JP6710357B1 - Exercise support system - Google Patents
Exercise support system Download PDFInfo
- Publication number
- JP6710357B1 JP6710357B1 JP2019079688A JP2019079688A JP6710357B1 JP 6710357 B1 JP6710357 B1 JP 6710357B1 JP 2019079688 A JP2019079688 A JP 2019079688A JP 2019079688 A JP2019079688 A JP 2019079688A JP 6710357 B1 JP6710357 B1 JP 6710357B1
- Authority
- JP
- Japan
- Prior art keywords
- unit
- feedback
- stimulating
- timing
- stimulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 230000004936 stimulating effect Effects 0.000 claims abstract description 61
- 230000033001 locomotion Effects 0.000 claims abstract description 41
- 238000004364 calculation method Methods 0.000 claims abstract description 14
- 238000001514 detection method Methods 0.000 claims abstract description 11
- 230000000638 stimulation Effects 0.000 claims description 51
- 238000010801 machine learning Methods 0.000 claims description 4
- 238000010586 diagram Methods 0.000 abstract description 5
- 230000007274 generation of a signal involved in cell-cell signaling Effects 0.000 abstract description 3
- 230000006870 function Effects 0.000 description 41
- 238000012545 processing Methods 0.000 description 33
- 238000013528 artificial neural network Methods 0.000 description 22
- 238000004458 analytical method Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 17
- 210000003127 knee Anatomy 0.000 description 16
- 230000008569 process Effects 0.000 description 12
- 230000001133 acceleration Effects 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000005021 gait Effects 0.000 description 5
- 210000002414 leg Anatomy 0.000 description 5
- 230000033764 rhythmic process Effects 0.000 description 4
- 241000282412 Homo Species 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- 206010017577 Gait disturbance Diseases 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 210000002683 foot Anatomy 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- 230000007659 motor function Effects 0.000 description 2
- 230000035807 sensation Effects 0.000 description 2
- 210000003371 toe Anatomy 0.000 description 2
- 206010034701 Peroneal nerve palsy Diseases 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000001020 rhythmical effect Effects 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 230000037152 sensory function Effects 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 238000012549 training Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Rehabilitation Tools (AREA)
Abstract
【課題】運動開始のトリガーとなる刺激を適切に伝え、少ない刺激の数量で動作部位ごとに動かすべき方向を認識可能な運動支援システムを提供すること。【解決手段】使用者に装着され、順に動作する複数の刺激手段を有する刺激部と、使用者の身体の所定部位の動きを検知して検知信号を出力する一又は二以上のセンサー部と、前記センサー部の検知信号に基づいて、前記刺激手段を動作させる必要があるか否かを判定するフィードバック要否判定部と、前記センサー部の検知信号に基づいて、前記刺激手段を動作させるタイミングを演算するフィードバックタイミング演算部と、前記フィードバック要否判定部で前記刺激手段の動作が必要と判定された場合は、前記フィードバックタイミング演算部で演算されたタイミングで、前記刺激手段を動作させるフィードバック信号を生成するフィードバック信号生成部と、を備える。【選択図】 図1PROBLEM TO BE SOLVED: To provide a motion support system capable of appropriately transmitting a stimulus that is a trigger for exercising and recognizing a direction to be moved for each motion site with a small number of stimuli. SOLUTION: A stimulating unit attached to a user and having a plurality of stimulating means that sequentially operates, and one or more sensor units that detect a movement of a predetermined part of the user's body and output a detection signal, Based on the detection signal of the sensor unit, a feedback necessity determination unit that determines whether or not the stimulating unit needs to be operated, and a timing of operating the stimulating unit based on the detection signal of the sensor unit. When it is determined by the feedback timing calculation unit that calculates and the feedback necessity determination unit that the stimulating unit needs to operate, a feedback signal that operates the stimulating unit is generated at the timing calculated by the feedback timing calculating unit. And a feedback signal generation unit that generates the feedback signal. [Selection diagram]
Description
本発明は、人間の歩行機能など運動機能を活性化させるシステムに係り、特に人間の運動を知覚機能にフィードバックすることにより人間の運動機能を活性化させることのできる運動支援システムに関する。 The present invention relates to a system for activating a motor function such as a human walking function, and particularly to a motion support system capable of activating a human motor function by feeding back a human motion to a sensory function.
従来、歩行アシストを目的としたロボティクス技術が数多く開発され、いろいろなメーカが独自に開発した歩行アシスト機器を市場に出している。このロボティクスを使用した歩行アシストの場合は動作をセンシングして、その動作を物理的にアシストするものであるが、現在の技術では位置、可動域、バランス、反応等を含めた身体運動を、個人差も含めて網羅することは難しい状況である。したがって、使用者の願うアシストができておらず、ロボティクス技術のみでは歩行改善に限界がある。 Conventionally, many robotics technologies have been developed for the purpose of assisting walking, and various manufacturers have marketed their own assisting devices for walking. In the case of walking assist using this robotics, the motion is sensed and the motion is physically assisted, but with the current technology, the physical movement including position, range of motion, balance, reaction, etc. It is a difficult situation to cover even the differences. Therefore, the assistance desired by the user has not been achieved, and there is a limit to the improvement of walking only with robotics technology.
しかしながら、ロボティクスの物理的な歩行アシストのみに注目が集まり、歩行困難者に対して何をアシストすべきかという観点からの検討が必ずしも十分でない。たとえば、歩行者が何に困っているのか、どうなりたいのか、そのためにどういう技術が必要なのかという議論が全くなされていない。 However, attention is focused only on the physical walking assist of robotics, and it is not always sufficient to consider what should be assisted for a person with walking difficulty. For example, there is no discussion about what pedestrians are having trouble with, what they want to do, and what kind of technology is needed for that.
上記の問題点は、ロボティクス技術を用いた歩行アシスト機能が人間の有する歩行機能と連動していないからであると考えられる。人間の有する歩行機能は、個人差があり、年齢や傷害の有無、あるいは障害の部位によっても異なる。 The above problem is considered to be because the walking assist function using the robotics technology is not linked with the walking function of humans. There are individual differences in the walking function of humans, and it also differs depending on the age, the presence or absence of injury, or the site of injury.
この人間の有する歩行機能を活用し、これを活性化すなわち目標とする動作ができるように改善することを基本として、その上で、例えば足がさらに上がるようにしたいなどの要求がある場合は、その部分のみにロボティクスの技術を適用するようにすれば、上記の問題点はかなり改善すると考えられる。 Based on the fact that this human walking function is utilized to improve it so that it can be activated, that is, a target motion, and if there is a demand to further raise the foot, for example, If the robotics technology is applied only to that part, the above problems would be considerably improved.
人間の有する歩行機能の活性化を目的とした歩行アシストに関する技術として、例えば、特許文献1には、歩行者の運動リズムを検出するセンサー部と、センサー部で検出された運動リズムの測定値を記録する記録部と、歩行者の運動リズムに関する目標値を設定する目標設定部と、測定値と目標値の差異に基づいてタイミング信号を生成するタイミング生成部と、タイミング生成部により生成されたタイミング信号に基づいて、歩行者が認識可能なリズム刺激を発生する刺激発生部とで構成された歩行介助システムが記載されている。この特許文献1の技術は、音、光、電気などの刺激によって歩行者を目標値に近いリズムで歩行させて歩行運動の改善を図るものである。 As a technique related to walking assist for the purpose of activating the walking function of humans, for example, in Patent Document 1, a sensor unit that detects a movement rhythm of a pedestrian and a measurement value of the movement rhythm detected by the sensor unit are provided. A recording unit that records, a target setting unit that sets a target value related to a pedestrian's movement rhythm, a timing generation unit that generates a timing signal based on a difference between the measured value and the target value, and a timing generated by the timing generation unit. A walking assistance system including a stimulus generator that generates a rhythmic stimulus that can be recognized by a pedestrian based on a signal is described. The technique of Patent Document 1 is intended to improve walking motion by causing a pedestrian to walk at a rhythm close to a target value by stimulation such as sound, light, and electricity.
また特許文献2には、患脚の進行方向加速度及び鉛直方向加速度を検出する2軸加速度センサーと膝軸周りの角速度を検出する1軸角速度センサーとを備え、個々の患者の患脚を目視した離床タイミングを教師信号として学習させたニューラルネットワークにより、様々な歩容の下垂足患者の離床タイミングを高精度に推定して、タイミング良く電気刺激を発生する歩行補助装置が記載されている。 Further, Patent Document 2 includes a biaxial acceleration sensor that detects acceleration in the traveling direction and vertical acceleration of the affected leg and a uniaxial angular velocity sensor that detects angular velocity around the knee axis, and visually observes the affected leg of each patient. There is described a walking assist device that highly accurately estimates the leaving timing of various foot drop patients with a neural network that learns the leaving timing as a teacher signal, and generates electrical stimulation at a good timing.
しかしながら、上記の従来技術は、所定のタイミングで、単発で刺激信号が出力されるものである。このためユーザは、刺激を感知した部位を動かすことはできても、その方向が正しかったか否かを知得することは困難であった。 However, in the above-described conventional technique, the stimulation signal is output in a single shot at a predetermined timing. For this reason, although the user can move the part that senses the stimulus, it is difficult for the user to know whether or not the direction was correct.
また、運動において身体の筋肉はそれぞれ連動しながら複雑な動きをする。タイミングの到来の都度夫々の部位に刺激を与えていたのでは刺激すべき部位の数が増えると刺激の数量が多くなり過ぎて効果が低減する。したがって如何に少ない刺激で効果的に所望の動作を可能にするかが問題となる。 In addition, during exercise, the muscles of the body perform complicated movements while interlocking with each other. If the stimulation is given to each site each time the timing arrives, if the number of sites to be stimulated increases, the number of stimulations becomes too large and the effect decreases. Therefore, it becomes a problem how effectively a desired operation can be performed with a small number of stimuli.
さらに、上記の従来技術は、歩行中のユーザに対して刺激を発生するものであるが、歩行障害の程度によっては、歩行開始時すなわち停止状態から動作状態に移るのが困難な場合も少なくない。 Further, the above-mentioned conventional technique generates a stimulus to a walking user, but depending on the degree of the walking disorder, it is often difficult to shift from a stopped state to a working state at the start of walking. ..
本発明は、上記の問題に対処してなされたものであり、運動開始のトリガーとなる刺激を適切に伝え、少ない刺激の数量で動作部位ごとに動かすべき方向を認識可能な運動支援システムを提供することを目的とする The present invention has been made to address the above problems, and provides an exercise support system capable of appropriately transmitting a stimulus that triggers the start of exercise and recognizing a direction to move for each operation site with a small number of stimuli. Aim to
上記目的を達成するため、本開示に係る運度支援システムは、使用者の運動に伴って該使用者に刺激を与える運動支援システムであって、
機械学習により求めた、身体の基準部位の動きに連動する各身体部位の動作タイミングに関する第1のパラメータと、機械学習により求めた、各身体部位の動作量に関する第2のパラメータとを保存する記憶部と、
使用者に装着され、順に動作する複数の刺激手段を有する刺激部と、
使用者の身体の所定部位の動きを検知して検知信号を出力する一又は二以上のセンサー部と、
前記センサー部の検知信号と前記第2のパラメータとに基づいて、前記刺激手段を動作させる必要があるか否かを判定するフィードバック要否判定部と、
前記第1のパラメータと前記検知信号とに基づいて、前記刺激手段を動作させるタイミングを演算するフィードバックタイミング演算部と、
前記フィードバック要否判定部で前記刺激手段の動作が必要と判定された場合は、前記フィードバックタイミング演算部で演算されたタイミングで、前記刺激手段を動作させるフィードバック信号を生成するフィードバック信号生成部と、
を備えたことを特徴とする。
In order to achieve the above-mentioned object, a luck support system according to the present disclosure is an exercise support system that stimulates a user with exercise.
A memory for storing a first parameter regarding the operation timing of each body part linked to the movement of the reference part of the body obtained by machine learning and a second parameter regarding the amount of movement of each body part obtained by machine learning Department,
A stimulating unit that is attached to the user and has a plurality of stimulating means that operate in sequence,
One or more sensor units that detect a movement of a predetermined part of the user's body and output a detection signal,
A feedback necessity determination unit that determines whether or not the stimulating unit needs to be operated based on the detection signal of the sensor unit and the second parameter ,
A feedback timing calculation unit that calculates a timing for operating the stimulating means based on the first parameter and the detection signal;
When the feedback necessity determination unit determines that the operation of the stimulating unit is necessary, a feedback signal generating unit that generates a feedback signal for operating the stimulating unit at the timing calculated by the feedback timing calculating unit,
It is characterized by having.
本開示では、フィードバック要否判定部とフィードバックタイミング演算部とを独立して実行する。フィードバック要否判定部では、刺激手段の動作が必要と判定された場合にのみフィードバックタイミング演算部で演算されたタイミングで刺激手段を動作させる。これにより、これにより使用者は、本来の動作ができているかどうかを正確に知得することができる。 In the present disclosure, the feedback necessity determination unit and the feedback timing calculation unit are independently executed. The feedback necessity determination unit operates the stimulation unit at the timing calculated by the feedback timing calculation unit only when it is determined that the operation of the stimulation unit is necessary. Thereby, the user can accurately know whether or not the original operation is performed.
好ましくは、前記刺激部は、複数の刺激手段が直線的又は面的に配置され、前記フィードバック信号生成部は、所定位置の刺激手段から動作を開始し、順に隣の刺激手段を動作させるように前記フィードバック信号を生成するようにすると良い。より好ましくは、刺激手段の動作として、刺激の方向と刺激の数を可変にすると良い。 Preferably, in the stimulating section, a plurality of stimulating means are arranged linearly or in a plane, and the feedback signal generating section starts operation from the stimulating means at a predetermined position and operates adjacent stimulating means in order. It is preferable to generate the feedback signal. More preferably, as the operation of the stimulation means, the direction of stimulation and the number of stimulations may be variable.
これにより、使用者に撫でるような感覚を与えることができ、使用者は本来の動作方向や本来の動作からのずれの程度を知ることができる。 As a result, the user can be given a feeling of being stroked, and the user can know the original movement direction and the degree of deviation from the original movement.
特に、前記フィードバック判定部は、前記センサーから出力される検知信号の時間間隔に基づいて前記刺激手段を動作させる必要があるか否かを判定すると良い。これにより、例えば使用者の運動の周期や、複数のセンサーによる使用者の身体部位の動作タイミングの時間差等に基づいて、矯正が必要かどうかを判定する。 In particular, the feedback determination unit may determine whether or not the stimulating means needs to be operated based on the time interval of the detection signal output from the sensor. Accordingly, for example, it is determined whether or not the correction is necessary based on the cycle of the user's exercise, the time difference between the operation timings of the user's body parts by the plurality of sensors, and the like.
なお、使用者の身体に装着する刺激部は、刺激手段の動作量(刺激量)を記憶する手段を備え、該刺激量は外部から設定可能にすると良い。 The stimulating unit attached to the body of the user may include a unit that stores the amount of motion (stimulation amount) of the stimulating unit, and the amount of stimulation may be set externally.
また、本開示にかかわる運動支援システムは、各刺激手段が連続的に動作する速度は、前記センサーから出力される検知信号の時間間隔に基づいて決定されることを特徴とする。これにより、使用者の動作速度に合わせて、刺激部を動作させて効果的に運動を矯正することが可能になる。 Further, the exercise support system according to the present disclosure is characterized in that the speed at which each stimulating unit operates continuously is determined based on the time interval of the detection signal output from the sensor. As a result, it becomes possible to effectively correct the motion by operating the stimulating unit according to the operation speed of the user.
本発明では、フィードバック要否判定部とフィードバックタイミング演算部とを独立して実行し、フィードバック要否判定部では、刺激手段の動作が必要と判定された場合にフィードバックタイミング演算部で演算されたタイミングで刺激手段を動作させるので、運動開始のトリガーとなる刺激を適切に伝え、また動作の改善が必要なときのみ刺激を与えることができる。 In the present invention, the feedback necessity determination unit and the feedback timing calculation unit are executed independently, and when the feedback necessity determination unit determines that the operation of the stimulating means is necessary, the timing calculated by the feedback timing calculation unit. Since the stimulating means is operated by, the stimulus that triggers the start of exercise can be appropriately transmitted, and the stimulus can be given only when improvement of the motion is necessary.
また、複数の刺激手段の夫々を、所定の方向へ順に時間差をおいて動作させることにより、使用者は対象部位について動かすべき方向や量を容易に知ることができる。 Further, by operating each of the plurality of stimulating means in order in the predetermined direction with a time difference, the user can easily know the direction and the amount to be moved with respect to the target site.
以下、歩行運動を例に本実施の形態による運動支援システムについて説明する。
運動支援システム1は、図1に示すように、基本的にセンサー装置2、演算処理装置3、フィードバック装置4で構成される。また、演算処理装置3は種々の機能を実行する演算部とデータを記憶する記憶部を有しており、通信ネットワーク6を介して、運動データを収集して、運動モデルのパラメータを演算するサーバ装置5と繋がる。
Hereinafter, the exercise support system according to the present embodiment will be described by taking a walking exercise as an example.
As shown in FIG. 1, the exercise support system 1 basically includes a sensor device 2, an arithmetic processing device 3, and a feedback device 4. Further, the arithmetic processing unit 3 has an arithmetic unit that executes various functions and a storage unit that stores data, and a server that collects exercise data via the communication network 6 and calculates the parameters of the exercise model. Connect with device 5.
演算処理装置3は、サーバ装置5と通信するデータ送受信機能33、センサー装置2から時刻、加速度、ジャイロ、地磁気等のデータを収集し、ユーザの所定部位の3次元加速度や各軸の回転運動を取得するデータ取得機能31、サーバ装置5からダウンロードしたパラメータ(フィードバック判断パラメータ)等を用いてフィードバックの要否を判定し、フィードバック要の場合はフィードバック装置4に対してフィードバック指令を出力するフィードバック判断機能32を備える。演算処理装置3は、専用のコンピュータ装置であっても良いが、たとえば、スマートフォン等の汎用の携帯端末を用いることもできる。 The arithmetic processing unit 3 collects data such as time, acceleration, gyro, and geomagnetism from the data transmitting/receiving function 33 that communicates with the server unit 5 and the sensor unit 2 to calculate the three-dimensional acceleration of a predetermined part of the user and the rotational movement of each axis. A feedback determination function that determines whether or not feedback is necessary using the data acquisition function 31 to acquire, parameters (feedback determination parameters) downloaded from the server device 5, and outputs a feedback command to the feedback device 4 when feedback is required. 32 is provided. The arithmetic processing device 3 may be a dedicated computer device, but may be a general-purpose mobile terminal such as a smartphone, for example.
図2はフィードバック装置4の構成図である。この図に示すように、フィードバック装置4は、複数の刺激手段a1〜a5を有する刺激部41を備えている。この刺激手段a1〜a5から出力される刺激は電気や振動刺激でも良いし、空気圧を可変制御した圧力刺激であっても良い。フィードバック判断機能32から出力される指令(フィードバック指示)により、所定の順序で刺激手段a1〜a5が動作し、ユーザの皮膚感覚を通して刺激を与える。なお、刺激部41の各刺激手段a1〜a5は、1次元方向のみでなく、刺激部位により、図3に示すように2次元的に配置されたものを用いることができる。 FIG. 2 is a block diagram of the feedback device 4. As shown in this figure, the feedback device 4 includes a stimulation unit 41 having a plurality of stimulation units a1 to a5. The stimulus output from the stimulating means a1 to a5 may be electrical or vibration stimulus, or pressure stimulus with variably controlled air pressure. In response to a command (feedback command) output from the feedback determination function 32, the stimulating means a1 to a5 operate in a predetermined order to give a stimulus through the user's skin sensation. It should be noted that the stimulating means a1 to a5 of the stimulating section 41 may be ones arranged two-dimensionally as shown in FIG.
皮膚への刺激量は、刺激部41の刺激手段a1〜a5の動作量を変えることによって調整することができる。この調整は、たとえば操作部42のスイッチA〜Dによって各刺激手段a1〜a5を選択し、ボリュームによってその動作量を変更することによって実現することができる。操作部42で設定された刺激手段ごとの動作量やタイミング調整量は刺激部41に送られて記憶される。なお、ユーザや刺激部位によって任意の数の刺激手段を用いることができる。 The amount of stimulation to the skin can be adjusted by changing the amount of movement of the stimulation means a1 to a5 of the stimulation unit 41. This adjustment can be realized, for example, by selecting each of the stimulating means a1 to a5 with the switches A to D of the operation unit 42 and changing the operation amount with the volume. The operation amount and the timing adjustment amount for each stimulating means set by the operation unit 42 are sent to the stimulating unit 41 and stored therein. It should be noted that any number of stimulation means can be used depending on the user and the stimulation site.
次に運動支援システム1の動作について説明する。
[動作概要]
この運動支援システム1は、サーバ装置5から予め比較対象とするパラメータデータをダウンロードして、演算処理装置3の記憶部に保存しておく。そして、ユーザの膝部、足先部に装着されたセンサー装置2から歩行データを取得する。
演算処理装置3のフィードバック判断機能32は、パラメータデータとユーザの歩行データとを比較して、フィードバックが必要と判定した場合には、ユーザの膝あるいは肘など所定位置に装着されたフィードバック装置4の刺激部41に例えば直線的に設けられた刺激手段a1〜a5を作動させて、ユーザの皮膚感覚を通して刺激を与える。
Next, the operation of the exercise support system 1 will be described.
[Operation overview]
The exercise support system 1 downloads parameter data to be compared in advance from the server device 5 and stores it in the storage unit of the arithmetic processing device 3. Then, the walking data is acquired from the sensor device 2 attached to the user's knees and toes.
The feedback determination function 32 of the arithmetic processing device 3 compares the parameter data with the walking data of the user, and when it is determined that feedback is necessary, the feedback determination function 32 of the feedback device 4 mounted at a predetermined position such as the user's knee or elbow. For example, linearly provided stimulating means a1 to a5 are operated in the stimulating unit 41 to give a stimulus through the user's skin sensation.
刺激の与え方の例としては、膝が上がらない(結果として歩幅が狭くなっている)場合は、膝上部に刺激部41を装着する。そして、歩行タイミングに同期させて、まず膝を軽く叩く刺激を与えて意識を刺激される部位へ集中させる。 As an example of how to give a stimulus, when the knee does not go up (as a result, the stride becomes narrow), the stimulating section 41 is attached to the upper part of the knee. Then, in synchronization with the walking timing, the stimulus of tapping the knee is first applied to concentrate the consciousness on the stimulated site.
歩行時に脚が内転する場合には、図4に示すように、膝上げ刺激として膝の下方から上方へ向けて刺激手段a1〜a5を順に動作させるタイミングで、膝周り方向の刺激手段a6〜a10を所定時間間隔で動作させて膝の内側から外側へ順に刺激を与える。これにより、ユーザは膝の内側から外側へ撫でるような刺激を感じ、内側から外側への脚の回転動作を意識できる。これら一連の刺激動作の開始となるトリガーは、歩行動作中のあるタイミング、例えば地面を足先で蹴り出すタイミングとすることができる。 When the legs adduction during walking, as shown in FIG. 4, as the knee lifting stimulus, the stimulating means a6 to a6 in the knee-surrounding direction are sequentially operated at the timing of sequentially operating the stimulating means a1 to a5 from below the knee to above. The a10 is operated at predetermined time intervals to sequentially give stimulation from the inside of the knee to the outside. As a result, the user can feel the stimulus of being stroked from the inside to the outside of the knee and can be aware of the rotation motion of the leg from the inside to the outside. The trigger that starts the series of stimulating motions can be set to a certain timing during the walking motion, for example, a timing at which the ground kicks out.
膝上部の刺激に連動して、膝下部を下から上、足甲部をつま先から足首方向にかけて刺激を与えると効果的である。このとき、ユーザごとに最も意識すべきところを強く刺激を与えるように操作部42によって予め調整される。その他、歩行のステージと刺激動作例を図5〜図7に示す。 It is effective to apply stimulation below the knees from above and above the insteps from the toes to the ankles in conjunction with stimulation of the upper knee. At this time, the operation unit 42 is adjusted in advance so as to strongly stimulate the place to be most conscious of for each user. In addition, a walking stage and examples of stimulating motions are shown in FIGS.
なお、フィードバック信号生成部は、所定位置の刺激手段から動作を開始し、順に隣の刺激手段を動作させるようにフィードバック信号を生成し、順に刺激手段を動かす際、当該所定位置の刺激手段の動作を開始する一定時間前に、一度ないし数度、当該所定位置の刺激手段のみを作動させる、いわゆる予告動作をさせるようにしても良い。このとき、本来の刺激量よりも大きな刺激量とすると効果的である。これにより、ユーザは、注意をその部位に向けることができるので、その後の本来のタイミングでは少ない刺激でも感じ取ることができる。 The feedback signal generation unit starts the operation from the stimulating means at a predetermined position, generates a feedback signal so as to sequentially operate the adjacent stimulating means, and when the stimulating means is sequentially moved, the operation of the stimulating means at the predetermined position. It is also possible to perform a so-called advance notice operation in which only the stimulating means at the predetermined position is activated once or several times before the start of the. At this time, it is effective to make the stimulation amount larger than the original stimulation amount. As a result, the user can direct his/her attention to the part, and can sense even a small amount of stimulation at the subsequent original timing.
[フィードバック判断機能の処理内容]
図8に本実施の形態で最も重要となるフィードバック判断機能の処理手順を示す。また、図9A〜図9Eにフィードバック判断機能の使用データ例を示す。図9A〜図9Eの行(縦方向)はセンサー装置による計測対象の項目、列(横方向)は、各処理(機能1〜機能6)におけるインプット、アウトプットデータの例を示している。図9A〜図9Eに示すデータ構造は個々に分割して構成してもよいし、例えば一つのテーブルで構成することもできる。
[Processing contents of the feedback judgment function]
FIG. 8 shows a processing procedure of the feedback judgment function which is the most important in this embodiment. 9A to 9E show examples of usage data of the feedback determination function. 9A to 9E, the rows (vertical direction) show items to be measured by the sensor device, and the columns (horizontal direction) show examples of input and output data in each process (function 1 to function 6). The data structure shown in FIGS. 9A to 9E may be configured by being divided into individual parts, or may be configured by one table, for example.
なお、図9A〜図9Eに示すフィードバック判断機能の使用データ例中の、機能番号(機能1〜6)、データ番号(データ1〜5)は、図8に示すフィードバック判断機能フローチャート中に記載した機能番号、データ番号に対応している。 Note that the function numbers (functions 1 to 6) and data numbers (data 1 to 5) in the usage data examples of the feedback determination function shown in FIGS. 9A to 9E are described in the feedback determination function flowchart shown in FIG. It corresponds to the function number and data number.
以下、図8の処理手順および図9(図9A〜図9E)のデータ構成図を用いて、本実施の形態による運動支援システムの動作を詳述する。 Hereinafter, the operation of the exercise support system according to the present embodiment will be described in detail with reference to the processing procedure of FIG. 8 and the data configuration diagram of FIG. 9 (FIGS. 9A to 9E).
まず、予め歩行タイミングと歩行モデルについて機械学習済みのパラメータデータを取得し、フィードバック判断パラメータとして演算処理装置3の記憶部に保存しておく。(S101,S201)。なお、これらのパラメータは、サーバ装置5のパラメータ生成機能によって生成され、各ユーザの演算処理装置3にダウンロードされる。 First, the parameter data that has been machine-learned for the walking timing and the walking model is acquired in advance, and is stored in the storage unit of the arithmetic processing device 3 as a feedback determination parameter. (S101, S201). It should be noted that these parameters are generated by the parameter generation function of the server device 5 and downloaded to the arithmetic processing device 3 of each user.
図9Aに歩行タイミンのパラメータデータ(データ1:歩行タイミンググデータ)と歩行モデルのパラメータデータ(データ2:歩行モデルデータ)の例を示す。歩行タイミングは基準部位の動きに連動する各部位の動作タイミングを示すものであり、時間、あるいは周期全体に対する割合など任意の単位で表すことができる。歩行モデルは、各部位の動作量を示すものである。これらのパラメータデータは、演算処理装置3側でユーザごとに調整可能にするのが好ましい。 FIG. 9A shows an example of gait timing parameter data (data 1: gait timing data) and gait model parameter data (data 2: gait model data). The walking timing indicates the operation timing of each part linked to the movement of the reference part, and can be expressed in an arbitrary unit such as time or a ratio to the entire cycle. The walking model indicates the amount of movement of each part. It is preferable that the parameter data can be adjusted for each user on the arithmetic processing device 3 side.
本実施の形態では、各部位の動作タイミング(データ1)と動作量(データ2)とを別々に管理することを特徴の一つとしている。 One of the features of this embodiment is that the operation timing (data 1) and the operation amount (data 2) of each part are managed separately.
図8におけるステップS301〜S306の処理は、基準部位の動作周期よりも十分早い周期で繰り返し実行される。 The processing of steps S301 to S306 in FIG. 8 is repeatedly executed at a cycle sufficiently faster than the operation cycle of the reference part.
まず、ステップS301において、センサー装置2からユーザ歩行のセンサデータを取得して、演算処理装置3の記憶部に保存する。センサデータとしては、時刻、加速度センサー値、ジャイロセンサー値、地磁気センサー値などがあるがこれに限られますものではない。これらのデータは、一定の周波数(Hz)で取得される。図9Bは、センサデータの例である。データ項目ごとに、センサー装置2によって取得された当該ユーザの歩行タイミングデータ、歩行モデルデータが保存される。 First, in step S301, sensor data of user walking is acquired from the sensor device 2 and stored in the storage unit of the arithmetic processing device 3. The sensor data includes, but is not limited to, time, acceleration sensor value, gyro sensor value, geomagnetic sensor value, and the like. These data are acquired at a constant frequency (Hz). FIG. 9B is an example of sensor data. The walking timing data and the walking model data of the user acquired by the sensor device 2 are stored for each data item.
そして、ニューラルネットワーク処理として、フィードバックのタイミングデータを生成する(S302)。ステップS302では、ニューラルネットワーク評価後データ、すなわち効果の出る確率がもっとも高いフィードバックタイミングデータが用いられる。 Then, as neural network processing, feedback timing data is generated (S302). In step S302, the neural network post-evaluation data, that is, the feedback timing data having the highest effect probability is used.
また、これと並行して、フィードバックが必要かどうかの判断が行われる(S303)。この処理には、ニューラルネットワーク評価後データが用いられ、フィードバックすべきかどうかを0%〜100%の確率の判断値として演算される。 Further, in parallel with this, it is determined whether or not feedback is necessary (S303). In this processing, the data after evaluation of the neural network is used, and whether or not to feed back is calculated as a judgment value with a probability of 0% to 100%.
図9Cは、タイミング分析処理によって演算された、部位ごとの歩行タイミング値である。所定の基準位置、例えば右足の足裏部の着地時点を基準として、そこから当該ユーザに最適なタイミング値が保存される。図9Dは、歩行分析処理によって演算された、歩行モデルデータ(データ2)と当該ユーザの歩行モデルデータ(データ3)との差と、フィードバック要否の判断値(%値)である。図9Dの例では、%値が大きいほど、フィードバックが必要であることを表している。 FIG. 9C is a walking timing value for each part calculated by the timing analysis process. With reference to a predetermined reference position, for example, the landing time point of the sole of the right foot, the optimum timing value for the user is stored from there. FIG. 9D shows the difference between the walking model data (data 2) and the walking model data (data 3) of the user, which is calculated by the walking analysis process, and the determination value (% value) of the necessity of feedback. In the example of FIG. 9D, the larger the% value, the more the feedback is required.
演算処理装置3の演算部は、データ5をもとに、部位ごとに予め決められた確率の閾値を超えているか否かを判定し(S304)、超えている場合は、フィードバック処理を実行する(S305)。例えば、ステップS304において閾値を70%とした場合、図9Dのデータ5において、フィードバック要否の判断結果が70%以上となるフィードバック部位、すなわち図9Eの歩行姿勢補正用フィードバック部位で丸印を付した部位の刺激手段にフィードバック信号(動作指令)を出力する。このフィードバック信号は、データ4の各部位ごとの歩行タイミング、およびデータ5の値差異に基づいて、刺激手段が所定位置から順に作動するように生成される。 Based on the data 5, the calculation unit of the calculation processing device 3 determines whether or not the threshold value of the probability determined in advance for each part is exceeded (S304), and if it exceeds, a feedback process is executed. (S305). For example, when the threshold value is set to 70% in step S304, a circle is attached to the feedback part in the data 5 of FIG. 9D where the feedback necessity judgment result is 70% or more, that is, the walking posture correction feedback part of FIG. 9E. A feedback signal (operation command) is output to the stimulating means at the selected site. This feedback signal is generated so that the stimulating means operates sequentially from a predetermined position based on the walking timing of each part of the data 4 and the value difference of the data 5.
以上の処理により、フィードバックが必要な部位についてのみ刺激手段が与えられる。なお、上記の処理において、ステップS303〜S304は、フィードバック要否判定部を構成し、ステップS302は、フィードバックタイミング演算部を構成する。また、ステップS305は、フィードバック信号生成部を構成する。 Through the above processing, the stimulating means is provided only for the part requiring feedback. In the above process, steps S303 to S304 configure a feedback necessity determination unit, and step S302 configures a feedback timing calculation unit. Moreover, step S305 comprises a feedback signal generation part.
[フィードバック判断機能の処理の特徴]
上述したフィードバック判断機能は、大きく次の第1,第2の二つの特徴を有する。
(第1の特徴)
各刺激対象部位(本例では、膝上部、膝下部、足甲部、足裏部)ごとに下記の2つのニューラルネットワーク処理を実行する。
1.ニューラルネットワーク処理(歩行分析)によるフィードバック要否判定<機能5>
2.ニューラルネットワーク処理(タイミング分析)によるフィードバックタイミング演算<機能4>
[Characteristics of processing of feedback judgment function]
The feedback judgment function described above has the following two major characteristics.
(First feature)
The following two neural network processes are executed for each stimulation target site (upper knee, lower knee, instep, sole) in this example.
1. Feedback necessity judgment by neural network processing (walk analysis) <Function 5>
2. Feedback timing calculation by neural network processing (timing analysis) <Function 4>
(第2の特徴)
ニューラルネットワーク処理(歩行分析)により、フィードバック要と判定された刺激対象部位が存在する場合、その刺激対象部位については上記2つのニューラルネットワーク処理の出力を用いてフィードバック信号を生成する。<機能6>
(Second feature)
If there is a stimulation target site determined to require feedback by the neural network processing (walking analysis), a feedback signal is generated for the stimulation target site using the outputs of the two neural network processes. <Function 6>
より具体的には、ニューラルネットワーク処理(タイミング分析)で演算したタイミングで、ニューラルネットワーク処理(歩行分析)によって算出した刺激方向・刺激数に基づいて刺激手段を作動させる。 More specifically, the stimulation means is operated based on the stimulation direction and the number of stimulations calculated by the neural network processing (walking analysis) at the timing calculated by the neural network processing (timing analysis).
ニューラルネットワーク処理(タイミング分析)で演算したタイミングと、ニューラルネットワーク処理(歩行分析)の演算結果による刺激信号の出力タイミングとの関係を図10に示す。 FIG. 10 shows the relationship between the timing calculated by the neural network processing (timing analysis) and the output timing of the stimulation signal based on the calculation result of the neural network processing (walking analysis).
図10において、タイミング差Tは、刺激部位ごと、ユーザごとに固定値(正値、負値、0)とする。また、刺激の強さHは、入力装置(例えば操作部42)を介して外部から設定可能にする。但し、計測値と本来値(パラメータデータ)との差の大きさによって、可変にするようにしても良い。 In FIG. 10, the timing difference T is a fixed value (positive value, negative value, 0) for each stimulation site and each user. The strength H of the stimulus can be set from the outside via an input device (for example, the operation unit 42). However, it may be variable depending on the magnitude of the difference between the measured value and the original value (parameter data).
図10の(1)〜(5)は複数の刺激手段の識別番号を示しているが、この図における順番や数は一例である。たとえば、逆方向への動きを促す場合は、(5)から(1)へ向かう方向にしてもよいし、動き量を大きくするように促す場合、たとえば、膝を上げたときに、さらに上げるように促す場合は、(1)〜(5)の次にまた(1)に戻って刺激を与えるようにしてもよい。あるいは、(3)から始まって、(2)(1)、(4)(5)の両方向へ広がる動きにすることもできる。また、刺激手段は一次元に限らず、二次元的に配置することも勿論可能である。 Although (1) to (5) of FIG. 10 show identification numbers of a plurality of stimulating means, the order and number in this figure are examples. For example, if you want to move in the opposite direction, you may go from (5) to (1), or if you want to increase the amount of movement, for example, when you raise your knee, raise it further. When urging the user to urge, the stimulus may be given again by returning to (1) after (1) to (5). Alternatively, the movement can start from (3) and spread in both directions (2)(1) and (4)(5). Further, the stimulating means is not limited to one dimension, and it is of course possible to arrange it in two dimensions.
従来は、ニューラルネットワーク処理(タイミング分析)のみであったが、本実施の形態では、上記第1、第2の特徴を有するフィードバック判断機能により、図10に示すようにタイミング信号に連動させて刺激手段の動作信号を発生させる。 Conventionally, only neural network processing (timing analysis) was performed, but in the present embodiment, the feedback determination function having the first and second characteristics described above causes stimulation in synchronization with the timing signal as shown in FIG. Generating the operating signal of the means.
刺激対象部位ごとにニューラルネットワーク処理(タイミング分析)で演算したタイミングに同期して、ニューラルネットワーク処理(歩行分析)によって算出した刺激方向・刺激量に基いて刺激手段を作動させるので、運動開始のトリガーとなる刺激を適切に伝えることができる。 Synchronous with the timing calculated by the neural network processing (timing analysis) for each stimulation target site, the stimulating means is activated based on the stimulation direction and the amount of stimulation calculated by the neural network processing (walking analysis). Can properly convey the stimulus that becomes.
また、複数のニューラルネットワーク処理(歩行分析)の演算結果に基いて、複数の刺激手段を、所定の方向へ時間差をおいて動作させるので、ユーザは対象部位について動かすべき方向や量を容易に知ることができる。 Also, based on the calculation results of a plurality of neural network processes (walking analysis), a plurality of stimulating means are operated with a time lag in a predetermined direction, so that the user can easily know the direction and amount to move with respect to the target part. be able to.
ニューラルネットワーク処理(歩行分析)により、刺激部位ごとにフィードバック要否の判定を行い、フィードバックの必要のない部位については刺激手段を作動させないので、歩行機能に影響を与えずに、刺激の数量を削減することができる。 Neural network processing (walking analysis) determines whether or not feedback is required for each stimulation site, and the stimulation means is not activated for areas that do not require feedback, so the number of stimulations is reduced without affecting the walking function. can do.
本発明は、歩行機能の活性化に用いることができるが、これに限らず、広く人間の運動全般に適用することができる。また、歩行困難者のみでなく、健常者などの運動トレーニングにも活用することができる。 The present invention can be used for activation of the walking function, but is not limited to this, and can be widely applied to general human motion. In addition, it can be used not only for people with walking difficulties but also for exercise training for healthy people and the like.
例えば、腕や膝・胴体に刺激手段を装着し、ゴルフのバックスイングからダウンスイングに移行するときの、きり返しのタイミングやダウンスイングの方向等を、教師データとして入力されたタイミングや動作方向に比べてどの程度ずれているかをフィードバックすることも可能である。 For example, when the stimulating means is attached to the arm, knee or torso and the transition from the golf backswing to the downswing is performed, the timing of the turning back and the direction of the downswing are set to the timing and the operation direction input as the teacher data. It is also possible to feed back how much the difference is.
1 運動支援システム
2 センサー装置
3 演算処理装置
4 フィードバック装置
5 サーバ装置
6 通信ネットワーク
31 データ取得機能
32 フィードバック判断機能
33 データ送受信機能
41 刺激部
42 操作部
a1-a10 刺激手段
1 Exercise Support System 2 Sensor Device 3 Arithmetic Processing Device 4 Feedback Device 5 Server Device 6 Communication Network 31 Data Acquisition Function 32 Feedback Judgment Function 33 Data Transmission/Reception Function 41 Stimulation Unit 42 Operation Unit a1-a10 Stimulation Means
Claims (4)
機械学習により求めた、身体の基準部位の動きに連動する各身体部位の動作タイミングに関する第1のパラメータと、機械学習により求めた、各身体部位の動作量に関する第2のパラメータとを保存する記憶部と、
使用者に装着され、順に動作する複数の刺激手段を有する刺激部と、
使用者の身体の所定部位の動きを検知して検知信号を出力する一又は二以上のセンサー部と、
前記センサー部の検知信号と前記第2のパラメータとに基づいて、前記刺激手段を動作させる必要があるか否かを判定するフィードバック要否判定部と、
前記第1のパラメータと前記検知信号とに基づいて、前記刺激手段を動作させるタイミングを演算するフィードバックタイミング演算部と、
前記フィードバック要否判定部で前記刺激手段の動作が必要と判定された場合は、前記フィードバックタイミング演算部で演算されたタイミングで、前記刺激手段を動作させるフィードバック信号を生成するフィードバック信号生成部と、
を備えたことを特徴とする運動支援システム。 An exercise support system for stimulating a user with exercise, comprising:
A memory for storing a first parameter regarding the operation timing of each body part linked to the movement of the reference part of the body obtained by machine learning and a second parameter regarding the amount of movement of each body part obtained by machine learning Department,
A stimulating unit that is attached to the user and has a plurality of stimulating means that operate in sequence,
One or more sensor units that detect a movement of a predetermined part of the user's body and output a detection signal,
A feedback necessity determination unit that determines whether or not the stimulating unit needs to be operated based on the detection signal of the sensor unit and the second parameter ,
A feedback timing calculation unit that calculates a timing for operating the stimulating means based on the first parameter and the detection signal;
When the feedback necessity determination unit determines that the operation of the stimulating unit is necessary, a feedback signal generating unit that generates a feedback signal for operating the stimulating unit at the timing calculated by the feedback timing calculating unit,
An exercise support system comprising:
前記刺激手段を選択する手段と、選択された前記刺激手段の動作量を調整する手段とを有する操作部を備えたことを特徴とする請求項3に記載の運動支援システム。 The movement amount stored in the stimulation unit can be adjusted for each stimulation unit,
The exercise support system according to claim 3 , further comprising: an operation unit having a unit that selects the stimulating unit and a unit that adjusts an operation amount of the selected stimulating unit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019079688A JP6710357B1 (en) | 2019-04-18 | 2019-04-18 | Exercise support system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019079688A JP6710357B1 (en) | 2019-04-18 | 2019-04-18 | Exercise support system |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6710357B1 true JP6710357B1 (en) | 2020-06-17 |
JP2020174924A JP2020174924A (en) | 2020-10-29 |
Family
ID=71079333
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019079688A Expired - Fee Related JP6710357B1 (en) | 2019-04-18 | 2019-04-18 | Exercise support system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6710357B1 (en) |
Cited By (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11139060B2 (en) | 2019-10-03 | 2021-10-05 | Rom Technologies, Inc. | Method and system for creating an immersive enhanced reality-driven exercise experience for a user |
US11264123B2 (en) | 2019-10-03 | 2022-03-01 | Rom Technologies, Inc. | Method and system to analytically optimize telehealth practice-based billing processes and revenue while enabling regulatory compliance |
US11270795B2 (en) | 2019-10-03 | 2022-03-08 | Rom Technologies, Inc. | Method and system for enabling physician-smart virtual conference rooms for use in a telehealth context |
US11282608B2 (en) | 2019-10-03 | 2022-03-22 | Rom Technologies, Inc. | Method and system for using artificial intelligence and machine learning to provide recommendations to a healthcare provider in or near real-time during a telemedicine session |
US11282604B2 (en) | 2019-10-03 | 2022-03-22 | Rom Technologies, Inc. | Method and system for use of telemedicine-enabled rehabilitative equipment for prediction of secondary disease |
US11282599B2 (en) | 2019-10-03 | 2022-03-22 | Rom Technologies, Inc. | System and method for use of telemedicine-enabled rehabilitative hardware and for encouragement of rehabilitative compliance through patient-based virtual shared sessions |
US11284797B2 (en) | 2019-10-03 | 2022-03-29 | Rom Technologies, Inc. | Remote examination through augmented reality |
US11295848B2 (en) | 2019-10-03 | 2022-04-05 | Rom Technologies, Inc. | Method and system for using artificial intelligence and machine learning to create optimal treatment plans based on monetary value amount generated and/or patient outcome |
US11309085B2 (en) | 2019-10-03 | 2022-04-19 | Rom Technologies, Inc. | System and method to enable remote adjustment of a device during a telemedicine session |
US11317975B2 (en) | 2019-10-03 | 2022-05-03 | Rom Technologies, Inc. | Method and system for treating patients via telemedicine using sensor data from rehabilitation or exercise equipment |
US11325005B2 (en) | 2019-10-03 | 2022-05-10 | Rom Technologies, Inc. | Systems and methods for using machine learning to control an electromechanical device used for prehabilitation, rehabilitation, and/or exercise |
US11328807B2 (en) | 2019-10-03 | 2022-05-10 | Rom Technologies, Inc. | System and method for using artificial intelligence in telemedicine-enabled hardware to optimize rehabilitative routines capable of enabling remote rehabilitative compliance |
US11337648B2 (en) | 2020-05-18 | 2022-05-24 | Rom Technologies, Inc. | Method and system for using artificial intelligence to assign patients to cohorts and dynamically controlling a treatment apparatus based on the assignment during an adaptive telemedical session |
US11348683B2 (en) | 2019-10-03 | 2022-05-31 | Rom Technologies, Inc. | System and method for processing medical claims |
US11404150B2 (en) | 2019-10-03 | 2022-08-02 | Rom Technologies, Inc. | System and method for processing medical claims using biometric signatures |
US11410768B2 (en) | 2019-10-03 | 2022-08-09 | Rom Technologies, Inc. | Method and system for implementing dynamic treatment environments based on patient information |
US11433276B2 (en) | 2019-05-10 | 2022-09-06 | Rehab2Fit Technologies, Inc. | Method and system for using artificial intelligence to independently adjust resistance of pedals based on leg strength |
US11445985B2 (en) | 2019-10-03 | 2022-09-20 | Rom Technologies, Inc. | Augmented reality placement of goniometer or other sensors |
US11471729B2 (en) | 2019-03-11 | 2022-10-18 | Rom Technologies, Inc. | System, method and apparatus for a rehabilitation machine with a simulated flywheel |
US11508482B2 (en) | 2019-10-03 | 2022-11-22 | Rom Technologies, Inc. | Systems and methods for remotely-enabled identification of a user infection |
US11596829B2 (en) | 2019-03-11 | 2023-03-07 | Rom Technologies, Inc. | Control system for a rehabilitation and exercise electromechanical device |
US11701548B2 (en) | 2019-10-07 | 2023-07-18 | Rom Technologies, Inc. | Computer-implemented questionnaire for orthopedic treatment |
US11756666B2 (en) | 2019-10-03 | 2023-09-12 | Rom Technologies, Inc. | Systems and methods to enable communication detection between devices and performance of a preventative action |
US11801423B2 (en) | 2019-05-10 | 2023-10-31 | Rehab2Fit Technologies, Inc. | Method and system for using artificial intelligence to interact with a user of an exercise device during an exercise session |
US11826613B2 (en) | 2019-10-21 | 2023-11-28 | Rom Technologies, Inc. | Persuasive motivation for orthopedic treatment |
US11830601B2 (en) | 2019-10-03 | 2023-11-28 | Rom Technologies, Inc. | System and method for facilitating cardiac rehabilitation among eligible users |
US11887717B2 (en) | 2019-10-03 | 2024-01-30 | Rom Technologies, Inc. | System and method for using AI, machine learning and telemedicine to perform pulmonary rehabilitation via an electromechanical machine |
US11904207B2 (en) | 2019-05-10 | 2024-02-20 | Rehab2Fit Technologies, Inc. | Method and system for using artificial intelligence to present a user interface representing a user's progress in various domains |
US11915816B2 (en) | 2019-10-03 | 2024-02-27 | Rom Technologies, Inc. | Systems and methods of using artificial intelligence and machine learning in a telemedical environment to predict user disease states |
US11915815B2 (en) | 2019-10-03 | 2024-02-27 | Rom Technologies, Inc. | System and method for using artificial intelligence and machine learning and generic risk factors to improve cardiovascular health such that the need for additional cardiac interventions is mitigated |
US11923057B2 (en) | 2019-10-03 | 2024-03-05 | Rom Technologies, Inc. | Method and system using artificial intelligence to monitor user characteristics during a telemedicine session |
US11923065B2 (en) | 2019-10-03 | 2024-03-05 | Rom Technologies, Inc. | Systems and methods for using artificial intelligence and machine learning to detect abnormal heart rhythms of a user performing a treatment plan with an electromechanical machine |
US11942205B2 (en) | 2019-10-03 | 2024-03-26 | Rom Technologies, Inc. | Method and system for using virtual avatars associated with medical professionals during exercise sessions |
US11950861B2 (en) | 2019-10-03 | 2024-04-09 | Rom Technologies, Inc. | Telemedicine for orthopedic treatment |
US11955223B2 (en) | 2019-10-03 | 2024-04-09 | Rom Technologies, Inc. | System and method for using artificial intelligence and machine learning to provide an enhanced user interface presenting data pertaining to cardiac health, bariatric health, pulmonary health, and/or cardio-oncologic health for the purpose of performing preventative actions |
US11955220B2 (en) | 2019-10-03 | 2024-04-09 | Rom Technologies, Inc. | System and method for using AI/ML and telemedicine for invasive surgical treatment to determine a cardiac treatment plan that uses an electromechanical machine |
US11955218B2 (en) | 2019-10-03 | 2024-04-09 | Rom Technologies, Inc. | System and method for use of telemedicine-enabled rehabilitative hardware and for encouraging rehabilitative compliance through patient-based virtual shared sessions with patient-enabled mutual encouragement across simulated social networks |
US11955222B2 (en) | 2019-10-03 | 2024-04-09 | Rom Technologies, Inc. | System and method for determining, based on advanced metrics of actual performance of an electromechanical machine, medical procedure eligibility in order to ascertain survivability rates and measures of quality-of-life criteria |
US11955221B2 (en) | 2019-10-03 | 2024-04-09 | Rom Technologies, Inc. | System and method for using AI/ML to generate treatment plans to stimulate preferred angiogenesis |
US11961603B2 (en) | 2019-10-03 | 2024-04-16 | Rom Technologies, Inc. | System and method for using AI ML and telemedicine to perform bariatric rehabilitation via an electromechanical machine |
US11957960B2 (en) | 2019-05-10 | 2024-04-16 | Rehab2Fit Technologies Inc. | Method and system for using artificial intelligence to adjust pedal resistance |
US12020800B2 (en) | 2019-10-03 | 2024-06-25 | Rom Technologies, Inc. | System and method for using AI/ML and telemedicine to integrate rehabilitation for a plurality of comorbid conditions |
US12020799B2 (en) | 2019-10-03 | 2024-06-25 | Rom Technologies, Inc. | Rowing machines, systems including rowing machines, and methods for using rowing machines to perform treatment plans for rehabilitation |
US12057237B2 (en) | 2020-04-23 | 2024-08-06 | Rom Technologies, Inc. | Method and system for describing and recommending optimal treatment plans in adaptive telemedical or other contexts |
US12062425B2 (en) | 2019-10-03 | 2024-08-13 | Rom Technologies, Inc. | System and method for implementing a cardiac rehabilitation protocol by using artificial intelligence and standardized measurements |
US12087426B2 (en) | 2019-10-03 | 2024-09-10 | Rom Technologies, Inc. | Systems and methods for using AI ML to predict, based on data analytics or big data, an optimal number or range of rehabilitation sessions for a user |
US12100499B2 (en) | 2020-08-06 | 2024-09-24 | Rom Technologies, Inc. | Method and system for using artificial intelligence and machine learning to create optimal treatment plans based on monetary value amount generated and/or patient outcome |
US12102878B2 (en) | 2019-05-10 | 2024-10-01 | Rehab2Fit Technologies, Inc. | Method and system for using artificial intelligence to determine a user's progress during interval training |
US12176091B2 (en) | 2019-10-03 | 2024-12-24 | Rom Technologies, Inc. | Systems and methods for using elliptical machine to perform cardiovascular rehabilitation |
US12176089B2 (en) | 2019-10-03 | 2024-12-24 | Rom Technologies, Inc. | System and method for using AI ML and telemedicine for cardio-oncologic rehabilitation via an electromechanical machine |
US12224052B2 (en) | 2019-10-03 | 2025-02-11 | Rom Technologies, Inc. | System and method for using AI, machine learning and telemedicine for long-term care via an electromechanical machine |
US12230381B2 (en) | 2019-10-03 | 2025-02-18 | Rom Technologies, Inc. | System and method for an enhanced healthcare professional user interface displaying measurement information for a plurality of users |
US12230382B2 (en) | 2019-10-03 | 2025-02-18 | Rom Technologies, Inc. | Systems and methods for using artificial intelligence and machine learning to predict a probability of an undesired medical event occurring during a treatment plan |
US12249410B2 (en) | 2019-10-03 | 2025-03-11 | Rom Technologies, Inc. | System and method for use of treatment device to reduce pain medication dependency |
US12246222B2 (en) | 2019-10-03 | 2025-03-11 | Rom Technologies, Inc. | Method and system for using artificial intelligence to assign patients to cohorts and dynamically controlling a treatment apparatus based on the assignment during an adaptive telemedical session |
US12301663B2 (en) | 2019-10-03 | 2025-05-13 | Rom Technologies, Inc. | System and method for transmitting data and ordering asynchronous data |
US12347543B2 (en) | 2019-10-03 | 2025-07-01 | Rom Technologies, Inc. | Systems and methods for using artificial intelligence to implement a cardio protocol via a relay-based system |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002355236A (en) * | 2001-06-01 | 2002-12-10 | Kiyomi Iizuka | Method to measure joint angle using biaxial acceleration sensor and electric stimulator |
JP4690890B2 (en) * | 2003-05-22 | 2011-06-01 | 国立大学法人 東京大学 | Apparatus and method for applying skin sensory stimulation |
US6978684B2 (en) * | 2003-11-10 | 2005-12-27 | Nike, Inc. | Apparel that dynamically, consciously, and/or reflexively affects subject performance |
JP2007268140A (en) * | 2006-03-31 | 2007-10-18 | Toto Ltd | Gait training equipment |
JP4972666B2 (en) * | 2009-03-26 | 2012-07-11 | 英一 元田 | Functional electrical stimulation walking assist device |
JP2017153822A (en) * | 2016-03-03 | 2017-09-07 | パナソニックIpマネジメント株式会社 | Electrical stimulation device and operation assist system including the same |
-
2019
- 2019-04-18 JP JP2019079688A patent/JP6710357B1/en not_active Expired - Fee Related
Cited By (87)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12083381B2 (en) | 2019-03-11 | 2024-09-10 | Rom Technologies, Inc. | Bendable sensor device for monitoring joint extension and flexion |
US12029940B2 (en) | 2019-03-11 | 2024-07-09 | Rom Technologies, Inc. | Single sensor wearable device for monitoring joint extension and flexion |
US11541274B2 (en) | 2019-03-11 | 2023-01-03 | Rom Technologies, Inc. | System, method and apparatus for electrically actuated pedal for an exercise or rehabilitation machine |
US12226670B2 (en) | 2019-03-11 | 2025-02-18 | Rom Technologies, Inc. | System, method and apparatus for electrically actuated pedal for an exercise or rehabilitation machine |
US12226671B2 (en) | 2019-03-11 | 2025-02-18 | Rom Technologies, Inc. | System, method and apparatus for electrically actuated pedal for an exercise or rehabilitation machine |
US12186623B2 (en) | 2019-03-11 | 2025-01-07 | Rom Technologies, Inc. | Monitoring joint extension and flexion using a sensor device securable to an upper and lower limb |
US11596829B2 (en) | 2019-03-11 | 2023-03-07 | Rom Technologies, Inc. | Control system for a rehabilitation and exercise electromechanical device |
US12083380B2 (en) | 2019-03-11 | 2024-09-10 | Rom Technologies, Inc. | Bendable sensor device for monitoring joint extension and flexion |
US11904202B2 (en) | 2019-03-11 | 2024-02-20 | Rom Technolgies, Inc. | Monitoring joint extension and flexion using a sensor device securable to an upper and lower limb |
US11471729B2 (en) | 2019-03-11 | 2022-10-18 | Rom Technologies, Inc. | System, method and apparatus for a rehabilitation machine with a simulated flywheel |
US12059591B2 (en) | 2019-03-11 | 2024-08-13 | Rom Technologies, Inc. | Bendable sensor device for monitoring joint extension and flexion |
US11957960B2 (en) | 2019-05-10 | 2024-04-16 | Rehab2Fit Technologies Inc. | Method and system for using artificial intelligence to adjust pedal resistance |
US12324961B2 (en) | 2019-05-10 | 2025-06-10 | Rom Technologies, Inc. | Method and system for using artificial intelligence to present a user interface representing a user's progress in various domains |
US11904207B2 (en) | 2019-05-10 | 2024-02-20 | Rehab2Fit Technologies, Inc. | Method and system for using artificial intelligence to present a user interface representing a user's progress in various domains |
US11801423B2 (en) | 2019-05-10 | 2023-10-31 | Rehab2Fit Technologies, Inc. | Method and system for using artificial intelligence to interact with a user of an exercise device during an exercise session |
US12102878B2 (en) | 2019-05-10 | 2024-10-01 | Rehab2Fit Technologies, Inc. | Method and system for using artificial intelligence to determine a user's progress during interval training |
US11433276B2 (en) | 2019-05-10 | 2022-09-06 | Rehab2Fit Technologies, Inc. | Method and system for using artificial intelligence to independently adjust resistance of pedals based on leg strength |
US12285654B2 (en) | 2019-05-10 | 2025-04-29 | Rom Technologies, Inc. | Method and system for using artificial intelligence to interact with a user of an exercise device during an exercise session |
US11955221B2 (en) | 2019-10-03 | 2024-04-09 | Rom Technologies, Inc. | System and method for using AI/ML to generate treatment plans to stimulate preferred angiogenesis |
US12087426B2 (en) | 2019-10-03 | 2024-09-10 | Rom Technologies, Inc. | Systems and methods for using AI ML to predict, based on data analytics or big data, an optimal number or range of rehabilitation sessions for a user |
US11515021B2 (en) | 2019-10-03 | 2022-11-29 | Rom Technologies, Inc. | Method and system to analytically optimize telehealth practice-based billing processes and revenue while enabling regulatory compliance |
US11515028B2 (en) | 2019-10-03 | 2022-11-29 | Rom Technologies, Inc. | Method and system for using artificial intelligence and machine learning to create optimal treatment plans based on monetary value amount generated and/or patient outcome |
US11445985B2 (en) | 2019-10-03 | 2022-09-20 | Rom Technologies, Inc. | Augmented reality placement of goniometer or other sensors |
US11410768B2 (en) | 2019-10-03 | 2022-08-09 | Rom Technologies, Inc. | Method and system for implementing dynamic treatment environments based on patient information |
US12347543B2 (en) | 2019-10-03 | 2025-07-01 | Rom Technologies, Inc. | Systems and methods for using artificial intelligence to implement a cardio protocol via a relay-based system |
US11756666B2 (en) | 2019-10-03 | 2023-09-12 | Rom Technologies, Inc. | Systems and methods to enable communication detection between devices and performance of a preventative action |
US11404150B2 (en) | 2019-10-03 | 2022-08-02 | Rom Technologies, Inc. | System and method for processing medical claims using biometric signatures |
US12347558B2 (en) | 2019-10-03 | 2025-07-01 | Rom Technologies, Inc. | Method and system for using artificial intelligence and machine learning to provide recommendations to a healthcare provider in or near real-time during a telemedicine session |
US11830601B2 (en) | 2019-10-03 | 2023-11-28 | Rom Technologies, Inc. | System and method for facilitating cardiac rehabilitation among eligible users |
US11887717B2 (en) | 2019-10-03 | 2024-01-30 | Rom Technologies, Inc. | System and method for using AI, machine learning and telemedicine to perform pulmonary rehabilitation via an electromechanical machine |
US11348683B2 (en) | 2019-10-03 | 2022-05-31 | Rom Technologies, Inc. | System and method for processing medical claims |
US12343180B2 (en) | 2019-10-03 | 2025-07-01 | Rom Technologies, Inc. | Augmented reality placement of goniometer or other sensors |
US11915816B2 (en) | 2019-10-03 | 2024-02-27 | Rom Technologies, Inc. | Systems and methods of using artificial intelligence and machine learning in a telemedical environment to predict user disease states |
US11915815B2 (en) | 2019-10-03 | 2024-02-27 | Rom Technologies, Inc. | System and method for using artificial intelligence and machine learning and generic risk factors to improve cardiovascular health such that the need for additional cardiac interventions is mitigated |
US11923057B2 (en) | 2019-10-03 | 2024-03-05 | Rom Technologies, Inc. | Method and system using artificial intelligence to monitor user characteristics during a telemedicine session |
US11923065B2 (en) | 2019-10-03 | 2024-03-05 | Rom Technologies, Inc. | Systems and methods for using artificial intelligence and machine learning to detect abnormal heart rhythms of a user performing a treatment plan with an electromechanical machine |
US11942205B2 (en) | 2019-10-03 | 2024-03-26 | Rom Technologies, Inc. | Method and system for using virtual avatars associated with medical professionals during exercise sessions |
US11950861B2 (en) | 2019-10-03 | 2024-04-09 | Rom Technologies, Inc. | Telemedicine for orthopedic treatment |
US11955223B2 (en) | 2019-10-03 | 2024-04-09 | Rom Technologies, Inc. | System and method for using artificial intelligence and machine learning to provide an enhanced user interface presenting data pertaining to cardiac health, bariatric health, pulmonary health, and/or cardio-oncologic health for the purpose of performing preventative actions |
US11955220B2 (en) | 2019-10-03 | 2024-04-09 | Rom Technologies, Inc. | System and method for using AI/ML and telemedicine for invasive surgical treatment to determine a cardiac treatment plan that uses an electromechanical machine |
US11955218B2 (en) | 2019-10-03 | 2024-04-09 | Rom Technologies, Inc. | System and method for use of telemedicine-enabled rehabilitative hardware and for encouraging rehabilitative compliance through patient-based virtual shared sessions with patient-enabled mutual encouragement across simulated social networks |
US11955222B2 (en) | 2019-10-03 | 2024-04-09 | Rom Technologies, Inc. | System and method for determining, based on advanced metrics of actual performance of an electromechanical machine, medical procedure eligibility in order to ascertain survivability rates and measures of quality-of-life criteria |
US11139060B2 (en) | 2019-10-03 | 2021-10-05 | Rom Technologies, Inc. | Method and system for creating an immersive enhanced reality-driven exercise experience for a user |
US11961603B2 (en) | 2019-10-03 | 2024-04-16 | Rom Technologies, Inc. | System and method for using AI ML and telemedicine to perform bariatric rehabilitation via an electromechanical machine |
US11328807B2 (en) | 2019-10-03 | 2022-05-10 | Rom Technologies, Inc. | System and method for using artificial intelligence in telemedicine-enabled hardware to optimize rehabilitative routines capable of enabling remote rehabilitative compliance |
US11978559B2 (en) | 2019-10-03 | 2024-05-07 | Rom Technologies, Inc. | Systems and methods for remotely-enabled identification of a user infection |
US12020800B2 (en) | 2019-10-03 | 2024-06-25 | Rom Technologies, Inc. | System and method for using AI/ML and telemedicine to integrate rehabilitation for a plurality of comorbid conditions |
US12020799B2 (en) | 2019-10-03 | 2024-06-25 | Rom Technologies, Inc. | Rowing machines, systems including rowing machines, and methods for using rowing machines to perform treatment plans for rehabilitation |
US11325005B2 (en) | 2019-10-03 | 2022-05-10 | Rom Technologies, Inc. | Systems and methods for using machine learning to control an electromechanical device used for prehabilitation, rehabilitation, and/or exercise |
US12340884B2 (en) | 2019-10-03 | 2025-06-24 | Rom Technologies, Inc. | Method and system to analytically optimize telehealth practice-based billing processes and revenue while enabling regulatory compliance |
US11317975B2 (en) | 2019-10-03 | 2022-05-03 | Rom Technologies, Inc. | Method and system for treating patients via telemedicine using sensor data from rehabilitation or exercise equipment |
US12062425B2 (en) | 2019-10-03 | 2024-08-13 | Rom Technologies, Inc. | System and method for implementing a cardiac rehabilitation protocol by using artificial intelligence and standardized measurements |
US11309085B2 (en) | 2019-10-03 | 2022-04-19 | Rom Technologies, Inc. | System and method to enable remote adjustment of a device during a telemedicine session |
US11508482B2 (en) | 2019-10-03 | 2022-11-22 | Rom Technologies, Inc. | Systems and methods for remotely-enabled identification of a user infection |
US11295848B2 (en) | 2019-10-03 | 2022-04-05 | Rom Technologies, Inc. | Method and system for using artificial intelligence and machine learning to create optimal treatment plans based on monetary value amount generated and/or patient outcome |
US11264123B2 (en) | 2019-10-03 | 2022-03-01 | Rom Technologies, Inc. | Method and system to analytically optimize telehealth practice-based billing processes and revenue while enabling regulatory compliance |
US12096997B2 (en) | 2019-10-03 | 2024-09-24 | Rom Technologies, Inc. | Method and system for treating patients via telemedicine using sensor data from rehabilitation or exercise equipment |
US11284797B2 (en) | 2019-10-03 | 2022-03-29 | Rom Technologies, Inc. | Remote examination through augmented reality |
US12150792B2 (en) | 2019-10-03 | 2024-11-26 | Rom Technologies, Inc. | Augmented reality placement of goniometer or other sensors |
US12154672B2 (en) | 2019-10-03 | 2024-11-26 | Rom Technologies, Inc. | Method and system for implementing dynamic treatment environments based on patient information |
US12165768B2 (en) | 2019-10-03 | 2024-12-10 | Rom Technologies, Inc. | Method and system for use of telemedicine-enabled rehabilitative equipment for prediction of secondary disease |
US12176091B2 (en) | 2019-10-03 | 2024-12-24 | Rom Technologies, Inc. | Systems and methods for using elliptical machine to perform cardiovascular rehabilitation |
US12176089B2 (en) | 2019-10-03 | 2024-12-24 | Rom Technologies, Inc. | System and method for using AI ML and telemedicine for cardio-oncologic rehabilitation via an electromechanical machine |
US12183447B2 (en) | 2019-10-03 | 2024-12-31 | Rom Technologies, Inc. | Method and system for creating an immersive enhanced reality-driven exercise experience for a user |
US11282599B2 (en) | 2019-10-03 | 2022-03-22 | Rom Technologies, Inc. | System and method for use of telemedicine-enabled rehabilitative hardware and for encouragement of rehabilitative compliance through patient-based virtual shared sessions |
US12191018B2 (en) | 2019-10-03 | 2025-01-07 | Rom Technologies, Inc. | System and method for using artificial intelligence in telemedicine-enabled hardware to optimize rehabilitative routines capable of enabling remote rehabilitative compliance |
US12191021B2 (en) | 2019-10-03 | 2025-01-07 | Rom Technologies, Inc. | System and method for use of telemedicine-enabled rehabilitative hardware and for encouragement of rehabilitative compliance through patient-based virtual shared sessions |
US12217865B2 (en) | 2019-10-03 | 2025-02-04 | Rom Technologies, Inc. | Method and system for enabling physician-smart virtual conference rooms for use in a telehealth context |
US12224052B2 (en) | 2019-10-03 | 2025-02-11 | Rom Technologies, Inc. | System and method for using AI, machine learning and telemedicine for long-term care via an electromechanical machine |
US12220201B2 (en) | 2019-10-03 | 2025-02-11 | Rom Technologies, Inc. | Remote examination through augmented reality |
US12220202B2 (en) | 2019-10-03 | 2025-02-11 | Rom Technologies, Inc. | Remote examination through augmented reality |
US12230381B2 (en) | 2019-10-03 | 2025-02-18 | Rom Technologies, Inc. | System and method for an enhanced healthcare professional user interface displaying measurement information for a plurality of users |
US11282604B2 (en) | 2019-10-03 | 2022-03-22 | Rom Technologies, Inc. | Method and system for use of telemedicine-enabled rehabilitative equipment for prediction of secondary disease |
US11282608B2 (en) | 2019-10-03 | 2022-03-22 | Rom Technologies, Inc. | Method and system for using artificial intelligence and machine learning to provide recommendations to a healthcare provider in or near real-time during a telemedicine session |
US12230382B2 (en) | 2019-10-03 | 2025-02-18 | Rom Technologies, Inc. | Systems and methods for using artificial intelligence and machine learning to predict a probability of an undesired medical event occurring during a treatment plan |
US12230383B2 (en) | 2019-10-03 | 2025-02-18 | Rom Technologies, Inc. | United states systems and methods for using elliptical machine to perform cardiovascular rehabilitation |
US12249410B2 (en) | 2019-10-03 | 2025-03-11 | Rom Technologies, Inc. | System and method for use of treatment device to reduce pain medication dependency |
US12246222B2 (en) | 2019-10-03 | 2025-03-11 | Rom Technologies, Inc. | Method and system for using artificial intelligence to assign patients to cohorts and dynamically controlling a treatment apparatus based on the assignment during an adaptive telemedical session |
US12283356B2 (en) | 2019-10-03 | 2025-04-22 | Rom Technologies, Inc. | System and method for processing medical claims using biometric signatures |
US11270795B2 (en) | 2019-10-03 | 2022-03-08 | Rom Technologies, Inc. | Method and system for enabling physician-smart virtual conference rooms for use in a telehealth context |
US12301663B2 (en) | 2019-10-03 | 2025-05-13 | Rom Technologies, Inc. | System and method for transmitting data and ordering asynchronous data |
US12327623B2 (en) | 2019-10-03 | 2025-06-10 | Rom Technologies, Inc. | System and method for processing medical claims |
US11701548B2 (en) | 2019-10-07 | 2023-07-18 | Rom Technologies, Inc. | Computer-implemented questionnaire for orthopedic treatment |
US11826613B2 (en) | 2019-10-21 | 2023-11-28 | Rom Technologies, Inc. | Persuasive motivation for orthopedic treatment |
US12057237B2 (en) | 2020-04-23 | 2024-08-06 | Rom Technologies, Inc. | Method and system for describing and recommending optimal treatment plans in adaptive telemedical or other contexts |
US11337648B2 (en) | 2020-05-18 | 2022-05-24 | Rom Technologies, Inc. | Method and system for using artificial intelligence to assign patients to cohorts and dynamically controlling a treatment apparatus based on the assignment during an adaptive telemedical session |
US12100499B2 (en) | 2020-08-06 | 2024-09-24 | Rom Technologies, Inc. | Method and system for using artificial intelligence and machine learning to create optimal treatment plans based on monetary value amount generated and/or patient outcome |
Also Published As
Publication number | Publication date |
---|---|
JP2020174924A (en) | 2020-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6710357B1 (en) | Exercise support system | |
US20240197237A1 (en) | Systems, devices, and method for the treatment of osteoarthritis | |
US20230134637A1 (en) | Methods, devices and systems for providing stimulus to guide movement | |
KR101738678B1 (en) | System for evaluating the ability of physical activity | |
US20190083002A1 (en) | Method and apparatus for updating personalized gait policy | |
US10576326B2 (en) | Method and system for measuring, monitoring, controlling and correcting a movement or a posture of a user | |
US9526946B1 (en) | Enhanced system and method for vibrotactile guided therapy | |
US20190134454A1 (en) | Exosuit system systems and methods for assisting, resisting and aligning core biomechanical functions | |
CN111167011B (en) | Sensors in footwear or limb clothing | |
US9149222B1 (en) | Enhanced system and method for assessment of disequilibrium, balance and motion disorders | |
US20160158603A1 (en) | Assembly for applying a force | |
US20130123568A1 (en) | Universal closed-loop electrical stimulation system | |
CN106691783A (en) | Program for generating and executing training course | |
JP2017217039A (en) | Walking motion assist device | |
US11076803B2 (en) | Passive multiple foot sensor insole real-time feedback device | |
CN112789092B (en) | Biofeedback for modifying gait | |
JPWO2019189306A1 (en) | Vibration stimulation application system, vibration stimulation condition determination system, vibration stimulation condition determination support server, and data structure | |
US9682001B1 (en) | Wearable bone conduction device | |
Ashapkina et al. | Vibro-tactile portable device for home-base physical rehabilitation | |
Shull et al. | Continuous movement tracking performance for predictable and unpredictable tasks with vibrotactile feedback | |
TWI594786B (en) | Gait-adaptive control system and method for wearable drop foot electrical stimulator | |
EP4238711A1 (en) | Method and device for measuring muscular fitness of user by using wearable device | |
EP3881890A1 (en) | A planning and/or control system for a neuromodulation system | |
JP2023529339A (en) | WEARABLE DEVICE AND OPERATION METHOD THEREOF | |
US20250009261A1 (en) | Wearable device and operating method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190418 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20190508 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20190516 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190625 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190824 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190909 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200203 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200218 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200319 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6710357 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |