[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6770645B2 - Charged particle beam device and sample thickness measurement method - Google Patents

Charged particle beam device and sample thickness measurement method Download PDF

Info

Publication number
JP6770645B2
JP6770645B2 JP2019524581A JP2019524581A JP6770645B2 JP 6770645 B2 JP6770645 B2 JP 6770645B2 JP 2019524581 A JP2019524581 A JP 2019524581A JP 2019524581 A JP2019524581 A JP 2019524581A JP 6770645 B2 JP6770645 B2 JP 6770645B2
Authority
JP
Japan
Prior art keywords
sample
charged particle
thickness
particle beam
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019524581A
Other languages
Japanese (ja)
Other versions
JPWO2018229848A1 (en
Inventor
佐藤 高広
高広 佐藤
恒典 野間口
恒典 野間口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Tech Corp filed Critical Hitachi High Tech Corp
Publication of JPWO2018229848A1 publication Critical patent/JPWO2018229848A1/en
Application granted granted Critical
Publication of JP6770645B2 publication Critical patent/JP6770645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/2206Combination of two or more measurements, at least one measurement being that of secondary emission, e.g. combination of secondary electron [SE] measurement and back-scattered electron [BSE] measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/22Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
    • G01N23/225Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
    • G01N23/2251Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical, image processing or photographic arrangements associated with the tube
    • H01J37/222Image processing arrangements associated with the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/3002Details
    • H01J37/3005Observing the objects or the point of impact on the object
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/633Specific applications or type of materials thickness, density, surface weight (unit area)
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24571Measurements of non-electric or non-magnetic variables
    • H01J2237/24578Spatial variables, e.g. position, distance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30466Detecting endpoint of process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/31732Depositing thin layers on selected microareas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • H01J2237/31745Etching microareas for preparing specimen to be viewed in microscopes or analyzed in microanalysers

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Description

本発明は、荷電粒子線装置及び試料の厚さ測定法に関する。 The present invention relates to a charged particle beam device and a method for measuring the thickness of a sample.

荷電粒子線装置の一つである集束イオンビーム(Focused Ion Beam: FIB)装置は、集束したイオンビームを試料に照射した際に生じるターゲット構成原子のスパッタリング現象を利用して微細加工を行う装置である。最近では、FIB装置に対して、走査電子顕微鏡(Scanning ElectronMicroscope:SEM)又は走査透過電子顕微鏡(Scanning Transmission Electron Microscope:STEM)を組み合わせた装置が製品化されている。これらの装置は、FIB照射軸と電子線照射軸が装置内の同一点で交差するように設計されており、試料を移動せずにFIB加工断面をSEM観察できる特長がある。 The Focused Ion Beam (FIB) device, which is one of the charged particle beam devices, is a device that performs fine processing by utilizing the sputtering phenomenon of the target constituent atoms that occurs when the sample is irradiated with the focused ion beam. is there. Recently, a device that combines a scanning electron microscope (SEM) or a scanning transmission electron microscope (STEM) with a FIB device has been commercialized. These devices are designed so that the FIB irradiation axis and the electron beam irradiation axis intersect at the same point in the device, and have the advantage of being able to perform SEM observation of the FIB processed cross section without moving the sample.

FIB装置の用途は、SEM観察用の断面加工、及び、STEMや透過電子顕微鏡(Transmission Electron Microscope:TEM)観察用の試料作製などである。TEM法やSTEM法は、高加速電子線を薄膜試料に照射し、透過した電子線を結像することで試料内部構造を観察する手法である。これらの手法では、透過電子を結像に用いるため、観察試料として薄膜が使用される。一般的な推奨の試料厚さは、加速電圧200 kVの場合は100 nm以下である。しかし、半導体の薄膜試料の作製においては、デバイス構造の微細化が年々進んでいるため、薄膜厚さを数10 nm程度まで加工しなければならない場合もある。TEMやSTEM観察用の試料作製においては、FIB加工中に精度良く薄膜試料の厚さを測定する技術が必要である。 The FIB device is used for cross-sectional processing for SEM observation and sample preparation for STEM and transmission electron microscope (TEM) observation. The TEM method and the STEM method are methods for observing the internal structure of a sample by irradiating a thin film sample with a highly accelerated electron beam and forming an image of the transmitted electron beam. In these methods, since transmitted electrons are used for imaging, a thin film is used as an observation sample. A generally recommended sample thickness is 100 nm or less for an accelerating voltage of 200 kV. However, in the production of semiconductor thin film samples, the device structure is becoming finer year by year, so it may be necessary to process the thin film thickness to about several tens of nm. In the preparation of samples for TEM and STEM observation, a technique for accurately measuring the thickness of a thin film sample during FIB processing is required.

FIB加工中に発生する二次電子は、試料表面構造を反映した情報を持つ。FIBの走査と同期させて二次電子の信号強度を二次元表示した像は、走査イオン顕微鏡(Scanning Ion Microscope:SIM)像と呼ばれる。従来から用いられている試料厚さ測定法は、薄膜試料を上方からSIM観察することによって試料厚さを測長する。しかし、真上から試料を観察するため、試料の深さ方向の情報を得ることが難しく、目的とする箇所の正確な測長は困難である。SIM像はSEM像と比較して分解能が低いことも測定精度低下の原因である。電子線を用いた膜厚測定法は、特許文献1に開示されている。特許文献1には、膜厚測定領域と参照試料における反射電子の強度比を算出して膜厚を測定する手法が開示されている。 The secondary electrons generated during FIB processing have information that reflects the sample surface structure. An image in which the signal strength of secondary electrons is displayed in two dimensions in synchronization with the scanning of FIB is called a scanning ion microscope (SIM) image. The conventionally used sample thickness measuring method measures the sample thickness by observing the thin film sample from above by SIM. However, since the sample is observed from directly above, it is difficult to obtain information in the depth direction of the sample, and it is difficult to accurately measure the length of the target portion. The lower resolution of the SIM image compared to the SEM image is also a cause of the decrease in measurement accuracy. A film thickness measuring method using an electron beam is disclosed in Patent Document 1. Patent Document 1 discloses a method of measuring the film thickness by calculating the intensity ratio of reflected electrons in the film thickness measurement region and the reference sample.

特開2008-267895号公報Japanese Unexamined Patent Publication No. 2008-267895

特許文献1の手法は、膜厚測定対象の試料の他に参照試料を用意する必要があり、実施するためにいくつかの課題がある。第一に、参照試料は、膜厚測定領域と同じ材質及び組成であり、かつ厚さが既知の必要がある。試料が単一構造又は単一組成の場合は、特許文献1の手法を適用することができる。しかし、試料内部の構造又は組成が不均一の場合、電子線強度が観察領域毎に変化するため、特許文献1の手法を適用することができない。第二に、膜厚測定の精度向上には、厚さが異なる2個以上の参照試料を準備しなければならない。半導体試料においては、不良部は1箇所しかないため複数の参照試料を準備することはできない。 In the method of Patent Document 1, it is necessary to prepare a reference sample in addition to the sample to be measured for film thickness, and there are some problems to carry out. First, the reference sample needs to have the same material and composition as the film thickness measurement region, and the thickness must be known. When the sample has a single structure or a single composition, the method of Patent Document 1 can be applied. However, if the structure or composition inside the sample is non-uniform, the electron beam intensity changes for each observation region, so that the method of Patent Document 1 cannot be applied. Second, in order to improve the accuracy of film thickness measurement, two or more reference samples with different thicknesses must be prepared. In the semiconductor sample, since there is only one defective part, it is not possible to prepare a plurality of reference samples.

そこで、以下では、参照試料を用意することなく、試料の厚さを測定することが可能な技術を開示する。 Therefore, in the following, a technique capable of measuring the thickness of a sample without preparing a reference sample will be disclosed.

例えば、上記課題を解決するために、請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例をあげるならば、荷電粒子線を照射する荷電粒子線カラムと、測定対象である試料を支持する試料支持機構と、前記荷電粒子線が前記試料に照射されたときに得られる荷電粒子信号を検出する検出器と、前記試料上に配置された層に前記荷電粒子線が照射されたときに得られる荷電粒子信号の強度又は強度比と前記層の厚さとの関係を示す関係情報を記憶した記憶部と、前記関係情報と、前記荷電粒子信号の強度又は強度比とを用いて、前記層の厚さを前記試料の厚さとして算出する演算部と、を備える荷電粒子線装置が提供される。 For example, in order to solve the above problems, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above problems. For example, a charged particle beam column for irradiating a charged particle beam, a sample support mechanism for supporting a sample to be measured, and the charged particles. A detector that detects the charged particle signal obtained when the beam is irradiated on the sample, and the intensity or intensity of the charged particle signal obtained when the layer arranged on the sample is irradiated with the charged particle beam. Using a storage unit that stores relational information indicating the relationship between the ratio and the thickness of the layer, the relational information, and the intensity or intensity ratio of the charged particle signal, the thickness of the layer is determined by the thickness of the sample. A charged particle beam device including a calculation unit for calculating as is provided.

また、他の例によれば、イオンビームを照射するイオンビームカラムと、電子ビームを照射する電子ビームカラムと、試料を支持する試料支持機構と、前記電子ビームが前記試料に照射されたときに得られる荷電粒子信号を検出する検出器と、前記イオンビーム又は前記電子ビームと、化合物ガスとを用いて、前記試料の表面に層を形成する機能と、前記層に前記電子ビームが照射されたときに得られる荷電粒子信号の強度又は強度比と前記層の厚さとの関係を示す関係情報を記憶した記憶部と、前記関係情報と、前記荷電粒子信号の強度又は強度比とを用いて、前記層の厚さを前記試料の厚さとして算出する演算部と、を備える複合荷電粒子線装置が提供される。 Further, according to another example, an ion beam column that irradiates an ion beam, an electron beam column that irradiates an electron beam, a sample support mechanism that supports the sample, and when the electron beam is irradiated to the sample. The function of forming a layer on the surface of the sample by using the detector for detecting the obtained charged particle signal, the ion beam or the electron beam, and the compound gas, and the electron beam irradiating the layer. Using a storage unit that stores relational information indicating the relationship between the intensity or intensity ratio of the charged particle signal obtained and the thickness of the layer, and the relational information and the intensity or intensity ratio of the charged particle signal, Provided is a composite charged particle beam apparatus including a calculation unit that calculates the thickness of the layer as the thickness of the sample.

また、他の例によれば、試料の表面に層を形成するステップと、イオンビームを用いて前記試料を加工するステップと、前記加工された試料に電子ビームを照射するステップと、前記層に前記電子ビームを照射したときの荷電粒子信号を検出するステップと、前記荷電粒子信号の強度又は強度比と前記層の厚さとの関係を示す関係情報を用いて、前記加工された試料の厚さを算出するステップと、を含む試料の厚さ測定法が提供される。 Further, according to another example, a step of forming a layer on the surface of the sample, a step of processing the sample using an ion beam, a step of irradiating the processed sample with an electron beam, and a step of irradiating the processed sample with an electron beam. The thickness of the processed sample using the step of detecting the charged particle signal when the electron beam is irradiated and the relational information indicating the relationship between the intensity or intensity ratio of the charged particle signal and the thickness of the layer. And a method of measuring the thickness of the sample including.

本発明によれば、参照試料を用意することなく、試料の厚さを測定することができる。なお、本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施例の説明により明らかにされる。 According to the present invention, the thickness of a sample can be measured without preparing a reference sample. Further features related to the present invention will be clarified from the description of the present specification and the accompanying drawings. In addition, problems, configurations, and effects other than those described above will be clarified by the explanation of the following examples.

一実施例の荷電粒子線装置の構成を示した模式図である。It is a schematic diagram which showed the structure of the charged particle beam apparatus of one Example. 一実施例の試料及び試料上の堆積膜を示した図である。It is a figure which showed the sample of one Example, and the sedimentation film on the sample. 一実施例の試料及び試料上の堆積膜を示した図である。It is a figure which showed the sample of one Example, and the sedimentation film on the sample. 一実施例の試料及び試料上の堆積膜を示した図である。It is a figure which showed the sample of one Example, and the sedimentation film on the sample. 一実施例の試料及び試料上の堆積膜を示した図である。It is a figure which showed the sample of one Example, and the sedimentation film on the sample. 一実施例の堆積膜を有する試料の断面荷電粒子線像である。It is a cross-sectional charged particle beam image of a sample having a sedimentary film of one Example. 一実施例の堆積膜を有する試料の平面荷電粒子線像である。It is a plane charged particle beam image of a sample having a sedimentary film of one Example. 図3Aの堆積膜において矢印方向に抽出した信号強度のラインプロファイルである。It is a line profile of the signal intensity extracted in the arrow direction in the sedimentary film of FIG. 3A. 一実施例の試料の厚さ測定法を説明する図である。It is a figure explaining the method of measuring the thickness of the sample of one Example. 一実施例の試料の厚さ測定法を説明する図である。It is a figure explaining the method of measuring the thickness of the sample of one Example. 一実施例の試料の厚さ測定法を説明する図である。It is a figure explaining the method of measuring the thickness of the sample of one Example. 一実施例の試料の厚さ測定法を説明する図である。It is a figure explaining the method of measuring the thickness of the sample of one Example. 一実施例の信号強度のラインプロファイルである。It is a line profile of the signal strength of one embodiment. 一実施例の信号強度比のラインプロファイルである。It is a line profile of the signal strength ratio of one embodiment. 一実施例の関係情報を示した図である。It is a figure which showed the relational information of one Example. 一実施例の試料の厚さ測定法を説明する図である。It is a figure explaining the method of measuring the thickness of the sample of one Example. 一実施例の試料の厚さ測定法を説明する図である。It is a figure explaining the method of measuring the thickness of the sample of one Example. 一実施例の試料の厚さ測定法を説明する図である。It is a figure explaining the method of measuring the thickness of the sample of one Example. 一実施例の荷電粒子線装置の構成を示した模式図である。It is a schematic diagram which showed the structure of the charged particle beam apparatus of one Example. 一実施例の複合荷電粒子線装置の構成を示した模式図である。It is a schematic diagram which showed the structure of the composite charged particle beam apparatus of one Example. 一実施例の試料の厚さ測定法を説明する図である。It is a figure explaining the method of measuring the thickness of the sample of one Example. 一実施例の試料の厚さ測定法を説明する図である。It is a figure explaining the method of measuring the thickness of the sample of one Example. 一実施例の試料の厚さ測定法を説明する図である。It is a figure explaining the method of measuring the thickness of the sample of one Example. 一実施例の試料の厚さ測定法を説明する図である。It is a figure explaining the method of measuring the thickness of the sample of one Example. 一実施例の試料及び試料上の堆積膜を示した図である。It is a figure which showed the sample of one Example, and the sedimentation film on the sample. 一実施例の試料及び試料上の堆積膜を示した図である。It is a figure which showed the sample of one Example, and the sedimentation film on the sample. 一実施例の試料及び試料上の堆積膜を示した図である。It is a figure which showed the sample of one Example, and the sedimentation film on the sample. 一実施例の試料及び試料上の堆積膜を示した図である。It is a figure which showed the sample of one Example, and the sedimentation film on the sample. 一実施例の関係情報を示した図である。It is a figure which showed the relational information of one Example. 一実施例の関係情報を示した図である。It is a figure which showed the relational information of one Example.

以下、添付図面を参照して本発明の実施例について説明する。なお、添付図面は本発明の原理に則った具体的な実施例を示しているが、これらは本発明の理解のためのものであり、決して本発明を限定的に解釈するために用いられるものではない。 Hereinafter, examples of the present invention will be described with reference to the accompanying drawings. The accompanying drawings show specific examples in accordance with the principles of the present invention, but these are for the purpose of understanding the present invention and are never used for a limited interpretation of the present invention. is not.

以下の実施例は、観察用試料の厚さを測定する機能を有する荷電粒子線装置に関する。荷電粒子線装置は、荷電粒子線を試料表面で走査して、二次的に発生する荷電粒子を用いる装置である。荷電粒子線装置の例として、電子顕微鏡、電子線描画装置、イオン加工装置、イオン顕微鏡などが挙げられる。以下の実施例は、上述の荷電粒子線装置に適用可能である。 The following examples relate to a charged particle beam device having a function of measuring the thickness of an observation sample. The charged particle beam device is a device that scans a charged particle beam on the surface of a sample and uses charged particles that are secondarily generated. Examples of the charged particle beam apparatus include an electron microscope, an electron beam drawing apparatus, an ion processing apparatus, an ion microscope, and the like. The following examples are applicable to the above-mentioned charged particle beam apparatus.

図1は、一実施例の荷電粒子線装置の構成を示した模式図である。荷電粒子線装置は、荷電粒子線カラム1と、試料2を支持する試料支持機構3と、荷電粒子線4が試料2に照射されたときに得られる荷電粒子信号5を検出する検出器6と、測定対象である試料2上に配置された層(例えば、堆積膜)7に荷電粒子線4が照射されたときに得られる荷電粒子信号5の強度又は強度比を層7の厚さごとに記憶した記憶部8と、記憶部8の情報及び検出器6が検出した荷電粒子信号を用いて層7の厚さを試料2の厚さとして算出する演算部9とを備えている。 FIG. 1 is a schematic view showing the configuration of a charged particle beam device of one embodiment. The charged particle beam device includes a charged particle beam column 1, a sample support mechanism 3 that supports the sample 2, and a detector 6 that detects a charged particle signal 5 obtained when the charged particle beam 4 irradiates the sample 2. , The intensity or intensity ratio of the charged particle signal 5 obtained when the layer (for example, the deposition film) 7 arranged on the sample 2 to be measured is irradiated with the charged particle beam 4 is determined for each thickness of the layer 7. It includes a stored storage unit 8 and a calculation unit 9 that calculates the thickness of the layer 7 as the thickness of the sample 2 using the information of the storage unit 8 and the charged particle signal detected by the detector 6.

荷電粒子線カラム1は、荷電粒子線光学系を含む。一例として、荷電粒子線光学系は、荷電粒子線を放射する荷電粒子線源と、引出し電極、コンデンサレンズ、偏向電極、及び、対物レンズなどを含む。なお、荷電粒子線カラム1は、これ以外に他のレンズや電極、検出器を含んでもよいし、一部が上記と異なっていてもよく、荷電粒子線光学系の構成はこれに限られない。 The charged particle beam column 1 includes a charged particle beam optical system. As an example, a charged particle beam optical system includes a charged particle beam source that emits a charged particle beam, an extraction electrode, a condenser lens, a deflection electrode, an objective lens, and the like. In addition to this, the charged particle beam column 1 may include other lenses, electrodes, and detectors, or a part thereof may be different from the above, and the configuration of the charged particle beam optical system is not limited to this. ..

演算部9は、汎用のコンピュータを用いて実現されてもよく、コンピュータ上で実行されるプログラムの機能として実現されてもよい。すなわち、演算部9の処理は、プログラムコードとしてメモリに格納し、CPU(Central Processing Unit)などのプロセッサが各プログラムコードを実行することによって実現されてもよい。 The arithmetic unit 9 may be realized by using a general-purpose computer, or may be realized as a function of a program executed on the computer. That is, the processing of the arithmetic unit 9 may be realized by storing it in the memory as a program code and executing each program code by a processor such as a CPU (Central Processing Unit).

本実施例では、測定対象である試料2上には、厚さ測定用の層7が配置されている。以下では、層7を堆積膜と称して説明するが、測定対象である試料2上に厚さ測定用の何らかの層が形成されていればよい。本実施例の荷電粒子線装置は、堆積膜7の厚さを算出することにより、試料2の厚さを求めることができる。 In this embodiment, a layer 7 for thickness measurement is arranged on the sample 2 to be measured. In the following, the layer 7 will be referred to as a sedimentary film, but it is sufficient that some layer for thickness measurement is formed on the sample 2 to be measured. In the charged particle beam apparatus of this embodiment, the thickness of the sample 2 can be obtained by calculating the thickness of the deposited film 7.

本実施例において、堆積膜7は、荷電粒子線装置の外部で堆積されたものである。なお、堆積膜7は、荷電粒子線装置内で堆積されてもよく、この構成については後述する。図2A〜図2Dは、試料2及び試料2上に配置された堆積膜7の模式図である。堆積膜7は、カーボン、タングステン、白金、又は酸化膜である。堆積膜7は、導電性の材質、又は、絶縁性の材質であればよく、上述の材料に限定されるものではない。 In this embodiment, the deposition film 7 is deposited outside the charged particle beam apparatus. The deposition film 7 may be deposited in a charged particle beam device, and this configuration will be described later. 2A to 2D are schematic views of the sample 2 and the sedimentary film 7 arranged on the sample 2. The deposition film 7 is carbon, tungsten, platinum, or an oxide film. The deposition film 7 may be any material as long as it is a conductive material or an insulating material, and is not limited to the above-mentioned materials.

堆積膜7は、試料2に対して任意の位置に配置することができる。図2Aでは、堆積膜7が、試料2の上部2aのXY平面上に配置されている。図2Aにおいて、例えば、荷電粒子線4はXZ平面に入射する。XZ平面に対する荷電粒子線4の入射角度10は任意である。図2Bでは、堆積膜7が、試料2の下部2bのXY平面に配置されている。図2Cでは、堆積膜7が、試料2の左側面2cのYZ平面に配置されている。図2Dでは、堆積膜7が、試料2の右側面2dのYZ平面に配置されている。 The sedimentary membrane 7 can be arranged at an arbitrary position with respect to the sample 2. In FIG. 2A, the sedimentary film 7 is arranged on the XY plane of the upper part 2a of the sample 2. In FIG. 2A, for example, the charged particle beam 4 is incident on the XZ plane. The incident angle 10 of the charged particle beam 4 with respect to the XZ plane is arbitrary. In FIG. 2B, the sedimentary film 7 is arranged in the XY plane of the lower part 2b of the sample 2. In FIG. 2C, the deposit film 7 is arranged on the YZ plane of the left side surface 2c of the sample 2. In FIG. 2D, the sedimentary film 7 is arranged on the YZ plane of the right side surface 2d of the sample 2.

図3A〜図3Cを用いて、試料2の厚さ測定の概念を説明する。図3Aは、堆積膜7を有する試料2の断面荷電粒子線像であり、図3Bは、試料2の平面荷電粒子線像である。本例においては、試料2の厚さは、図面上の左側から右側に向かって徐々に薄くなっている。厚さの変化方向は、これに限定されるものではない。図3Aでは、堆積膜7のコントラストは、左側で暗く、右側にいくに従って明るくなっている。コントラストが明るいほど堆積膜7の厚さが薄いことを表す。 The concept of thickness measurement of sample 2 will be described with reference to FIGS. 3A to 3C. FIG. 3A is a cross-sectional charged particle beam image of sample 2 having a deposit film 7, and FIG. 3B is a planar charged particle beam image of sample 2. In this example, the thickness of sample 2 gradually decreases from the left side to the right side on the drawing. The direction of change in thickness is not limited to this. In FIG. 3A, the contrast of the sedimentary film 7 is dark on the left side and brighter toward the right side. The brighter the contrast, the thinner the sedimentary film 7.

図3Cは、堆積膜7について矢印方向(図3A参照)に抽出した信号強度のラインプロファイル11である。ラインプロファイル11は、縦軸に信号強度(輝度)、横軸に図3A及び図3Bの左端からの距離(左端を原点とする)をとった場合の信号強度の変化を示す。図3Cの左側では輝度が一定の領域があるが、右側に行くに従って輝度が大きくなる。本実施例では、荷電粒子線像の輝度が堆積膜7の厚さによって変化する性質を利用することによって試料2の厚さが測定される。この構成によれば、試料2の組成及び材質などに依存しない厚さの測定が可能になる。また、試料2上の堆積膜7を利用するため、試料2とは別個の参照試料を用意することなく、試料2の厚さを測定することができる。 FIG. 3C is a line profile 11 of the signal intensity extracted from the sedimentary film 7 in the direction of the arrow (see FIG. 3A). The line profile 11 shows the change in signal strength when the vertical axis represents the signal strength (luminance) and the horizontal axis represents the distance from the left end of FIGS. 3A and 3B (with the left end as the origin). There is a region where the brightness is constant on the left side of FIG. 3C, but the brightness increases toward the right side. In this embodiment, the thickness of the sample 2 is measured by utilizing the property that the brightness of the charged particle beam image changes depending on the thickness of the deposition film 7. According to this configuration, it is possible to measure the thickness of the sample 2 regardless of the composition and material. Further, since the sedimentary film 7 on the sample 2 is used, the thickness of the sample 2 can be measured without preparing a reference sample separate from the sample 2.

図4A〜図4Fを用いて、試料2の厚さ測定の実施例を示す。図4Aに示すように、ここでは、楔形状の試料2が使用され、試料2の上部2aのXY平面上に堆積膜7が配置されている。 Examples of thickness measurement of sample 2 are shown with reference to FIGS. 4A to 4F. As shown in FIG. 4A, a wedge-shaped sample 2 is used here, and the sedimentary film 7 is arranged on the XY plane of the upper part 2a of the sample 2.

図4Bに示すように、試料2をZ軸の周りに回転し、荷電粒子線4を用いて、試料2の面S1をX軸方向から観察し、長さL1を測長する。荷電粒子線4のZY平面への入射角度は任意である。なお、別の例として、荷電粒子線4を用いて-Z方向から観察してもよい。 As shown in FIG. 4B, the sample 2 is rotated around the Z axis, the surface S1 of the sample 2 is observed from the X axis direction using the charged particle beam 4, and the length L1 is measured. The angle of incidence of the charged particle beam 4 on the ZY plane is arbitrary. As another example, the charged particle beam 4 may be used for observation from the -Z direction.

次に、図4Cに示すように、試料2をZ軸の周りに回転し、荷電粒子線4を用いて試料2の面S2を観察し、長さL2を測長する。荷電粒子線4のZY平面への入射角度は任意である。なお、別の例として、荷電粒子線4を用いて-Z方向から観察してもよい。 Next, as shown in FIG. 4C, the sample 2 is rotated around the Z axis, the surface S2 of the sample 2 is observed using the charged particle beam 4, and the length L2 is measured. The angle of incidence of the charged particle beam 4 on the ZY plane is arbitrary. As another example, the charged particle beam 4 may be used for observation from the -Z direction.

次に、図4Dに示すように、試料2をZ軸の周りに回転し、荷電粒子線4を用いて試料2の面S3を観察する。演算部9は、ここで取得された荷電粒子線像の堆積膜7について、X方向(矢印向き)に信号強度のラインプロファイル11を算出する。 Next, as shown in FIG. 4D, the sample 2 is rotated around the Z axis, and the surface S3 of the sample 2 is observed using the charged particle beam 4. The calculation unit 9 calculates the line profile 11 of the signal intensity in the X direction (direction of the arrow) for the deposited film 7 of the charged particle beam image acquired here.

図4Eは、信号強度のラインプロファイル11の一例である。図4Eのラインプロファイル11において、縦軸は荷電粒子線像の堆積膜7における信号強度であり、横軸は試料2の左端(図4Dの左端)からの距離である。左端の厚さはL1であり、右端の厚さはL2に相当するので、試料2における各厚さに対応する荷電粒子線像における信号強度が分かる。 FIG. 4E is an example of the signal strength line profile 11. In the line profile 11 of FIG. 4E, the vertical axis is the signal intensity in the deposited film 7 of the charged particle beam image, and the horizontal axis is the distance from the left end (left end in FIG. 4D) of the sample 2. Since the thickness at the left end is L1 and the thickness at the right end corresponds to L2, the signal intensity in the charged particle beam image corresponding to each thickness in sample 2 can be known.

演算部9は、信号強度が変化しない範囲(W1)の強度値でラインプロファイル11を規格化してもよい。図4Fは、信号強度比のラインプロファイル11の一例である。図4Fのラインプロファイル11において、縦軸はW1範囲の信号強度値で各信号強度値を割った強度比であり、横軸は試料2の左端(図4Dの左端)からの距離である。このラインプロファイル11によれば、試料2における各厚さに対応する強度比が分かる。荷電粒子線装置を用いた観察においては、時間の経過とともに取得される信号強度の絶対値が変化する。したがって、信号強度比のような相対強度を表す情報を利用することが好ましい。The calculation unit 9 may standardize the line profile 11 with an intensity value within a range (W 1 ) in which the signal intensity does not change. FIG. 4F is an example of the line profile 11 of the signal intensity ratio. In the line profile 11 of FIG. 4F, the vertical axis is the intensity ratio obtained by dividing each signal intensity value by the signal intensity value in the W 1 range, and the horizontal axis is the distance from the left end (left end in FIG. 4D) of the sample 2. According to this line profile 11, the intensity ratio corresponding to each thickness in sample 2 can be known. In observation using a charged particle beam device, the absolute value of the acquired signal strength changes with the passage of time. Therefore, it is preferable to use information representing relative strength such as signal strength ratio.

演算部9は、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を示す関係情報を記憶部8に記憶する。図5は、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を示すテーブルの一例である。なお、上記の関係情報は、テーブル構造で示されているが、テーブルによるデータ構造で表現されていなくてもよい。以下では、データ構造に依存しないことを示すために、単に「関係情報」と呼ぶ。 The calculation unit 9 stores in the storage unit 8 the relational information indicating the relationship between the signal strength or the signal strength ratio of the charged particle signal 5 and the thickness of the deposition film 7. FIG. 5 is an example of a table showing the relationship between the signal intensity or signal intensity ratio of the charged particle signal 5 and the thickness of the deposition film 7. Although the above-mentioned relationship information is shown in a table structure, it does not have to be represented in a table-based data structure. In the following, it is simply referred to as "relationship information" to show that it does not depend on the data structure.

図6A〜図6Cは、上述のように予め作成した関係情報を用いた試料2の厚さ測定法を説明する図である。ここでは、記憶部8が、荷電粒子信号5の信号強度比と堆積膜7の厚さとの関係を示す関係情報を格納している場合について説明する。 6A to 6C are diagrams for explaining a method for measuring the thickness of the sample 2 using the relational information prepared in advance as described above. Here, a case where the storage unit 8 stores the relationship information indicating the relationship between the signal intensity ratio of the charged particle signal 5 and the thickness of the deposition film 7 will be described.

図6Aに示すように、測定対象である試料2が試料支持機構3に配置されている。試料支持機構3の構成は、試料2を支持できればこれに限定されるものではない。試料2は平行平板でよいし、楔状でもよいが、本実施例では楔状の試料2を使用する。 As shown in FIG. 6A, the sample 2 to be measured is arranged in the sample support mechanism 3. The configuration of the sample support mechanism 3 is not limited to this as long as it can support the sample 2. Sample 2 may be a parallel flat plate or wedge-shaped, but in this embodiment, wedge-shaped sample 2 is used.

次に、図6Bに示すように、演算部9は、荷電粒子線4が試料2に照射されたときに得られる荷電粒子信号5から、試料2の面S3の荷電粒子線像を取得する。 Next, as shown in FIG. 6B, the arithmetic unit 9 acquires a charged particle beam image of the surface S3 of the sample 2 from the charged particle signal 5 obtained when the charged particle beam 4 irradiates the sample 2.

次に、図6Cに示すように、演算部9は、取得した荷電粒子線像を用いて、厚さを測定する領域付近の堆積膜7の信号強度(Ia)、及び、信号強度が一定になる領域から堆積膜7の信号強度(Ib)を取得し、強度比(Ia/Ib)を求める。演算部9は、記憶部8に予め記憶されている関係情報から、強度比(Ia/Ib)に対応する堆積膜7の厚さを試料2の厚さとして算出する。Next, as shown in FIG. 6C, the calculation unit 9 uses the acquired charged particle beam image to keep the signal strength (I a ) and the signal strength of the sedimentary film 7 near the region for measuring the thickness constant. The signal intensity (I b ) of the sedimentary film 7 is obtained from the region where becomes, and the intensity ratio (I a / I b ) is obtained. The calculation unit 9 calculates the thickness of the deposition film 7 corresponding to the intensity ratio (I a / I b ) as the thickness of the sample 2 from the relational information stored in advance in the storage unit 8.

なお、記憶部8が、信号強度と堆積膜7の厚さとの関係情報を格納している場合、演算部9は、厚さを測定する領域付近の信号強度(Ia)に対応する堆積膜7の厚さを試料2の厚さとして算出すればよい。When the storage unit 8 stores the relationship information between the signal strength and the thickness of the deposit film 7, the calculation unit 9 is the deposit film corresponding to the signal strength (I a ) near the region for measuring the thickness. The thickness of 7 may be calculated as the thickness of sample 2.

上述の実施例の荷電粒子線装置は、荷電粒子線4を照射する荷電粒子線カラム1と、測定対象である試料2を支持する試料支持機構3と、荷電粒子線4が試料2に照射されたときに得られる荷電粒子信号5を検出する検出器6と、試料2上に配置された堆積膜7に荷電粒子線4が照射されたときに得られる荷電粒子信号5の強度又は強度比と堆積膜7の厚さとの関係を示す関係情報を記憶した記憶部8と、前記関係情報及び検出器6が検出した荷電粒子信号5の信号強度を用いて、堆積膜7の厚さを試料2の厚さとして算出する演算部9と、を備える。この構成によれば、試料2上に配置された堆積膜7を厚さ測定用の層として利用するため、試料2とは別個の参照試料を用意することなく、試料2の厚さを測定することができる。 In the charged particle beam device of the above-described embodiment, the charged particle beam column 1 that irradiates the charged particle beam 4, the sample support mechanism 3 that supports the sample 2 to be measured, and the charged particle beam 4 are irradiated to the sample 2. The intensity or intensity ratio of the detector 6 that detects the charged particle signal 5 obtained at the time and the charged particle signal 5 obtained when the charged particle beam 4 is irradiated on the deposit film 7 arranged on the sample 2. Using the storage unit 8 that stores the relationship information indicating the relationship with the thickness of the deposit film 7 and the signal strength of the relationship information and the charged particle signal 5 detected by the detector 6, the thickness of the deposit film 7 is sampled 2. It is provided with a calculation unit 9 for calculating the thickness of. According to this configuration, since the sedimentary film 7 arranged on the sample 2 is used as a layer for thickness measurement, the thickness of the sample 2 is measured without preparing a reference sample separate from the sample 2. be able to.

図7は、一実施例の荷電粒子線装置の構成を示した模式図である。本実施例の荷電粒子線装置は、試料2に堆積膜7を形成する堆積膜形成機能12を有する。化合物ガスを試料2の表面の荷電粒子線照射領域近傍に吹き付けることにより、試料2に堆積膜7を形成することができる。一次荷電粒子線4を試料2に照射すると、二次荷電粒子が発生する。二次荷電粒子が化合物ガスの分解に寄与し、化合物ガスが気体成分と固体成分に分離する。気体成分は真空排気される。固体成分が試料2の表面に堆積することで、堆積膜7が形成される。堆積膜形成機能12は、例えば、堆積膜7の原料となる化合物ガスを荷電粒子線照射領域周辺に供給する化合物ガス供給装置である。堆積膜7は、カーボン、タングステン、白金、又は、酸化膜である。堆積膜7は、導電性の材質、又は、絶縁性の材質であればよく、上述の材料に限定されるものではない。 FIG. 7 is a schematic view showing the configuration of the charged particle beam device of one embodiment. The charged particle beam device of this embodiment has a deposit film forming function 12 for forming a deposit film 7 on the sample 2. A deposit film 7 can be formed on the sample 2 by spraying the compound gas near the charged particle beam irradiation region on the surface of the sample 2. When the sample 2 is irradiated with the primary charged particle beam 4, the secondary charged particles are generated. The secondary charged particles contribute to the decomposition of the compound gas, and the compound gas separates into a gas component and a solid component. The gas component is evacuated. The sedimentary film 7 is formed by depositing the solid component on the surface of the sample 2. The deposit film forming function 12 is, for example, a compound gas supply device that supplies the compound gas that is the raw material of the deposit film 7 to the vicinity of the charged particle beam irradiation region. The deposition film 7 is carbon, tungsten, platinum, or an oxide film. The deposition film 7 may be any material as long as it is a conductive material or an insulating material, and is not limited to the above-mentioned materials.

図8は、一実施例の複合荷電粒子線装置の構成を示した模式図である。本実施例の複合荷電粒子線装置は、イオンビーム14を照射するイオンビームカラム13と、電子ビーム16を照射する電子ビームカラム15と、イオンビームカラム13から照射されるイオンビーム14又は電子ビームカラム15から照射される電子ビーム16を用いて試料2に堆積膜7を形成する堆積膜形成機能12とを備え、他の構成は、図1の構成と同じである。 FIG. 8 is a schematic view showing the configuration of the composite charged particle beam device of one embodiment. The composite charged particle beam apparatus of this embodiment includes an ion beam column 13 that irradiates an ion beam 14, an electron beam column 15 that irradiates an electron beam 16, and an ion beam 14 or an electron beam column that is irradiated from the ion beam column 13. It is provided with a deposit film forming function 12 for forming a deposit film 7 on the sample 2 using an electron beam 16 irradiated from 15, and other configurations are the same as those in FIG. 1.

本実施例では、電子ビームカラム15が、試料支持機構3の試料2を配置する面(以下、試料2の配置面)に対して垂直方向に配置され、イオンビームカラム13が、試料2の配置面に対して斜め方向に配置されている。電子ビームカラム15が、試料2の配置面に対して斜め方向に配置され、イオンビームカラム13が、試料2の配置面に対して垂直方向に配置されてもよい。二つのカラム13、15のなす角度は、0度より大きく180度以下である。 In this embodiment, the electron beam column 15 is arranged in the direction perpendicular to the surface of the sample support mechanism 3 on which the sample 2 is arranged (hereinafter, the arrangement surface of the sample 2), and the ion beam column 13 is arranged on the sample 2. It is arranged diagonally with respect to the surface. The electron beam column 15 may be arranged obliquely to the arrangement surface of the sample 2, and the ion beam column 13 may be arranged perpendicular to the arrangement surface of the sample 2. The angle between the two columns 13 and 15 is greater than 0 degrees and less than 180 degrees.

図9A〜図9Dは、複合荷電粒子線装置を用いた試料2の加工及び厚さ測定法を説明する図である。図9Aは、測定対象の試料2を示す。図9Bに示すように、イオンビーム14又は電子ビーム16と化合物ガスを用いて試料2に堆積膜7を形成する。次に、図9Cに示すように、イオンビーム14を用いて試料2を加工し、試料2を薄片化する。次に、図9Dに示すように、電子ビーム16を堆積膜7に照射する。そして、演算部9は、取得された信号強度を用いて、記憶部8に予め記憶されている関係情報から、堆積膜7の厚さを試料2の厚さとして算出する。図9C及び図9Dの工程を、目的の試料厚さになるまで繰り返す。この構成によれば、試料2の厚さの測定をしながら、イオンビーム14による試料2の加工が可能となる。 9A-9D are diagrams illustrating a method for processing and measuring the thickness of Sample 2 using a composite charged particle beam device. FIG. 9A shows Sample 2 to be measured. As shown in FIG. 9B, the deposition film 7 is formed on the sample 2 by using the ion beam 14 or the electron beam 16 and the compound gas. Next, as shown in FIG. 9C, the sample 2 is processed using the ion beam 14 to thin the sample 2. Next, as shown in FIG. 9D, the electron beam 16 is applied to the sedimentary film 7. Then, the calculation unit 9 calculates the thickness of the deposition film 7 as the thickness of the sample 2 from the relational information stored in advance in the storage unit 8 using the acquired signal strength. The steps of FIGS. 9C and 9D are repeated until the desired sample thickness is reached. According to this configuration, the sample 2 can be processed by the ion beam 14 while measuring the thickness of the sample 2.

図10A〜図10Dは、試料2及び堆積膜7の例を示す。図10Aにおいて、試料2は、試料2の長手方向と平行な方向に均一な厚さを有する平板形状である。堆積膜7は試料2の上部2aに堆積されている。この構成では、記憶部8が、信号強度と堆積膜7の厚さとの関係情報を格納しており、演算部9が、当該関係情報から、堆積膜7の信号強度に対応する堆積膜7の厚さを試料2の厚さとして算出すればよい。 10A-10D show examples of sample 2 and sedimentary film 7. In FIG. 10A, the sample 2 has a flat plate shape having a uniform thickness in the direction parallel to the longitudinal direction of the sample 2. The deposition film 7 is deposited on the upper part 2a of the sample 2. In this configuration, the storage unit 8 stores the relationship information between the signal strength and the thickness of the deposit film 7, and the calculation unit 9 uses the relationship information to indicate that the deposit film 7 corresponds to the signal strength of the deposit film 7. The thickness may be calculated as the thickness of sample 2.

図10Bにおいて、試料2は、試料2の長手方向と平行な方向に厚さが連続的に変化する楔形状を有する。堆積膜7は試料2の上部2aに堆積されている。この構成では、図6A〜図6Cで説明した方法で試料2の厚さを求めることができる。 In FIG. 10B, the sample 2 has a wedge shape in which the thickness continuously changes in the direction parallel to the longitudinal direction of the sample 2. The deposition film 7 is deposited on the upper part 2a of the sample 2. In this configuration, the thickness of the sample 2 can be determined by the methods described in FIGS. 6A to 6C.

図10Cにおいて、試料2は、試料2の長手方向と平行な方向に厚さが不連続な形状を有する。具体的には、試料2は、第1部分21と、第1部分21よりも厚さが大きい第2部分22とを有する。堆積膜7は試料2の上部2aに堆積されている。試料2の第2部分22上に堆積された堆積膜7の厚さは、信号強度が一定になる範囲内(すなわち、図4EのW1)の厚さである。この構成では、記憶部8が、信号強度比と堆積膜7の厚さとの関係情報を格納しており、演算部9が、第2部分22上の堆積膜7の信号強度と、第1部分21上の堆積膜7の信号強度との強度比から、試料2の第1部分21の厚さを求めることができる。なお、演算部9は、信号強度と堆積膜7の厚さとの関係情報から、試料2の第1部分21の厚さを求めてもよい。In FIG. 10C, the sample 2 has a shape in which the thickness is discontinuous in the direction parallel to the longitudinal direction of the sample 2. Specifically, sample 2 has a first portion 21 and a second portion 22 that is thicker than the first portion 21. The deposition film 7 is deposited on the upper part 2a of the sample 2. The thickness of the deposition film 7 deposited on the second portion 22 of the sample 2 is within the range where the signal intensity becomes constant (that is, W 1 in FIG. 4E). In this configuration, the storage unit 8 stores the relationship information between the signal intensity ratio and the thickness of the deposition film 7, and the calculation unit 9 stores the signal intensity of the deposition film 7 on the second portion 22 and the first portion. The thickness of the first portion 21 of the sample 2 can be obtained from the intensity ratio with the signal intensity of the deposition film 7 on the 21. The calculation unit 9 may obtain the thickness of the first portion 21 of the sample 2 from the relationship information between the signal strength and the thickness of the deposition film 7.

図10Dにおいて、試料2は、試料2の短手方向と平行な方向に厚さが連続に変化する楔形状を有する。堆積膜7は試料2の上部2aに堆積されている。この構成では、例えば、演算部9が、堆積膜7の下端7bの信号強度と、堆積膜7の上端7aの信号強度との強度比から、試料2の厚さを求めることができる。なお、演算部9は、信号強度と堆積膜7の厚さとの関係から、試料2の厚さを求めてもよい。また、試料2は、試料2の短手方向と平行な方向に厚さが不連続に変化する形状を有してもよい。 In FIG. 10D, the sample 2 has a wedge shape in which the thickness continuously changes in the direction parallel to the lateral direction of the sample 2. The deposition film 7 is deposited on the upper part 2a of the sample 2. In this configuration, for example, the calculation unit 9 can obtain the thickness of the sample 2 from the intensity ratio of the signal intensity of the lower end 7b of the deposit film 7 and the signal intensity of the upper end 7a of the deposit film 7. The calculation unit 9 may obtain the thickness of the sample 2 from the relationship between the signal strength and the thickness of the deposition film 7. Further, the sample 2 may have a shape in which the thickness changes discontinuously in the direction parallel to the lateral direction of the sample 2.

図11は、記憶部8に格納されている関係情報の一例を示す。記憶部8は、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を荷電粒子線4のエネルギーごとに格納していてもよい。荷電粒子線4のエネルギーとは、例えば、加速電圧である。加速電圧が異なれば荷電粒子信号5の放出率が変化するため、同一の試料厚さにおいても堆積膜7のコントラストが異なってくる。演算部9は、複数の異なる加速電圧毎に、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を示す関係情報を予め記憶部8に格納する。演算部9は、当該関係情報から、設定された加速電圧に応じて荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を選択し、堆積膜7の厚さを試料2の厚さとして算出することができる。 FIG. 11 shows an example of the relational information stored in the storage unit 8. The storage unit 8 may store the relationship between the signal intensity or signal intensity ratio of the charged particle signal 5 and the thickness of the deposition film 7 for each energy of the charged particle beam 4. The energy of the charged particle beam 4 is, for example, an accelerating voltage. Since the emission rate of the charged particle signal 5 changes when the accelerating voltage is different, the contrast of the deposited film 7 is different even if the sample thickness is the same. The calculation unit 9 stores in advance the relationship information indicating the relationship between the signal intensity or signal intensity ratio of the charged particle signal 5 and the thickness of the deposition film 7 for each of a plurality of different accelerating voltages. The calculation unit 9 selects the relationship between the signal strength or signal intensity ratio of the charged particle signal 5 and the thickness of the deposit film 7 from the relational information according to the set accelerating voltage, and samples the thickness of the deposit film 7. It can be calculated as a thickness of 2.

図12は、記憶部8に格納されている関係情報の一例を示す。記憶部8は、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を荷電粒子線4の入射角度ごとに格納していてもよい。荷電粒子線4の堆積膜7への入射角度10が変化すると、堆積膜7の相対的な厚さが変化するため、堆積膜7のコントラストが異なってくる。演算部9は、複数の異なる入射角度毎に、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を示す関係情報を予め記憶部8に格納する。演算部9は、当該関係情報から、入射角度に応じて荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を選択し、堆積膜7の厚さを試料2の厚さとして算出することができる。図12の例では、記憶部8は、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を、荷電粒子線4のエネルギー(加速電圧)及び荷電粒子線4の入射角度ごとに格納している。 FIG. 12 shows an example of the relational information stored in the storage unit 8. The storage unit 8 may store the relationship between the signal intensity or signal intensity ratio of the charged particle signal 5 and the thickness of the deposition film 7 for each incident angle of the charged particle beam 4. When the angle of incidence 10 of the charged particle beam 4 on the deposit film 7 changes, the relative thickness of the deposit film 7 changes, so that the contrast of the deposit film 7 changes. The calculation unit 9 stores in advance the relationship information indicating the relationship between the signal intensity or signal intensity ratio of the charged particle signal 5 and the thickness of the deposition film 7 for each of a plurality of different incident angles. The calculation unit 9 selects the relationship between the signal intensity or signal intensity ratio of the charged particle signal 5 and the thickness of the deposit film 7 from the relevant information, and sets the thickness of the deposit film 7 to the thickness of the sample 2. It can be calculated as a signal. In the example of FIG. 12, the storage unit 8 determines the relationship between the signal intensity or signal intensity ratio of the charged particle signal 5 and the thickness of the deposited film 7, the energy (acceleration voltage) of the charged particle beam 4 and the incident of the charged particle beam 4. It is stored for each angle.

なお、その他の例として、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係は、荷電粒子線4の種類によっても変化し得る。例えば、荷電粒子線4は、ガリウム、金、シリコン、水素、ヘリウム、ネオン、アルゴン、キセノン、酸素、窒素、または炭素から選ばれる一種のビームである。ビームの種類によって荷電粒子信号5の信号強度が変化し得る。したがって、記憶部8は、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を、荷電粒子線4の種類ごとに格納してもよい。 As another example, the relationship between the signal intensity or signal intensity ratio of the charged particle signal 5 and the thickness of the deposition film 7 may change depending on the type of the charged particle beam 4. For example, the charged particle beam 4 is a type of beam selected from gallium, gold, silicon, hydrogen, helium, neon, argon, xenon, oxygen, nitrogen, or carbon. The signal intensity of the charged particle signal 5 can change depending on the type of beam. Therefore, the storage unit 8 may store the relationship between the signal intensity or signal intensity ratio of the charged particle signal 5 and the thickness of the deposition film 7 for each type of the charged particle beam 4.

また、荷電粒子信号5は、(1)透過電子、(2)反射電子、(3)二次荷電粒子、又は、(4)前記透過電子若しくは前記反射電子若しくは前記二次荷電粒子に起因する三次荷電粒子を検出した信号であってもよい。荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係は、検出器6による検出対象の信号の種類によっても変化し得る。したがって、記憶部8は、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を、検出対象の信号の種類ごとに格納してもよい。 Further, the charged particle signal 5 is (1) a transmitted electron, (2) a reflected electron, (3) a secondary charged particle, or (4) the transmitted electron or the reflected electron or a tertiary caused by the secondary charged particle. It may be a signal in which a charged particle is detected. The relationship between the signal intensity or signal intensity ratio of the charged particle signal 5 and the thickness of the deposition film 7 may also change depending on the type of signal to be detected by the detector 6. Therefore, the storage unit 8 may store the relationship between the signal intensity or signal intensity ratio of the charged particle signal 5 and the thickness of the deposition film 7 for each type of signal to be detected.

また、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係は、堆積膜7の製造方法、堆積膜7の組成、堆積膜7の結晶性等によっても変化し得る。例えば、堆積膜7が堆積膜形成機能12によって堆積されたか、荷電粒子線装置の外部で試料2に堆積されたかで、荷電粒子信号5の信号強度が変化し得る。また、堆積膜7の組成や堆積膜7の結晶性等によっても荷電粒子信号5の信号強度が変化し得る。したがって、記憶部8は、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を、堆積膜7の製造方法、堆積膜7の組成、又は堆積膜7の結晶性ごとに格納してもよい。 Further, the relationship between the signal intensity or signal intensity ratio of the charged particle signal 5 and the thickness of the deposited film 7 may change depending on the method for producing the deposited film 7, the composition of the deposited film 7, the crystallinity of the deposited film 7, and the like. For example, the signal intensity of the charged particle signal 5 can change depending on whether the deposition film 7 is deposited by the deposition film forming function 12 or is deposited on the sample 2 outside the charged particle beam device. In addition, the signal intensity of the charged particle signal 5 may change depending on the composition of the deposit film 7, the crystallinity of the deposit film 7, and the like. Therefore, the storage unit 8 determines the relationship between the signal intensity or signal intensity ratio of the charged particle signal 5 and the thickness of the deposition film 7 according to the manufacturing method of the deposition film 7, the composition of the deposition film 7, or the crystallinity of the deposition film 7. It may be stored in.

図11及び図12の実施例は、図7の荷電粒子線装置及び図8の複合荷電粒子線装置に対しても適用可能である。 The examples of FIGS. 11 and 12 are also applicable to the charged particle beam device of FIG. 7 and the composite charged particle beam device of FIG.

以上の通り、上述の実施例においては、荷電粒子線像の堆積膜7のコントラストと、試料2上の堆積膜7の厚さとの関係がデータベース化され、当該データベースが記憶部8に格納されている。演算部9は、当該データベースから試料2の厚さを算出することができる。上述の荷電粒子線装置は、試料2の厚さと、荷電粒子線4が堆積膜7に照射された際に得られる荷電粒子信号5の信号強度又は信号強度比との関係から、対象とする試料2の厚さを精度よく測定することができる。これにより、TEMやSTEM観察に適する薄膜試料を提供することが可能になる。 As described above, in the above-described embodiment, the relationship between the contrast of the deposited film 7 of the charged particle beam image and the thickness of the deposited film 7 on the sample 2 is stored in a database, and the database is stored in the storage unit 8. There is. The calculation unit 9 can calculate the thickness of the sample 2 from the database. The above-mentioned charged particle beam device is a target sample based on the relationship between the thickness of the sample 2 and the signal intensity or signal intensity ratio of the charged particle signal 5 obtained when the charged particle beam 4 irradiates the deposition film 7. The thickness of 2 can be measured accurately. This makes it possible to provide a thin film sample suitable for TEM and STEM observation.

本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。上記実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることもできる。また、ある実施例の構成に他の実施例の構成を加えることもできる。また、各実施例の構成の一部について、他の構成を追加・削除・置換することもできる。 The present invention is not limited to the above-described examples, and includes various modifications. The above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. It is also possible to replace a part of the configuration of one embodiment with the configuration of another embodiment. It is also possible to add the configuration of another embodiment to the configuration of one embodiment. In addition, other configurations can be added / deleted / replaced with respect to a part of the configurations of each embodiment.

また、上記の演算部9の機能等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)に記憶させることが可能である。非一時的なコンピュータ可読媒体としては、例えば、フレキシブルディスク、CD-ROM、DVD-ROM、ハードディスク、光ディスク、光磁気ディスク、CD-R、磁気テープ、不揮発性のメモリカード、ROMなどが用いられる。 Further, the functions and the like of the arithmetic unit 9 may be realized by hardware by designing a part or all of them by, for example, an integrated circuit. Further, each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files that realize each function can be stored in various types of non-transitory computer readable media. As the non-temporary computer-readable medium, for example, a flexible disk, a CD-ROM, a DVD-ROM, a hard disk, an optical disk, a magneto-optical disk, a CD-R, a magnetic tape, a non-volatile memory card, a ROM, or the like is used.

上記の実施例において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。全ての構成が相互に接続されていてもよい。 In the above embodiment, the control lines and information lines are shown as necessary for explanation, and not all control lines and information lines are necessarily shown in the product. All configurations may be interconnected.

1 荷電粒子線カラム
2 試料
3 試料支持機構
4 荷電粒子線
5 荷電粒子信号
6 検出器
7 層(堆積膜)
8 記憶部
9 演算部
10 入射角度
11 ラインプロファイル
12 堆積膜形成機能
13 イオンビームカラム
14 イオンビーム
15 電子ビームカラム
16 電子ビーム
1 Charged particle beam column
2 samples
3 Sample support mechanism
4 charged particle beam
5 Charged particle signal
6 detector
7 layers (sedimentary membrane)
8 Memory
9 Arithmetic unit
10 Incident angle
11 Line profile
12 Sediment film formation function
13 Ion beam column
14 Ion beam
15 electron beam column
16 electron beam

Claims (14)

荷電粒子線を照射する荷電粒子線カラムと、
測定対象である試料を支持する試料支持機構と、
前記荷電粒子線が前記試料に照射されたときに得られる荷電粒子信号を検出する検出器と、
前記試料上に配置された層であって、前記試料の厚さを測定するための試料厚測定層に前記荷電粒子線が照射されたときに得られる荷電粒子信号の強度又は強度比と前記試料厚測定層の厚さとの関係を示す関係情報を予め記憶した記憶部と、
前記関係情報と、前記試料厚測定層に前記荷電粒子線を照射して得た前記荷電粒子信号の強度又は強度比とに基づいて、前記試料厚測定層の厚さを算出する演算部と、
を備え、
算出した前記試料厚測定層の厚さに基づいて前記試料の厚さを測定する荷電粒子線装置。
A charged particle beam column that irradiates a charged particle beam and
A sample support mechanism that supports the sample to be measured and
A detector that detects a charged particle signal obtained when the sample is irradiated with the charged particle beam,
The intensity or intensity ratio of the charged particle signal obtained when the charged particle beam is irradiated to the sample thickness measuring layer for measuring the thickness of the sample, which is a layer arranged on the sample, and the sample. A storage unit that stores in advance related information indicating the relationship with the thickness of the thickness measurement layer,
A calculation unit that calculates the thickness of the sample thickness measuring layer based on the related information and the intensity or intensity ratio of the charged particle signal obtained by irradiating the sample thickness measuring layer with the charged particle beam.
With
A charged particle beam device that measures the thickness of the sample based on the calculated thickness of the sample thickness measuring layer.
請求項1に記載の荷電粒子線装置において、
前記荷電粒子信号の前記強度比は、信号強度が一定となる範囲の信号強度値で各信号強度値を割った値であることを特徴とする荷電粒子線装置。
In the charged particle beam apparatus according to claim 1,
The charged particle beam apparatus, wherein the intensity ratio of the charged particle signal is a value obtained by dividing each signal intensity value by a signal intensity value in a range in which the signal intensity is constant.
請求項1に記載の荷電粒子線装置において、
前記試料厚測定層は、カーボン膜、タングステン膜、白金膜、又は酸化膜であることを特徴とする荷電粒子線装置。
In the charged particle beam apparatus according to claim 1,
The charged particle beam apparatus, wherein the sample thickness measuring layer is a carbon film, a tungsten film, a platinum film, or an oxide film.
請求項1に記載の荷電粒子線装置において、
前記記憶部は、前記関係情報を前記荷電粒子線のエネルギーごとに格納していることを特徴とする荷電粒子線装置。
In the charged particle beam apparatus according to claim 1,
The storage unit is a charged particle beam device, characterized in that the related information is stored for each energy of the charged particle beam.
請求項1に記載の荷電粒子線装置において、
前記記憶部は、前記関係情報を前記荷電粒子線の入射角度ごとに格納していることを特徴とする荷電粒子線装置。
In the charged particle beam apparatus according to claim 1,
The storage unit is a charged particle beam device that stores the related information for each incident angle of the charged particle beam.
請求項1に記載の荷電粒子線装置において、
前記記憶部は、前記関係情報を前記荷電粒子線の種類ごとに格納していることを特徴とする荷電粒子線装置。
In the charged particle beam apparatus according to claim 1,
The storage unit is a charged particle beam device, characterized in that the related information is stored for each type of the charged particle beam.
請求項1に記載の荷電粒子線装置において、
前記記憶部は、前記関係情報を前記検出器による検出対象の信号の種類ごとに格納していることを特徴とする荷電粒子線装置。
In the charged particle beam apparatus according to claim 1,
The storage unit is a charged particle beam device that stores the related information for each type of signal to be detected by the detector.
請求項1に記載の荷電粒子線装置において、
前記記憶部は、前記関係情報を、前記試料厚測定層の製造方法、前記試料厚測定層の組成、又は前記層の結晶性ごとに格納していることを特徴とする荷電粒子線装置。
In the charged particle beam apparatus according to claim 1,
The storage unit, the relationship information, a method of manufacturing the sample thickness measuring layer, the composition of the sample thickness measuring layer, or charged particle beam apparatus that is characterized in that stored in each crystallinity of the layer.
請求項1に記載の荷電粒子線装置において、
前記荷電粒子線及び化合物ガスを用いて前記試料の表面に前記試料厚測定層を形成する機能をさらに備えることを特徴とする荷電粒子線装置。
In the charged particle beam apparatus according to claim 1,
A charged particle beam apparatus further comprising a function of forming the sample thickness measuring layer on the surface of the sample by using the charged particle beam and the compound gas.
請求項1に記載の荷電粒子線装置において、
前記試料は、
前記試料の長手方向と平行な方向に均一な厚さを有する形状、
前記試料の長手方向と平行な方向に厚さが連続若しくは不連続に変化する形状、又は、
前記試料の短手方向と平行な方向に厚さが連続若しくは不連続に変化する形状、
を有することを特徴とする荷電粒子線装置。
In the charged particle beam apparatus according to claim 1,
The sample is
A shape having a uniform thickness in the direction parallel to the longitudinal direction of the sample,
A shape in which the thickness changes continuously or discontinuously in a direction parallel to the longitudinal direction of the sample, or
A shape whose thickness changes continuously or discontinuously in a direction parallel to the lateral direction of the sample.
A charged particle beam device characterized by having.
請求項1に記載の荷電粒子線装置において、
前記荷電粒子信号は、(1)透過電子、(2)反射電子、(3)二次荷電粒子、又は、(4)前記透過電子若しくは前記反射電子若しくは前記二次荷電粒子に起因する三次荷電粒子を検出した信号であることを特徴とする荷電粒子線装置。
In the charged particle beam apparatus according to claim 1,
The charged particle signal is (1) a transmitted electron, (2) a reflected electron, (3) a secondary charged particle, or (4) the transmitted electron or the reflected electron or a tertiary charged particle caused by the secondary charged particle. A charged particle beam device, characterized in that it is a signal that detects.
イオンビームを照射するイオンビームカラムと、
電子ビームを照射する電子ビームカラムと、
試料を支持する試料支持機構と、
前記電子ビームが前記試料に照射されたときに得られる荷電粒子信号を検出する検出器と、
前記イオンビーム又は前記電子ビームと、化合物ガスとを用いて、前記試料の表面に、前記試料の厚さを測定するための試料厚測定層を形成する機能と、
前記試料厚測定層に前記電子ビームが照射されたときに得られる荷電粒子信号の強度又は強度比と前記試料厚測定層の厚さとの関係を示す関係情報を記憶した記憶部と、
前記関係情報と、前記試料厚測定層に前記電子ビームを照射して得た前記荷電粒子信号の強度又は強度比とに基づいて、前記試料厚測定層の厚さを算出する演算部と、
を備え、
算出した前記試料厚測定層の厚さに基づいて前記試料の厚さを測定する複合荷電粒子線装置。
An ion beam column that irradiates an ion beam and
An electron beam column that irradiates an electron beam and
A sample support mechanism that supports the sample and
A detector that detects a charged particle signal obtained when the electron beam irradiates the sample, and
A function of forming a sample thickness measuring layer for measuring the thickness of the sample on the surface of the sample by using the ion beam or the electron beam and a compound gas.
A storage unit that stores relationship information indicating the relationship between the intensity or intensity ratio of the charged particle signal obtained when the sample thickness measurement layer is irradiated with the electron beam and the thickness of the sample thickness measurement layer.
A calculation unit that calculates the thickness of the sample thickness measurement layer based on the relationship information and the intensity or intensity ratio of the charged particle signal obtained by irradiating the sample thickness measurement layer with the electron beam.
With
A composite charged particle beam device that measures the thickness of the sample based on the calculated thickness of the sample thickness measuring layer.
試料の表面に、当該試料の厚さを測定するための試料厚測定層を形成するステップと、
イオンビームを用いて前記試料厚測定層とともに前記試料を加工するステップと、
加工された前記試料に電子ビームを照射するステップと、
加工された前記試料厚測定層に前記電子ビームを照射したときの荷電粒子信号を検出するステップと、
前記荷電粒子信号の強度又は強度比と前記試料厚測定層の厚さとの関係を示す予め準備した関係情報と、加工された前記試料厚測定層に前記電子ビームを照射して得た前記荷電粒子信号の強度又は強度比とに基づいて前記試料厚測定層の厚さを算出し、算出した前記試料厚測定層の厚さに基づいて前記試料の厚さを測定するステップと、
を含む試料の厚さ測定法。
A step of forming a sample thickness measuring layer for measuring the thickness of the sample on the surface of the sample, and
A step of processing the sample together with the sample thickness measuring layer using an ion beam,
The step of irradiating the processed sample with an electron beam and
A step of detecting a charged particle signal when the processed sample thickness measuring layer is irradiated with the electron beam, and
Preliminary relationship information showing the relationship between the intensity or intensity ratio of the charged particle signal and the thickness of the sample thickness measuring layer, and the charged particles obtained by irradiating the processed sample thickness measuring layer with the electron beam. A step of calculating the thickness of the sample thickness measuring layer based on the signal intensity or the intensity ratio, and measuring the thickness of the sample based on the calculated thickness of the sample thickness measuring layer.
A method for measuring the thickness of a sample containing.
請求項13に記載の試料の厚さ測定法において、
前記加工された試料は、
前記試料の長手方向と平行な方向に均一な厚さを有する形状、
前記試料の長手方向と平行な方向に厚さが連続若しくは不連続に変化する形状、又は、
前記試料の短手方向と平行な方向に厚さが連続若しくは不連続に変化する形状、
を有することを特徴とする試料の厚さ測定法。
In the sample thickness measuring method according to claim 13,
The processed sample is
A shape having a uniform thickness in the direction parallel to the longitudinal direction of the sample,
A shape in which the thickness changes continuously or discontinuously in a direction parallel to the longitudinal direction of the sample, or
A shape whose thickness changes continuously or discontinuously in a direction parallel to the lateral direction of the sample.
A method for measuring the thickness of a sample, which comprises.
JP2019524581A 2017-06-13 2017-06-13 Charged particle beam device and sample thickness measurement method Active JP6770645B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/021737 WO2018229848A1 (en) 2017-06-13 2017-06-13 Charged particle beam device and method for measuring thickness of sample

Publications (2)

Publication Number Publication Date
JPWO2018229848A1 JPWO2018229848A1 (en) 2020-04-02
JP6770645B2 true JP6770645B2 (en) 2020-10-14

Family

ID=64660953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019524581A Active JP6770645B2 (en) 2017-06-13 2017-06-13 Charged particle beam device and sample thickness measurement method

Country Status (6)

Country Link
US (1) US11067391B2 (en)
JP (1) JP6770645B2 (en)
KR (1) KR102262435B1 (en)
CN (1) CN110770537B (en)
DE (1) DE112017007508T5 (en)
WO (1) WO2018229848A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11183359B2 (en) * 2018-03-29 2021-11-23 Hitachi High-Tech Corporation Charged particle beam apparatus
JP2022112137A (en) * 2021-01-21 2022-08-02 株式会社日立ハイテク Charged particle beam device
CN113008170B (en) * 2021-03-19 2022-08-19 长江存储科技有限责任公司 Thickness measurement method and system
CN113008171A (en) * 2021-03-19 2021-06-22 长江存储科技有限责任公司 Method for determining thickness of sample
CN113670236B (en) * 2021-10-21 2022-03-04 广东奥迪威传感科技股份有限公司 Thickness detection method of silver-tin interface metal eutectic layer
NL2032641B1 (en) * 2022-07-29 2024-02-06 Univ Delft Tech Method and apparatus for in-situ sample quality inspection in cryogenic focused ion beam milling

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86209739U (en) * 1986-12-06 1987-09-16 冶金工业部自动化研究所 Improved-type double light-beam x-ray thickness-meter
JP2861032B2 (en) * 1989-04-07 1999-02-24 富士通株式会社 Film thickness measurement method
JP3119959B2 (en) 1993-02-05 2000-12-25 セイコーインスツルメンツ株式会社 Focused ion beam device and processing observation device
JP3221797B2 (en) * 1994-06-14 2001-10-22 株式会社日立製作所 Sample preparation method and apparatus
US6399944B1 (en) * 1999-07-09 2002-06-04 Fei Company Measurement of film thickness by inelastic electron scattering
JP2003050115A (en) * 2001-08-07 2003-02-21 Seiko Instruments Inc X-ray film thickness meter
DE102004039763B4 (en) * 2004-08-17 2007-07-19 Infineon Technologies Ag Method for determining the thickness of a layer
DE602005018261D1 (en) * 2005-01-07 2010-01-21 Sii Nanotechnology Inc METHOD AND DEVICE FOR MEASURING THIN FILM SAMPLES
KR101374308B1 (en) * 2005-12-23 2014-03-14 조르단 밸리 세미컨덕터즈 리미티드 Accurate measurement of layer dimensions using xrf
JP5187810B2 (en) * 2007-04-18 2013-04-24 株式会社日立ハイテクサイエンス Film thickness measuring method and sample preparation method, film thickness measuring apparatus and sample preparation apparatus
CN202533054U (en) * 2012-04-18 2012-11-14 宝山钢铁股份有限公司 Vertical type detecting device for coating film thickness on-line detection
JP5863547B2 (en) * 2012-04-20 2016-02-16 ヤマハ発動機株式会社 Printed circuit board inspection equipment
JP2014041734A (en) * 2012-08-22 2014-03-06 Hitachi High-Technologies Corp Composite charged particle beam device
JP6040632B2 (en) * 2012-08-23 2016-12-07 富士通株式会社 Sample thickness measurement method, sample preparation method, and sample preparation apparatus
KR101241007B1 (en) * 2012-10-26 2013-03-11 나노씨엠에스(주) Method and apparatus for measuring thickness of thin film using x-ray
KR101709433B1 (en) * 2013-04-22 2017-02-22 가부시키가이샤 히다치 하이테크놀로지즈 Sample observation device
GB201308436D0 (en) * 2013-05-10 2013-06-19 Oxford Instr Nanotechnology Tools Ltd Metrology for preparation of thin samples
GB201413422D0 (en) * 2014-07-29 2014-09-10 Oxford Instr Nanotechnology Tools Ltd A method for measuring the mass thickness of a target sample for electron microscopy
EP3115744B1 (en) * 2015-07-09 2020-02-05 TE Connectivity Germany GmbH Device for producing a patch of a layer on a substrate and measuring the thickness of the patch and method of measuring a thickness of a patch of a layer structure on a substrate
CN205102804U (en) * 2015-11-17 2016-03-23 北京金自天正智能控制股份有限公司 X fluorescence layer thickness meter
CN105758345B (en) * 2016-04-22 2018-06-05 武汉科技大学 A kind of x-ray fluorescence imaging device of on-line measurement strip coating thickness

Also Published As

Publication number Publication date
DE112017007508T5 (en) 2020-03-19
WO2018229848A1 (en) 2018-12-20
JPWO2018229848A1 (en) 2020-04-02
US11067391B2 (en) 2021-07-20
CN110770537A (en) 2020-02-07
US20200132448A1 (en) 2020-04-30
KR20200003046A (en) 2020-01-08
CN110770537B (en) 2021-06-22
KR102262435B1 (en) 2021-06-07

Similar Documents

Publication Publication Date Title
JP6770645B2 (en) Charged particle beam device and sample thickness measurement method
Bassim et al. Recent advances in focused ion beam technology and applications
TW200947497A (en) Sample observation method and apparatus, and inspection method and apparatus using the same
US10345250B2 (en) Method of inspecting a sample with a charged particle beam device, and charged particle beam device
Lechner et al. Improved focused ion beam target preparation of (S) TEM specimen—A method for obtaining ultrathin lamellae
JP6112929B2 (en) Focused ion beam apparatus, sample processing method using the same, and sample processing computer program using focused ion beam
JP5777967B2 (en) Charged particle beam apparatus and measurement method
JP4987486B2 (en) Thin film sample measurement method and apparatus, and thin film sample preparation method and apparatus
US7928384B2 (en) Localized static charge distribution precision measurement method and device
JP3923468B2 (en) Method and apparatus for calibration of scanning metrology devices
de Jonge et al. The influence of beam broadening on the spatial resolution of annular dark field scanning transmission electron microscopy
EP3953961A1 (en) Method of automatically focusing a charged particle beam on a surface region of a sample, method of calculating a converging set of sharpness values of images of a charged particle beam device and charged particle beam device for imaging a sample
Xia et al. Enhancement of XeF2-assisted gallium ion beam etching of silicon layer and endpoint detection from backside in circuit editing
Sharp et al. Uranium ion yields from monodisperse uranium oxide particles
Rödiger et al. Evaluation of chamber contamination in a scanning electron microscope
TWI827955B (en) Method of imaging a sample with a charged particle beam device, method of calibrating a charged particle beam device, and charged particle beam device
JP2012178236A (en) Pattern measurement device and method
RU2622896C2 (en) Method for quantitative three-dimensional reconstruction of silicon micro- and nanostructures surface
JP7504102B2 (en) Method and device for analyzing SIMS mass spectral data - Patents.com
JP2008004367A (en) Device and means for electron beam dimension measurement
Richter et al. GaBiLi-A Novel Focused Ion Beam (FIB) Source for Ion Microscopy and Related Workflows for 3D Tomography with a Top-Down FIB From Liquid Metal Alloy Ion Sources (LMAIS)
WO2010000732A1 (en) Method and apparatus combining secondary ion mass spectrometry and scanning probe microscopy in one single instrument
JP2015004604A (en) Depth direction analysis method for organic sample
RU2657000C1 (en) Method of quantitative three-dimensional reconstruction of a sample surface in a scanning- electron microscope
Park et al. FIB overview

Legal Events

Date Code Title Description
A529 Written submission of copy of amendment under article 34 pct

Free format text: JAPANESE INTERMEDIATE CODE: A5211

Effective date: 20191128

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200925

R150 Certificate of patent or registration of utility model

Ref document number: 6770645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150