanation of symbols] 1 Optical waveguide 2 Ferroelectric crystal substrate 3 Buffer layer 4 Control electrode 5 Directional coupler
Claims (1)
基板と、光軸が平行な1対の光導波路を前記結晶基板に
不純物を注入して形成した方向性結合器と、この方向性
結合器の上にバッファ層を介して設けた1対の制御電極
とを有し、前記光導波路の一方から入射した光が前記光
導波路の他方から出射されるのに必要な前記制御電極に
印加する印加電圧を電界成分が前記結晶基板に垂直な偏
光モードと前記結晶基板に平行な偏光モードとに対して
一致し、かつ前記印加電圧が零のとき前記各偏光モード
に対して前記入射光と前記出射光との光量がほぼ一致す
るように前記方向性結合器の長さと前記不純物の注入量
とを設定することを特徴とする光制御デバイス。1. A directional coupler comprising a ferroelectric crystal substrate having an electro-optic effect, a pair of optical waveguides with parallel optical axes formed by implanting impurities into the crystal substrate, and the directional coupling. and a pair of control electrodes provided on the device via a buffer layer, and applies an application to the control electrodes necessary for light incident from one of the optical waveguides to be emitted from the other optical waveguide. When the applied voltage is such that the electric field components match for the polarization mode perpendicular to the crystal substrate and the polarization mode parallel to the crystal substrate, and the applied voltage is zero, the incident light and the A light control device characterized in that the length of the directional coupler and the amount of the impurity implanted are set so that the amount of light substantially matches that of the emitted light.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP551791A JPH04237016A (en) | 1991-01-22 | 1991-01-22 | Light control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP551791A JPH04237016A (en) | 1991-01-22 | 1991-01-22 | Light control device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04237016A true JPH04237016A (en) | 1992-08-25 |
Family
ID=11613384
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP551791A Pending JPH04237016A (en) | 1991-01-22 | 1991-01-22 | Light control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04237016A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104280216A (en) * | 2014-10-11 | 2015-01-14 | 哈尔滨工程大学 | Dual-channel optical performance simultaneous testing device for Y waveguide device and Y waveguide polarization crosstalk recognizing and processing method thereof |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6239826A (en) * | 1985-08-15 | 1987-02-20 | テレフオンアクチ−ボラゲツト エル エム エリツクソン | Photoelectron coupler irrelevant to polarization |
JPS63116118A (en) * | 1986-11-04 | 1988-05-20 | Nippon Sheet Glass Co Ltd | Directional coupler |
JPS63163432A (en) * | 1986-12-26 | 1988-07-06 | Nec Corp | Optical switch |
JPH01197724A (en) * | 1988-02-02 | 1989-08-09 | Nec Corp | Optical waveguide switch |
JPH02262128A (en) * | 1989-03-31 | 1990-10-24 | Shimadzu Corp | Polarization nondependence optical switch |
-
1991
- 1991-01-22 JP JP551791A patent/JPH04237016A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6239826A (en) * | 1985-08-15 | 1987-02-20 | テレフオンアクチ−ボラゲツト エル エム エリツクソン | Photoelectron coupler irrelevant to polarization |
JPS63116118A (en) * | 1986-11-04 | 1988-05-20 | Nippon Sheet Glass Co Ltd | Directional coupler |
JPS63163432A (en) * | 1986-12-26 | 1988-07-06 | Nec Corp | Optical switch |
JPH01197724A (en) * | 1988-02-02 | 1989-08-09 | Nec Corp | Optical waveguide switch |
JPH02262128A (en) * | 1989-03-31 | 1990-10-24 | Shimadzu Corp | Polarization nondependence optical switch |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104280216A (en) * | 2014-10-11 | 2015-01-14 | 哈尔滨工程大学 | Dual-channel optical performance simultaneous testing device for Y waveguide device and Y waveguide polarization crosstalk recognizing and processing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH04110831A (en) | Optical control device | |
JP2932742B2 (en) | Waveguide type optical device | |
JPH04172316A (en) | Wave guide type light control device | |
JP2936792B2 (en) | Waveguide type optical device | |
JPH04237016A (en) | Light control device | |
JP2635986B2 (en) | Optical waveguide switch | |
JPH0553157A (en) | Optical control device | |
JPH0721597B2 (en) | Optical switch | |
JP2580088Y2 (en) | Directional coupler type light control device | |
JP2998373B2 (en) | Light control circuit | |
JPH02114243A (en) | Optical control device and its manufacture | |
JP2993192B2 (en) | Light control circuit | |
JPH0820651B2 (en) | Optical waveguide switch | |
JP2912039B2 (en) | Light control device | |
JPH0566428A (en) | Optical control device | |
JPH0720413A (en) | Composite optical circuit | |
JP2720654B2 (en) | Light control device | |
JPS63262625A (en) | Waveguide type optical switch | |
JP2606552B2 (en) | Light control device | |
JP2900569B2 (en) | Optical waveguide device | |
JP2674284B2 (en) | Waveguide type optical device | |
JP2836174B2 (en) | Light control device | |
JP2982448B2 (en) | Light control circuit | |
JP2995832B2 (en) | Light control device | |
JPS63163432A (en) | Optical switch |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 19970930 |