[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP7569328B2 - All-solid-state secondary battery - Google Patents

All-solid-state secondary battery Download PDF

Info

Publication number
JP7569328B2
JP7569328B2 JP2021554925A JP2021554925A JP7569328B2 JP 7569328 B2 JP7569328 B2 JP 7569328B2 JP 2021554925 A JP2021554925 A JP 2021554925A JP 2021554925 A JP2021554925 A JP 2021554925A JP 7569328 B2 JP7569328 B2 JP 7569328B2
Authority
JP
Japan
Prior art keywords
intermediate layer
oxide
positive electrode
solid electrolyte
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021554925A
Other languages
Japanese (ja)
Other versions
JPWO2021090782A1 (en
Inventor
聡 尾崎
援 八木
玄将 大西
洋介 佐藤
俊広 吉田
祐司 勝田
義政 小林
尭之 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Publication of JPWO2021090782A1 publication Critical patent/JPWO2021090782A1/ja
Application granted granted Critical
Publication of JP7569328B2 publication Critical patent/JP7569328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、全固体二次電池、特に全固体リチウム二次電池に関するものである。 The present invention relates to an all-solid-state secondary battery, in particular an all-solid-state lithium secondary battery.

近年、パーソナルコンピュータ、携帯電話等のポータブル機器の開発に伴い、その電源としての電池の需要が大幅に拡大している。このような用途に用いられる電池においては、イオンを移動させる媒体として、希釈溶媒に可燃性の有機溶媒を用いた液体の電解質(電解液)が従来使用されている。このような電解液を用いた電池においては、電解液の漏液や、発火、爆発等の問題を生ずる可能性がある。このような問題を解消すべく、本質的な安全性確保のために、液体の電解質に代えて固体電解質を使用するとともに、その他の要素の全てを固体で構成した全固体電池の開発が進められている。このような全固体電池は、電解質が固体であることから、発火の心配がなく、漏液せず、また、腐食による電池性能の劣化等の問題も生じ難い。In recent years, with the development of portable devices such as personal computers and mobile phones, the demand for batteries as their power source has expanded significantly. In batteries used for such purposes, a liquid electrolyte (electrolytic solution) using a flammable organic solvent as a diluting solvent has been used as a medium for moving ions. In batteries using such electrolytes, problems such as electrolyte leakage, fire, and explosion may occur. In order to solve such problems, in order to ensure essential safety, development of all-solid-state batteries is underway that use solid electrolytes instead of liquid electrolytes and are composed of all other elements made of solids. Since such all-solid-state batteries use solid electrolytes, there is no risk of fire, they do not leak, and they are less likely to have problems such as deterioration of battery performance due to corrosion.

全固体電池として様々なものが提案されている。例えば、特許文献1(特開2009-193940号公報)には、硫化物系固体電解質とコバルト酸リチウムの圧粉全固体電池において、コバルト酸リチウムの表面をニオブ酸リチウムで被覆することで界面抵抗の低減を図ることが開示されている。界面抵抗の低減は充放電特性の向上につながる。特許文献1に開示される電池は、圧粉体を用いた全固体電池であり、粒子間に気孔が残存したり、活物質同士の電子伝導を担保する導電助剤を添加した場合には電極のエネルギー密度が低下する。Various all-solid-state batteries have been proposed. For example, Patent Document 1 (JP 2009-193940 A) discloses that in a pressed powder all-solid-state battery of a sulfide-based solid electrolyte and lithium cobalt oxide, the surface of the lithium cobalt oxide is coated with lithium niobate to reduce the interface resistance. Reducing the interface resistance leads to improved charge/discharge characteristics. The battery disclosed in Patent Document 1 is an all-solid-state battery using a pressed powder, and the energy density of the electrode decreases if pores remain between the particles or if a conductive additive that ensures electronic conduction between active materials is added.

これに対して、圧粉体電極ではなく焼結体電極を用いた全固体電池も提案されている。そのような電池は焼結体電極が導電助剤を含まないため、エネルギー密度が高いとの利点がある。例えば、特許文献2(WO2019/093222A1)には、空隙率が10~50%のリチウム複合酸化物焼結体板である配向正極板と、Tiを含み、かつ、0.4V(対Li/Li)以上でリチウムイオンを挿入脱離可能な負極板と、配向正極板又は負極板の融点若しくは分解温度よりも低い融点を有する固体電解質とを備えた、全固体リチウム電池が開示されている。この文献には、そのような低い融点を有する固体電解質として、LiOCl、xLiOH・yLiSO(式中、x+y=1、0.6≦x≦0.95である)(例えば3LiOH・LiSO)等の様々な材料が開示されている。このような固体電解質は融液として電極板の空隙に浸透させることができ、強固な界面接触を実現できる。その結果、電池抵抗及び充放電時のレート性能の顕著な改善、並びに電池製造の歩留まりも大幅な改善を実現できるとされている。 In contrast, all-solid-state batteries using sintered electrodes instead of compact electrodes have also been proposed. Such batteries have the advantage that the energy density is high because the sintered electrodes do not contain conductive additives. For example, Patent Document 2 (WO2019/093222A1) discloses an all-solid-state lithium battery comprising an oriented positive electrode plate that is a lithium composite oxide sintered body plate with a porosity of 10 to 50%, a negative electrode plate that contains Ti and is capable of inserting and desorbing lithium ions at 0.4 V (vs. Li/Li + ) or more, and a solid electrolyte having a melting point lower than the melting point or decomposition temperature of the oriented positive electrode plate or negative electrode plate. This document discloses various materials such as Li 3 OCl, xLiOH.yLi 2 SO 4 (wherein x+y=1, 0.6≦x≦0.95) (e.g., 3LiOH.Li 2 SO 4 ) as solid electrolytes having such low melting points. Such solid electrolytes can be infiltrated into the gaps between the electrodes as a melt, resulting in strong interfacial contact, which is believed to result in significant improvements in battery resistance and rate performance during charging and discharging, as well as a significant improvement in battery manufacturing yields.

特開2009-193940号公報JP 2009-193940 A WO2019/093222A1WO2019/093222A1

本発明者らは、上述した低融点固体電解質の中でも、とりわけ3LiOH・LiSO等のLiOH・LiSO系固体電解質が高いリチウムイオン伝導度を呈するとの知見を得ている。しかしながら、引用文献2に開示されるような焼結体電極に3LiOH・LiSO等のLiOH・LiSO系固体電解質を用いてセルを構成し、電池動作したところ、活物質量より想定される理論容量よりも放電量が低くなることが判明した。 The present inventors have found that, among the above-mentioned low melting point solid electrolytes, LiOH.Li2SO4 - based solid electrolytes such as 3LiOH.Li2SO4 exhibit high lithium ion conductivity. However, when a cell was constructed using a LiOH.Li2SO4 -based solid electrolyte such as 3LiOH.Li2SO4 in a sintered electrode as disclosed in Reference 2 and operated as a battery, it was found that the discharge amount was lower than the theoretical capacity expected from the amount of active material.

本発明者らは、今般、LiOH・LiSO系固体電解質を採用した全固体二次電池において、電極活物質とLiOH・LiSO系固体電解質との界面に特定組成の中間層を存在させることにより、放電容量を改善できるとの知見を得た。 The present inventors have now discovered that in an all-solid-state secondary battery using a LiOH.Li2SO4 - based solid electrolyte, the discharge capacity can be improved by providing an intermediate layer of a specific composition at the interface between an electrode active material and the LiOH.Li2SO4 -based solid electrolyte .

したがって、本発明の目的は、LiOH・LiSO系固体電解質を採用した全固体二次電池において放電容量を改善することにある。 Therefore, an object of the present invention is to improve the discharge capacity of an all-solid-state secondary battery that employs a LiOH.Li 2 SO 4 based solid electrolyte.

本発明の一態様によれば、
正極活物質を含む正極と、
負極活物質を含む負極と、
前記正極及び前記負極の間に介在し、かつ、前記正極及び前記負極の少なくとも一方の空隙にも入り込んでいる、LiOH・LiSO系固体電解質と、
を含み、
前記固体電解質が入り込んでいる前記正極及び前記負極の少なくとも一方において、前記正極活物質及び前記負極活物質の少なくとも一方と前記固体電解質との界面に、Y、Nb、Ta、Al、Ti、La、Zr、W、Sn、Ce、及びMnからなる群から選択される少なくとも1種の酸化物、及び/又はY、Nb、Ta、Al、Ti、La、Zr、W、Sn、Ce、及びMnからなる群から選択される少なくとも1種とLiとを含むリチウム複合酸化物で構成される中間層をさらに備えた、全固体二次電池が提供される。
According to one aspect of the present invention,
a positive electrode including a positive electrode active material;
a negative electrode including a negative electrode active material;
A LiOH.Li2SO4 - based solid electrolyte interposed between the positive electrode and the negative electrode and also penetrating into the voids of at least one of the positive electrode and the negative electrode;
Including,
In at least one of the positive electrode and the negative electrode into which the solid electrolyte has been permeated, an intermediate layer is further provided at an interface between the solid electrolyte and at least one of the positive electrode active material and the negative electrode active material, the intermediate layer being composed of at least one oxide selected from the group consisting of Y, Nb, Ta, Al, Ti, La, Zr, W, Sn, Ce, and Mn, and/or a lithium composite oxide containing Li and at least one selected from the group consisting of Y, Nb, Ta, Al, Ti, La, Zr, W, Sn, Ce, and Mn.

例6で作製された正極板/固体電解質界面を撮影したSEM像である。1 is a SEM image of the positive electrode plate/solid electrolyte interface produced in Example 6. 例13で作製された正極板/固体電解質界面を撮影したTEM像である。1 is a TEM image of the positive electrode plate/solid electrolyte interface produced in Example 13.

全固体二次電池
本発明の全固体二次電池は、正極と、負極と、LiOH・LiSO系固体電解質とを含む。正極は正極活物質を含む。負極は負極活物質を含む。LiOH・LiSO系固体電解質は、正極及び負極の間に介在し、かつ、正極及び負極の少なくとも一方の空隙にも入り込んでいる。この全固体二次電池は、固体電解質が入り込んでいる正極及び負極の少なくとも一方において、正極活物質及び負極活物質の少なくとも一方と固体電解質との界面に中間層をさらに備える。この中間層は、Y、Nb、Ta、Al、Ti、La、Zr、W、Sn、Ce、及びMnからなる群から選択される少なくとも1種の酸化物、及び/又はY、Nb、Ta、Al、Ti、La、Zr、W、Sn、Ce、及びMnからなる群から選択される少なくとも1種とLiとを含むリチウム複合酸化物で構成される。このように、LiOH・LiSO系固体電解質を採用した全固体二次電池において、電極活物質とLiOH・LiSO系固体電解質との界面に特定組成の中間層を存在させることにより、放電容量を改善することができる。
All-solid-state secondary battery The all-solid-state secondary battery of the present invention includes a positive electrode, a negative electrode, and a LiOH.Li 2 SO 4 -based solid electrolyte. The positive electrode includes a positive electrode active material. The negative electrode includes a negative electrode active material. The LiOH.Li 2 SO 4 -based solid electrolyte is interposed between the positive electrode and the negative electrode, and also enters the voids of at least one of the positive electrode and the negative electrode. This all-solid-state secondary battery further includes an intermediate layer at the interface between at least one of the positive electrode active material and the negative electrode active material and the solid electrolyte in at least one of the positive electrode and the negative electrode into which the solid electrolyte has entered. This intermediate layer is composed of at least one oxide selected from the group consisting of Y, Nb, Ta, Al, Ti, La, Zr, W, Sn, Ce, and Mn, and/or a lithium composite oxide containing at least one oxide selected from the group consisting of Y, Nb, Ta, Al, Ti, La, Zr, W, Sn, Ce, and Mn and Li. In this way, in an all-solid-state secondary battery using a LiOH.Li2SO4 - based solid electrolyte, the discharge capacity can be improved by providing an intermediate layer of a specific composition at the interface between the electrode active material and the LiOH.Li2SO4 -based solid electrolyte .

前述のとおり、LiOH・LiSO系固体電解質等の低融点の固体電解質を採用した全固体リチウム電池が知られており(例えば特許文献2参照)、固体電解質が融液として電極板の空隙に浸透させることで界面接触を実現できる。その結果、電池抵抗及び充放電時のレート性能の改善、並びに電池製造の歩留まりも改善を実現できる。とりわけ3LiOH・LiSO等のLiOH・LiSO系固体電解質が高いリチウムイオン伝導度を呈するが、焼結体電極にLiOH・LiSO系固体電解質を用いてセルを構成し、電池動作したところ、活物質量より想定される理論容量よりも放電量が低くなることが判明した。その原因の詳細は不明であるが、固体電解質と活物質の反応による固体電解質の劣化と推定される。つまり、固体電解質を溶融させて電極板の空隙に浸透させる際に、強アルカリ材料であるLiOH・LiSO系固体電解質が高温での溶融状態となることにより電極板の成分が固体電解質に溶け込み、電極板の表面が劣化して活性が低下したためと推定される。この点、本発明によれば電極活物質/固体電解質の界面に上記中間層を設けることで上記問題を解消して、(中間層の無いものと比較して)放電容量を改善することができる。 As mentioned above, all-solid-state lithium batteries that employ low-melting-point solid electrolytes such as LiOH.Li2SO4 - based solid electrolytes are known (see, for example, Patent Document 2), and the solid electrolyte can be infiltrated as a melt into the gaps of the electrode plates to achieve interface contact. As a result, it is possible to improve the battery resistance and rate performance during charging and discharging, as well as the yield of battery production. In particular, LiOH.Li2SO4 - based solid electrolytes such as 3LiOH.Li2SO4 exhibit high lithium ion conductivity, but when a cell was constructed using LiOH.Li2SO4 - based solid electrolytes in a sintered electrode and operated as a battery, it was found that the discharge amount was lower than the theoretical capacity expected from the amount of active material. The details of the cause are unknown, but it is presumed to be degradation of the solid electrolyte due to a reaction between the solid electrolyte and the active material. In other words, it is presumed that when the solid electrolyte is melted and penetrated into the gaps of the electrode plate, the LiOH.Li2SO4 -based solid electrolyte, which is a strong alkaline material, becomes in a molten state at high temperature, causing the components of the electrode plate to dissolve into the solid electrolyte, deteriorating the surface of the electrode plate and decreasing its activity. In this regard, according to the present invention, the above problem is solved by providing the intermediate layer at the interface between the electrode active material and the solid electrolyte, and the discharge capacity can be improved (compared to that without the intermediate layer).

(1)正極
正極(典型的には正極板)は正極活物質を含む。正極活物質は、リチウム二次電池に一般的に用いられる正極活物質を用いることができるが、リチウム複合酸化物を含むのが好ましい。リチウム複合酸化物とは、LiMO(0.05<x<1.10であり、Mは少なくとも1種類の遷移金属であり、Mは典型的にはCo、Ni、Mn及びAlの1種以上を含む)で表される酸化物である。リチウム複合酸化物は、層状岩塩構造又はスピネル型構造を有するのが好ましい。より好ましい正極活物質は層状岩塩構造を有するリチウム複合酸化物である。層状岩塩構造を有するリチウム複合酸化物の例としては、LiCoO(コバルト酸リチウム)、LiNiO(ニッケル酸リチウム)、LiMnO(マンガン酸リチウム)、LiNiMnO(ニッケル・マンガン酸リチウム)、LiNiCoO(ニッケル・コバルト酸リチウム)、LiCoNiMnO(コバルト・ニッケル・マンガン酸リチウム)、LiCoMnO(コバルト・マンガン酸リチウム)、LiMnO、及び上記化合物との固溶物等が挙げられる。特に好ましくは、LiCoNiMnO(コバルト・ニッケル・マンガン酸リチウム)、及びLiCoO(コバルト酸リチウム、典型的にはLiCoO)である。特に好ましい層状岩塩構造を有するリチウム複合酸化物は、コバルト・ニッケル・マンガン酸リチウム(例えばLi(Ni0.5Co0.2Mn0.3)O)又はコバルト酸リチウム(典型的にはLiCoO)である。一方、スピネル構造を有するリチウム複合酸化物の例としては、LiMn系材料、LiNi0.5Mn1.5系材料等が挙げられる。
(1) Positive electrode The positive electrode (typically a positive electrode plate) contains a positive electrode active material. The positive electrode active material may be a positive electrode active material generally used in lithium secondary batteries, but preferably contains a lithium composite oxide. The lithium composite oxide is an oxide represented by Li x MO 2 (0.05<x<1.10, M is at least one transition metal, and M typically contains one or more of Co, Ni, Mn, and Al). The lithium composite oxide preferably has a layered rock salt structure or a spinel structure. A more preferred positive electrode active material is a lithium composite oxide having a layered rock salt structure. Examples of lithium composite oxides having a layered rock salt structure include Li x CoO 2 (lithium cobalt oxide), Li x NiO 2 (lithium nickel oxide), Li x MnO 2 (lithium manganese oxide), Li x NiMnO 2 (lithium nickel manganese oxide), Li x NiCoO 2 (lithium nickel cobalt oxide), Li x CoNiMnO 2 (lithium cobalt nickel manganese oxide), Li x CoMnO 2 (lithium cobalt manganese oxide), Li 2 MnO 3 , and solid solutions of the above compounds. Particularly preferred are Li x CoNiMnO 2 (lithium cobalt nickel manganese oxide) and Li x CoO 2 (lithium cobalt oxide, typically LiCoO 2 ). Particularly preferred lithium composite oxides having a layered rock salt structure are lithium cobalt nickel manganese oxide (e.g., Li( Ni0.5Co0.2Mn0.3 ) O2 ) or lithium cobalt oxide (typically LiCoO2 ). On the other hand, examples of lithium composite oxides having a spinel structure include LiMn2O4 - based materials and LiNi0.5Mn1.5O4 - based materials.

リチウム複合酸化物には、Mg、Al、Si、Ca、Ti、V、Cr、Fe、Cu、Zn、Ga、Ge、Sr、Y,Zr、Nb、Mo、Ag、Sn、Sb、Te、Ba、Bi、及びWから選択される1種以上の元素が含まれていてもよい。また、オリビン構造を持つLiMPO(式中、MはFe、Co、MnおよびNiから選択される少なくとも1種である)等も好適に用いることができる。 The lithium composite oxide may contain one or more elements selected from Mg, Al, Si, Ca, Ti, V, Cr, Fe, Cu, Zn, Ga, Ge, Sr, Y, Zr, Nb, Mo, Ag, Sn, Sb, Te, Ba, Bi, and W. In addition, LiMPO 4 (wherein M is at least one selected from Fe, Co, Mn, and Ni) having an olivine structure can also be suitably used.

正極は、一般に合材電極と呼ばれる、正極活物質、電子伝導助剤、リチウムイオン伝導性材料及びバインダー等の混合物を成形した形態であってもよいが、正極原料粉末を焼結した焼結板の形態であるのが好ましい。すなわち、正極又は正極活物質は焼結板の形態であるのが好ましい。焼結板は電子伝導助剤やバインダーを含まなくて済むため、正極のエネルギー密度を増大することができる。焼結板は緻密体でも多孔体でもよく、その多孔体の孔内には固体電解質を含んでもよい。The positive electrode may be in the form of a molded mixture of a positive electrode active material, an electronic conductive agent, a lithium ion conductive material, a binder, etc., generally called a composite electrode, but is preferably in the form of a sintered plate obtained by sintering a positive electrode raw material powder. In other words, the positive electrode or the positive electrode active material is preferably in the form of a sintered plate. Since a sintered plate does not need to contain an electronic conductive agent or a binder, the energy density of the positive electrode can be increased. The sintered plate may be a dense body or a porous body, and the pores of the porous body may contain a solid electrolyte.

正極活物質ないしその焼結板は50~80体積%の緻密度を有するのが好ましく、より好ましくは55~80体積%、さらに好ましくは60~80体積%、特に好ましくは65~75体積%の緻密度を有する。このような範囲内の緻密度であると、正極活物質内の空隙に中間層を介して固体電解質で十分に充填させることができ、かつ、正極内の正極活物質の割合が増えるため、電池としての高エネルギー密度を実現することができる。The positive electrode active material or its sintered plate preferably has a density of 50 to 80% by volume, more preferably 55 to 80% by volume, even more preferably 60 to 80% by volume, and particularly preferably 65 to 75% by volume. With a density within this range, the voids in the positive electrode active material can be sufficiently filled with solid electrolyte via an intermediate layer, and the proportion of positive electrode active material in the positive electrode increases, making it possible to achieve a high energy density as a battery.

正極活物質ないしその焼結板の厚さは、電池のエネルギー密度向上等の観点から、50~350μmが好ましく、より好ましくは75~350μm、さらに好ましくは75~325μm、さらにより好ましくは100~325μm、特に好ましくは100~300μm、特により好ましくは125~300μm、特にさらに好ましくは150~275μm、最も好ましくは100~275μmである。From the viewpoint of improving the energy density of the battery, the thickness of the positive electrode active material or its sintered plate is preferably 50 to 350 μm, more preferably 75 to 350 μm, even more preferably 75 to 325 μm, even more preferably 100 to 325 μm, particularly preferably 100 to 300 μm, especially more preferably 125 to 300 μm, especially even more preferably 150 to 275 μm, and most preferably 100 to 275 μm.

(2)負極
負極(典型的には負極板)は負極活物質を含む。負極活物質としては、リチウム二次電池に一般的に用いられる負極活物質を用いることができる。そのような一般的な負極活物質の例としては、炭素系材料や、Li、In、Al、Sn、Sb、Bi、Si等の金属若しくは半金属、又はこれらのいずれかを含む合金が挙げられる。その他、酸化物系負極活物質を用いてもよい。
(2) Negative electrode The negative electrode (typically a negative plate) contains a negative electrode active material. As the negative electrode active material, a negative electrode active material generally used in lithium secondary batteries can be used. Examples of such general negative electrode active materials include carbon-based materials, metals or semimetals such as Li, In, Al, Sn, Sb, Bi, and Si, or alloys containing any of these. In addition, oxide-based negative electrode active materials may be used.

特に好ましい負極活物質は0.4V(対Li/Li)以上でリチウムイオンを挿入脱離可能な材料を含み、好ましくはTiを含んでいる。かかる条件を満たす負極活物質は、少なくともTiを含有する酸化物であるのが好ましい。そのような負極活物質の好ましい例としては、チタン酸リチウムLiTi12(以下、LTO)、ニオブチタン複合酸化物NbTiO、酸化チタンTiOが挙げられ、より好ましくはLTO及びNbTiO、さらに好ましくはLTOである。なお、LTOは典型的にはスピネル型構造を有するものとして知られているが、充放電時には他の構造も採りうる。例えば、LTOは充放電時にLiTi12(スピネル構造)とLiTi12(岩塩構造)の二相共存にて反応が進行する。したがって、LTOはスピネル構造に限定されるものではない。 Particularly preferred negative electrode active materials include materials capable of inserting and desorbing lithium ions at 0.4 V (vs. Li/Li + ) or more, and preferably contain Ti. A negative electrode active material that satisfies such conditions is preferably an oxide containing at least Ti. Preferred examples of such negative electrode active materials include lithium titanate Li 4 Ti 5 O 12 (hereinafter, LTO), niobium titanium composite oxide Nb 2 TiO 7 , and titanium oxide TiO 2 , more preferably LTO and Nb 2 TiO 7 , and even more preferably LTO. Note that LTO is typically known to have a spinel structure, but other structures can also be adopted during charging and discharging. For example, the reaction of LTO proceeds in the coexistence of two phases of Li 4 Ti 5 O 12 (spinel structure) and Li 7 Ti 5 O 12 (rock salt structure) during charging and discharging. Therefore, LTO is not limited to a spinel structure.

負極は、一般に合材電極と呼ばれる、負極活物質、電子伝導助剤、リチウムイオン伝導性材料及びバインダー等の混合物を成形した形態であってもよいが、負極原料粉末を焼結した焼結板の形態であるのが好ましい。すなわち、負極又は負極活物質は焼結板の形態であるのが好ましい。焼結板は電子伝導助剤やバインダーを含まなくて済むため、負極のエネルギー密度を増大することができる。焼結板は緻密体でも多孔体でもよく、その多孔体の孔内には固体電解質を含んでもよい。The negative electrode may be in the form of a molded mixture of a negative electrode active material, an electronic conductive assistant, a lithium ion conductive material, a binder, etc., generally called a composite electrode, but is preferably in the form of a sintered plate obtained by sintering a negative electrode raw material powder. In other words, the negative electrode or the negative electrode active material is preferably in the form of a sintered plate. Since a sintered plate does not need to contain an electronic conductive assistant or a binder, the energy density of the negative electrode can be increased. The sintered plate may be a dense body or a porous body, and the pores of the porous body may contain a solid electrolyte.

負極活物質ないしその焼結板は55~80体積%の緻密度を有するのが好ましく、より好ましくは60~80%、さらに好ましくは65~75%の緻密度を有する。このような範囲内の緻密度であると、負極活物質内の空隙に中間層を介して固体電解質で十分に充填させることができ、かつ、負極内の負極活物質の割合が増えるため、電池としての高エネルギー密度を実現することができる。The negative electrode active material or its sintered plate preferably has a density of 55 to 80% by volume, more preferably 60 to 80%, and even more preferably 65 to 75%. With a density within this range, the voids in the negative electrode active material can be sufficiently filled with solid electrolyte via an intermediate layer, and the proportion of negative electrode active material in the negative electrode increases, making it possible to achieve a high energy density as a battery.

負極活物質ないしその焼結板の厚さは、電池のエネルギー密度向上等の観点から、75~350μmが好ましく、より好ましくは100~325μm、さらに好ましくは125~300μm、特に好ましくは150~275μmである。From the viewpoint of improving the energy density of the battery, the thickness of the negative electrode active material or its sintered plate is preferably 75 to 350 μm, more preferably 100 to 325 μm, even more preferably 125 to 300 μm, and particularly preferably 150 to 275 μm.

(3)固体電解質
固体電解質は、LiOH・LiSO系固体電解質である。LiOH・LiSO系固体電解質は、LiOH及びLiSOの複合化合物であり、典型的な組成は一般式:xLiOH・yLiSO(式中、x+y=1、0.6≦x≦0.95である)であり、代表例として、3LiOH・LiSO(上記一般式中x=0.75、y=0.25の組成)が挙げられる。好ましくは、LiOH・LiSO系固体電解質は、X線回折により3LiOH・LiSOと同定される固体電解質を含む。この好ましい固体電解質は3LiOH・LiSOを主相として含むものである。固体電解質に3LiOH・LiSOが含まれているか否かは、X線回折パターンにおいて、ICDDデータベースの032-0598を用いて同定することで確認可能である。ここで「3LiOH・LiSO」とは、結晶構造が3LiOH・LiSOと同一とみなせるものを指し、結晶組成が3LiOH・LiSOと必ずしも同一である必要はない。すなわち、3LiOH・LiSOと同等の結晶構造を有するかぎり、組成がLiOH:LiSO=3:1から外れるものも本発明の固体電解質に包含されるものとする。したがって、ホウ素等のドーパントを含有する固体電解質(例えばホウ素が固溶し、X線回折ピークが高角度側にシフトした3LiOH・LiSO)であっても、結晶構造が3LiOH・LiSOと同一とみなせるかぎり、3LiOH・LiSOとして本明細書では言及するものとする。同様に、本発明に用いる固体電解質は不可避不純物の含有も許容するものである。
(3) Solid electrolyte The solid electrolyte is a LiOH.Li2SO4 -based solid electrolyte. The LiOH.Li2SO4 - based solid electrolyte is a composite compound of LiOH and Li2SO4 , and has a typical composition of the general formula: xLiOH.yLi2SO4 (wherein x+ y =1, 0.6 ≦x≦0.95 ) , and a representative example is 3LiOH.Li2SO4 (wherein x=0.75, y=0.25 in the general formula ) . Preferably, the LiOH.Li2SO4 -based solid electrolyte includes a solid electrolyte identified as 3LiOH.Li2SO4 by X-ray diffraction. This preferred solid electrolyte contains 3LiOH.Li2SO4 as the main phase. Whether or not 3LiOH.Li 2 SO 4 is contained in the solid electrolyte can be confirmed by identifying the X-ray diffraction pattern using 032-0598 of the ICDD database. Here, "3LiOH.Li 2 SO 4 " refers to a substance whose crystal structure can be regarded as being the same as 3LiOH.Li 2 SO 4 , and the crystal composition does not necessarily have to be the same as 3LiOH.Li 2 SO 4. In other words, as long as it has a crystal structure equivalent to 3LiOH.Li 2 SO 4 , those whose composition is outside of LiOH:Li 2 SO 4 = 3:1 are also included in the solid electrolyte of the present invention. Therefore, even if the solid electrolyte contains a dopant such as boron (for example, 3LiOH.Li 2 SO 4 in which boron is dissolved and the X-ray diffraction peak is shifted to the higher angle side), it will be referred to as 3LiOH.Li 2 SO 4 in this specification as long as the crystal structure can be considered to be the same as 3LiOH.Li 2 SO 4. Similarly, the solid electrolyte used in the present invention is also allowed to contain inevitable impurities.

したがって、LiOH・LiSO系固体電解質には、主相である3LiOH・LiSO以外に、異相が含まれていてもよい。異相は、Li、O、H、S及びBから選択される複数の元素を含むものであってもよいし、あるいはLi、O、H、S及びBから選択される複数の元素のみからなるものであってもよい。異相の例としては、原料に由来するLiOH、LiSO及び/又はLiBO等が挙げられる。これらの異相については3LiOH・LiSOを形成する際に、未反応の原料が残存したものと考えられるが、リチウムイオン伝導に寄与しないため、LiBO以外はその量は少ない方が望ましい。例えば、LiOH・LiSO系固体電解質は、3LiOH・LiSOを含めた全体組成におけるLiOH/LiSOのモル比が典型的には1.8以上3.0以下、より典型的には2.0~2.6の範囲内となるように異相としてのLiOH及び/又はLiSOを含むものであってよい。もっとも、LiBOのようにホウ素を含む異相については、高温長時間保持後のリチウムイオン伝導度維持度の向上に寄与しうることから、所望の量で含有されてもよい。もっとも、固体電解質はホウ素が固溶された3LiOH・LiSOの単相で構成されるものであってもよい。 Therefore, the LiOH.Li 2 SO 4 solid electrolyte may contain a heterogeneous phase in addition to the main phase 3LiOH.Li 2 SO 4. The heterogeneous phase may contain a plurality of elements selected from Li, O, H, S, and B, or may be composed of only a plurality of elements selected from Li, O, H, S, and B. Examples of the heterogeneous phase include LiOH, Li 2 SO 4 , and/or Li 3 BO 3 derived from the raw material. These heterogeneous phases are considered to be unreacted raw materials remaining when 3LiOH.Li 2 SO 4 is formed, but since they do not contribute to lithium ion conduction, it is desirable that the amount of other than Li 3 BO 3 is small. For example, the LiOH.Li 2 SO 4 solid electrolyte may contain LiOH and/or Li 2 SO 4 as a heterogeneous phase such that the molar ratio of LiOH/Li 2 SO 4 in the overall composition including 3LiOH.Li 2 SO 4 is typically in the range of 1.8 to 3.0, more typically 2.0 to 2.6. However, a heterogeneous phase containing boron such as Li 3 BO 3 may be contained in a desired amount since it can contribute to improving the lithium ion conductivity retention after long-term storage at high temperature. However, the solid electrolyte may be composed of a single phase of 3LiOH.Li 2 SO 4 in which boron is dissolved.

LiOH・LiSO系固体電解質(特に3LiOH・LiSO)はホウ素をさらに含むのが好ましい。3LiOH・LiSOと同定される固体電解質にホウ素をさらに含有させることで、高温で長時間保持した後においてもリチウムイオン伝導度の低下を有意に抑制することができる。ホウ素は3LiOH・LiSOの結晶構造のサイトのいずれかに取り込まれ、結晶構造の温度に対する安定性を向上させるものと推察される。固体電解質中に含まれる硫黄Sに対するホウ素Bのモル比(B/S)は、0.002超1.0未満であるのが好ましく、より好ましくは0.003以上0.9以下、さらに好ましくは0.005以上0.8以下である。上記範囲内のB/Sであるとリチウムイオン伝導度の維持率を向上することが可能である。また、上記範囲内のB/Sであるとホウ素を含む未反応の異相の含有量が低くなるため、リチウムイオン伝導度の絶対値を高くすることができる。 It is preferable that the LiOH.Li 2 SO 4 solid electrolyte (particularly 3LiOH.Li 2 SO 4 ) further contains boron. By further containing boron in the solid electrolyte identified as 3LiOH.Li 2 SO 4 , the decrease in lithium ion conductivity can be significantly suppressed even after long-term storage at high temperatures. It is presumed that boron is incorporated into one of the sites of the crystal structure of 3LiOH.Li 2 SO 4 , improving the stability of the crystal structure against temperature. The molar ratio (B/S) of boron B to sulfur S contained in the solid electrolyte is preferably more than 0.002 and less than 1.0, more preferably 0.003 or more and 0.9 or less, and even more preferably 0.005 or more and 0.8 or less. If B/S is within the above range, it is possible to improve the maintenance rate of lithium ion conductivity. In addition, if B/S is within the above range, the content of unreacted heterogeneous phases containing boron is low, so that the absolute value of lithium ion conductivity can be increased.

LiOH・LiSO系固体電解質は、溶融凝固体を粉砕した粉末の圧粉体であってもよいが、溶融凝固体(すなわち加熱溶融後に凝固させたもの)が好ましい。 The LiOH.Li 2 SO 4 based solid electrolyte may be a compact of a powder obtained by pulverizing a molten solid, but is preferably a molten solid (i.e., solidified after being heated and melted).

LiOH・LiSO系固体電解質は、溶融により正極(正極活物質)及び/又は負極(負極活物質)内の空隙に入り込むが、それ以外の残りの部分は正極及び負極の間に固体電解質層として介在するのが好ましい。固体電解質層の厚さ(正極及び負極内の空隙に入り込んだ部分を除く)は充放電レート特性と固体電解質の絶縁性の観点から、1~500μmが好ましく、より好ましくは3~50μm、さらに好ましくは5~40μmである。 The LiOH.Li 2 SO 4 solid electrolyte is melted and enters the voids in the positive electrode (positive electrode active material) and/or negative electrode (negative electrode active material), but the remaining part is preferably interposed between the positive electrode and the negative electrode as a solid electrolyte layer. The thickness of the solid electrolyte layer (excluding the part that has entered the voids in the positive electrode and negative electrode) is preferably 1 to 500 μm, more preferably 3 to 50 μm, and even more preferably 5 to 40 μm, from the viewpoint of charge/discharge rate characteristics and insulating properties of the solid electrolyte.

(4)中間層
中間層は、正極活物質及び負極活物質の少なくとも一方と固体電解質との界面に設けられる。中間層が正極活物質と固体電解質との界面に存在するのが好ましいが、中間層が負極活物質と固体電解質との界面に存在するものであってもよい。中間層は正極活物質と固体電解質との界面、及び負極活物質と固体電解質との界面の両方に存在するものであってもよい。中間層の厚さは所望の放電容量向上効果が得られるかぎり特に限定されないが、0.001~1μmが好ましく、より好ましくは0.005~0.2μm、さらに好ましくは0.01~0.1μmである。
(4) Intermediate layer The intermediate layer is provided at the interface between at least one of the positive electrode active material and the negative electrode active material and the solid electrolyte. The intermediate layer is preferably present at the interface between the positive electrode active material and the solid electrolyte, but may be present at the interface between the negative electrode active material and the solid electrolyte. The intermediate layer may be present at both the interface between the positive electrode active material and the solid electrolyte and the interface between the negative electrode active material and the solid electrolyte. The thickness of the intermediate layer is not particularly limited as long as the desired discharge capacity improvement effect is obtained, but is preferably 0.001 to 1 μm, more preferably 0.005 to 0.2 μm, and even more preferably 0.01 to 0.1 μm.

中間層は、Y、Nb、Ta、Al、Ti、La、Zr、W、Sn、Ce、及びMnからなる群から選択される少なくとも1種の酸化物、及び/又はY、Nb、Ta、Al、Ti、La、Zr、W、Sn、Ce、及びMnからなる群から選択される少なくとも1種とLiとを含むリチウム複合酸化物で構成される。そのような酸化物及び/又はリチウム複合酸化物の好ましい例としては、Y酸化物(典型的にはY)、Li及びNbの酸化物(典型的にはLiNbO又はLiNb)、Li及びTaの酸化物(典型的にはLiTaO)、Li及びAlの酸化物(典型的にはLiAlO)、及びLi及びYの酸化物(典型的にはLiYO)、Li及びTiの酸化物(典型的にはLiTiO)、Li、La及びZr又はLi、La、Zr及びAlの酸化物(典型的にはLi7-3xAlLaZr12(0≦x<0.4、より典型的には0.02<x<0.4)、Li、La及びTiの酸化物(典型的にはLi0.33La0.55TiO)、Li及びWの酸化物(典型的にはLiWO)、Li及びSnの酸化物(典型的にはLiSnO)、Li及びCeの酸化物(典型的にはLiCeO)、Li、La及びNbの酸化物(典型的にはLiLaNb12)、並びにLi及びMnの酸化物(典型的にはLiMnO)、並びにそれらの任意の組合せが挙げられ、より好ましくはLi及びNbの酸化物(典型的にはLiNbO)、Li及びAlの酸化物(典型的にはLiAlO)、及びLi及びYの酸化物(典型的にはLiYO)、Li及びTiの酸化物(典型的にはLiTiO)、Li、La、Zr及びAlの酸化物(典型的にはLi6.7Al0.1LaZr12)、Li、La及びTiの酸化物(典型的にはLi0.33La0.55TiO)が挙げられる。 The intermediate layer is composed of at least one oxide selected from the group consisting of Y, Nb, Ta, Al, Ti, La, Zr, W, Sn, Ce, and Mn, and/or a lithium composite oxide containing Li and at least one selected from the group consisting of Y, Nb, Ta, Al, Ti, La, Zr, W, Sn, Ce, and Mn. Preferred examples of such oxides and/or lithium composite oxides include Y oxide (typically Y 2 O 3 ), Li and Nb oxide (typically LiNbO 3 or LiNb 3 O 8 ), Li and Ta oxide (typically LiTaO 3 ), Li and Al oxide (typically LiAlO 2 ), and Li and Y oxide (typically LiYO 2 ), Li and Ti oxide (typically Li 2 TiO 3 ), Li, La and Zr or Li, La, Zr and Al oxide (typically Li 7-3x Al x La 3 Zr 2 O 12 (0≦x<0.4, more typically 0.02<x<0.4), Li, La and Ti oxide (typically Li 0.33 La 0.55 TiO 3 ), Li and W oxide (typically Li 2 Examples of the oxides include oxides of Li and Sn (typically LiSnO 3 ), oxides of Li and Ce (typically Li 8 CeO 6 ), oxides of Li, La and Nb (typically Li 5 La 3 Nb 2 O 12 ), and oxides of Li and Mn (typically LiMnO 2 ), and any combination thereof, and more preferably oxides of Li and Nb (typically LiNbO 3 ), oxides of Li and Al (typically LiAlO 2 ), and oxides of Li and Y (typically LiYO 2 ), oxides of Li and Ti (typically Li 2 TiO 3 ), oxides of Li, La, Zr and Al (typically Li 6.7 Al 0.1 La 3 Zr 2 O 12 ), oxides of Li, La and Ti (typically Li 0.33 La 0.55 TiO 3 ).

中間層の形成は、中間層を構成する1種以上の金属元素の金属アルコキシドや硝酸塩等の金属塩を所定のモル比でエタノール等のアルコールや水と混合して溶液を作製し、電極活物質(好ましくは焼結板)をこの溶液に浸漬させて減圧下で内部に浸透させた後、それを取り出して拭き取り、大気中で静置してアルコキシドを加水分解させたり、溶媒を乾燥させることにより行うことができる。上記浸漬から大気中静置までの作業を複数回(例えば1~20回)繰り返すのが好ましい。こうして中間層が形成された電極活物質(好ましくは焼結板)を400~700℃で5~60分間熱処理するのが好ましい。なお、金属アルコキシドを用いる場合は溶液の作製から溶液の拭き取りまでの作業は、溶液が加水分解等で劣化しないように、露点-50℃以下のAr雰囲気中のグローブボックス中で行うのが好ましい。The intermediate layer can be formed by mixing metal salts such as metal alkoxides or nitrates of one or more metal elements constituting the intermediate layer with alcohol such as ethanol or water in a predetermined molar ratio to prepare a solution, immersing the electrode active material (preferably a sintered plate) in this solution and allowing it to penetrate into the inside under reduced pressure, then removing it, wiping it off, and leaving it to stand in the air to hydrolyze the alkoxide or dry the solvent. It is preferable to repeat the above-mentioned process from immersion to leaving it to stand in the air multiple times (for example, 1 to 20 times). It is preferable to heat treat the electrode active material (preferably a sintered plate) on which the intermediate layer has been formed in this way at 400 to 700 ° C for 5 to 60 minutes. When a metal alkoxide is used, the process from preparing the solution to wiping off the solution is preferably performed in a glove box in an Ar atmosphere with a dew point of -50 ° C or less so that the solution does not deteriorate due to hydrolysis, etc.

(5)全固体二次電池の製造
全固体二次電池の製造は、例えば、i)(必要に応じて中間層や集電体を形成した)正極と(必要に応じて中間層や集電体を形成した)負極とを準備し、ii)正極と負極との間に固体電解質を挟んで加圧や加熱等を施して正極、固体電解質及び負極を一体化させることにより行うことができる。正極、固体電解質、及び負極は他の手法により結合されてもよい。この場合、正極と負極の間に固体電解質を形成させる手法の例としては、一方の電極上に固体電解質の成形体や粉末を載置する手法、電極上に固体電解質粉末のペーストをスクリーン印刷で施す手法、電極を基板としてエアロゾルディポジション法等により固体電解質の粉末を衝突固化させる手法、電極上に電気泳動法により固体電解質粉末を堆積させて成膜する手法等が挙げられる。
(5) Manufacturing of all-solid-state secondary battery The manufacturing of an all-solid-state secondary battery can be performed, for example, by i) preparing a positive electrode (with an intermediate layer or a current collector formed as necessary) and a negative electrode (with an intermediate layer or a current collector formed as necessary), and ii) sandwiching a solid electrolyte between the positive electrode and the negative electrode and applying pressure, heat, or the like to integrate the positive electrode, the solid electrolyte, and the negative electrode. The positive electrode, the solid electrolyte, and the negative electrode may be bonded by other methods. In this case, examples of the method for forming a solid electrolyte between the positive electrode and the negative electrode include a method of placing a molded body or powder of the solid electrolyte on one electrode, a method of applying a paste of the solid electrolyte powder on the electrode by screen printing, a method of impacting and solidifying the powder of the solid electrolyte by an aerosol deposition method or the like using the electrode as a substrate, and a method of depositing the solid electrolyte powder on the electrode by electrophoresis to form a film.

本発明を以下の例によってさらに具体的に説明する。なお、以下の説明において、Li(Ni0.5Co0.2Mn0.3)Oを「NCM」と略称し、LiTi12を「LTO」と略称し、LiCoOを「LCO」と略称するものとする。 The present invention will be described more specifically with reference to the following examples. In the following description, Li ( Ni0.5Co0.2Mn0.3 ) O2 is abbreviated as "NCM", Li4Ti5O12 is abbreviated as "LTO", and LiCoO2 is abbreviated as " LCO " .

例1
(1)正極板の作製
(1a)NCMグリーンシートの作製
Li/(Ni+Co+Mn)のモル比が1.30となるように秤量された市販の(Ni0.5Co0.2Mn0.3)(OH)粉末(平均粒径9μm)とLiCO粉末(平均粒径3μm)を混合後、750℃で15時間保持し、NCM粒子からなる粉末を得た。この粉末を粉砕して平均粒径約5μmに調整した後、この粉末とテープ成形用の溶媒、バインダー、可塑剤、及び分散剤とを混合した。得られたペーストを粘度調整した後、このペーストをフィルム上にテープ成形することでNCMグリーンシートを作製した。NCMグリーンシートの厚さは焼成後の厚さが100μmとなるように調整した。
Example 1
(1) Preparation of Positive Electrode Plate (1a) Preparation of NCM Green Sheet Commercially available ( Ni0.5Co0.2Mn0.3 )(OH) 2 powder (average particle size 9 μm) and Li2CO3 powder (average particle size 3 μm) were mixed so that the molar ratio of Li/(Ni + Co + Mn ) was 1.30, and then held at 750 ° C for 15 hours to obtain a powder consisting of NCM particles. This powder was pulverized to adjust the average particle size to about 5 μm, and then this powder was mixed with a solvent for tape casting, a binder, a plasticizer, and a dispersant. After adjusting the viscosity of the obtained paste, the paste was tape-cast on a film to produce an NCM green sheet. The thickness of the NCM green sheet was adjusted so that the thickness after firing was 100 μm.

(1b)NCM焼結板の作製
NCMグリーンシートを450℃で6時間保持して脱脂をした後、昇温速度200℃/hで870℃まで昇温して10時間保持することで焼成を行った。こうしてNCM焼結板を正極板として得た。得られたNCM焼結板の片面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した。
(1b) Preparation of NCM sintered plate The NCM green sheet was degreased by holding it at 450°C for 6 hours, and then heated to 870°C at a heating rate of 200°C/h and held for 10 hours to perform sintering. In this way, the NCM sintered plate was obtained as a positive electrode plate. A Au film (thickness 100 nm) was formed as a current collecting layer by sputtering on one side of the obtained NCM sintered plate.

(1c)中間層の成膜
ニオブエトキシド:リチウムエトキシド:エタノールをモル比で0.03:0.03:1となるように混合して、中間層形成用の溶液を作製した。この溶液中に上記(1b)で作製したNCM焼結板を浸漬させて減圧し、正極板の気孔内に溶液を含浸させた。なお、前述の作業は露点-50℃以下のAr雰囲気中のグローブボックス中で行った。その後、NCM焼結板をグローブボックス内から取り出し、大気中で10分間静置して中間層を形成させた。その後、上記一連の作業を更に1回繰り返した(すなわち合計2回成膜した)。最後に、NCM焼結板を400℃で30分間熱処理して、中間層が形成された正極板を得た。
(1c) Formation of intermediate layer Niobium ethoxide: lithium ethoxide: ethanol were mixed in a molar ratio of 0.03:0.03:1 to prepare a solution for forming the intermediate layer. The NCM sintered plate prepared in (1b) above was immersed in this solution, the pressure was reduced, and the solution was impregnated into the pores of the positive electrode plate. The above-mentioned operation was performed in a glove box in an Ar atmosphere with a dew point of -50 ° C or less. Then, the NCM sintered plate was taken out of the glove box and left to stand in the air for 10 minutes to form the intermediate layer. Then, the above series of operations was repeated once more (i.e., a total of two films were formed). Finally, the NCM sintered plate was heat-treated at 400 ° C for 30 minutes to obtain a positive electrode plate with an intermediate layer formed thereon.

(2)負極板の作製
(2a)LTOグリーンシートの作製
Li/Tiのモル比が0.84となるように秤量された市販のTiO粉末(平均粒径1μm以下)とLiCO粉末(平均粒径3μm)を混合後、1000℃で2時間保持し、LTO粒子からなる粉末を得た。この粉末を粉砕して平均粒径約2μmに調整した後、テープ成形用の溶媒、バインダー、可塑剤及び分散剤と混合した。得られたペーストの粘度を調整した後、このペーストをフィルム上にテープ成形することでLTOグリーンシートを作製した。LTOグリーンシートの厚さは焼成後の厚さが100μmとなるように調整した。
(2) Preparation of negative electrode plate (2a) Preparation of LTO green sheet Commercially available TiO2 powder (average particle size 1 μm or less) and Li2CO3 powder (average particle size 3 μm) were mixed so that the molar ratio of Li/Ti was 0.84, and then held at 1000 ° C for 2 hours to obtain a powder consisting of LTO particles. This powder was pulverized to adjust the average particle size to about 2 μm, and then mixed with a solvent for tape casting, a binder, a plasticizer, and a dispersant. After adjusting the viscosity of the obtained paste, the paste was tape-cast on a film to produce an LTO green sheet. The thickness of the LTO green sheet was adjusted so that the thickness after firing was 100 μm.

(2b)LTO焼結板の作製
LTOグリーンシートを450℃で6時間保持して脱脂をした後、昇温速度200℃/hで1000℃まで昇温して2時間保持することで焼成を行った。こうしてLTO焼結板を負極板として得た。得られたLTO焼結板の片面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した。
(2b) Preparation of LTO sintered plate The LTO green sheet was degreased by holding it at 450 ° C for 6 hours, and then heated to 1000 ° C at a heating rate of 200 ° C / h and held for 2 hours to perform sintering. In this way, the LTO sintered plate was obtained as a negative electrode plate. A Au film (thickness 100 nm) was formed as a current collecting layer by sputtering on one side of the obtained LTO sintered plate.

(3)固体電解質の作製
(3a)原料粉末の準備
LiSO粉末(市販品、純度99%以上)、LiOH粉末(市販品、純度98%以上)、及びLiBO(市販品、純度99%以上)をLiSO:LiOH:LiBO=1:3:0.05(モル比)となるように混合して原料混合粉末を得た。これらの粉末は、露点-50℃以下のAr雰囲気中のグローブボックス中で取り扱い、吸湿等の変質が起こらないように十分に注意した。
(3) Preparation of solid electrolyte (3a) Preparation of raw material powder Li2SO4 powder (commercial product, purity 99% or more), LiOH powder (commercial product, purity 98% or more), and Li3BO3 (commercial product, purity 99% or more ) were mixed to obtain a raw material mixed powder in a molar ratio of Li2SO4 :LiOH: Li3BO3 = 1:3:0.05. These powders were handled in a glove box in an Ar atmosphere with a dew point of -50°C or less, and sufficient care was taken to prevent deterioration such as moisture absorption.

(3b)溶融合成
Ar雰囲気中で原料混合粉末をるつぼに投入した。このるつぼを電気炉にセットし、430℃で2時間熱処理を行い溶融物を作製した。引き続き、電気炉内にて100℃/hで溶融物を冷却して凝固物を形成した。
(3b) Melt synthesis The raw material mixed powder was put into a crucible in an Ar atmosphere. The crucible was set in an electric furnace and heat-treated at 430° C. for 2 hours to prepare a melt. The melt was then cooled in the electric furnace at 100° C./h to form a solidified product.

(3c)乳鉢粉砕
得られた凝固物をAr雰囲気中にて乳鉢で粉砕することによって、平均粒径D50が5~50μmの固体電解質粉末を得た。
(3c) Mortar Crushing The obtained coagulated product was pulverized in a mortar in an Ar atmosphere to obtain a solid electrolyte powder having an average particle size D50 of 5 to 50 μm.

(4)全固体電池の作製
正極板上に直径30μmのZrOビーズを5重量%添加した固体電解質粉末を載置し、その上に負極板を載置した。更に負極板上に重しを載置し、電気炉内で400℃で45分間加熱した。このとき、固体電解質粉末は溶融し、その後の凝固を経て電極板間に固体電解質層が形成された。得られた正極板/固体電解質/負極板で構成されるセルを用いて電池を作製した。
(4) Preparation of all-solid-state battery A solid electrolyte powder containing 5% by weight of 30 μm diameter ZrO2 beads was placed on the positive electrode plate, and a negative electrode plate was placed on top of the solid electrolyte powder. A weight was placed on the negative electrode plate, and the plate was heated at 400 ° C for 45 minutes in an electric furnace. At this time, the solid electrolyte powder melted, and after subsequent solidification, a solid electrolyte layer was formed between the electrode plates. A battery was prepared using the cell consisting of the obtained positive electrode plate / solid electrolyte / negative electrode plate.

(5)評価
(5a)電極板/固体電解質界面の解析
上記(4)で作製された電池をグローブボックス内で解体し、中間層を形成した電極板と固体電解質の界面に対して、SEM及びTEMによるEDX分析を行った。
(5) Evaluation (5a) Analysis of Electrode Plate/Solid Electrolyte Interface The battery prepared in (4) above was disassembled in a glove box, and EDX analysis was performed using a SEM and a TEM on the interface between the electrode plate on which the intermediate layer was formed and the solid electrolyte.

(5b)緻密度の測定
上記(1b)で作製された正極板(中間層や固体電解質を含まない状態のNCM焼結板)と上記(2b)で作製された負極板(中間層や固体電解質を含まない状態のLTO焼結板)のそれぞれの緻密度(体積%)を以下のようにして測定した。まず、正極板(又は負極板)を樹脂埋め後、イオンミリングにより断面研磨した後、研磨された断面をSEMで観察して断面SEM画像を取得した。SEM画像は、倍率1000倍の画像とした。得られた画像に対し、画像解析ソフト(Media Cybernetics社製 Image-Pro Premier)を用いて、まず2Dフィルタで100%ぼかしの処理を行った後、2値化処理を行い、正極板(又は負極板)における、正極活物質(又は負極活物質)の部分と樹脂で充填された部分(もともと空隙であった部分)の合計面積に占める、正極活物質の部分(又は負極活物質)の面積の割合(%)を算出して正極活物質(又は負極活物質)の緻密度とした。2値化する際のしきい値は、判別分析法として大津の2値化を用いて設定した。
(5b) Measurement of Compactness The compactness (volume %) of the positive electrode plate (NCM sintered plate not including intermediate layer or solid electrolyte) prepared in (1b) above and the negative electrode plate (LTO sintered plate not including intermediate layer or solid electrolyte) prepared in (2b) above was measured as follows. First, the positive electrode plate (or negative electrode plate) was filled with resin, the cross section was polished by ion milling, and the polished cross section was observed with a SEM to obtain a cross-sectional SEM image. The SEM image was an image with a magnification of 1000 times. The obtained image was first subjected to a 100% blurring process with a 2D filter using image analysis software (Image-Pro Premier manufactured by Media Cybernetics), and then subjected to binarization processing. The ratio (%) of the area of the positive electrode active material (or negative electrode active material) to the total area of the positive electrode active material (or negative electrode active material) part and the resin-filled part (part that was originally a void) in the positive electrode plate (or negative electrode plate) was calculated to determine the density of the positive electrode active material (or negative electrode active material). The threshold value for binarization was set using Otsu's binarization as a discriminant analysis method.

(5c)充放電評価
上記(4)で作製された電池について、150℃の作動温度における電池の放電容量を2.7V-1.5Vの電圧範囲において以下の手順で測定した。電池電圧が上記電圧範囲の上限に達するまで定電流充電し、引き続き電流値が0.01Cレートになるまで定電圧充電した後、上記電圧範囲の下限になるまで放電を行い、中間層を形成しないこと以外は同じ構成の電池(比較例)の放電容量を100とした場合の相対値としての放電容量を算出した。
(5c) Charge/Discharge Evaluation The discharge capacity of the battery prepared in (4) above at an operating temperature of 150° C. was measured in the voltage range of 2.7 V to 1.5 V by the following procedure. The battery was charged at a constant current until the battery voltage reached the upper limit of the voltage range, and then charged at a constant voltage until the current value reached a 0.01 C rate, and then discharged to the lower limit of the voltage range. The discharge capacity was calculated as a relative value when the discharge capacity of a battery (comparative example) having the same configuration except that no intermediate layer was formed was taken as 100.

例2
上記(1c)の中間層の成膜において成膜回数を合計5回としたこと以外は、例1と同様にして電池の作製及び評価を行った。
Example 2
A battery was produced and evaluated in the same manner as in Example 1, except that the number of times of film formation in the above (1c) intermediate layer formation was set to 5 in total.

例3
上記(1c)における中間層の成膜を以下のように行ったこと以外は、例1と同様にして電池の作製及び評価を行った。
Example 3
A battery was produced and evaluated in the same manner as in Example 1, except that the intermediate layer in (1c) above was formed as follows.

(中間層の成膜)
硝酸リチウム:硝酸イットリウム:水(溶媒)をモル比で0.015:0.015:1となるように混合して、中間層形成用の溶液を作製した。この溶液中にNCM焼結板を浸漬させ、減圧した後、NCM焼結板を溶液から取り出した。その後、中間層を形成させるため400℃で30分間熱処理した。その後、上記作業を更に4回繰り返した(すなわち合計5回成膜した)。最後にNCM焼結板を700℃で30分熱処理して、中間層が形成された正極板を得た。
(Deposition of intermediate layer)
A solution for forming an intermediate layer was prepared by mixing lithium nitrate, yttrium nitrate, and water (solvent) in a molar ratio of 0.015:0.015:1. The NCM sintered plate was immersed in this solution, and after decompression, the NCM sintered plate was removed from the solution. Then, the plate was heat-treated at 400°C for 30 minutes to form an intermediate layer. The above process was then repeated four more times (i.e., a total of five film formations were performed). Finally, the NCM sintered plate was heat-treated at 700°C for 30 minutes to obtain a positive electrode plate with an intermediate layer formed thereon.

例4
上記(1c)における中間層の成膜を以下のように行ったこと以外は、例1と同様にして電池の作製及び評価を行った。
Example 4
A battery was produced and evaluated in the same manner as in Example 1, except that the intermediate layer in (1c) above was formed as follows.

(中間層の成膜)
硝酸イットリウム:水(溶媒)をモル比で0.015:1となるように混合して、中間層形成用の溶液を作製した。この溶液中にNCM焼結板を浸漬させ、減圧した後、NCM焼結板を溶液から取り出した。その後、中間層を形成させるため400℃で30分間熱処理した。その後、上記作業を更に4回繰り返した(すなわち合計5回成膜した)。最後にNCM焼結板を700℃で30分間熱処理して、中間層が形成された正極板を得た。
(Deposition of intermediate layer)
A solution for forming an intermediate layer was prepared by mixing yttrium nitrate and water (solvent) in a molar ratio of 0.015:1. The NCM sintered plate was immersed in this solution, and after decompression, the NCM sintered plate was removed from the solution. Then, the NCM sintered plate was heat-treated at 400°C for 30 minutes to form an intermediate layer. Then, the above operation was repeated four more times (i.e., a total of five film formations were performed). Finally, the NCM sintered plate was heat-treated at 700°C for 30 minutes to obtain a positive electrode plate with an intermediate layer formed thereon.

例5
上記(1c)における中間層の成膜を以下のように行ったこと以外は、例1と同様にして電池の作製及び評価を行った。
Example 5
A battery was produced and evaluated in the same manner as in Example 1, except that the intermediate layer in (1c) above was formed as follows.

(中間層の成膜)
リチウムエトキシド:アルミニウムブトキシド:エタノール(溶媒)をモル比で0.015:0.015:1となるように混合して、中間層形成用の溶液を作製した。この溶液中にNCM焼結板を浸漬させ、減圧した後、NCM焼結板を溶液から取り出した。なお、前述の作業は露点-50℃以下のAr雰囲気中のグローブボックス中で行った。その後、NCM焼結板をグローブボックス内から取り出し、大気中で10分間静置して、中間層を形成した。その後、上記一連の作業を更に9回繰り返した(すなわち合計10回成膜した)。最後に、NCM焼結板を700℃で30分間熱処理して、中間層が形成された正極板を得た。
(Deposition of intermediate layer)
A solution for forming an intermediate layer was prepared by mixing lithium ethoxide: aluminum butoxide: ethanol (solvent) in a molar ratio of 0.015:0.015:1. The NCM sintered plate was immersed in this solution, and after decompression, the NCM sintered plate was removed from the solution. The above-mentioned operation was performed in a glove box in an Ar atmosphere with a dew point of -50°C or less. The NCM sintered plate was then removed from the glove box and left to stand in the air for 10 minutes to form an intermediate layer. The above series of operations was then repeated nine more times (i.e., a total of 10 film formations were performed). Finally, the NCM sintered plate was heat-treated at 700°C for 30 minutes to obtain a positive electrode plate with an intermediate layer formed thereon.

例6
上記(1c)における中間層の成膜を以下のように行ったこと以外は、例1と同様にして電池の作製及び評価を行った。
Example 6
A battery was produced and evaluated in the same manner as in Example 1, except that the intermediate layer in (1c) above was formed as follows.

(中間層の成膜)
リチウムエトキシド:タンタルエトキシド:エタノール(溶媒)をモル比で0.03:0.03:1となるように混合して、中間層形成用の溶液を作製した。この溶液中にNCM焼結板を浸漬させ、減圧した後、NCM焼結板を溶液から取り出した。なお、前述の作業は露点-50℃以下のAr雰囲気中のグローブボックス中で行った。その後、NCM焼結板をグローブボックス内から取り出し、大気中で10分間静置して、中間層を形成した。その後、上記一連の作業を更に4回繰り返した(すなわち合計5回成膜した)。最後に、NCM焼結板を500℃で30分間熱処理して、中間層が形成された正極板を得た。
(Deposition of intermediate layer)
A solution for forming an intermediate layer was prepared by mixing lithium ethoxide, tantalum ethoxide, and ethanol (solvent) in a molar ratio of 0.03:0.03:1. The NCM sintered plate was immersed in this solution, and after decompression, the NCM sintered plate was removed from the solution. The above-mentioned operation was performed in a glove box in an Ar atmosphere with a dew point of -50°C or less. The NCM sintered plate was then removed from the glove box and left to stand in the air for 10 minutes to form an intermediate layer. The above series of operations was then repeated four more times (i.e., a total of five film formations were performed). Finally, the NCM sintered plate was heat-treated at 500°C for 30 minutes to obtain a positive electrode plate with an intermediate layer formed thereon.

例7(比較)
上記(1c)における中間層の成膜を行わなかったこと以外は、例1と同様にして電池の作製及び評価を行った。なお、本例で測定された放電容量を例1~6における放電容量の相対値を算出するための基準値100とした。
Example 7 (Comparison)
Except for not forming the intermediate layer in (1c) above, a battery was produced and evaluated in the same manner as in Example 1. The discharge capacity measured in this example was set as the reference value 100 for calculating the relative values of the discharge capacities in Examples 1 to 6.

例8
上記(1a)におけるNCMグリーンシートの作製、及び上記(1b)におけるNCM焼結板の作製を以下のように行ったこと以外は、例1と同様にして電池の作製及び評価を行った。
Example 8
A battery was produced and evaluated in the same manner as in Example 1, except that the preparation of the NCM green sheet in (1a) above and the preparation of the NCM sintered plate in (1b) above were carried out as follows.

(NCMグリーンシートの作製)
Li/(Ni+Co+Mn)のモル比が1.15となるように秤量された市販の(Ni0.5Co0.2Mn0.3)(OH)粉末(平均粒径9μm)とLiCO粉末(平均粒径3μm)を混合後、750℃で10時間保持し、NCM粒子からなる粉末を得た。この粉末を粉砕して平均粒径約5μmに調整した後、この粉末とテープ成形用の溶媒、バインダー、可塑剤、及び分散剤と混合した。得られたペーストを粘度調整した後、このペーストをフィルム上にテープ成形することでNCMグリーンシートを作製した。NCMグリーンシートの厚さは焼成後の厚さが100μmとなるように調整した。
(Preparation of NCM Green Sheet)
Commercially available ( Ni0.5Co0.2Mn0.3 )(OH) 2 powder (average particle size 9 μm) and Li2CO3 powder (average particle size 3 μm) were mixed so that the molar ratio of Li/(Ni+Co + Mn) was 1.15 , and then held at 750 ° C for 10 hours to obtain a powder consisting of NCM particles. This powder was pulverized to adjust the average particle size to about 5 μm, and then mixed with a solvent for tape casting, a binder, a plasticizer, and a dispersant. After adjusting the viscosity of the obtained paste, the paste was tape-cast on a film to produce an NCM green sheet. The thickness of the NCM green sheet was adjusted so that the thickness after firing was 100 μm.

(NCM焼結板の作製)
NCMグリーンシートを450℃で6時間保持して脱脂をした後、昇温速度200℃/hで920℃まで昇温して10時間保持することで焼成を行った。こうしてNCM焼結板を正極板として得た。得られたNCM焼結板の片面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した。
(Preparation of NCM sintered plate)
The NCM green sheet was degreased by holding it at 450°C for 6 hours, and then heated to 920°C at a heating rate of 200°C/h and held for 10 hours to sinter it. In this way, an NCM sintered plate was obtained as a positive electrode plate. A Au film (thickness 100 nm) was formed as a current collecting layer on one side of the obtained NCM sintered plate by sputtering.

例9(比較)
上記(1c)における中間層の成膜を行わなかったこと以外は、例8と同様にして電池の作製及び評価を行った。なお、本例で測定された放電容量を例8及び10における放電容量の相対値を算出するための基準値100とした。
Example 9 (Comparison)
Except for not forming the intermediate layer in the above (1c), a battery was produced and evaluated in the same manner as in Example 8. The discharge capacity measured in this example was set as the reference value 100 for calculating the relative values of the discharge capacities in Examples 8 and 10.

例10(比較)
上記(1c)における中間層の成膜を以下のように行ったこと以外は、例8と同様にして電池の作製及び評価を行った。
Example 10 (Comparative)
A battery was produced and evaluated in the same manner as in Example 8, except that the intermediate layer in (1c) above was formed as follows.

(中間層の成膜)
リチウムエトキシド:テトラエトキシシラン:エタノール(溶媒)をモル比で0.030:0.015:1となるように混合して、中間層形成用の溶液を作製した。この溶液中にNCM焼結板を浸漬させ、減圧した後、NCM焼結板を溶液から取り出した。なお、溶液の作製から溶液の拭き取りまでの作業は、露点-50℃以下のAr雰囲気中のグローブボックス中で行った。その後、NCM焼結板をグローブボックス内から取り出し、大気中で10分間静置して、中間層を形成した。その後、上記一連の作業を更に3回繰り返した(すなわち合計4回成膜した)。最後に、NCM焼結板を400℃で30分間熱処理して、中間層が形成された正極板を得た。
(Deposition of intermediate layer)
A solution for forming an intermediate layer was prepared by mixing lithium ethoxide: tetraethoxysilane: ethanol (solvent) in a molar ratio of 0.030: 0.015: 1. The NCM sintered plate was immersed in this solution, and after decompression, the NCM sintered plate was removed from the solution. The work from preparation of the solution to wiping off the solution was carried out in a glove box in an Ar atmosphere with a dew point of -50 ° C or less. The NCM sintered plate was then removed from the glove box and left to stand in the air for 10 minutes to form an intermediate layer. The above series of operations was then repeated three more times (i.e., a total of four film formations were performed). Finally, the NCM sintered plate was heat-treated at 400 ° C for 30 minutes to obtain a positive electrode plate on which an intermediate layer was formed.

例11
上記(3a)における原料粉末の準備を以下のように行ったこと以外は、例8と同様にして電池の作製及び評価を行った。
Example 11
A battery was produced and evaluated in the same manner as in Example 8, except that the raw material powder in (3a) above was prepared as follows.

(原料粉末の準備)
LiSO粉末(市販品、純度99%以上)、LiOH粉末(市販品、純度98%以上)、及びLiBO(市販品、純度99%以上)をLiSO:LiOH:LiBO=1:1.8:0.05(モル比)となるように混合して原料混合粉末を得た。これらの粉末は、露点-50℃以下のAr雰囲気中のグローブボックス中で取り扱い、吸湿等の変質が起こらないように十分に注意した。
(Preparation of raw powder)
Li2SO4 powder (commercial product, purity 99% or more), LiOH powder (commercial product, purity 98% or more), and Li3BO3 (commercial product, purity 99% or more) were mixed in a molar ratio of Li2SO4 : LiOH : Li3BO3 = 1:1.8:0.05 to obtain a raw material mixed powder. These powders were handled in a glove box in an Ar atmosphere with a dew point of -50°C or less, with great care taken to prevent deterioration such as moisture absorption.

例12(比較)
上記(1c)における中間層の成膜を行わなかったこと以外は、例11と同様にして電池の作製及び評価を行った。なお、本例で測定された放電容量を例11における放電容量の相対値を算出するための基準値100とした。
Example 12 (Comparative)
Except for not forming the intermediate layer in the above (1c), a battery was produced and evaluated in the same manner as in Example 11. The discharge capacity measured in this example was set as the reference value 100 for calculating the relative value of the discharge capacity in Example 11.

例13
(1)正極板の作製
(1a)LCOグリーンシートの作製
Li/Coのモル比が1.02となるように秤量された市販のCo粉末(平均粒径0.9μm)と市販のLiCO粉末(平均粒径3μm)を混合後、750℃で5時間保持した。得られた粉末をポットミルにて平均粒径が0.4μmとなるように粉砕して、LCO粉末を得た。得られたLCO粉末と、分散媒と、バインダーと、可塑剤と、分散剤とを混合した。得られた混合物を粘度調整することによって、LCOスラリーを調製した。こうして調製されたスラリーをフィルム上にテープ成形することによって、LCOグリーンシートを形成した。LCOグリーンシートの厚さは焼成後の厚さが60μmとなるような値とした。
Example 13
(1) Preparation of Positive Electrode Plate (1a) Preparation of LCO Green Sheet Commercially available Co3O4 powder (average particle size 0.9 μm) and commercially available Li2CO3 powder (average particle size 3 μm) were mixed so that the molar ratio of Li / Co was 1.02, and then held at 750 ° C for 5 hours. The obtained powder was pulverized in a pot mill so that the average particle size was 0.4 μm to obtain LCO powder. The obtained LCO powder was mixed with a dispersion medium, a binder, a plasticizer, and a dispersant. The viscosity of the obtained mixture was adjusted to prepare an LCO slurry. The slurry thus prepared was tape-cast on a film to form an LCO green sheet. The thickness of the LCO green sheet was set to a value such that the thickness after firing was 60 μm.

(1b)LiCOグリーンシートの作製
市販のLiCO原料粉末(平均粒径3μm)と、分散媒と、バインダーと、可塑剤と、分散剤とを混合した。得られた混合物を粘度調整することによって、LiCOスラリーを調製した。こうして調製されたLiCOスラリーをフィルム上にテープ成形することによって、LiCOグリーンシートを形成した。乾燥後のLiCOグリーンシートの厚さは、LCOグリーンシートにおけるCo含有量に対する、LiCOグリーンシートにおけるLi含有量のモル比である、Li/Co比を0.2とすることができるように設定した。
(1b) Preparation of Li2CO3 Green Sheet Commercially available Li2CO3 raw material powder (average particle size 3 μm ), a dispersion medium, a binder, a plasticizer, and a dispersant were mixed. The resulting mixture was adjusted in viscosity to prepare a Li2CO3 slurry. The Li2CO3 slurry thus prepared was tape-cast onto a film to form a Li2CO3 green sheet. The thickness of the Li2CO3 green sheet after drying was set so that the Li/Co ratio, which is the molar ratio of the Li content in the Li2CO3 green sheet to the Co content in the LCO green sheet, could be 0.2.

(1c)LCO焼結板の作製
PETフィルムから剥がしたLCOグリーンシートを昇温速度200℃/hで600℃まで昇温して3時間脱脂した後、900℃で3時間保持することで仮焼した。得られたLCO仮焼板におけるCo含有量に対する、LiCOグリーンシートにおけるLi含有量のモル比である、Li/Co比が0.1となるようなサイズに、乾燥されたLiCOグリーンシートを切り出した。LCO仮焼板上に、上記切り出されたLiCOグリーンシート片を載置した。上記焼結板及びグリーンシート片を積層し、その積層物を昇温速度200℃/hで600℃まで昇温して3時間脱脂した後に、800℃まで200℃/hで昇温して5時間保持した後850℃まで200℃/hで昇温して24時間保持することで焼成を行った。こうしてLCO焼結板を正極板として得た。得られたLCO焼結体板にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した。
(1c) Preparation of LCO sintered plate The LCO green sheet peeled off from the PET film was heated to 600°C at a heating rate of 200°C/h, degreased for 3 hours, and then calcined at 900°C for 3 hours. The dried Li2CO3 green sheet was cut out to a size such that the Li/Co ratio, which is the molar ratio of the Li content in the Li2CO3 green sheet to the Co content in the obtained LCO calcined plate, was 0.1. The cut out Li2CO3 green sheet piece was placed on the LCO calcined plate. The sintered plate and the green sheet piece were stacked, and the stack was heated to 600°C at a heating rate of 200°C/h and degreased for 3 hours, and then heated to 800°C at 200°C/h and held for 5 hours, and then heated to 850°C at 200°C/h and held for 24 hours to perform sintering. In this way, the LCO sintered plate was obtained as a positive electrode plate. On the obtained sintered LCO plate, an Au film (thickness: 100 nm) was formed as a current collecting layer by sputtering.

(1d)中間層の成膜
ニオブエトキシド:リチウムエトキシド:エタノールをモル比で0.015:0.015:1となるように混合して、中間層形成用の溶液を作製した。この溶液中に上記(1b)で作製したLCO焼結板を浸漬させ、減圧した後、LCO焼結板を溶液から取り出した。なお、前述の作業は露点-50℃以下のAr雰囲気中のグローブボックス中で行った。その後、LCO焼結板をグローブボックス内から取り出し、大気中で10分間静置して、中間層を形成した。その後、上記一連の作業を更に2回繰り返した(すなわち合計3回成膜した)。最後に、LCO焼結板を400℃で30分間熱処理して、中間層が形成された正極板を得た。
(1d) Formation of intermediate layer Niobium ethoxide: lithium ethoxide: ethanol were mixed in a molar ratio of 0.015:0.015:1 to prepare a solution for forming an intermediate layer. The LCO sintered plate prepared in (1b) above was immersed in this solution, and after depressurization, the LCO sintered plate was removed from the solution. The above-mentioned operation was performed in a glove box in an Ar atmosphere with a dew point of -50°C or less. Then, the LCO sintered plate was removed from the glove box and left to stand in the air for 10 minutes to form an intermediate layer. Then, the above series of operations was repeated two more times (i.e., a total of three film formations were performed). Finally, the LCO sintered plate was heat-treated at 400°C for 30 minutes to obtain a positive electrode plate on which an intermediate layer was formed.

(2)負極板の作製
(2a)LTOグリーンシートの作製
市販のLTO粉末(平均粒径0.7μm)と、分散媒と、バインダーと、可塑剤と、分散剤とを混合した。得られた負極原料混合物を粘度調整することによって、LTOスラリーを調製した。こうして調製されたスラリーをフィルム上にテープ成形することによって、LTOグリーンシートを形成した。乾燥後のLTOグリーンシートの厚さは焼成後の厚さが60μmとなるような値とした。
(2) Preparation of negative electrode plate (2a) Preparation of LTO green sheet Commercially available LTO powder (average particle size 0.7 μm), a dispersion medium, a binder, a plasticizer, and a dispersant were mixed. The viscosity of the obtained negative electrode raw material mixture was adjusted to prepare an LTO slurry. The slurry thus prepared was tape-cast onto a film to form an LTO green sheet. The thickness of the LTO green sheet after drying was set to a value such that the thickness after firing was 60 μm.

(2b)LTO焼結板の作製
得られたグリーンシートを500℃で5時間保持した後に、昇温速度200℃/hにて昇温し、800℃で5時間焼成を行った。得られたLTO焼結体にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した。
(2b) Preparation of LTO sintered plate The obtained green sheet was held at 500° C. for 5 hours, then heated at a heating rate of 200° C./h, and sintered at 800° C. for 5 hours. A Au film (thickness 100 nm) was formed as a current collecting layer on the obtained LTO sintered body by sputtering.

(3)固体電解質の作製
(3a)原料粉末の準備
LiSO粉末(市販品、純度99%以上)、LiOH粉末(市販品、純度98%以上)をLiSO:LiOH=1:3(モル比)となるように混合して原料混合粉末を得た。これらの粉末は、露点-50℃以下のAr雰囲気中のグローブボックス中で取り扱い、吸湿等の変質が起こらないように十分に注意した。
(3) Preparation of solid electrolyte (3a) Preparation of raw material powder Li2SO4 powder (commercial product, purity 99% or more) and LiOH powder (commercial product, purity 98% or more) were mixed in a molar ratio of Li2SO4 : LiOH = 1:3 to obtain a raw material mixed powder. These powders were handled in a glove box in an Ar atmosphere with a dew point of -50°C or less, and sufficient care was taken to prevent deterioration such as moisture absorption.

(3b)溶融合成
Ar雰囲気中で原料混合粉末をるつぼに投入し、このるつぼを電気炉にセットし、430℃で2時間熱処理を行い溶融物を作製した。引き続き、電気炉内にて100℃/hで溶融物を冷却して凝固物を形成した。
(3b) Melt synthesis The raw material mixed powder was placed in a crucible in an Ar atmosphere, and the crucible was set in an electric furnace and heat-treated at 430° C. for 2 hours to produce a melt. The melt was then cooled in the electric furnace at 100° C./h to form a solidified product.

(3c)乳鉢粉砕
得られた凝固物をAr雰囲気中にて乳鉢で粉砕することによって、平均粒径D50が5~50μmの固体電解質粉末を得た。
(3c) Mortar Crushing The obtained coagulated product was pulverized in a mortar in an Ar atmosphere to obtain a solid electrolyte powder having an average particle size D50 of 5 to 50 μm.

(4)全固体電池の作製
例1(4)と同様にして電池を作製した。
(4) Preparation of All-Solid-State Battery A battery was prepared in the same manner as in Example 1(4).

(5)評価
例1(5)と同様にして、電極板/固体電解質界面の解析、及び充放電評価を行った。
(5) Evaluation Analysis of the electrode plate/solid electrolyte interface and evaluation of charge/discharge were performed in the same manner as in Example 1(5).

例14
上記(2b)におけるLTO焼結板の作製後に、LTO焼結板に以下のようにして中間層の成膜を行ったこと以外は、例13と同様にして電池の作製及び評価を行った。
Example 14
A battery was produced and evaluated in the same manner as in Example 13, except that after the LTO sintered plate was produced in the above (2b), an intermediate layer was formed on the LTO sintered plate in the following manner.

(中間層の成膜)
ニオブエトキシド:リチウムエトキシド:エタノールをモル比で0.015:0.015:1となるように混合して、中間層形成用の溶液を作製した。この溶液中に例13の(2b)で作製したLTO焼結板を浸漬させ、減圧した後、LTO焼結板を溶液から取り出した。なお、前述の作業は露点-50℃以下のAr雰囲気中のグローブボックス中で行った。その後、LTO焼結板をグローブボックス内から取り出し、大気中で10分間静置して、中間層を形成した。その後、上記一連の作業を更に2回繰り返した(すなわち合計3回成膜した)。最後に、LTO焼結板を400℃で30分間熱処理して、中間層が形成された負極板を得た。
(Deposition of intermediate layer)
Niobium ethoxide: lithium ethoxide: ethanol were mixed in a molar ratio of 0.015:0.015:1 to prepare a solution for forming an intermediate layer. The LTO sintered plate prepared in (2b) of Example 13 was immersed in this solution, and after depressurization, the LTO sintered plate was removed from the solution. The above-mentioned operation was performed in a glove box in an Ar atmosphere with a dew point of -50°C or less. The LTO sintered plate was then removed from the glove box and left to stand in the air for 10 minutes to form an intermediate layer. The above series of operations was then repeated two more times (i.e., a total of three film formations were performed). Finally, the LTO sintered plate was heat-treated at 400°C for 30 minutes to obtain a negative electrode plate on which an intermediate layer was formed.

例15(比較)
上記(1c)における中間層の成膜を行わなかったこと以外は、例13と同様にして電池の作製及び評価を行った。なお、本例で測定された放電容量を例13及び14における放電容量の相対値を算出するための基準値100とした。
Example 15 (Comparative)
Except for not forming the intermediate layer in the above (1c), a battery was produced and evaluated in the same manner as in Example 13. The discharge capacity measured in this example was set as the reference value 100 for calculating the relative values of the discharge capacities in Examples 13 and 14.

例16
(1)正極板の作製
(1a)NCMグリーンシートの作製
Li/(Ni+Co+Mn)のモル比が1.15となるように秤量された市販の(Ni0.5Co0.2Mn0.3)(OH)粉末(平均粒径9μm)とLiCO粉末(平均粒径3μm)を混合後、750℃で10時間保持し、NCM粒子からなる粉末を得た。この粉末を粉砕して平均粒径約5μmに調整した後、この粉末とテープ成形用の溶媒、バインダー、可塑剤、及び分散剤とを混合した。得られたペーストを粘度調整した後、このペーストをフィルム上にテープ成形することでNCMグリーンシートを作製した。NCMグリーンシートの厚さは焼成後の厚さが100μmとなるように調整した。
Example 16
(1) Preparation of positive electrode plate (1a) Preparation of NCM green sheet Commercially available ( Ni0.5Co0.2Mn0.3 )(OH) 2 powder (average particle size 9 μm) and Li2CO3 powder (average particle size 3 μm) were mixed so that the molar ratio of Li/(Ni + Co + Mn ) was 1.15, and then held at 750 ° C for 10 hours to obtain a powder consisting of NCM particles. This powder was pulverized to adjust the average particle size to about 5 μm, and then this powder was mixed with a solvent for tape casting, a binder, a plasticizer, and a dispersant. After adjusting the viscosity of the obtained paste, the paste was tape-cast on a film to produce an NCM green sheet. The thickness of the NCM green sheet was adjusted so that the thickness after firing was 100 μm.

(1b)NCM焼結板の作製
NCMグリーンシートを450℃で6時間保持して脱脂をした後、昇温速度200℃/hで920℃まで昇温して10時間保持することで焼成を行った。こうしてNCM焼結板を正極板として得た。得られたNCM焼結板の片面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した。
(1b) Preparation of NCM sintered plate The NCM green sheet was degreased by holding it at 450°C for 6 hours, and then heated to 920°C at a heating rate of 200°C/h and held for 10 hours to perform sintering. In this way, the NCM sintered plate was obtained as a positive electrode plate. A Au film (thickness 100 nm) was formed as a current collecting layer by sputtering on one side of the obtained NCM sintered plate.

(1c)中間層の成膜
チタンテトライソプロポキシド:リチウムエトキシド:エタノールをモル比で0.0225:0.05:1となるように混合して、中間層形成用の溶液を作製した。この溶液中に上記(1b)で作製したNCM焼結板を浸漬させて減圧し、正極板の気孔内に溶液を含浸させた。なお、前述の作業は露点-30℃以下の雰囲気で行った。その後、NCM焼結板を大気中で5分間静置して中間層を形成させた。その後、上記一連の作業を更に7回繰り返した(すなわち合計8回成膜した)。最後に、NCM焼結板を400℃で30分間熱処理して、中間層が形成された正極板を得た。
(1c) Formation of intermediate layer Titanium tetraisopropoxide: lithium ethoxide: ethanol were mixed in a molar ratio of 0.0225:0.05:1 to prepare a solution for forming an intermediate layer. The NCM sintered plate prepared in (1b) above was immersed in this solution, the pressure was reduced, and the solution was impregnated into the pores of the positive electrode plate. The above-mentioned operation was performed in an atmosphere with a dew point of -30°C or less. Then, the NCM sintered plate was left to stand in the air for 5 minutes to form an intermediate layer. Then, the above series of operations was repeated 7 more times (i.e., a total of 8 times were formed). Finally, the NCM sintered plate was heat-treated at 400°C for 30 minutes to obtain a positive electrode plate with an intermediate layer formed thereon.

(2)負極板の作製
(2a)LTOグリーンシートの作製
Li/Tiのモル比が0.84となるように秤量された市販のTiO粉末(平均粒径1μm以下)とLiCO粉末(平均粒径3μm)を混合後、1000℃で2時間保持し、LTO粒子からなる粉末を得た。この粉末を粉砕して平均粒径約2μmに調整した後、テープ成形用の溶媒、バインダー、可塑剤及び分散剤と混合した。得られたペーストの粘度を調整した後、このペーストをフィルム上にテープ成形することでLTOグリーンシートを作製した。LTOグリーンシートの厚さは焼成後の厚さが200μmとなるように調整した。
(2) Preparation of negative electrode plate (2a) Preparation of LTO green sheet Commercially available TiO2 powder (average particle size 1 μm or less) and Li2CO3 powder (average particle size 3 μm) weighed so that the molar ratio of Li/Ti was 0.84 were mixed, and then held at 1000 ° C for 2 hours to obtain a powder consisting of LTO particles. This powder was pulverized to adjust the average particle size to about 2 μm, and then mixed with a solvent for tape casting, a binder, a plasticizer, and a dispersant. After adjusting the viscosity of the obtained paste, the paste was tape-cast on a film to produce an LTO green sheet. The thickness of the LTO green sheet was adjusted so that the thickness after firing was 200 μm.

(2b)LTO焼結板の作製
LTOグリーンシートを450℃で6時間保持して脱脂をした後、昇温速度200℃/hで850℃まで昇温して2時間保持することで焼成を行った。こうしてLTO焼結板を負極板として得た。得られたLTO焼結板の片面にスパッタリングによりAu膜(厚さ100nm)を集電層として形成した。
(2b) Preparation of LTO sintered plate The LTO green sheet was degreased by holding it at 450 ° C for 6 hours, and then heated to 850 ° C at a heating rate of 200 ° C / h and held for 2 hours to perform sintering. In this way, the LTO sintered plate was obtained as a negative electrode plate. A Au film (thickness 100 nm) was formed as a current collecting layer by sputtering on one side of the obtained LTO sintered plate.

(3)固体電解質の作製
(3a)原料粉末の準備
LiSO粉末(市販品、純度99%以上)、LiOH粉末(市販品、純度98%以上)、及びLiBO(市販品、純度99%以上)をLiSO:LiOH:LiBO=1:2.6:0.05(モル比)となるように混合して原料混合粉末を得た。これらの粉末は、露点-50℃以下のAr雰囲気中のグローブボックス中で取り扱い、吸湿等の変質が起こらないように十分に注意した。
(3) Preparation of solid electrolyte (3a) Preparation of raw material powder Li2SO4 powder (commercial product, purity 99% or more), LiOH powder (commercial product, purity 98% or more), and Li3BO3 (commercial product , purity 99% or more ) were mixed to obtain a raw material mixed powder with a molar ratio of Li2SO4 :LiOH: Li3BO3 = 1:2.6:0.05. These powders were handled in a glove box in an Ar atmosphere with a dew point of -50°C or less, and sufficient care was taken to prevent deterioration such as moisture absorption.

(3b)溶融合成
Ar雰囲気中で原料混合粉末をるつぼに投入した。このるつぼを電気炉にセットし、430℃で2時間熱処理を行い溶融物を作製した。引き続き、電気炉内にて100℃/hで溶融物を冷却して凝固物を形成した。
(3b) Melt synthesis The raw material mixed powder was put into a crucible in an Ar atmosphere. The crucible was set in an electric furnace and heat-treated at 430° C. for 2 hours to prepare a melt. The melt was then cooled in the electric furnace at 100° C./h to form a solidified product.

(3c)乳鉢粉砕
得られた凝固物をAr雰囲気中にて乳鉢で粉砕することによって、平均粒径D50が5~50μmの固体電解質粉末を得た。
(3c) Mortar Crushing The obtained coagulated product was pulverized in a mortar in an Ar atmosphere to obtain a solid electrolyte powder having an average particle size D50 of 5 to 50 μm.

(4)全固体電池の作製
例1(4)と同様にして電池を作製した。
(4) Preparation of All-Solid-State Battery A battery was prepared in the same manner as in Example 1(4).

(5)評価
例1(5)と同様にして、電極板/固体電解質界面の解析、及び充放電評価を行った。
(5) Evaluation Analysis of the electrode plate/solid electrolyte interface and evaluation of charge/discharge were performed in the same manner as in Example 1(5).

例17
上記(1c)における中間層の成膜を以下のように行ったこと以外は、例16と同様にして電池の作製及び評価を行った。
Example 17
A battery was produced and evaluated in the same manner as in Example 16, except that the intermediate layer in (1c) above was formed as follows.

(中間層の成膜)
リチウムエトキシド:アルミニウムブトキシド:硝酸ランタン(無水物):ジルコニウムテトラ-n-ブトキシド:2-エトキシエタノールをモル比で0.000335:0.000005:0.00015:0.0001:1となるように混合して、中間層形成用の溶液を作製した。この溶液中にNCM焼結板を浸漬させて減圧し、正極板の気孔内に溶液を含浸させた。なお、前述の作業は露点-30℃以下の雰囲気で行った。その後、中間層を形成させるため700℃で30分間熱処理した。その後、上記作業を更に1回繰り返して(すなわち合計2回成膜した)。中間層が形成された正極板を得た。
(Deposition of intermediate layer)
Lithium ethoxide: aluminum butoxide: lanthanum nitrate (anhydrous): zirconium tetra-n-butoxide: 2-ethoxyethanol were mixed in a molar ratio of 0.000335: 0.000005: 0.00015: 0.0001: 1 to prepare a solution for forming an intermediate layer. An NCM sintered plate was immersed in this solution, the pressure was reduced, and the solution was impregnated into the pores of the positive electrode plate. The above-mentioned operation was performed in an atmosphere with a dew point of -30°C or less. Then, the intermediate layer was formed by heat treatment at 700°C for 30 minutes. Then, the above operation was repeated once more (i.e., the film was formed twice in total). A positive electrode plate with an intermediate layer formed thereon was obtained.

例18
上記(1c)における中間層の成膜を以下のように行ったこと以外は、例16と同様にして電池の作製及び評価を行った。
Example 18
A battery was produced and evaluated in the same manner as in Example 16, except that the intermediate layer in (1c) above was formed as follows.

(中間層の成膜)
リチウムエトキシド:硝酸ランタン(無水物):チタンテトライソプロポキシド:エタノールをモル比で0.00099:0.00165:0.003:1となるように混合して、中間層形成用の溶液を作製した。この溶液中にNCM焼結板を浸漬させて減圧し、正極板の気孔内に溶液を含浸させた。なお、前述の作業は露点-30℃以下の雰囲気で行った。その後、中間層を形成させるため700℃で30分間熱処理した。その後、上記作業を更に1回繰り返して(すなわち合計2回成膜して)、中間層が形成された正極板を得た。
(Deposition of intermediate layer)
A solution for forming an intermediate layer was prepared by mixing lithium ethoxide, lanthanum nitrate (anhydrous), titanium tetraisopropoxide, and ethanol in a molar ratio of 0.00099:0.00165:0.003:1. An NCM sintered plate was immersed in this solution, the pressure was reduced, and the solution was impregnated into the pores of the positive electrode plate. The above-mentioned operation was performed in an atmosphere with a dew point of -30°C or less. Then, the intermediate layer was formed by heat treatment at 700°C for 30 minutes. The above operation was then repeated once more (i.e., a total of two film formations) to obtain a positive electrode plate with an intermediate layer formed thereon.

例19
上記(1c)における中間層の成膜を以下のように行ったこと以外は、例16と同様にして電池の作製及び評価を行った。
Example 19
A battery was produced and evaluated in the same manner as in Example 16, except that the intermediate layer in (1c) above was formed as follows.

(中間層の成膜)
水酸化リチウム:酸化タングステン(IV):水をモル比で0.048:0.024:1となるように混合して、中間層形成用の溶液を作製した。この溶液中にNCM焼結板を浸漬させて減圧し、正極板の気孔内に溶液を含浸させた。その後、中間層を形成させるため800℃で30分間熱処理した。その後、上記作業を更に1回繰り返して(すなわち合計2回成膜して)、中間層が形成された正極板を得た。
(Deposition of intermediate layer)
A solution for forming an intermediate layer was prepared by mixing lithium hydroxide, tungsten (IV) oxide, and water in a molar ratio of 0.048:0.024:1. The NCM sintered plate was immersed in this solution, the pressure was reduced, and the solution was impregnated into the pores of the positive electrode plate. Then, the plate was heat-treated at 800°C for 30 minutes to form an intermediate layer. The above process was then repeated once more (i.e., a total of two film formations) to obtain a positive electrode plate with an intermediate layer formed thereon.

例20
上記(1c)における中間層の成膜を以下のように行ったこと以外は、例16と同様にして電池の作製及び評価を行った。
Example 20
A battery was produced and evaluated in the same manner as in Example 16, except that the intermediate layer in (1c) above was formed as follows.

(中間層の成膜)
ニオブエトキシド:リチウムエトキシド:エタノールをモル比で0.0225:0.0225:1となるように混合して、中間層形成用の溶液を作製した。この溶液中にNCM焼結板を浸漬させて減圧し、正極板の気孔内に溶液を含浸させた。なお、前述の作業は露点-30℃以下の雰囲気で行った。その後、NCM焼結板を大気中で5分間静置して中間層を形成させた。その後、上記一連の作業を更に7回繰り返した(すなわち合計8回成膜した)。最後に、NCM焼結板を400℃で30分間熱処理して、中間層が形成された正極板を得た。
(Deposition of intermediate layer)
Niobium ethoxide: lithium ethoxide: ethanol were mixed in a molar ratio of 0.0225:0.0225:1 to prepare a solution for forming an intermediate layer. The NCM sintered plate was immersed in this solution, the pressure was reduced, and the solution was impregnated into the pores of the positive electrode plate. The above-mentioned operation was performed in an atmosphere with a dew point of -30°C or less. Then, the NCM sintered plate was left to stand in the air for 5 minutes to form an intermediate layer. Then, the above series of operations was repeated another 7 times (i.e., a total of 8 times of film formation). Finally, the NCM sintered plate was heat-treated at 400°C for 30 minutes to obtain a positive electrode plate with an intermediate layer formed thereon.

例21
上記(1c)における中間層の成膜を以下のように行ったこと以外は、例16と同様にして電池の作製及び評価を行った。
Example 21
A battery was produced and evaluated in the same manner as in Example 16, except that the intermediate layer in (1c) above was formed as follows.

(中間層の成膜)
リチウムエトキシド:アルミニウムブトキシド:エタノール(溶媒)をモル比で0.0225:0.0225:1となるように混合して、中間層形成用の溶液を作製した。この溶液中にNCM焼結板を浸漬させて減圧し、正極板の気孔内に溶液を含浸させた。なお、前述の作業は露点-30℃以下の雰囲気で行った。その後、NCM焼結板を大気中で5分間静置して中間層を形成させた。その後、上記一連の作業を更に7回繰り返した(すなわち合計8回成膜した)。最後に、NCM焼結板を400℃で30分間熱処理して、中間層が形成された正極板を得た。
(Deposition of intermediate layer)
A solution for forming an intermediate layer was prepared by mixing lithium ethoxide: aluminum butoxide: ethanol (solvent) in a molar ratio of 0.0225:0.0225:1. The NCM sintered plate was immersed in this solution, the pressure was reduced, and the solution was impregnated into the pores of the positive electrode plate. The above-mentioned operation was performed in an atmosphere with a dew point of -30°C or less. The NCM sintered plate was then left to stand in the air for 5 minutes to form an intermediate layer. The above series of operations was then repeated seven more times (i.e., a total of eight film formations were performed). Finally, the NCM sintered plate was heat-treated at 400°C for 30 minutes to obtain a positive electrode plate with an intermediate layer formed thereon.

例22
上記(1c)における中間層の成膜を以下のように行ったこと以外は、例16と同様にして電池の作製及び評価を行った。
Example 22
A battery was produced and evaluated in the same manner as in Example 16, except that the intermediate layer in (1c) above was formed as follows.

(中間層の成膜)
リチウムエトキシド:すずイソプロポキシド:エタノール(溶媒)をモル比で0.015:0.015:1となるように混合して、中間層形成用の溶液を作製した。この溶液中にNCM焼結板を浸漬させて減圧し、正極板の気孔内に溶液を含浸させた。なお、前述の作業は露点-30℃以下の雰囲気で行った。その後、NCM焼結板を大気中で5分間静置して中間層を形成させた。その後、上記一連の作業を更に7回繰り返した(すなわち合計8回成膜した)。最後に、NCM焼結板を600℃で30分間熱処理して、中間層が形成された正極板を得た。
(Deposition of intermediate layer)
A solution for forming an intermediate layer was prepared by mixing lithium ethoxide, tin isopropoxide, and ethanol (solvent) in a molar ratio of 0.015:0.015:1. The NCM sintered plate was immersed in this solution, the pressure was reduced, and the solution was impregnated into the pores of the positive electrode plate. The above-mentioned operation was performed in an atmosphere with a dew point of -30°C or less. The NCM sintered plate was then left to stand in the air for 5 minutes to form an intermediate layer. The above series of operations was then repeated seven more times (i.e., a total of eight film formations were performed). Finally, the NCM sintered plate was heat-treated at 600°C for 30 minutes to obtain a positive electrode plate with an intermediate layer formed thereon.

例23
上記(1c)における中間層の成膜を以下のように行ったこと以外は、例16と同様にして電池の作製及び評価を行った。
Example 23
A battery was produced and evaluated in the same manner as in Example 16, except that the intermediate layer in (1c) above was formed as follows.

(中間層の成膜)
硝酸リチウム:硝酸セリウム:水をモル比で0.008:0.001:1となるように混合して、中間層形成用の溶液を作製した。この溶液中にNCM焼結板を浸漬させて減圧し、正極板の気孔内に溶液を含浸させた。その後、中間層を形成させるため800℃で30分間熱処理した。その後、上記作業を更に1回繰り返して(すなわち合計2回成膜した)、中間層が形成された正極板を得た。
(Deposition of intermediate layer)
A solution for forming an intermediate layer was prepared by mixing lithium nitrate, cerium nitrate, and water in a molar ratio of 0.008:0.001:1. The NCM sintered plate was immersed in this solution, the pressure was reduced, and the solution was impregnated into the pores of the positive electrode plate. Then, the plate was heat-treated at 800°C for 30 minutes to form an intermediate layer. The above process was then repeated once more (i.e., a total of two film formations were performed) to obtain a positive electrode plate with an intermediate layer formed thereon.

例24
上記(1c)における中間層の成膜を以下のように行ったこと以外は、例16と同様にして電池の作製及び評価を行った。
Example 24
A battery was produced and evaluated in the same manner as in Example 16, except that the intermediate layer in (1c) above was formed as follows.

(中間層の成膜)
リチウムエトキシド:硝酸ランタン(無水物):ニオブエトキシド:エタノールをモル比で0.00025:0.00015:0.0001:1となるように混合して、中間層形成用の溶液を作製した。この溶液中にNCM焼結板を浸漬させて減圧し、正極板の気孔内に溶液を含浸させた。なお、前述の作業は露点-30℃以下の雰囲気で行った。その後、中間層を形成させるため800℃で30分間熱処理した。その後、上記作業を更に1回繰り返して(すなわち合計2回成膜した)、中間層が形成された正極板を得た。
(Deposition of intermediate layer)
A solution for forming an intermediate layer was prepared by mixing lithium ethoxide: lanthanum nitrate (anhydrous): niobium ethoxide: ethanol in a molar ratio of 0.00025:0.00015:0.0001:1. An NCM sintered plate was immersed in this solution, the pressure was reduced, and the solution was impregnated into the pores of the positive electrode plate. The above-mentioned operation was performed in an atmosphere with a dew point of -30°C or less. Then, the plate was heat-treated at 800°C for 30 minutes to form an intermediate layer. The above operation was then repeated once more (i.e., a total of two film formations were performed) to obtain a positive electrode plate with an intermediate layer formed thereon.

例25
上記(1c)における中間層の成膜を以下のように行ったこと以外は、例16と同様にして電池の作製及び評価を行った。
Example 25
A battery was produced and evaluated in the same manner as in Example 16, except that the intermediate layer in (1c) above was formed as follows.

(中間層の成膜)
硝酸リチウム:硝酸マンガン:水をモル比で0.006:0.006:1となるように混合して、中間層形成用の溶液を作製した。この溶液中にNCM焼結板を浸漬させて減圧し、正極板の気孔内に溶液を含浸させた。その後、中間層を形成させるため400℃で30分間熱処理した。その後、上記作業を更に1回繰り返して(すなわち合計2回成膜した)、中間層が形成された正極板を得た。
(Deposition of intermediate layer)
A solution for forming an intermediate layer was prepared by mixing lithium nitrate, manganese nitrate, and water in a molar ratio of 0.006:0.006:1. An NCM sintered plate was immersed in this solution, the pressure was reduced, and the solution was impregnated into the pores of the positive electrode plate. Then, the plate was heat-treated at 400°C for 30 minutes to form an intermediate layer. The above process was then repeated once more (i.e., a total of two film formations were performed) to obtain a positive electrode plate with an intermediate layer formed thereon.

例26(比較)
上記(1c)における中間層の成膜を行わなかったこと以外は、例16と同様にして電池の作製及び評価を行った。なお、本例で測定された放電容量を例16~25における放電容量の相対値を算出するための基準値100とした。
Example 26 (Comparative)
Except for not forming the intermediate layer in (1c) above, a battery was produced and evaluated in the same manner as in Example 16. The discharge capacity measured in this example was set as the reference value 100 for calculating the relative values of the discharge capacities in Examples 16 to 25.

結果
例1~26の評価結果について表1~5並びに図1及び2を参照しながら以下に説明する。
Results The evaluation results of Examples 1 to 26 are explained below with reference to Tables 1 to 5 and FIGS.

(電極板/固体電解質界面の解析)
例1~26の各セルの中間層を形成した電極板と固体電解質の界面ではEDX分析から中間層として用いたLi以外の金属と酸素が検出された。LiはEDXでは検出することができないが、中間層の溶液を蒸発乾固させて中間層形成と同じ温度で熱処理すると、それぞれの金属元素の酸化物(例4)やリチウム複合酸化物(例4以外)が形成されることがXRD評価より確認できる。このことから、例1~15の各例において電極板と固体電解質の界面には中間層に用いた元素の酸化物(例4)又はそのリチウム複合酸化物(例4以外)からなる中間層が形成されていると推測される。実際に例6及び13で作製された正極板/固体電解質界面を撮影したSEM像を図1及び2にそれぞれ示す。図1(例6)ではNCM粒子と固体電解質の界面に明部が存在し、この部分からはTaが検出され、厚み0.1~1μmのLi及びTaからなる酸化物の中間層が形成されていることが分かった。また、図2(例13)ではLCO粒子と固体電解質(図中、3LHSは3LiOH・LiSOを意味する)の界面に層(矢印間)が存在し、この部分からはNbが検出され、厚み20~30nmのLi及びNbからなる酸化物の中間層が形成されていることが分かった。
(Analysis of the electrode plate/solid electrolyte interface)
At the interface between the electrode plate on which the intermediate layer was formed and the solid electrolyte in each of the cells in Examples 1 to 26, metals other than Li used as the intermediate layer and oxygen were detected by EDX analysis. Although Li cannot be detected by EDX, when the solution of the intermediate layer is evaporated to dryness and heat-treated at the same temperature as the intermediate layer formation, it can be confirmed by XRD evaluation that an oxide of each metal element (Example 4) or a lithium composite oxide (other than Example 4) is formed. From this, it is presumed that an intermediate layer consisting of an oxide of the element used in the intermediate layer (Example 4) or its lithium composite oxide (other than Example 4) is formed at the interface between the electrode plate and the solid electrolyte in each of Examples 1 to 15. SEM images of the positive electrode plate/solid electrolyte interface actually produced in Examples 6 and 13 are shown in Figures 1 and 2, respectively. In Figure 1 (Example 6), a bright area exists at the interface between the NCM particles and the solid electrolyte, and Ta is detected from this area, and it was found that an intermediate layer of oxides consisting of Li and Ta having a thickness of 0.1 to 1 μm was formed. In addition, in FIG. 2 (Example 13), a layer (between the arrows) exists at the interface between the LCO particle and the solid electrolyte (in the figure, 3LHS means 3LiOH·Li 2 SO 4 ), and Nb is detected in this portion, indicating that an intermediate layer of an oxide of Li and Nb with a thickness of 20 to 30 nm has been formed.

(充放電評価)
表1に例1~7のセル構成及び放電容量が示される。表1に示される結果から、正極板に中間層を形成した例1~6では、中間層を形成しなかった例7(比較例)に対し、放電容量が向上することが分かった。中間層が放電容量を向上するメカニズムは定かではないが、NCMと固体電解質の反応による固体電解質の劣化抑制(伝導率低下)、界面での高抵抗層形成の抑制等が考えられる。前述のような現象は固体電解質の種類と電極活物質の種類に依存するものであり、LiOH・LiSO系電解質と正極活物質の組み合わせにおいては、Li及びNbの酸化物、Li及びYの酸化物、Yの酸化物、Li及びAlの酸化物、並びにLi及びTaの酸化物が有効であることが分かった。
(Charge/Discharge Evaluation)
Table 1 shows the cell configurations and discharge capacities of Examples 1 to 7. From the results shown in Table 1, it was found that in Examples 1 to 6 in which an intermediate layer was formed on the positive electrode plate, the discharge capacity was improved compared to Example 7 (comparative example) in which no intermediate layer was formed. The mechanism by which the intermediate layer improves the discharge capacity is unclear, but it is thought that it may be due to the suppression of degradation of the solid electrolyte due to the reaction between the NCM and the solid electrolyte (reduction in conductivity), the suppression of the formation of a high resistance layer at the interface, etc. The above-mentioned phenomenon depends on the type of solid electrolyte and the type of electrode active material, and it was found that in the combination of LiOH.Li 2 SO 4 -based electrolyte and positive electrode active material, oxides of Li and Nb, oxides of Li and Y, oxides of Y, oxides of Li and Al, and oxides of Li and Ta are effective.

表2に例8~10のセル構成及び放電容量が示される。例8~10では、正極板の作り方を変えることで活物質の緻密度(体積%)を変更した。表2においても、Li及びNbの酸化物を中間層として形成した例8では、中間層を形成しなかった例9(比較例)に対して、放電容量が向上することが分かった。すなわち、正極板の微構造が変化しても中間層の効果があることが分かった。また、Li及びSiの酸化物を中間層として形成した例10(比較例)では、例8に対し放電容量が低下しており、中間層として前述したような適切な材料が存在することが分かった。Table 2 shows the cell configuration and discharge capacity of Examples 8 to 10. In Examples 8 to 10, the density (volume %) of the active material was changed by changing the manufacturing method of the positive electrode plate. Table 2 also shows that Example 8, in which an oxide of Li and Nb was formed as the intermediate layer, had an improved discharge capacity compared to Example 9 (Comparative Example), in which no intermediate layer was formed. In other words, it was found that the intermediate layer has an effect even if the microstructure of the positive electrode plate changes. Furthermore, Example 10 (Comparative Example), in which an oxide of Li and Si was formed as the intermediate layer, had a lower discharge capacity compared to Example 8, indicating the presence of a suitable material as described above for the intermediate layer.

表3に例11及び12のセル構成及び放電容量が示される。例11及び12は、LiOH・LiSO系固体電解質のLiOH:LiSOのモル比を変更した。表3においても、Li、Nbからなる酸化物を中間層として形成した例11では、中間層を形成しなかった例12(比較例)に対して、放電容量が向上することが分かり、LiOH・LiSO系固体電解質の組成が変化しても中間層の効果があることが分かった。 Table 3 shows the cell configuration and discharge capacity of Examples 11 and 12. In Examples 11 and 12 , the molar ratio of LiOH: Li2SO4 in the LiOH.Li2SO4 -based solid electrolyte was changed. Table 3 also shows that Example 11, in which an oxide of Li and Nb was formed as an intermediate layer, had an improved discharge capacity compared to Example 12 (comparative example) in which no intermediate layer was formed, and that the intermediate layer had an effect even if the composition of the LiOH.Li2SO4 - based solid electrolyte was changed.

表4に例13~15のセル構成及び放電容量が示される。例13~15では、正極としてLCO焼結板を用い、LiOH・LiSO系固体電解質を変更した。表4においても、Li及びNbの酸化物を中間層として形成した例13では、中間層を形成しなかった例15(比較例)に対して、放電容量が向上することが分かり、正極板としてNCMとは異なる層状岩塩構造であるLCOを用いても中間層の効果があることが分かった。負極板にLi及びNbの酸化物を中間層として形成した例14でも、例15(比較例)に対し、放電容量が増加しており、中間層の効果があることが分かった。以上のことから、各種電極活物質とLiOH・LiSO系固体電解質との界面に、Li及びNbの酸化物、Li及びYの酸化物、Yの酸化物、Li及びAlの酸化物、Li及びTaの酸化物を中間層として形成することが放電特性を向上させることが分かり、特に正極板とLiOH・LiSO系固体電解質の界面においてはその効果が顕著であることが分かった。 Table 4 shows the cell configurations and discharge capacities of Examples 13 to 15. In Examples 13 to 15, an LCO sintered plate was used as the positive electrode, and the LiOH.Li 2 SO 4 solid electrolyte was changed. Table 4 also shows that Example 13, in which an oxide of Li and Nb was formed as an intermediate layer, had an improved discharge capacity compared to Example 15 (Comparative Example), in which no intermediate layer was formed, and that the intermediate layer was effective even when LCO, which has a layered rock salt structure different from NCM, was used as the positive electrode plate. Example 14, in which an oxide of Li and Nb was formed as an intermediate layer on the negative electrode plate, also had an increased discharge capacity compared to Example 15 (Comparative Example), and that the intermediate layer was effective. From the above, it was found that forming an intermediate layer of oxides of Li and Nb, oxides of Li and Y, oxides of Y, oxides of Li and Al, or oxides of Li and Ta at the interface between various electrode active materials and the LiOH.Li2SO4 -based solid electrolyte improves discharge characteristics, and that this effect is particularly remarkable at the interface between the positive electrode plate and the LiOH.Li2SO4 -based solid electrolyte.

表5に例16~26のセル構成及び放電容量が示される。例16~26では、正極としてNCM焼結板を用い、LiOH・LiSO系固体電解質のLiOH:LiSOのモル比を変更した。表5においては、各種リチウム複合酸化物を中間層として形成した例16~25では、中間層を形成しなかった例26(比較例)に対して、放電容量が向上することが分かった。以上のことから、正極活物質とLiOH・LiSO系固体電解質との界面に、Li及びTiの酸化物、Li、La及びZr又はLi、La、Zr及びAlの酸化物、Li、La及びTiの酸化物、Li及びWの酸化物、Li及びAlの酸化物、Li及びNbの酸化物、Li及びSnの酸化物、Li及びCeの酸化物、Li、La及びNbの酸化物、並びにLi及びMnの酸化物を中間層として形成することで放電特性が向上することが分かった。 Table 5 shows the cell configurations and discharge capacities of Examples 16 to 26. In Examples 16 to 26, an NCM sintered plate was used as the positive electrode, and the molar ratio of LiOH: Li2SO4 in the LiOH.Li2SO4 -based solid electrolyte was changed . Table 5 shows that Examples 16 to 25, in which various lithium composite oxides were formed as intermediate layers, had improved discharge capacities compared to Example 26 (Comparative Example), in which no intermediate layer was formed. From the above, it was found that the discharge characteristics are improved by forming an intermediate layer of oxides of Li and Ti , oxides of Li, La and Zr or oxides of Li, La, Zr and Al, oxides of Li, La and Ti, oxides of Li and W, oxides of Li and Al, oxides of Li and Nb, oxides of Li and Sn, oxides of Li and Ce, oxides of Li, La and Nb, or oxides of Li and Mn at the interface between the positive electrode active material and the LiOH.Li2SO4-based solid electrolyte.

Figure 0007569328000001
Figure 0007569328000001

Figure 0007569328000002
Figure 0007569328000002

Figure 0007569328000003
Figure 0007569328000003

Figure 0007569328000004
Figure 0007569328000004

Figure 0007569328000005
Figure 0007569328000005

Claims (7)

正極活物質を含む正極と、
負極活物質を含む負極と、
前記正極及び前記負極の間に介在し、かつ、前記正極及び前記負極の少なくとも一方の空隙にも入り込んでいる、LiOH・LiSO系固体電解質と、
を含み、前記LiOH・Li SO 系固体電解質がホウ素をさらに含み、
前記固体電解質が入り込んでいる前記正極及び前記負極の少なくとも一方において、前記正極活物質及び前記負極活物質の少なくとも一方と前記固体電解質との界面に、Yの酸化物、及び/又はY、Nb、Ta、Al、Ti、La、Zr、W、Sn、Ce、及びMnからなる群から選択される少なくとも1種とLiとを含むリチウム複合酸化物で構成される中間層をさらに備えており、前記中間層が前記正極活物質と前記固体電解質との界面に存在する、全固体二次電池。
a positive electrode including a positive electrode active material;
a negative electrode including a negative electrode active material;
A LiOH.Li2SO4 - based solid electrolyte interposed between the positive electrode and the negative electrode and also penetrating into the voids of at least one of the positive electrode and the negative electrode;
The LiOH.Li2SO4 -based solid electrolyte further contains boron ;
an all-solid-state secondary battery, wherein at least one of the positive electrode and the negative electrode into which the solid electrolyte has been permeated further comprises an intermediate layer at an interface between the solid electrolyte and at least one of the positive electrode active material and the negative electrode active material, the intermediate layer being composed of an oxide of Y and/or a lithium composite oxide containing Li and at least one selected from the group consisting of Y, Nb, Ta, Al, Ti, La, Zr, W, Sn, Ce, and Mn, and the intermediate layer is present at the interface between the positive electrode active material and the solid electrolyte .
前記酸化物及び/又はリチウム複合酸化物が、Y酸化物、Li及びNbの酸化物、Li及びTaの酸化物、Li及びAlの酸化物、及びLi及びYの酸化物、Li及びTiの酸化物、Li、La及びZr又はLi、La、Zr及びAlの酸化物、Li、La及びTiの酸化物、Li及びWの酸化物、Li及びNbの酸化物、Li及びSnの酸化物、Li及びCeの酸化物、Li、La及びNbの酸化物、並びにLi及びMnの酸化物からなる群から選択される少なくとも1種である、請求項1に記載の全固体二次電池。 The all-solid-state secondary battery according to claim 1, wherein the oxide and/or lithium composite oxide is at least one selected from the group consisting of Y oxide, Li and Nb oxide, Li and Ta oxide, Li and Al oxide, Li and Y oxide, Li and Ti oxide, Li, La and Zr or Li, La, Zr and Al oxide, Li, La and Ti oxide, Li and W oxide, Li and Nb oxide, Li and Sn oxide, Li and Ce oxide, Li, La and Nb oxide, and Li and Mn oxide. 前記LiOH・LiSO系固体電解質がX線回折により3LiOH・LiSOと同定される固体電解質を含む、請求項1又は2に記載の全固体二次電池。 The all-solid-state secondary battery according to claim 1 or 2, wherein the LiOH.Li 2 SO 4 -based solid electrolyte comprises a solid electrolyte identified as 3LiOH.Li 2 SO 4 by X-ray diffraction. 前記正極活物質が層状岩塩構造を有するリチウム複合酸化物である、請求項1~3のいずれか一項に記載の全固体二次電池。 The all-solid-state secondary battery according to any one of claims 1 to 3 , wherein the positive electrode active material is a lithium composite oxide having a layered rock salt structure. 前記層状岩塩構造を有するリチウム複合酸化物が、コバルト・ニッケル・マンガン酸リチウム又はコバルト酸リチウムである、請求項に記載の全固体二次電池。 5. The all-solid-state secondary battery according to claim 4 , wherein the lithium composite oxide having a layered rock salt structure is lithium cobalt nickel manganese oxide or lithium cobalt oxide. 前記正極活物質が焼結板の形態である、請求項1~のいずれか一項に記載の全固体二次電池。 The all-solid-state secondary battery according to any one of claims 1 to 5 , wherein the positive electrode active material is in the form of a sintered plate. 前記正極活物質が50~80体積%の緻密度を有する、請求項1~のいずれか一項に記載の全固体二次電池。 The all-solid-state secondary battery according to any one of claims 1 to 6 , wherein the positive electrode active material has a density of 50 to 80 volume %.
JP2021554925A 2019-11-06 2020-10-30 All-solid-state secondary battery Active JP7569328B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019043354 2019-11-06
JPPCT/JP2019/043354 2019-11-06
PCT/JP2020/040972 WO2021090782A1 (en) 2019-11-06 2020-10-30 All solid-state secondary battery

Publications (2)

Publication Number Publication Date
JPWO2021090782A1 JPWO2021090782A1 (en) 2021-05-14
JP7569328B2 true JP7569328B2 (en) 2024-10-17

Family

ID=75848414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021554925A Active JP7569328B2 (en) 2019-11-06 2020-10-30 All-solid-state secondary battery

Country Status (2)

Country Link
JP (1) JP7569328B2 (en)
WO (1) WO2021090782A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044368A (en) 2009-08-24 2011-03-03 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery
JP2013062133A (en) 2011-09-13 2013-04-04 Toyota Motor Corp All-solid-state battery
JP2014067574A (en) 2012-09-26 2014-04-17 Honda Motor Co Ltd Solid electrolyte, composite electrolyte, and lithium ion secondary battery having the same
JP2017004783A (en) 2015-06-11 2017-01-05 セイコーエプソン株式会社 Method for manufacturing electrode complex, electrode complex and lithium battery
JP2018502416A (en) 2014-10-28 2018-01-25 ユニバーシティー オブ メリーランド,カレッジ パーク Interfacial layer of solid battery and method for producing
WO2018226826A1 (en) 2017-06-06 2018-12-13 The Regents Of The University Of Michigan Method for suppressing metal propagation in solid electrolytes
WO2019093222A1 (en) 2017-11-10 2019-05-16 日本碍子株式会社 All-solid lithium battery and method of manufacturing same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5533563B2 (en) * 1972-12-14 1980-09-01
JP4773552B2 (en) * 2009-08-20 2011-09-14 中外炉工業株式会社 Vacuum exhaust head
JP5546585B2 (en) * 2012-06-25 2014-07-09 シャープ株式会社 Display device and television receiver
US9710641B2 (en) * 2014-12-12 2017-07-18 Arp-Ip Llc System and method for replacing common identifying data
WO2018220820A1 (en) * 2017-06-02 2018-12-06 三菱電機株式会社 Air conditioner and air conditioner system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011044368A (en) 2009-08-24 2011-03-03 Sumitomo Electric Ind Ltd Nonaqueous electrolyte battery
JP2013062133A (en) 2011-09-13 2013-04-04 Toyota Motor Corp All-solid-state battery
JP2014067574A (en) 2012-09-26 2014-04-17 Honda Motor Co Ltd Solid electrolyte, composite electrolyte, and lithium ion secondary battery having the same
JP2018502416A (en) 2014-10-28 2018-01-25 ユニバーシティー オブ メリーランド,カレッジ パーク Interfacial layer of solid battery and method for producing
JP2017004783A (en) 2015-06-11 2017-01-05 セイコーエプソン株式会社 Method for manufacturing electrode complex, electrode complex and lithium battery
WO2018226826A1 (en) 2017-06-06 2018-12-13 The Regents Of The University Of Michigan Method for suppressing metal propagation in solid electrolytes
WO2019093222A1 (en) 2017-11-10 2019-05-16 日本碍子株式会社 All-solid lithium battery and method of manufacturing same

Also Published As

Publication number Publication date
WO2021090782A1 (en) 2021-05-14
JPWO2021090782A1 (en) 2021-05-14

Similar Documents

Publication Publication Date Title
EP3537521B1 (en) Lithium cobalt oxide positive electrode material and preparation method therefor and lithium ion secondary battery
EP2302723B1 (en) Ceramic material and use thereof
JP6995057B2 (en) Secondary battery
US20160181657A1 (en) Solid electrolyte, all-solid-state battery including the same, and method for making solid electrolyte
JP2016171068A (en) Garnet-type lithium ion conductive oxide
JP6943985B2 (en) Positive electrode for solid-state battery, solid-state battery, and method for manufacturing solid-state battery
JP2011073962A (en) Ceramic material and preparation method therefor
JP2012031025A (en) Garnet-type lithium ion-conducting oxide and method for producing the same
JP6995135B2 (en) Secondary battery
CN116525817B (en) Positive electrode active material, preparation method thereof, positive electrode sheet and secondary battery
JP7306493B2 (en) solid state battery
JP7126518B2 (en) All-solid-state lithium battery and manufacturing method thereof
US20220158227A1 (en) Precursor composition for solid electrolyte, and method for producing secondary battery
US9698430B2 (en) Lithium-lanthanum-titanium oxide sintered material, solid electrolyte containing the oxide, lithium air battery and all-solid lithium battery including the solid electrolyte, and method for producing the lithium-lanthanum-titanium oxide sintered material
JP7423760B2 (en) Lithium ion secondary battery and its manufacturing method
JP2022156600A (en) Ceramic powder material, sintered body, and battery
JP7569328B2 (en) All-solid-state secondary battery
WO2020194823A1 (en) All-solid-state secondary battery
JP2020107536A (en) Positive electrode active material for lithium ion secondary battery, and method for manufacturing the same
WO2021235401A1 (en) Solid electrolyte ceramic material, and solid battery
JP7502971B2 (en) Lithium-ion secondary battery
WO2022091983A1 (en) All-solid-state secondary battery
JP7506767B2 (en) Lithium composite oxide sintered plate and all-solid-state secondary battery
WO2021100659A1 (en) Composite electrode and battery using same
JPH11339805A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20241004

R150 Certificate of patent or registration of utility model

Ref document number: 7569328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150