JP6785609B2 - X-ray inspection equipment and X-ray inspection method - Google Patents
X-ray inspection equipment and X-ray inspection method Download PDFInfo
- Publication number
- JP6785609B2 JP6785609B2 JP2016198186A JP2016198186A JP6785609B2 JP 6785609 B2 JP6785609 B2 JP 6785609B2 JP 2016198186 A JP2016198186 A JP 2016198186A JP 2016198186 A JP2016198186 A JP 2016198186A JP 6785609 B2 JP6785609 B2 JP 6785609B2
- Authority
- JP
- Japan
- Prior art keywords
- region
- ray inspection
- content
- seal
- gravity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000007689 inspection Methods 0.000 title claims description 53
- 238000000034 method Methods 0.000 title claims description 11
- 230000005484 gravity Effects 0.000 claims description 50
- 239000005022 packaging material Substances 0.000 claims description 23
- 230000005540 biological transmission Effects 0.000 claims description 18
- 230000002950 deficient Effects 0.000 claims description 10
- 238000007789 sealing Methods 0.000 claims description 7
- 230000032258 transport Effects 0.000 description 22
- 238000000605 extraction Methods 0.000 description 16
- 230000007547 defect Effects 0.000 description 8
- 238000001514 detection method Methods 0.000 description 3
- PXFBZOLANLWPMH-UHFFFAOYSA-N 16-Epiaffinine Natural products C1C(C2=CC=CC=C2N2)=C2C(=O)CC2C(=CC)CN(C)C1C2CO PXFBZOLANLWPMH-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 241000251468 Actinopterygii Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 235000019688 fish Nutrition 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 235000020995 raw meat Nutrition 0.000 description 1
- 235000021067 refined food Nutrition 0.000 description 1
Images
Landscapes
- Analysing Materials By The Use Of Radiation (AREA)
Description
本発明は、搬送される被検査物にX線を照射し、このX線を照射したときのX線の透過画像を用いて被検査物のシール部不良の検査を行うX線検査装置及びX線検査方法に関する。 The present invention is an X-ray inspection apparatus and an X-ray inspection apparatus that irradiates a transported object to be inspected with X-rays and inspects a defective seal portion of the inspected object by using a transmitted image of the X-rays when the X-rays are irradiated. Regarding the line inspection method.
X線検査装置は、例えば、生肉、魚、加工食品、医薬などを被検査物とし、被検査物にX線を照射したときのX線の透過画像を用いて被検査物の検査を行う装置として従来から知られている。 The X-ray inspection device is a device that inspects an inspected object using, for example, raw meat, fish, processed foods, pharmaceuticals, etc., and an X-ray transmission image when the inspected object is irradiated with X-rays. Traditionally known as.
そして、この種のX線検査装置として、例えば下記特許文献1に開示されるX線検査装置では、被検査物にX線を曝射したときの透過画像から外形を抽出し、この抽出した外形を基準として、予め設定されたシール部情報に基づいて被検査物のシール部領域を算出し、この算出したシール部領域の画像の濃度レベルを用いてシール部不良の検査を行っている。
Then, as this kind of X-ray inspection apparatus, for example, in the X-ray inspection apparatus disclosed in
ところで、この種のX線検査装置によって検査される被検査物として、例えばスタンドパウチなどの製品が知られている。この種の製品を被検査物としてX線検査装置にて検査を行う場合には、所定高さをもって所定間隔おきに保持された袋状の包装材の上部開口から内容物を充填した後、上部開口をシールした製品(被検査物)をX線検査装置のコンベアに落下させて搬入している。しかし、このような包装材の1辺がシール部とされた製品を被検査物としてX線検査装置のコンベアに落下させて搬入すると、コンベア上において被検査物のシール辺の向きが一定せず搬送姿勢が安定しない。このため、上述した特許文献1のX線検査装置では、シール辺の向きが安定せずに搬送される被検査物に対し、透過画像から抽出した外形を基準として、予め設定されたシール部情報に基づいてシール部領域を算出して特定することができないという問題があった。
By the way, as an object to be inspected by this kind of X-ray inspection apparatus, a product such as a stand pouch is known. When an X-ray inspection device is used to inspect this type of product as an object to be inspected, the contents are filled through the upper opening of a bag-shaped packaging material held at a predetermined height at predetermined intervals, and then the upper part is used. A product with a sealed opening (object to be inspected) is dropped onto a conveyor of an X-ray inspection device and carried in. However, when a product having one side of the packaging material as a seal portion is dropped onto the conveyor of the X-ray inspection device as an object to be inspected and carried in, the orientation of the seal side of the object to be inspected is not constant on the conveyor. The transport posture is not stable. Therefore, in the X-ray inspection apparatus of
そこで、本発明は上記問題点に鑑みてなされたものであって、袋状の包装材の開口部の1辺が内容物の充填後にシールされる被検査物のシール部領域を搬入方向に左右されずに特定することができるX線検査装置及びX線検査方法を提供することを目的としている。 Therefore, the present invention has been made in view of the above problems, and the sealed portion area of the object to be inspected, in which one side of the opening of the bag-shaped packaging material is sealed after filling the contents, is left and right in the carry-in direction. It is an object of the present invention to provide an X-ray inspection apparatus and an X-ray inspection method that can be specified without being used.
上記目的を達成するため、本発明の請求項1に記載されたX線検査装置は、袋状の包装材Waの1辺をなす開口から内容物Wbが充填された後に前記開口がシールされた被検査物Wを所定間隔おきに搬送しながらX線を照射し、前記被検査物を透過した透過画像を用いて前記被検査物を検査するX線検査装置1であって、
前記透過画像から抽出された前記包装材の外形領域S1と該外形領域に対する前記内容物の片寄り情報とに基づいて前記開口がシールされたシール部領域S3を特定し、前記シール部領域内のシール部不良の有無を判別する信号処理部6を備えたことを特徴とする。
In order to achieve the above object, in the X-ray inspection apparatus according to
Identify a seal-area S3 where the opening is sealed on the basis of the offset information of the contents against external region S1 and the external-type region of said extracted from the transmitted image packaging material, the sealing portion in the region It is characterized by including a signal processing unit 6 for determining the presence or absence of a defective seal portion.
請求項2に記載されたX線検査装置は、請求項1のX線検査装置において、
前記片寄り情報が前記内容物Wbの重心G1であることを特徴とする。
The X-ray inspection apparatus according to
The offset information is the center of gravity G1 of the content Wb.
請求項3に記載されたX線検査装置は、請求項2のX線検査装置において、
前記内容物Wbの重心G1から前記外形領域S1の重心G2に向かう直線を主軸Z1とし、その主軸と交差する辺をシール辺S3aとして前記シール部領域S3を特定することを特徴とする。
The X-ray inspection apparatus according to
A straight line toward the center of gravity G2 of the front Kigai shaped regions S1 from the center of gravity G1 of the contents of Wb and spindle Z1, and identifies the seal portion-area S3 sides intersecting the main axis as the sealing edge S3a.
請求項4に記載されたX線検査装置は、請求項2のX線検査装置において、
前記内容物Wbの重心G1から前記外形領域S1の対角線の交点G3に向かう直線を主軸Z2とし、その主軸と交差する辺をシール辺S3aとして前記シール部領域S3を特定することを特徴とする。
The X-ray inspection apparatus according to claim 4 is the X-ray inspection apparatus according to
And wherein a straight line toward the intersection of diagonal lines G3 before Kigai shaped regions S1 from the center of gravity G1 of the contents of Wb and the main shaft Z2, specifying the seal portion-area S3 sides intersecting the main axis as a sealing edge S3a To do.
請求項5に記載されたX線検査装置は、請求項2のX線検査装置において、
前記内容物Wbの重心G1から前記外形領域S1の頂点までの距離が長い2つの頂点を結んだ辺をシール辺S3aとして前記シール部領域S3を特定することを特徴とする。
The X-ray inspection apparatus according to
And identifies the seal portion-area S3 the content side connecting two vertices long distance from the center of gravity G1 to the top of the front Kigai type region S1 of Wb as a seal edge S3a.
請求項6に記載されたX線検査装置は、請求項2のX線検査装置において、
前記外形領域S1でシール辺が短辺であるとき、長辺の一端が前記内容物Wbの重心G1の位置になるように平行移動した直線を主軸Z3とし、その主軸と交差し前記内容物の重心との距離が長い方の短辺をシール辺S3aとして前記シール部領域S3を特定することを特徴とする。
The X-ray inspection apparatus according to claim 6 is the X-ray inspection apparatus according to
When the sealing edge in front Kigai type region S1 is a short side, a straight line one end of the long side is parallel moved so that the position of the center of gravity G1 of the contents of Wb and spindle Z3, the contents and intersecting the main axis The seal portion region S3 is specified by using the shorter side having a longer distance from the center of gravity of the object as the seal side S3a.
請求項7に記載されたX線検査方法は、袋状の包装材Waの1辺をなす開口から内容物Wbが充填された後に前記開口がシールされた被検査物Wを所定間隔おきに搬送しながらX線を照射し、前記被検査物を透過した透過画像を用いて前記被検査物を検査するX線検査方法であって、
前記透過画像から抽出された前記包装材の外形領域S1と該外形領域に対する前記内容物の片寄り情報とに基づいて前記開口がシールされたシール部領域S3を特定するステップと、
前記特定された前記シール部領域内のシール部不良の有無を判別するステップとを含むことを特徴とする。
The X-ray inspection method according to claim 7 transports the inspected object W whose opening is sealed after the content Wb is filled from the opening forming one side of the bag-shaped packaging material Wa at predetermined intervals. This is an X-ray inspection method in which an X-ray is irradiated while the subject is irradiated and the subject is inspected using a transmitted image transmitted through the subject.
A step of said opening to identify the seal region S3, which is sealed on the basis of the offset information of the contents against external region S1 and the external-type region of said extracted from the transmitted image packaging material,
It is characterized by including a step of determining the presence or absence of a defective seal portion in the specified seal portion region.
本発明によれば、被検査物の包装材に充填される内容物がシール部側と反対側に偏る特性を利用し、袋状の包装材の開口部の1辺が内容物の充填後にシールされる被検査物がランダムな方向に搬送され、被検査物の搬送姿勢が乱れても確実にシール部領域を特定することができる。 According to the present invention, one side of the opening of the bag-shaped packaging material is sealed after filling the contents by utilizing the characteristic that the contents to be filled in the packaging material of the object to be inspected are biased to the side opposite to the sealing portion side. The object to be inspected is conveyed in random directions, and even if the conveying posture of the object to be inspected is disturbed, the seal portion region can be reliably specified.
以下、本発明を実施するための形態について、添付した図面を参照しながら詳細に説明する。 Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the attached drawings.
本発明に係るX線検査装置は、例えば搬送ラインの一部に組み込まれ、一定間隔おきに順次搬送されてくる被検査物(物品)に対し、包装材に包装された内容物のシール部への噛み込み等によるシール部不良の有無を検査するものである。 The X-ray inspection apparatus according to the present invention is incorporated into, for example, a part of a transport line, and for an object (article) to be inspected that is sequentially transported at regular intervals, to a seal portion of the contents packaged in a packaging material. This is to inspect the presence or absence of defective seals due to biting of the seal.
被検査物は、図3(a)に示すように、袋状(矩形状)の包装材Waの1辺をなす上部開口から内容物Wbが充填され、上部開口が封止されてシール部Wcが形成されたものであり、例えばスタンドパウチを含む各種パウチ製品を検査対象としている。 As shown in FIG. 3A, the object to be inspected is filled with the content Wb from the upper opening forming one side of the bag-shaped (rectangular) packaging material Wa, and the upper opening is sealed to seal the seal portion Wc. Is formed, for example, various pouch products including stand pouches are targeted for inspection.
図1に示すように、本実施の形態のX線検査装置1は、搬送装置2、X線発生器3、X線検出器4、設定入力部5、信号処理部6、表示部7を含んで概略構成され、被検査物Wの袋状の包装材Waの1辺だけのシール部不良検査、すなわち、内容物Wbが充填された開口部の1辺のシール部Wcのシール部領域におけるシール部不良の有無を検査する。
As shown in FIG. 1, the
搬送装置2は、検査対象の被検査物Wを搬送路上で所定間隔おきに順次搬送するもので、例えば装置本体に対して水平に配置されたベルトコンベアで構成される。
The
搬送装置としてのベルトコンベア2は、X線を透過しやすい材料(原子量の大きい元素以外の元素)からなる搬送ベルト2aを備え、被検査物Wの検査を行うときに、不図示の搬送制御手段の制御に基づく駆動モータMの回転により予め設定入力部5にて設定される搬送速度で搬送ベルト2aを駆動する。これにより、搬入口から搬入された被検査物Wは、搬出口側に向けて図1の搬送方向Xに搬送される。
The
X線発生器3は、搬入口から搬出口に向かって搬送方向Xに搬送路上を搬送される被検査物WにX線を照射するもので、電圧を印可して加速させた電子をターゲットに射突させてX線を発生させる円筒状のX線管と、X線管が発生させたX線をX線検出器4に向けて照射するための照射スリットとを有する。
The
X線管は、例えば金属製の箱体内部に設けられる円筒状のX線管を絶縁油により浸漬した構成であり、X線管の陰極からの電子ビームを陽極ターゲットに照射させてX線を生成する。X線管は、その長手方向が被検査物Wの搬送方向(図1のX方向)の平面上で直交する方向に設けられ、生成したX線を、下方のX線検出器4に向けて、長手方向に沿った照射スリットによりスクリーン状にして照射する。 The X-ray tube has, for example, a structure in which a cylindrical X-ray tube provided inside a metal box is immersed in insulating oil, and an electron beam from the cathode of the X-ray tube is applied to the anode target to emit X-rays. Generate. The X-ray tube is provided in a direction in which its longitudinal direction is orthogonal to the plane of the transport direction of the object W to be inspected (X direction in FIG. 1), and the generated X-rays are directed toward the lower X-ray detector 4. , A screen-like irradiation is performed by an irradiation slit along the longitudinal direction.
X線検出器4は、搬送される被検査物Wの搬送方向Xの平面上で搬送方向Xと直交する方向に複数の素子が一直線上に配置されたものである。さらに説明すると、X線検出器4は、ライン状に整列して配設された複数のフォトダイオードと、ライン状のフォトダイオード上に設けられたシンチレータとを備えてアレイ状に構成される。 In the X-ray detector 4, a plurality of elements are arranged in a straight line in a direction orthogonal to the transport direction X on the plane of the transport direction X of the object to be transported W to be transported. More specifically, the X-ray detector 4 is configured in an array with a plurality of photodiodes arranged in a line and a scintillator provided on the line photodiode.
X線検出器4は、複数の素子(フォトダイオードとシンチレータのアレイ)によって被検査物Wおよび搬送ベルト2aを透過するX線を検出し、この検出した検出データを素子毎に複数の素子数を1ラインとして信号処理部6に順次出力し、被検査物Wの搬送に伴い順次出力を繰り返す。
The X-ray detector 4 detects X-rays transmitted through the object W to be inspected and the
設定入力部5は、装置本体に設けられる例えばキー、押しボタン、スイッチ、表示部7の表示画面上のソフトキーなどで構成される。設定入力部5は、被検査物Wのシール部不良の検査を行うにあたって、図3(b)や図4に示す被検査物Wの外形領域S1を抽出するための閾値、内容物領域S2を抽出するための閾値、シール部領域S3内の異常箇所の有無に基づくシール部不良の判定基準となる検出リミット値を被検査物Wの品種や異物の種類などに応じて適宜設定して信号処理部6の後述する記憶手段11に記憶する際に操作される。
The
また、設定入力部5は、搬送装置2の搬送ベルト2aの搬送速度の設定、被検査物Wの1辺に施されるシール部Wcの幅寸法(外形が正方形状であれば、何れかの端辺から内側に向かう寸法、外形が長方形状であれば、一方の長端辺又は一方の短端辺から内側に向かう寸法)などのシール部Wcに関する各種情報を設定して信号処理部6の記憶手段11に記憶する際に操作される。
Further, the setting
信号処理部6は、図1に示すように、記憶手段11、外形領域抽出手段12、内容物領域抽出手段13、シール部領域特定手段14、シール部不良判定手段15を含んで構成される。 As shown in FIG. 1, the signal processing unit 6 includes a storage means 11, an outer shape area extraction means 12, a content area extraction means 13, a seal part area identification means 14, and a seal part defect determination means 15.
記憶手段11は、X線検出器4からの各被検査物W毎のX線透過データを記憶する。X線透過データは、X線検出器4からの電気信号を不図示のA/D変換器によりA/D変換して得られる。さらに説明すると、記憶手段11は、1つの被検査物Wの検査を行う毎に、X線検出器4の1ライン(Y方向)あたり例えば数百個のX線透過データを、少なくとも搬送される被検査物Wの搬送方向の長さ(前端から後端までの検出期間に相当)に対応した所定ライン数(例えば数百ライン)だけ格納する。 The storage means 11 stores the X-ray transmission data for each inspected object W from the X-ray detector 4. The X-ray transmission data is obtained by A / D converting an electric signal from the X-ray detector 4 by an A / D converter (not shown). More specifically, each time the storage means 11 inspects one inspected object W, at least several hundreds of X-ray transmission data are conveyed per one line (Y direction) of the X-ray detector 4. Only a predetermined number of lines (for example, several hundred lines) corresponding to the length of the object W to be inspected W in the transport direction (corresponding to the detection period from the front end to the rear end) are stored.
外形領域抽出手段12は、記憶手段6aに格納されたX線透過データから透過量が大きいほど淡いとした濃淡値に対応する濃度レベルをもつ全体の透過画像(被検査物Wとベルト面を含む画像)を作成し、この作成した全体の透過画像から設定入力部5に設定される閾値以上の濃度レベルの透過画像を包装材Waの外形領域(図3(b)に示す被検査物Wの輪郭から内側の面積を示す領域)S1として抽出する。
The external region extraction means 12 includes an entire transmitted image (including the object W to be inspected and the belt surface) having a density level corresponding to a shading value that is lighter as the amount of transmission increases from the X-ray transmission data stored in the storage means 6a. An image) is created, and a transparent image having a density level equal to or higher than the threshold value set in the setting
なお、外形領域抽出手段12は、記憶手段6aに格納されたX線透過データから作成した全体の透過画像の全体の濃度ヒストグラムを求め、求めた濃度ヒストグラムから被検査物Wのデータと被検査物W以外(ベルト面)のデータとに切り分けて2値化し、例えば全体の濃度ヒストグラムにおいて、被検査物のデータを255、被検査物以外のデータを0としてデータを2値化し、2値化したデータのうち被検査物Wのデータを包装材Waの外形領域S1として抽出することもできる。 The external region extraction means 12 obtains an overall density histogram of the entire transmitted image created from the X-ray transmission data stored in the storage means 6a, and the data of the object W to be inspected and the object to be inspected are obtained from the obtained density histogram. The data was divided into data other than W (belt surface) and binarized. For example, in the overall density histogram, the data of the inspected object was set to 255 and the data other than the inspected object was set to 0, and the data was binarized and binarized. Of the data, the data of the object to be inspected W can be extracted as the outer shape region S1 of the packaging material Wa.
内容物領域抽出手段13は、設定入力部5にて設定された閾値を用い、外形領域S1内の透過画像から閾値を超える濃度レベルの透過画像を被検査物Wの内容物Wbと対応する内容物領域(図3(b)に示す斜線部分)S2として抽出する。また、内容物領域抽出手段13は、外形領域S1の抽出処理と並行して、設定入力部5にて設定された閾値を超える濃度レベルの透過画像を被検査物Wの内容物Wbと対応する内容物領域S2として抽出してもよい。
The content area extraction means 13 uses the threshold value set by the setting
シール部領域特定手段14は、外形領域抽出手段12にて抽出した外形領域S1と内容物領域抽出手段13にて抽出した内容物領域S2に基づいて透過画像の内容物Wbの片寄り情報を算出する片寄り情報算出手段14aを有し、内容物Wbの片寄り情報と包装材Waの外形領域S1とに基づいてシール部領域S3を特定する。
The seal portion area specifying means 14 calculates the offset information of the contents Wb of the transmitted image based on the outer shape area S1 extracted by the outer shape area extraction means 12 and the contents area S2 extracted by the contents area extraction means 13. The offset
片寄り情報算出手段14aは、外形領域S1を抽出する閾値より大きい閾値以上の所定濃度範囲で2値化した2値画像を内容物領域S2とし、この内容物領域S2の各画素の座標位置から内容物Wbの重心G1を求め(面積)、求めた重心G1を内容物Wbの片寄り情報とする。 The offset information calculation means 14a uses a binary image binarized in a predetermined density range equal to or greater than the threshold value for extracting the outer shape region S1 as the content region S2, and from the coordinate positions of each pixel of the content region S2. The center of gravity G1 of the content Wb is obtained (area), and the obtained center of gravity G1 is used as the biased information of the content Wb.
なお、片寄り情報算出手段14aは、外形領域S1を抽出する閾値より大きい閾値以上の所定濃度範囲で2値化して得られる内容物領域S2の各画素の座標位置と濃度から内容物Wbの重心G1を求め(体積に相当)、求めた重心G1を内容物Wbの片寄り情報としてもよい。 The offset information calculation means 14a is obtained by binarizing the external region S1 in a predetermined density range equal to or greater than the threshold value for extracting the external region S1 from the coordinate position and density of each pixel of the content region S2 to obtain the center of gravity of the content Wb. G1 may be obtained (corresponding to the volume), and the obtained center of gravity G1 may be used as biased information of the content Wb.
シール部領域特定手段14は、外形領域抽出手段12にて抽出した外形領域S1の各画素の座標位置から透過画像の外形領域S1の重心G2を算出する(面積)。また、シール部領域特定手段14は、外形領域S1の各頂点の座標位置から対角線の交点として透過画像の外形領域S1の中心G3を算出する。
The seal portion area specifying means 14 calculates the center of gravity G2 of the outer shape area S1 of the transmitted image from the coordinate positions of each pixel of the outer shape area S1 extracted by the outer shape area extraction means 12 (area). Further, the seal portion
そして、シール部領域特定手段14は、片寄り情報算出手段14aにて算出した内容物Wbの重心G1から透過画像の外形領域S1の重心G2に向かう直線を主軸とし、その主軸と交差する外形領域S1の1辺をシール辺S3aとして算出し、この算出したシール辺S3aと設定入力部5にて設定されたシール部Wcの幅寸法からシール部領域S3を特定する。
Then, the seal portion
また、シール部領域特定手段14は、片寄り情報算出手段14aにて算出した内容物Wbの重心G1から透過画像の外形領域S1の対角線の交点G3に向かう直線を主軸とし、その主軸と交差する外形領域S1の1辺をシール辺S3aとして算出し、この算出したシール辺S3aと設定入力部5にて設定されたシール部Wcの幅寸法からシール部領域S3を特定してもよい。
Further, the seal portion
さらに、シール部領域特定手段14は、片寄り情報算出手段14aにて算出した内容物Wbの重心G1から透過画像の外形領域S1の頂点までの距離が長い2つの頂点を結んだ辺をシール辺S3aとして算出し、この算出したシール辺S3aと設定入力部5にて設定されたシール部Wcの幅寸法からシール部領域S3を特定してもよい。
Further, the seal portion area specifying means 14 sets a side connecting two vertices having a long distance from the center of gravity G1 of the content Wb calculated by the offset
また、シール部領域特定手段14は、外形領域抽出手段12にて抽出した透過画像の外形領域S1でシール辺が短辺であるとき、長辺の一端が片寄り情報算出手段14aにて算出した内容物の重心G1の位置になるように平行移動した直線を主軸とし、その主軸と交差する外形領域S1の1辺をシール辺S3aとして算出し、この算出したシール辺S3aと設定入力部5にて設定されたシール部Wcの幅寸法からシール部領域S3を特定してもよい。
Further, when the seal side is the short side in the outer region S1 of the transparent image extracted by the outer region region extraction means 12, one end of the long side is calculated by the offset information calculation means 14a. A straight line that has been moved in parallel so as to be at the position of the center of gravity G1 of the contents is used as the main axis, and one side of the outer region S1 that intersects the main axis is calculated as the seal side S3a, and the calculated seal side S3a and the setting
なお、シール部領域特定手段14は、設定入力部5にて設定したシール部Wcの幅寸法による領域をシール辺が一致するようにアフィン変換(3×3の行列を使って変換する)で回転、平行移動させて取得した透過画像に重ねて処理し、シール部領域S3を特定するようにしても良い。これにより、被検査物Wの全体画像をアフィン変換する必要がないので、処理時間の短縮を図ることができる。
The seal portion area specifying means 14 rotates the region according to the width dimension of the seal portion Wc set by the setting
また、片寄り情報算出手段14aは、外形領域S1の各頂点や各辺から内側の濃度(平均)と対向する頂点や辺の内側の濃度とを比較して内容物の片寄りを判別し、この判別によって内容物の片寄り度合いを片寄り情報として算出してもよい。 Further, the offset information calculation means 14a determines the offset of the contents by comparing the density (average) inside each vertex or side of the outer region S1 with the density inside the opposite vertex or side. By this determination, the degree of deviation of the contents may be calculated as the deviation information.
さらに、片寄り情報算出手段14aは、透過画像の内容物領域S2の濃度レベルの最も高い領域の位置を片寄り位置として算出することもできる。この場合、シール部領域特定手段14は、片寄り情報算出手段14aが算出した片寄り位置から最も離れた外形領域S1の辺のうち、設定入力部5にて設定したシール部Wcと同等の長さの辺をシール辺S3aとして算出し、算出したシール辺S3aと設定されたシール部Wcの幅寸法からシール部領域S3を特定する。
Further, the offset information calculation means 14a can also calculate the position of the region having the highest density level in the content region S2 of the transparent image as the offset position. In this case, the seal portion area specifying means 14 has the same length as the seal portion Wc set by the setting
シール部不良判定手段15は、シール部領域特定手段14にて特定したシール部領域S3に対し、設定入力部5にて設定されたシール部不良を判定するための情報として例えば外形領域S1を抽出する閾値より大きい閾値を用い、この閾値を超える濃度レベルがシール部領域S3内にあるか否かによりシール部不良の有無を判定する。
The seal portion defect determining means 15 extracts, for example, the outer shape region S1 as information for determining the seal portion defect set by the setting
表示部7は、例えば液晶表示器などの表示装置で構成され、外形領域S1、内容物領域S2、シール部領域S3を含む被検査物Wの全体画像、判別結果に基づく被検査物Wを平面視したX線透過画像、「OK」や「NG」の良否判定結果、総検査数、良品数、NG総数などの検査結果を設定入力部5の操作に基づいて表示画面に表示する。
The
そして、上記のように構成されるX線検査装置1を用いて被検査物Wのシール部領域S3を特定する場合には、図2のフローチャートに示すように、まず、記憶手段11に記憶されたX線透過データによる透過画像から被検査物Wの包装材の外形領域S1を外形領域抽出手段12にて抽出する(ST1)。また、記憶手段11に記憶されたX線透過データによる透過画像から内容物領域S2を内容物領域抽出手段13にて抽出する(ST2)。さらに、記憶手段11に記憶されたX線透過データによる透過画像から外形領域S1に対する内容物領域S2の片寄り情報(内容物Wbの重心G1)を片寄り情報算出手段14aにて算出する(ST3)。そして、算出した内容物領域S2の片寄り情報と被検査物Wの包装材Waの外形領域S1とに基づいてシール部領域S3をシール部領域特定手段14にて特定する(ST4)。
Then, when the seal portion region S3 of the object W to be inspected is specified by using the
次に、上述したシール部領域特定手段14にてシール部領域S3を特定する方法の具体例(例1、例2)として、図3(b)に示すように、長方形状の外形領域S1の辺BCに内容物領域S2が偏った透過画像が抽出された場合を例にとって図4(a),(b)を参照しながら説明する。 Next, as a specific example (Examples 1 and 2) of the method of specifying the seal portion region S3 by the seal portion region specifying means 14 described above, as shown in FIG. 3B, the rectangular outer region S1 A case where a transparent image in which the content region S2 is biased on the side BC is extracted will be described with reference to FIGS. 4 (a) and 4 (b) as an example.
なお、抽出された透過画像において、4つの頂点のうち、最上頂点をAとし、左周りに各頂点をB,C,Dとする。また、頂点Bのx座標を0、頂点Cのy座標を0とし、各頂点A,B,C,Dの座標をA:(x1,y1)、B:(0,y2)、C:(x3,0)、D:(x4,y4)とする。 In the extracted transparent image, of the four vertices, the highest vertex is A, and each vertex is B, C, and D in the counterclockwise direction. Further, the x-coordinate of the vertex B is 0, the y-coordinate of the vertex C is 0, and the coordinates of the vertices A, B, C, and D are A: (x1, y1), B: (0, y2), C :( x3,0), D: (x4, y4).
[例1]…外形領域S1の重心G2を用いてシール辺S3aを特定する例
図4(a)において、各頂点A,B,C,Dの座標から各辺AB,BC,CD,DAの直線の方程式を算出する。また、内容物Wbの重心G1と外形領域S1の重心G2の2つの重心G1,G2の座標から直線による主軸Z1の方程式を求める。次に、各辺AB,BC,CD,DAの直線の方程式と主軸Z1の方程式による連立方程式から主軸Z1と各辺AB,BC,CD,DAの交点を求める。図4(a)の例では、辺BCの直線の方程式と主軸Z1の方程式による連立方程式から主軸Z1と辺BCの交点P1が求まり、辺DAの直線の方程式と主軸Z1の方程式による連立方程式から主軸Z1と辺DAの交点P2が求まる。そして、求めた交点のうち、内容物Wbの重心G1から外形領域S1の重心G2寄りにある交点を有する辺をシール辺S3aとして特定する。図4(a)の例では、内容物Wbの重心G1から外形領域S1の重心G2寄りにある交点P2を有する辺DAがシール辺S3aとして特定される。
[Example 1] ... Example of specifying the seal side S3a using the center of gravity G2 of the outer region S1 In FIG. 4 (a), from the coordinates of the vertices A, B, C, and D, of each side AB, BC, CD, DA. Calculate the linear equation. Further, the equation of the main axis Z1 by a straight line is obtained from the coordinates of the two centers of gravity G1 and G2 of the center of gravity G1 of the content Wb and the center of gravity G2 of the outer region S1. Next, the intersection of the main axis Z1 and each side AB, BC, CD, DA is obtained from the simultaneous equations of the linear equations of the respective sides AB, BC, CD, and DA and the equation of the main axis Z1. In the example of FIG. 4A, the intersection P1 of the main axis Z1 and the side BC can be obtained from the simultaneous equations of the straight line equation of the side BC and the equation of the main axis Z1, and from the simultaneous equations of the straight line of the side DA and the equation of the main axis Z1. The intersection P2 between the main axis Z1 and the side DA can be obtained. Then, among the obtained intersections, the side having the intersection from the center of gravity G1 of the content Wb to the center of gravity G2 of the outer region S1 is specified as the seal side S3a. In the example of FIG. 4A, the side DA having the intersection P2 near the center of gravity G2 of the outer region S1 from the center of gravity G1 of the content Wb is specified as the seal side S3a.
なお、上述した例1の説明では、2つの重心G1,G2の2点を通る直線を主軸Z1としたが、重心G1を起点として、重心G1から重心G2に向かう直線を主軸Z1とし、主軸Z1と交差する辺をシール辺S3aとして特定してもよい。 In the above description of Example 1, the straight line passing through the two points of the two centers of gravity G1 and G2 is set as the main axis Z1, but the straight line from the center of gravity G1 to the center of gravity G2 is set as the main axis Z1. The side intersecting with may be specified as the seal side S3a.
[例2]…外形領域S1の中心G3を用いてシール辺S3aを特定する例
図4(b)において、各頂点A,B,C,Dの座標から対角線AC,BDの直線の方程式を算出し、この対角線AC,BDの直線の方程式から対角線AC,BDの交点を算出し、この交点を外形領域S1の中心G3とする。また、各頂点A,B,C,Dの座標から各辺AB,BC,CD,DAの直線の方程式を算出する。次に、内容物Wbの重心G1の座標と外形領域S1の中心G3の座標から直線による主軸Z2の方程式を求める。次に、各辺AB,BC,CD,DAの直線の方程式と主軸Z2の方程式による連立方程式から主軸Z2と各辺AB,BC,CD,DAの交点を求める。図4(b)の例では、辺BCの直線の方程式と主軸Z2の方程式から主軸Z2と辺BCの交点P3が求まり、辺DAの直線の方程式と主軸Z2の方程式から主軸Z2と辺DAの交点P4が求まる。そして、求めた交点のうち、内容物Wbの重心G1から外形領域S1の中心G3寄りにある交点を有する辺をシール辺S3aとして特定する。図4(b)の例では、内容物Wbの重心G1から外形領域S1の中心G3寄りにある交点を有する辺DAがシール辺S3aとして特定される。
[Example 2] ... Example of specifying the seal side S3a using the center G3 of the outer region S1 In FIG. 4B, the equations of the straight lines of the diagonal lines AC and BD are calculated from the coordinates of the vertices A, B, C, and D. Then, the intersection of the diagonal lines AC and BD is calculated from the equation of the straight line of the diagonal lines AC and BD, and this intersection is set as the center G3 of the outer region S1. Further, the equations of the straight lines of the sides AB, BC, CD, and DA are calculated from the coordinates of the vertices A, B, C, and D. Next, the equation of the main axis Z2 by a straight line is obtained from the coordinates of the center of gravity G1 of the content Wb and the coordinates of the center G3 of the outer region S1. Next, the intersection of the main axis Z2 and each side AB, BC, CD, DA is obtained from the simultaneous equations of the linear equations of the respective sides AB, BC, CD, and DA and the equation of the main axis Z2. In the example of FIG. 4B, the intersection P3 of the main axis Z2 and the side BC can be obtained from the equation of the straight line of the side BC and the equation of the main axis Z2, and the equation of the straight line of the side DA and the equation of the main axis Z2 of the main axis Z2 and the side DA. The intersection P4 is obtained. Then, among the obtained intersections, the side having the intersection located near the center G3 of the outer shape region S1 from the center of gravity G1 of the content Wb is specified as the seal side S3a. In the example of FIG. 4B, the side DA having an intersection near the center G3 of the outer region S1 from the center of gravity G1 of the content Wb is specified as the seal side S3a.
なお、上述した例2の説明では、内容物Wbの重心G1と外形領域の中心G3の2点を通る直線を主軸Z2としたが、重心G1を起点として、重心G1から外形領域の中心G3に向かう直線を主軸Z2とし、主軸Z2と交差する辺をシール辺S3aとして特定してもよい。 In the explanation of Example 2 described above, the straight line passing through the two points of the center of gravity G1 of the content Wb and the center G3 of the outer region is defined as the main axis Z2, but from the center of gravity G1 to the center G3 of the outer region from the center of gravity G1. The straight line to be directed may be specified as the main axis Z2, and the side intersecting the main axis Z2 may be specified as the seal side S3a.
次に、シール部領域特定手段14にてシール部領域S3を特定する方法の具体例(例3、例4)として、図4(c)に示すように、長方形状の外形領域S1の辺DA(例1及び例2とは反対側の短辺)に内容物領域S2が偏った透過画像が抽出された場合を例にとって図4(c),(d)を参照しながら説明する。 Next, as a specific example (Examples 3 and 4) of the method of specifying the seal portion region S3 by the seal portion region specifying means 14, as shown in FIG. 4C, the side DA of the rectangular outer region S1 A case where a transparent image in which the content region S2 is biased is extracted in (the short side opposite to Examples 1 and 2) will be described with reference to FIGS. 4 (c) and 4 (d).
なお、抽出された透過画像において、4つの頂点のうち、最上頂点をAとし、左周りに各頂点をB,C,Dとする。また、頂点Bのx座標の値を0、頂点Cのy座標の値を0とし、各頂点A,B,C,Dの座標をA:(x1,y1)、B:(0,y2)、C:(x3,0)、D:(x4,y4)とする。 In the extracted transparent image, of the four vertices, the highest vertex is A, and each vertex is B, C, and D in the counterclockwise direction. Further, the x-coordinate value of the vertex B is 0, the y-coordinate value of the vertex C is 0, and the coordinates of the vertices A, B, C, and D are A: (x1, y1), B: (0, y2). , C: (x3,0), D: (x4, y4).
[例3]…頂点までの距離を用いてシール辺S3aを特定する例
図4(c)において、各頂点A,B,C,Dの座標と内容物Wbの重心G1の座標を用い、各頂点A,B,C,Dから内容物Wbの重心G1までの長さAG1,BG1,CG1,DG1を求める。次に、求めた長さAG1,BG1,CG1,DG1のうち、長い方の2つの頂点を結んだ辺をシール辺S3aとして特定する。図4(c)の例では、各頂点A,B,C,Dから内容物Wbの重心G1までの長さAG1,BG1,CG1,DG1のうち、長い方の2つの頂点B,Cを結んだ辺BCがシール辺S3aとして特定される。
[Example 3] ... Example of specifying the seal side S3a using the distance to the vertices In FIG. 4 (c), the coordinates of the vertices A, B, C, and D and the coordinates of the center of gravity G1 of the contents Wb are used. The lengths AG1, BG1, CG1, DG1 from the vertices A, B, C, and D to the center of gravity G1 of the content Wb are obtained. Next, of the obtained lengths AG1, BG1, CG1, and DG1, the side connecting the two longer vertices is specified as the seal side S3a. In the example of FIG. 4C, the two longer vertices B and C of the lengths AG1, BG1, CG1 and DG1 from the respective vertices A, B, C and D to the center of gravity G1 of the content Wb are connected. The apex BC is specified as the seal side S3a.
[例4]…長辺を用いてシール辺S3aを特定する例
図4(d)において、各頂点A,B,C,Dの座標から各辺AB,BC,CD,DAの長さを求める。また、長さを求めた各辺AB,BC,CD,DAのうち、長辺AB,CDと傾きが同じであり内容物Wbの重心G1の座標を通る直線を主軸Z3として方程式を求める。次に、各短辺BC,DAの直線の方程式と主軸Z3の方程式による連立方程式から交点を求める。図4(d)の例では、短辺BCの直線の方程式と主軸Z3の方程式による連立方程式から交点P5が求まり、短辺DAの直線の方程式と主軸Z3の方程式による連立方程式から交点P6が求まる。そして、求めた交点と内容物Wbの重心G1との距離が長い方の短辺をシール辺S3aとして特定する。図4(d)の例では、内容物Wbの重心G1との距離が長い交点P5を有する短辺BCがシール辺S3aとして特定される。
[Example 4] ... Example of specifying the seal side S3a using the long side In FIG. 4 (d), the lengths of the sides AB, BC, CD, and DA are obtained from the coordinates of the vertices A, B, C, and D. .. Further, among the sides AB, BC, CD, and DA for which the length has been obtained, the equation is obtained with the straight line having the same inclination as the long sides AB and CD and passing through the coordinates of the center of gravity G1 of the content Wb as the main axis Z3. Next, the intersection is obtained from the equations of the straight lines of the short sides BC and DA and the simultaneous equations of the equations of the main axis Z3. In the example of FIG. 4D, the intersection P5 can be obtained from the simultaneous equations of the straight line of the short side BC and the equation of the main axis Z3, and the intersection P6 can be obtained from the simultaneous equations of the straight line of the short side DA and the equation of the main axis Z3. .. Then, the shorter side having a longer distance between the obtained intersection and the center of gravity G1 of the content Wb is specified as the seal side S3a. In the example of FIG. 4D, the short side BC having the intersection P5 having a long distance from the center of gravity G1 of the content Wb is specified as the seal side S3a.
このように、本実施の形態のX線検査装置1は、被検査物Wの包装材Waに充填される内容物Wbがシール部Wc側と反対側に偏る特性を利用し、袋状の包装材Waの開口部の1辺が内容物Wbの充填後にシールされる被検査物Wが搬送装置2の搬送ベルト2aに対してランダムな方向に搬送され、被検査物Wの搬送姿勢が乱れても搬送条件の制限を持たずに確実にシール部領域S3を特定して被検査物Wのシール部不良の検査を行うことができる。
As described above, the
以上、本発明に係るX線検査装置及びX線検査方法の最良の形態について説明したが、この形態による記述及び図面により本発明が限定されることはない。すなわち、この形態に基づいて当業者等によりなされる他の形態、実施例及び運用技術などはすべて本発明の範疇に含まれることは勿論である。 Although the best form of the X-ray inspection apparatus and the X-ray inspection method according to the present invention has been described above, the present invention is not limited by the description and drawings in this form. That is, it goes without saying that all other forms, examples, operational techniques, and the like made by those skilled in the art based on this form are included in the category of the present invention.
1 X線検査装置
2 搬送装置
2a 搬送ベルト
3 X線発生器
4 X線検出器
5 設定入力部
6 信号処理部
7 表示部
11 記憶手段
12 外形領域抽出手段
13 内容物領域抽出手段
14 シール部領域特定手段
14a 片寄り情報算出手段
15 シール部不良判定手段
G1 内容物の重心
G2 外形領域の重心
G3 外形領域の中心
M 駆動モータ
P1〜P6 交点
S1 外形領域
S2 内容物領域
S3 シール部領域
S3a シール辺
W 被検査物
Wa 包装材
Wb 内容物
Wc シール部
X 搬送方向
Z1〜Z3 主軸
1
Claims (7)
前記透過画像から抽出された前記包装材の外形領域(S1)と該外形領域に対する前記内容物の片寄り情報とに基づいて前記開口がシールされたシール部領域(S3)を特定し、前記シール部領域内のシール部不良の有無を判別する信号処理部(6)を備えたことを特徴とするX線検査装置。 After the contents (Wb) are filled from the openings forming one side of the bag-shaped packaging material (Wa) , the inspected object (W) whose openings are sealed is transported by X-rays at predetermined intervals. An X-ray inspection apparatus (1) that inspects the inspected object using a transmission image transmitted through the inspected object.
Wherein said opening identifies sealed sealed area (S3) based on the contour area of the packaging material which is extracted from the transmitted image (S1) and the offset information of the content for the external-type region, wherein An X-ray inspection apparatus including a signal processing unit (6) for determining the presence or absence of a defective seal portion in the seal portion region.
前記透過画像から抽出された前記包装材の外形領域(S1)と該外形領域に対する前記内容物の片寄り情報とに基づいて前記開口がシールされたシール部領域(S3)を特定するステップと、
前記特定された前記シール部領域内のシール部不良の有無を判別するステップとを含むことを特徴とするX線検査方法。 After the content (Wb) is filled from the opening forming one side of the bag-shaped packaging material (Wa) , the object to be inspected (W) whose opening is sealed is irradiated with X-rays while being conveyed at predetermined intervals. , An X-ray inspection method for inspecting the inspected object using a transmission image transmitted through the inspected object.
A step of said opening to identify the sealed sealed area (S3) on the basis of the offset information of said content with respect to the external-type region contour region of the packaging material which is extracted from the transmitted image (S1) ,
An X-ray inspection method comprising a step of determining the presence or absence of a defective seal portion in the specified seal portion region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016198186A JP6785609B2 (en) | 2016-10-06 | 2016-10-06 | X-ray inspection equipment and X-ray inspection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016198186A JP6785609B2 (en) | 2016-10-06 | 2016-10-06 | X-ray inspection equipment and X-ray inspection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018059845A JP2018059845A (en) | 2018-04-12 |
JP6785609B2 true JP6785609B2 (en) | 2020-11-18 |
Family
ID=61907720
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016198186A Active JP6785609B2 (en) | 2016-10-06 | 2016-10-06 | X-ray inspection equipment and X-ray inspection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6785609B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6796050B2 (en) * | 2017-10-26 | 2020-12-02 | アンリツインフィビス株式会社 | X-ray inspection equipment and X-ray inspection method |
JP7231530B2 (en) * | 2019-11-20 | 2023-03-01 | アンリツ株式会社 | X-ray inspection device |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3062577B2 (en) * | 1991-05-31 | 2000-07-10 | ヤマハ発動機株式会社 | Component inclination detection method |
JP3860154B2 (en) * | 2003-09-12 | 2006-12-20 | アンリツ産機システム株式会社 | X-ray inspection equipment |
JP5358073B2 (en) * | 2007-08-10 | 2013-12-04 | ライオンエンジニアリング株式会社 | Package inspection system and inspection method |
US8483475B2 (en) * | 2007-09-26 | 2013-07-09 | Ishida Co., Ltd. | Inspection apparatus |
JP6270319B2 (en) * | 2013-02-18 | 2018-01-31 | 株式会社イシダ | X-ray inspection equipment |
-
2016
- 2016-10-06 JP JP2016198186A patent/JP6785609B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2018059845A (en) | 2018-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5739230B2 (en) | X-ray inspection equipment | |
JP3875842B2 (en) | X-ray foreign object detection apparatus and defective product detection method in the apparatus | |
KR20200097344A (en) | Inspection device | |
JP2005024549A (en) | X-ray inspection device | |
JP6785609B2 (en) | X-ray inspection equipment and X-ray inspection method | |
JP3860154B2 (en) | X-ray inspection equipment | |
JP7231530B2 (en) | X-ray inspection device | |
JP3618701B2 (en) | X-ray foreign object detection device | |
JP3737950B2 (en) | X-ray foreign object detection apparatus and defective product detection method in the apparatus | |
JP3917129B2 (en) | X-ray inspection equipment | |
JP2005127962A (en) | X-ray inspection system | |
JP6796052B2 (en) | X-ray inspection equipment and X-ray inspection method | |
JP2015137858A (en) | Inspection device | |
JP6629776B2 (en) | X-ray inspection apparatus and X-ray inspection method | |
JP6412076B2 (en) | Inspection equipment | |
JP4170366B2 (en) | X-ray inspection equipment | |
US20230366838A1 (en) | X-ray inspection apparatus and x-ray inspection method | |
JPWO2019235022A1 (en) | Inspection equipment | |
JP3955559B2 (en) | X-ray inspection equipment | |
JP6796050B2 (en) | X-ray inspection equipment and X-ray inspection method | |
JP6556671B2 (en) | X-ray inspection equipment | |
JP3860144B2 (en) | X-ray inspection equipment | |
JP6647873B2 (en) | Inspection device | |
JP2004069384A (en) | X-ray foreign material detector, x-ray foreign material detecting method, and x-ray foreign material detecting program | |
JP2016024096A (en) | Inspection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190904 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20200630 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200728 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200916 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201006 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201027 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6785609 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |