JP6770645B2 - Charged particle beam device and sample thickness measurement method - Google Patents
Charged particle beam device and sample thickness measurement method Download PDFInfo
- Publication number
- JP6770645B2 JP6770645B2 JP2019524581A JP2019524581A JP6770645B2 JP 6770645 B2 JP6770645 B2 JP 6770645B2 JP 2019524581 A JP2019524581 A JP 2019524581A JP 2019524581 A JP2019524581 A JP 2019524581A JP 6770645 B2 JP6770645 B2 JP 6770645B2
- Authority
- JP
- Japan
- Prior art keywords
- sample
- charged particle
- thickness
- particle beam
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002245 particle Substances 0.000 title claims description 172
- 238000000691 measurement method Methods 0.000 title 1
- 238000010894 electron beam technology Methods 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 32
- 238000003860 storage Methods 0.000 claims description 28
- 238000010884 ion-beam technique Methods 0.000 claims description 21
- 238000005259 measurement Methods 0.000 claims description 14
- 230000007246 mechanism Effects 0.000 claims description 10
- 150000001875 compounds Chemical class 0.000 claims description 9
- 230000001678 irradiating effect Effects 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 8
- 239000002131 composite material Substances 0.000 claims description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 239000000523 sample Substances 0.000 description 176
- 239000010408 film Substances 0.000 description 114
- 238000000151 deposition Methods 0.000 description 40
- 230000008021 deposition Effects 0.000 description 39
- 230000006870 function Effects 0.000 description 12
- 230000008859 change Effects 0.000 description 9
- 239000007789 gas Substances 0.000 description 9
- 238000004062 sedimentation Methods 0.000 description 8
- 239000013074 reference sample Substances 0.000 description 7
- 239000010409 thin film Substances 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052724 xenon Inorganic materials 0.000 description 1
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/225—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/26—Electron or ion microscopes; Electron or ion diffraction tubes
- H01J37/28—Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B15/00—Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
- G01B15/02—Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/2206—Combination of two or more measurements, at least one measurement being that of secondary emission, e.g. combination of secondary electron [SE] measurement and back-scattered electron [BSE] measurement
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N23/00—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
- G01N23/22—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material
- G01N23/225—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion
- G01N23/2251—Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by measuring secondary emission from the material using electron or ion using incident electron beams, e.g. scanning electron microscopy [SEM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/22—Optical, image processing or photographic arrangements associated with the tube
- H01J37/222—Image processing arrangements associated with the tube
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/244—Detectors; Associated components or circuits therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/3002—Details
- H01J37/3005—Observing the objects or the point of impact on the object
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/317—Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
- H01J37/3174—Particle-beam lithography, e.g. electron beam lithography
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2223/00—Investigating materials by wave or particle radiation
- G01N2223/60—Specific applications or type of materials
- G01N2223/633—Specific applications or type of materials thickness, density, surface weight (unit area)
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/245—Detection characterised by the variable being measured
- H01J2237/24571—Measurements of non-electric or non-magnetic variables
- H01J2237/24578—Spatial variables, e.g. position, distance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/30—Electron or ion beam tubes for processing objects
- H01J2237/304—Controlling tubes
- H01J2237/30466—Detecting endpoint of process
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/30—Electron or ion beam tubes for processing objects
- H01J2237/317—Processing objects on a microscale
- H01J2237/31732—Depositing thin layers on selected microareas
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/30—Electron or ion beam tubes for processing objects
- H01J2237/317—Processing objects on a microscale
- H01J2237/3174—Etching microareas
- H01J2237/31745—Etching microareas for preparing specimen to be viewed in microscopes or analyzed in microanalysers
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Electromagnetism (AREA)
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Length-Measuring Devices Using Wave Or Particle Radiation (AREA)
Description
本発明は、荷電粒子線装置及び試料の厚さ測定法に関する。 The present invention relates to a charged particle beam device and a method for measuring the thickness of a sample.
荷電粒子線装置の一つである集束イオンビーム(Focused Ion Beam: FIB)装置は、集束したイオンビームを試料に照射した際に生じるターゲット構成原子のスパッタリング現象を利用して微細加工を行う装置である。最近では、FIB装置に対して、走査電子顕微鏡(Scanning ElectronMicroscope:SEM)又は走査透過電子顕微鏡(Scanning Transmission Electron Microscope:STEM)を組み合わせた装置が製品化されている。これらの装置は、FIB照射軸と電子線照射軸が装置内の同一点で交差するように設計されており、試料を移動せずにFIB加工断面をSEM観察できる特長がある。 The Focused Ion Beam (FIB) device, which is one of the charged particle beam devices, is a device that performs fine processing by utilizing the sputtering phenomenon of the target constituent atoms that occurs when the sample is irradiated with the focused ion beam. is there. Recently, a device that combines a scanning electron microscope (SEM) or a scanning transmission electron microscope (STEM) with a FIB device has been commercialized. These devices are designed so that the FIB irradiation axis and the electron beam irradiation axis intersect at the same point in the device, and have the advantage of being able to perform SEM observation of the FIB processed cross section without moving the sample.
FIB装置の用途は、SEM観察用の断面加工、及び、STEMや透過電子顕微鏡(Transmission Electron Microscope:TEM)観察用の試料作製などである。TEM法やSTEM法は、高加速電子線を薄膜試料に照射し、透過した電子線を結像することで試料内部構造を観察する手法である。これらの手法では、透過電子を結像に用いるため、観察試料として薄膜が使用される。一般的な推奨の試料厚さは、加速電圧200 kVの場合は100 nm以下である。しかし、半導体の薄膜試料の作製においては、デバイス構造の微細化が年々進んでいるため、薄膜厚さを数10 nm程度まで加工しなければならない場合もある。TEMやSTEM観察用の試料作製においては、FIB加工中に精度良く薄膜試料の厚さを測定する技術が必要である。 The FIB device is used for cross-sectional processing for SEM observation and sample preparation for STEM and transmission electron microscope (TEM) observation. The TEM method and the STEM method are methods for observing the internal structure of a sample by irradiating a thin film sample with a highly accelerated electron beam and forming an image of the transmitted electron beam. In these methods, since transmitted electrons are used for imaging, a thin film is used as an observation sample. A generally recommended sample thickness is 100 nm or less for an accelerating voltage of 200 kV. However, in the production of semiconductor thin film samples, the device structure is becoming finer year by year, so it may be necessary to process the thin film thickness to about several tens of nm. In the preparation of samples for TEM and STEM observation, a technique for accurately measuring the thickness of a thin film sample during FIB processing is required.
FIB加工中に発生する二次電子は、試料表面構造を反映した情報を持つ。FIBの走査と同期させて二次電子の信号強度を二次元表示した像は、走査イオン顕微鏡(Scanning Ion Microscope:SIM)像と呼ばれる。従来から用いられている試料厚さ測定法は、薄膜試料を上方からSIM観察することによって試料厚さを測長する。しかし、真上から試料を観察するため、試料の深さ方向の情報を得ることが難しく、目的とする箇所の正確な測長は困難である。SIM像はSEM像と比較して分解能が低いことも測定精度低下の原因である。電子線を用いた膜厚測定法は、特許文献1に開示されている。特許文献1には、膜厚測定領域と参照試料における反射電子の強度比を算出して膜厚を測定する手法が開示されている。
The secondary electrons generated during FIB processing have information that reflects the sample surface structure. An image in which the signal strength of secondary electrons is displayed in two dimensions in synchronization with the scanning of FIB is called a scanning ion microscope (SIM) image. The conventionally used sample thickness measuring method measures the sample thickness by observing the thin film sample from above by SIM. However, since the sample is observed from directly above, it is difficult to obtain information in the depth direction of the sample, and it is difficult to accurately measure the length of the target portion. The lower resolution of the SIM image compared to the SEM image is also a cause of the decrease in measurement accuracy. A film thickness measuring method using an electron beam is disclosed in
特許文献1の手法は、膜厚測定対象の試料の他に参照試料を用意する必要があり、実施するためにいくつかの課題がある。第一に、参照試料は、膜厚測定領域と同じ材質及び組成であり、かつ厚さが既知の必要がある。試料が単一構造又は単一組成の場合は、特許文献1の手法を適用することができる。しかし、試料内部の構造又は組成が不均一の場合、電子線強度が観察領域毎に変化するため、特許文献1の手法を適用することができない。第二に、膜厚測定の精度向上には、厚さが異なる2個以上の参照試料を準備しなければならない。半導体試料においては、不良部は1箇所しかないため複数の参照試料を準備することはできない。
In the method of
そこで、以下では、参照試料を用意することなく、試料の厚さを測定することが可能な技術を開示する。 Therefore, in the following, a technique capable of measuring the thickness of a sample without preparing a reference sample will be disclosed.
例えば、上記課題を解決するために、請求の範囲に記載の構成を採用する。本願は上記課題を解決する手段を複数含んでいるが、その一例をあげるならば、荷電粒子線を照射する荷電粒子線カラムと、測定対象である試料を支持する試料支持機構と、前記荷電粒子線が前記試料に照射されたときに得られる荷電粒子信号を検出する検出器と、前記試料上に配置された層に前記荷電粒子線が照射されたときに得られる荷電粒子信号の強度又は強度比と前記層の厚さとの関係を示す関係情報を記憶した記憶部と、前記関係情報と、前記荷電粒子信号の強度又は強度比とを用いて、前記層の厚さを前記試料の厚さとして算出する演算部と、を備える荷電粒子線装置が提供される。 For example, in order to solve the above problems, the configuration described in the claims is adopted. The present application includes a plurality of means for solving the above problems. For example, a charged particle beam column for irradiating a charged particle beam, a sample support mechanism for supporting a sample to be measured, and the charged particles. A detector that detects the charged particle signal obtained when the beam is irradiated on the sample, and the intensity or intensity of the charged particle signal obtained when the layer arranged on the sample is irradiated with the charged particle beam. Using a storage unit that stores relational information indicating the relationship between the ratio and the thickness of the layer, the relational information, and the intensity or intensity ratio of the charged particle signal, the thickness of the layer is determined by the thickness of the sample. A charged particle beam device including a calculation unit for calculating as is provided.
また、他の例によれば、イオンビームを照射するイオンビームカラムと、電子ビームを照射する電子ビームカラムと、試料を支持する試料支持機構と、前記電子ビームが前記試料に照射されたときに得られる荷電粒子信号を検出する検出器と、前記イオンビーム又は前記電子ビームと、化合物ガスとを用いて、前記試料の表面に層を形成する機能と、前記層に前記電子ビームが照射されたときに得られる荷電粒子信号の強度又は強度比と前記層の厚さとの関係を示す関係情報を記憶した記憶部と、前記関係情報と、前記荷電粒子信号の強度又は強度比とを用いて、前記層の厚さを前記試料の厚さとして算出する演算部と、を備える複合荷電粒子線装置が提供される。 Further, according to another example, an ion beam column that irradiates an ion beam, an electron beam column that irradiates an electron beam, a sample support mechanism that supports the sample, and when the electron beam is irradiated to the sample. The function of forming a layer on the surface of the sample by using the detector for detecting the obtained charged particle signal, the ion beam or the electron beam, and the compound gas, and the electron beam irradiating the layer. Using a storage unit that stores relational information indicating the relationship between the intensity or intensity ratio of the charged particle signal obtained and the thickness of the layer, and the relational information and the intensity or intensity ratio of the charged particle signal, Provided is a composite charged particle beam apparatus including a calculation unit that calculates the thickness of the layer as the thickness of the sample.
また、他の例によれば、試料の表面に層を形成するステップと、イオンビームを用いて前記試料を加工するステップと、前記加工された試料に電子ビームを照射するステップと、前記層に前記電子ビームを照射したときの荷電粒子信号を検出するステップと、前記荷電粒子信号の強度又は強度比と前記層の厚さとの関係を示す関係情報を用いて、前記加工された試料の厚さを算出するステップと、を含む試料の厚さ測定法が提供される。 Further, according to another example, a step of forming a layer on the surface of the sample, a step of processing the sample using an ion beam, a step of irradiating the processed sample with an electron beam, and a step of irradiating the processed sample with an electron beam. The thickness of the processed sample using the step of detecting the charged particle signal when the electron beam is irradiated and the relational information indicating the relationship between the intensity or intensity ratio of the charged particle signal and the thickness of the layer. And a method of measuring the thickness of the sample including.
本発明によれば、参照試料を用意することなく、試料の厚さを測定することができる。なお、本発明に関連する更なる特徴は、本明細書の記述、添付図面から明らかになるものである。また、上記した以外の、課題、構成及び効果は、以下の実施例の説明により明らかにされる。 According to the present invention, the thickness of a sample can be measured without preparing a reference sample. Further features related to the present invention will be clarified from the description of the present specification and the accompanying drawings. In addition, problems, configurations, and effects other than those described above will be clarified by the explanation of the following examples.
以下、添付図面を参照して本発明の実施例について説明する。なお、添付図面は本発明の原理に則った具体的な実施例を示しているが、これらは本発明の理解のためのものであり、決して本発明を限定的に解釈するために用いられるものではない。 Hereinafter, examples of the present invention will be described with reference to the accompanying drawings. The accompanying drawings show specific examples in accordance with the principles of the present invention, but these are for the purpose of understanding the present invention and are never used for a limited interpretation of the present invention. is not.
以下の実施例は、観察用試料の厚さを測定する機能を有する荷電粒子線装置に関する。荷電粒子線装置は、荷電粒子線を試料表面で走査して、二次的に発生する荷電粒子を用いる装置である。荷電粒子線装置の例として、電子顕微鏡、電子線描画装置、イオン加工装置、イオン顕微鏡などが挙げられる。以下の実施例は、上述の荷電粒子線装置に適用可能である。 The following examples relate to a charged particle beam device having a function of measuring the thickness of an observation sample. The charged particle beam device is a device that scans a charged particle beam on the surface of a sample and uses charged particles that are secondarily generated. Examples of the charged particle beam apparatus include an electron microscope, an electron beam drawing apparatus, an ion processing apparatus, an ion microscope, and the like. The following examples are applicable to the above-mentioned charged particle beam apparatus.
図1は、一実施例の荷電粒子線装置の構成を示した模式図である。荷電粒子線装置は、荷電粒子線カラム1と、試料2を支持する試料支持機構3と、荷電粒子線4が試料2に照射されたときに得られる荷電粒子信号5を検出する検出器6と、測定対象である試料2上に配置された層(例えば、堆積膜)7に荷電粒子線4が照射されたときに得られる荷電粒子信号5の強度又は強度比を層7の厚さごとに記憶した記憶部8と、記憶部8の情報及び検出器6が検出した荷電粒子信号を用いて層7の厚さを試料2の厚さとして算出する演算部9とを備えている。
FIG. 1 is a schematic view showing the configuration of a charged particle beam device of one embodiment. The charged particle beam device includes a charged
荷電粒子線カラム1は、荷電粒子線光学系を含む。一例として、荷電粒子線光学系は、荷電粒子線を放射する荷電粒子線源と、引出し電極、コンデンサレンズ、偏向電極、及び、対物レンズなどを含む。なお、荷電粒子線カラム1は、これ以外に他のレンズや電極、検出器を含んでもよいし、一部が上記と異なっていてもよく、荷電粒子線光学系の構成はこれに限られない。
The charged
演算部9は、汎用のコンピュータを用いて実現されてもよく、コンピュータ上で実行されるプログラムの機能として実現されてもよい。すなわち、演算部9の処理は、プログラムコードとしてメモリに格納し、CPU(Central Processing Unit)などのプロセッサが各プログラムコードを実行することによって実現されてもよい。
The
本実施例では、測定対象である試料2上には、厚さ測定用の層7が配置されている。以下では、層7を堆積膜と称して説明するが、測定対象である試料2上に厚さ測定用の何らかの層が形成されていればよい。本実施例の荷電粒子線装置は、堆積膜7の厚さを算出することにより、試料2の厚さを求めることができる。
In this embodiment, a
本実施例において、堆積膜7は、荷電粒子線装置の外部で堆積されたものである。なお、堆積膜7は、荷電粒子線装置内で堆積されてもよく、この構成については後述する。図2A〜図2Dは、試料2及び試料2上に配置された堆積膜7の模式図である。堆積膜7は、カーボン、タングステン、白金、又は酸化膜である。堆積膜7は、導電性の材質、又は、絶縁性の材質であればよく、上述の材料に限定されるものではない。
In this embodiment, the
堆積膜7は、試料2に対して任意の位置に配置することができる。図2Aでは、堆積膜7が、試料2の上部2aのXY平面上に配置されている。図2Aにおいて、例えば、荷電粒子線4はXZ平面に入射する。XZ平面に対する荷電粒子線4の入射角度10は任意である。図2Bでは、堆積膜7が、試料2の下部2bのXY平面に配置されている。図2Cでは、堆積膜7が、試料2の左側面2cのYZ平面に配置されている。図2Dでは、堆積膜7が、試料2の右側面2dのYZ平面に配置されている。
The
図3A〜図3Cを用いて、試料2の厚さ測定の概念を説明する。図3Aは、堆積膜7を有する試料2の断面荷電粒子線像であり、図3Bは、試料2の平面荷電粒子線像である。本例においては、試料2の厚さは、図面上の左側から右側に向かって徐々に薄くなっている。厚さの変化方向は、これに限定されるものではない。図3Aでは、堆積膜7のコントラストは、左側で暗く、右側にいくに従って明るくなっている。コントラストが明るいほど堆積膜7の厚さが薄いことを表す。
The concept of thickness measurement of
図3Cは、堆積膜7について矢印方向(図3A参照)に抽出した信号強度のラインプロファイル11である。ラインプロファイル11は、縦軸に信号強度(輝度)、横軸に図3A及び図3Bの左端からの距離(左端を原点とする)をとった場合の信号強度の変化を示す。図3Cの左側では輝度が一定の領域があるが、右側に行くに従って輝度が大きくなる。本実施例では、荷電粒子線像の輝度が堆積膜7の厚さによって変化する性質を利用することによって試料2の厚さが測定される。この構成によれば、試料2の組成及び材質などに依存しない厚さの測定が可能になる。また、試料2上の堆積膜7を利用するため、試料2とは別個の参照試料を用意することなく、試料2の厚さを測定することができる。
FIG. 3C is a
図4A〜図4Fを用いて、試料2の厚さ測定の実施例を示す。図4Aに示すように、ここでは、楔形状の試料2が使用され、試料2の上部2aのXY平面上に堆積膜7が配置されている。
Examples of thickness measurement of
図4Bに示すように、試料2をZ軸の周りに回転し、荷電粒子線4を用いて、試料2の面S1をX軸方向から観察し、長さL1を測長する。荷電粒子線4のZY平面への入射角度は任意である。なお、別の例として、荷電粒子線4を用いて-Z方向から観察してもよい。
As shown in FIG. 4B, the
次に、図4Cに示すように、試料2をZ軸の周りに回転し、荷電粒子線4を用いて試料2の面S2を観察し、長さL2を測長する。荷電粒子線4のZY平面への入射角度は任意である。なお、別の例として、荷電粒子線4を用いて-Z方向から観察してもよい。
Next, as shown in FIG. 4C, the
次に、図4Dに示すように、試料2をZ軸の周りに回転し、荷電粒子線4を用いて試料2の面S3を観察する。演算部9は、ここで取得された荷電粒子線像の堆積膜7について、X方向(矢印向き)に信号強度のラインプロファイル11を算出する。
Next, as shown in FIG. 4D, the
図4Eは、信号強度のラインプロファイル11の一例である。図4Eのラインプロファイル11において、縦軸は荷電粒子線像の堆積膜7における信号強度であり、横軸は試料2の左端(図4Dの左端)からの距離である。左端の厚さはL1であり、右端の厚さはL2に相当するので、試料2における各厚さに対応する荷電粒子線像における信号強度が分かる。
FIG. 4E is an example of the signal
演算部9は、信号強度が変化しない範囲(W1)の強度値でラインプロファイル11を規格化してもよい。図4Fは、信号強度比のラインプロファイル11の一例である。図4Fのラインプロファイル11において、縦軸はW1範囲の信号強度値で各信号強度値を割った強度比であり、横軸は試料2の左端(図4Dの左端)からの距離である。このラインプロファイル11によれば、試料2における各厚さに対応する強度比が分かる。荷電粒子線装置を用いた観察においては、時間の経過とともに取得される信号強度の絶対値が変化する。したがって、信号強度比のような相対強度を表す情報を利用することが好ましい。The
演算部9は、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を示す関係情報を記憶部8に記憶する。図5は、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を示すテーブルの一例である。なお、上記の関係情報は、テーブル構造で示されているが、テーブルによるデータ構造で表現されていなくてもよい。以下では、データ構造に依存しないことを示すために、単に「関係情報」と呼ぶ。
The
図6A〜図6Cは、上述のように予め作成した関係情報を用いた試料2の厚さ測定法を説明する図である。ここでは、記憶部8が、荷電粒子信号5の信号強度比と堆積膜7の厚さとの関係を示す関係情報を格納している場合について説明する。
6A to 6C are diagrams for explaining a method for measuring the thickness of the
図6Aに示すように、測定対象である試料2が試料支持機構3に配置されている。試料支持機構3の構成は、試料2を支持できればこれに限定されるものではない。試料2は平行平板でよいし、楔状でもよいが、本実施例では楔状の試料2を使用する。
As shown in FIG. 6A, the
次に、図6Bに示すように、演算部9は、荷電粒子線4が試料2に照射されたときに得られる荷電粒子信号5から、試料2の面S3の荷電粒子線像を取得する。
Next, as shown in FIG. 6B, the
次に、図6Cに示すように、演算部9は、取得した荷電粒子線像を用いて、厚さを測定する領域付近の堆積膜7の信号強度(Ia)、及び、信号強度が一定になる領域から堆積膜7の信号強度(Ib)を取得し、強度比(Ia/Ib)を求める。演算部9は、記憶部8に予め記憶されている関係情報から、強度比(Ia/Ib)に対応する堆積膜7の厚さを試料2の厚さとして算出する。Next, as shown in FIG. 6C, the
なお、記憶部8が、信号強度と堆積膜7の厚さとの関係情報を格納している場合、演算部9は、厚さを測定する領域付近の信号強度(Ia)に対応する堆積膜7の厚さを試料2の厚さとして算出すればよい。When the
上述の実施例の荷電粒子線装置は、荷電粒子線4を照射する荷電粒子線カラム1と、測定対象である試料2を支持する試料支持機構3と、荷電粒子線4が試料2に照射されたときに得られる荷電粒子信号5を検出する検出器6と、試料2上に配置された堆積膜7に荷電粒子線4が照射されたときに得られる荷電粒子信号5の強度又は強度比と堆積膜7の厚さとの関係を示す関係情報を記憶した記憶部8と、前記関係情報及び検出器6が検出した荷電粒子信号5の信号強度を用いて、堆積膜7の厚さを試料2の厚さとして算出する演算部9と、を備える。この構成によれば、試料2上に配置された堆積膜7を厚さ測定用の層として利用するため、試料2とは別個の参照試料を用意することなく、試料2の厚さを測定することができる。
In the charged particle beam device of the above-described embodiment, the charged
図7は、一実施例の荷電粒子線装置の構成を示した模式図である。本実施例の荷電粒子線装置は、試料2に堆積膜7を形成する堆積膜形成機能12を有する。化合物ガスを試料2の表面の荷電粒子線照射領域近傍に吹き付けることにより、試料2に堆積膜7を形成することができる。一次荷電粒子線4を試料2に照射すると、二次荷電粒子が発生する。二次荷電粒子が化合物ガスの分解に寄与し、化合物ガスが気体成分と固体成分に分離する。気体成分は真空排気される。固体成分が試料2の表面に堆積することで、堆積膜7が形成される。堆積膜形成機能12は、例えば、堆積膜7の原料となる化合物ガスを荷電粒子線照射領域周辺に供給する化合物ガス供給装置である。堆積膜7は、カーボン、タングステン、白金、又は、酸化膜である。堆積膜7は、導電性の材質、又は、絶縁性の材質であればよく、上述の材料に限定されるものではない。
FIG. 7 is a schematic view showing the configuration of the charged particle beam device of one embodiment. The charged particle beam device of this embodiment has a deposit
図8は、一実施例の複合荷電粒子線装置の構成を示した模式図である。本実施例の複合荷電粒子線装置は、イオンビーム14を照射するイオンビームカラム13と、電子ビーム16を照射する電子ビームカラム15と、イオンビームカラム13から照射されるイオンビーム14又は電子ビームカラム15から照射される電子ビーム16を用いて試料2に堆積膜7を形成する堆積膜形成機能12とを備え、他の構成は、図1の構成と同じである。
FIG. 8 is a schematic view showing the configuration of the composite charged particle beam device of one embodiment. The composite charged particle beam apparatus of this embodiment includes an
本実施例では、電子ビームカラム15が、試料支持機構3の試料2を配置する面(以下、試料2の配置面)に対して垂直方向に配置され、イオンビームカラム13が、試料2の配置面に対して斜め方向に配置されている。電子ビームカラム15が、試料2の配置面に対して斜め方向に配置され、イオンビームカラム13が、試料2の配置面に対して垂直方向に配置されてもよい。二つのカラム13、15のなす角度は、0度より大きく180度以下である。
In this embodiment, the
図9A〜図9Dは、複合荷電粒子線装置を用いた試料2の加工及び厚さ測定法を説明する図である。図9Aは、測定対象の試料2を示す。図9Bに示すように、イオンビーム14又は電子ビーム16と化合物ガスを用いて試料2に堆積膜7を形成する。次に、図9Cに示すように、イオンビーム14を用いて試料2を加工し、試料2を薄片化する。次に、図9Dに示すように、電子ビーム16を堆積膜7に照射する。そして、演算部9は、取得された信号強度を用いて、記憶部8に予め記憶されている関係情報から、堆積膜7の厚さを試料2の厚さとして算出する。図9C及び図9Dの工程を、目的の試料厚さになるまで繰り返す。この構成によれば、試料2の厚さの測定をしながら、イオンビーム14による試料2の加工が可能となる。
9A-9D are diagrams illustrating a method for processing and measuring the thickness of
図10A〜図10Dは、試料2及び堆積膜7の例を示す。図10Aにおいて、試料2は、試料2の長手方向と平行な方向に均一な厚さを有する平板形状である。堆積膜7は試料2の上部2aに堆積されている。この構成では、記憶部8が、信号強度と堆積膜7の厚さとの関係情報を格納しており、演算部9が、当該関係情報から、堆積膜7の信号強度に対応する堆積膜7の厚さを試料2の厚さとして算出すればよい。
10A-10D show examples of
図10Bにおいて、試料2は、試料2の長手方向と平行な方向に厚さが連続的に変化する楔形状を有する。堆積膜7は試料2の上部2aに堆積されている。この構成では、図6A〜図6Cで説明した方法で試料2の厚さを求めることができる。
In FIG. 10B, the
図10Cにおいて、試料2は、試料2の長手方向と平行な方向に厚さが不連続な形状を有する。具体的には、試料2は、第1部分21と、第1部分21よりも厚さが大きい第2部分22とを有する。堆積膜7は試料2の上部2aに堆積されている。試料2の第2部分22上に堆積された堆積膜7の厚さは、信号強度が一定になる範囲内(すなわち、図4EのW1)の厚さである。この構成では、記憶部8が、信号強度比と堆積膜7の厚さとの関係情報を格納しており、演算部9が、第2部分22上の堆積膜7の信号強度と、第1部分21上の堆積膜7の信号強度との強度比から、試料2の第1部分21の厚さを求めることができる。なお、演算部9は、信号強度と堆積膜7の厚さとの関係情報から、試料2の第1部分21の厚さを求めてもよい。In FIG. 10C, the
図10Dにおいて、試料2は、試料2の短手方向と平行な方向に厚さが連続に変化する楔形状を有する。堆積膜7は試料2の上部2aに堆積されている。この構成では、例えば、演算部9が、堆積膜7の下端7bの信号強度と、堆積膜7の上端7aの信号強度との強度比から、試料2の厚さを求めることができる。なお、演算部9は、信号強度と堆積膜7の厚さとの関係から、試料2の厚さを求めてもよい。また、試料2は、試料2の短手方向と平行な方向に厚さが不連続に変化する形状を有してもよい。
In FIG. 10D, the
図11は、記憶部8に格納されている関係情報の一例を示す。記憶部8は、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を荷電粒子線4のエネルギーごとに格納していてもよい。荷電粒子線4のエネルギーとは、例えば、加速電圧である。加速電圧が異なれば荷電粒子信号5の放出率が変化するため、同一の試料厚さにおいても堆積膜7のコントラストが異なってくる。演算部9は、複数の異なる加速電圧毎に、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を示す関係情報を予め記憶部8に格納する。演算部9は、当該関係情報から、設定された加速電圧に応じて荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を選択し、堆積膜7の厚さを試料2の厚さとして算出することができる。
FIG. 11 shows an example of the relational information stored in the
図12は、記憶部8に格納されている関係情報の一例を示す。記憶部8は、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を荷電粒子線4の入射角度ごとに格納していてもよい。荷電粒子線4の堆積膜7への入射角度10が変化すると、堆積膜7の相対的な厚さが変化するため、堆積膜7のコントラストが異なってくる。演算部9は、複数の異なる入射角度毎に、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を示す関係情報を予め記憶部8に格納する。演算部9は、当該関係情報から、入射角度に応じて荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を選択し、堆積膜7の厚さを試料2の厚さとして算出することができる。図12の例では、記憶部8は、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を、荷電粒子線4のエネルギー(加速電圧)及び荷電粒子線4の入射角度ごとに格納している。
FIG. 12 shows an example of the relational information stored in the
なお、その他の例として、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係は、荷電粒子線4の種類によっても変化し得る。例えば、荷電粒子線4は、ガリウム、金、シリコン、水素、ヘリウム、ネオン、アルゴン、キセノン、酸素、窒素、または炭素から選ばれる一種のビームである。ビームの種類によって荷電粒子信号5の信号強度が変化し得る。したがって、記憶部8は、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を、荷電粒子線4の種類ごとに格納してもよい。
As another example, the relationship between the signal intensity or signal intensity ratio of the charged
また、荷電粒子信号5は、(1)透過電子、(2)反射電子、(3)二次荷電粒子、又は、(4)前記透過電子若しくは前記反射電子若しくは前記二次荷電粒子に起因する三次荷電粒子を検出した信号であってもよい。荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係は、検出器6による検出対象の信号の種類によっても変化し得る。したがって、記憶部8は、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を、検出対象の信号の種類ごとに格納してもよい。
Further, the charged
また、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係は、堆積膜7の製造方法、堆積膜7の組成、堆積膜7の結晶性等によっても変化し得る。例えば、堆積膜7が堆積膜形成機能12によって堆積されたか、荷電粒子線装置の外部で試料2に堆積されたかで、荷電粒子信号5の信号強度が変化し得る。また、堆積膜7の組成や堆積膜7の結晶性等によっても荷電粒子信号5の信号強度が変化し得る。したがって、記憶部8は、荷電粒子信号5の信号強度又は信号強度比と堆積膜7の厚さとの関係を、堆積膜7の製造方法、堆積膜7の組成、又は堆積膜7の結晶性ごとに格納してもよい。
Further, the relationship between the signal intensity or signal intensity ratio of the charged
図11及び図12の実施例は、図7の荷電粒子線装置及び図8の複合荷電粒子線装置に対しても適用可能である。 The examples of FIGS. 11 and 12 are also applicable to the charged particle beam device of FIG. 7 and the composite charged particle beam device of FIG.
以上の通り、上述の実施例においては、荷電粒子線像の堆積膜7のコントラストと、試料2上の堆積膜7の厚さとの関係がデータベース化され、当該データベースが記憶部8に格納されている。演算部9は、当該データベースから試料2の厚さを算出することができる。上述の荷電粒子線装置は、試料2の厚さと、荷電粒子線4が堆積膜7に照射された際に得られる荷電粒子信号5の信号強度又は信号強度比との関係から、対象とする試料2の厚さを精度よく測定することができる。これにより、TEMやSTEM観察に適する薄膜試料を提供することが可能になる。
As described above, in the above-described embodiment, the relationship between the contrast of the deposited
本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。上記実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることもできる。また、ある実施例の構成に他の実施例の構成を加えることもできる。また、各実施例の構成の一部について、他の構成を追加・削除・置換することもできる。 The present invention is not limited to the above-described examples, and includes various modifications. The above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to those having all the described configurations. It is also possible to replace a part of the configuration of one embodiment with the configuration of another embodiment. It is also possible to add the configuration of another embodiment to the configuration of one embodiment. In addition, other configurations can be added / deleted / replaced with respect to a part of the configurations of each embodiment.
また、上記の演算部9の機能等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)に記憶させることが可能である。非一時的なコンピュータ可読媒体としては、例えば、フレキシブルディスク、CD-ROM、DVD-ROM、ハードディスク、光ディスク、光磁気ディスク、CD-R、磁気テープ、不揮発性のメモリカード、ROMなどが用いられる。
Further, the functions and the like of the
上記の実施例において、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。全ての構成が相互に接続されていてもよい。 In the above embodiment, the control lines and information lines are shown as necessary for explanation, and not all control lines and information lines are necessarily shown in the product. All configurations may be interconnected.
1 荷電粒子線カラム
2 試料
3 試料支持機構
4 荷電粒子線
5 荷電粒子信号
6 検出器
7 層(堆積膜)
8 記憶部
9 演算部
10 入射角度
11 ラインプロファイル
12 堆積膜形成機能
13 イオンビームカラム
14 イオンビーム
15 電子ビームカラム
16 電子ビーム1 Charged particle beam column
2 samples
3 Sample support mechanism
4 charged particle beam
5 Charged particle signal
6 detector
7 layers (sedimentary membrane)
8 Memory
9 Arithmetic unit
10 Incident angle
11 Line profile
12 Sediment film formation function
13 Ion beam column
14 Ion beam
15 electron beam column
16 electron beam
Claims (14)
測定対象である試料を支持する試料支持機構と、
前記荷電粒子線が前記試料に照射されたときに得られる荷電粒子信号を検出する検出器と、
前記試料上に配置された層であって、前記試料の厚さを測定するための試料厚測定層に前記荷電粒子線が照射されたときに得られる荷電粒子信号の強度又は強度比と前記試料厚測定層の厚さとの関係を示す関係情報を予め記憶した記憶部と、
前記関係情報と、前記試料厚測定層に前記荷電粒子線を照射して得た前記荷電粒子信号の強度又は強度比とに基づいて、前記試料厚測定層の厚さを算出する演算部と、
を備え、
算出した前記試料厚測定層の厚さに基づいて前記試料の厚さを測定する荷電粒子線装置。 A charged particle beam column that irradiates a charged particle beam and
A sample support mechanism that supports the sample to be measured and
A detector that detects a charged particle signal obtained when the sample is irradiated with the charged particle beam,
The intensity or intensity ratio of the charged particle signal obtained when the charged particle beam is irradiated to the sample thickness measuring layer for measuring the thickness of the sample, which is a layer arranged on the sample, and the sample. A storage unit that stores in advance related information indicating the relationship with the thickness of the thickness measurement layer,
A calculation unit that calculates the thickness of the sample thickness measuring layer based on the related information and the intensity or intensity ratio of the charged particle signal obtained by irradiating the sample thickness measuring layer with the charged particle beam.
With
A charged particle beam device that measures the thickness of the sample based on the calculated thickness of the sample thickness measuring layer.
前記荷電粒子信号の前記強度比は、信号強度が一定となる範囲の信号強度値で各信号強度値を割った値であることを特徴とする荷電粒子線装置。 In the charged particle beam apparatus according to claim 1,
The charged particle beam apparatus, wherein the intensity ratio of the charged particle signal is a value obtained by dividing each signal intensity value by a signal intensity value in a range in which the signal intensity is constant.
前記試料厚測定層は、カーボン膜、タングステン膜、白金膜、又は酸化膜であることを特徴とする荷電粒子線装置。 In the charged particle beam apparatus according to claim 1,
The charged particle beam apparatus, wherein the sample thickness measuring layer is a carbon film, a tungsten film, a platinum film, or an oxide film.
前記記憶部は、前記関係情報を前記荷電粒子線のエネルギーごとに格納していることを特徴とする荷電粒子線装置。 In the charged particle beam apparatus according to claim 1,
The storage unit is a charged particle beam device, characterized in that the related information is stored for each energy of the charged particle beam.
前記記憶部は、前記関係情報を前記荷電粒子線の入射角度ごとに格納していることを特徴とする荷電粒子線装置。 In the charged particle beam apparatus according to claim 1,
The storage unit is a charged particle beam device that stores the related information for each incident angle of the charged particle beam.
前記記憶部は、前記関係情報を前記荷電粒子線の種類ごとに格納していることを特徴とする荷電粒子線装置。 In the charged particle beam apparatus according to claim 1,
The storage unit is a charged particle beam device, characterized in that the related information is stored for each type of the charged particle beam.
前記記憶部は、前記関係情報を前記検出器による検出対象の信号の種類ごとに格納していることを特徴とする荷電粒子線装置。 In the charged particle beam apparatus according to claim 1,
The storage unit is a charged particle beam device that stores the related information for each type of signal to be detected by the detector.
前記記憶部は、前記関係情報を、前記試料厚測定層の製造方法、前記試料厚測定層の組成、又は前記層の結晶性ごとに格納していることを特徴とする荷電粒子線装置。 In the charged particle beam apparatus according to claim 1,
The storage unit, the relationship information, a method of manufacturing the sample thickness measuring layer, the composition of the sample thickness measuring layer, or charged particle beam apparatus that is characterized in that stored in each crystallinity of the layer.
前記荷電粒子線及び化合物ガスを用いて前記試料の表面に前記試料厚測定層を形成する機能をさらに備えることを特徴とする荷電粒子線装置。 In the charged particle beam apparatus according to claim 1,
A charged particle beam apparatus further comprising a function of forming the sample thickness measuring layer on the surface of the sample by using the charged particle beam and the compound gas.
前記試料は、
前記試料の長手方向と平行な方向に均一な厚さを有する形状、
前記試料の長手方向と平行な方向に厚さが連続若しくは不連続に変化する形状、又は、
前記試料の短手方向と平行な方向に厚さが連続若しくは不連続に変化する形状、
を有することを特徴とする荷電粒子線装置。 In the charged particle beam apparatus according to claim 1,
The sample is
A shape having a uniform thickness in the direction parallel to the longitudinal direction of the sample,
A shape in which the thickness changes continuously or discontinuously in a direction parallel to the longitudinal direction of the sample, or
A shape whose thickness changes continuously or discontinuously in a direction parallel to the lateral direction of the sample.
A charged particle beam device characterized by having.
前記荷電粒子信号は、(1)透過電子、(2)反射電子、(3)二次荷電粒子、又は、(4)前記透過電子若しくは前記反射電子若しくは前記二次荷電粒子に起因する三次荷電粒子を検出した信号であることを特徴とする荷電粒子線装置。 In the charged particle beam apparatus according to claim 1,
The charged particle signal is (1) a transmitted electron, (2) a reflected electron, (3) a secondary charged particle, or (4) the transmitted electron or the reflected electron or a tertiary charged particle caused by the secondary charged particle. A charged particle beam device, characterized in that it is a signal that detects.
電子ビームを照射する電子ビームカラムと、
試料を支持する試料支持機構と、
前記電子ビームが前記試料に照射されたときに得られる荷電粒子信号を検出する検出器と、
前記イオンビーム又は前記電子ビームと、化合物ガスとを用いて、前記試料の表面に、前記試料の厚さを測定するための試料厚測定層を形成する機能と、
前記試料厚測定層に前記電子ビームが照射されたときに得られる荷電粒子信号の強度又は強度比と前記試料厚測定層の厚さとの関係を示す関係情報を記憶した記憶部と、
前記関係情報と、前記試料厚測定層に前記電子ビームを照射して得た前記荷電粒子信号の強度又は強度比とに基づいて、前記試料厚測定層の厚さを算出する演算部と、
を備え、
算出した前記試料厚測定層の厚さに基づいて前記試料の厚さを測定する複合荷電粒子線装置。 An ion beam column that irradiates an ion beam and
An electron beam column that irradiates an electron beam and
A sample support mechanism that supports the sample and
A detector that detects a charged particle signal obtained when the electron beam irradiates the sample, and
A function of forming a sample thickness measuring layer for measuring the thickness of the sample on the surface of the sample by using the ion beam or the electron beam and a compound gas.
A storage unit that stores relationship information indicating the relationship between the intensity or intensity ratio of the charged particle signal obtained when the sample thickness measurement layer is irradiated with the electron beam and the thickness of the sample thickness measurement layer.
A calculation unit that calculates the thickness of the sample thickness measurement layer based on the relationship information and the intensity or intensity ratio of the charged particle signal obtained by irradiating the sample thickness measurement layer with the electron beam.
With
A composite charged particle beam device that measures the thickness of the sample based on the calculated thickness of the sample thickness measuring layer.
イオンビームを用いて前記試料厚測定層とともに前記試料を加工するステップと、
加工された前記試料に電子ビームを照射するステップと、
加工された前記試料厚測定層に前記電子ビームを照射したときの荷電粒子信号を検出するステップと、
前記荷電粒子信号の強度又は強度比と前記試料厚測定層の厚さとの関係を示す予め準備した関係情報と、加工された前記試料厚測定層に前記電子ビームを照射して得た前記荷電粒子信号の強度又は強度比とに基づいて前記試料厚測定層の厚さを算出し、算出した前記試料厚測定層の厚さに基づいて前記試料の厚さを測定するステップと、
を含む試料の厚さ測定法。 A step of forming a sample thickness measuring layer for measuring the thickness of the sample on the surface of the sample, and
A step of processing the sample together with the sample thickness measuring layer using an ion beam,
The step of irradiating the processed sample with an electron beam and
A step of detecting a charged particle signal when the processed sample thickness measuring layer is irradiated with the electron beam, and
Preliminary relationship information showing the relationship between the intensity or intensity ratio of the charged particle signal and the thickness of the sample thickness measuring layer, and the charged particles obtained by irradiating the processed sample thickness measuring layer with the electron beam. A step of calculating the thickness of the sample thickness measuring layer based on the signal intensity or the intensity ratio, and measuring the thickness of the sample based on the calculated thickness of the sample thickness measuring layer.
A method for measuring the thickness of a sample containing.
前記加工された試料は、
前記試料の長手方向と平行な方向に均一な厚さを有する形状、
前記試料の長手方向と平行な方向に厚さが連続若しくは不連続に変化する形状、又は、
前記試料の短手方向と平行な方向に厚さが連続若しくは不連続に変化する形状、
を有することを特徴とする試料の厚さ測定法。 In the sample thickness measuring method according to claim 13,
The processed sample is
A shape having a uniform thickness in the direction parallel to the longitudinal direction of the sample,
A shape in which the thickness changes continuously or discontinuously in a direction parallel to the longitudinal direction of the sample, or
A shape whose thickness changes continuously or discontinuously in a direction parallel to the lateral direction of the sample.
A method for measuring the thickness of a sample, which comprises.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2017/021737 WO2018229848A1 (en) | 2017-06-13 | 2017-06-13 | Charged particle beam device and method for measuring thickness of sample |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2018229848A1 JPWO2018229848A1 (en) | 2020-04-02 |
JP6770645B2 true JP6770645B2 (en) | 2020-10-14 |
Family
ID=64660953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019524581A Active JP6770645B2 (en) | 2017-06-13 | 2017-06-13 | Charged particle beam device and sample thickness measurement method |
Country Status (6)
Country | Link |
---|---|
US (1) | US11067391B2 (en) |
JP (1) | JP6770645B2 (en) |
KR (1) | KR102262435B1 (en) |
CN (1) | CN110770537B (en) |
DE (1) | DE112017007508T5 (en) |
WO (1) | WO2018229848A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11183359B2 (en) * | 2018-03-29 | 2021-11-23 | Hitachi High-Tech Corporation | Charged particle beam apparatus |
JP2022112137A (en) * | 2021-01-21 | 2022-08-02 | 株式会社日立ハイテク | Charged particle beam device |
CN113008170B (en) * | 2021-03-19 | 2022-08-19 | 长江存储科技有限责任公司 | Thickness measurement method and system |
CN113008171A (en) * | 2021-03-19 | 2021-06-22 | 长江存储科技有限责任公司 | Method for determining thickness of sample |
CN113670236B (en) * | 2021-10-21 | 2022-03-04 | 广东奥迪威传感科技股份有限公司 | Thickness detection method of silver-tin interface metal eutectic layer |
NL2032641B1 (en) * | 2022-07-29 | 2024-02-06 | Univ Delft Tech | Method and apparatus for in-situ sample quality inspection in cryogenic focused ion beam milling |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN86209739U (en) * | 1986-12-06 | 1987-09-16 | 冶金工业部自动化研究所 | Improved-type double light-beam x-ray thickness-meter |
JP2861032B2 (en) * | 1989-04-07 | 1999-02-24 | 富士通株式会社 | Film thickness measurement method |
JP3119959B2 (en) | 1993-02-05 | 2000-12-25 | セイコーインスツルメンツ株式会社 | Focused ion beam device and processing observation device |
JP3221797B2 (en) * | 1994-06-14 | 2001-10-22 | 株式会社日立製作所 | Sample preparation method and apparatus |
US6399944B1 (en) * | 1999-07-09 | 2002-06-04 | Fei Company | Measurement of film thickness by inelastic electron scattering |
JP2003050115A (en) * | 2001-08-07 | 2003-02-21 | Seiko Instruments Inc | X-ray film thickness meter |
DE102004039763B4 (en) * | 2004-08-17 | 2007-07-19 | Infineon Technologies Ag | Method for determining the thickness of a layer |
DE602005018261D1 (en) * | 2005-01-07 | 2010-01-21 | Sii Nanotechnology Inc | METHOD AND DEVICE FOR MEASURING THIN FILM SAMPLES |
KR101374308B1 (en) * | 2005-12-23 | 2014-03-14 | 조르단 밸리 세미컨덕터즈 리미티드 | Accurate measurement of layer dimensions using xrf |
JP5187810B2 (en) * | 2007-04-18 | 2013-04-24 | 株式会社日立ハイテクサイエンス | Film thickness measuring method and sample preparation method, film thickness measuring apparatus and sample preparation apparatus |
CN202533054U (en) * | 2012-04-18 | 2012-11-14 | 宝山钢铁股份有限公司 | Vertical type detecting device for coating film thickness on-line detection |
JP5863547B2 (en) * | 2012-04-20 | 2016-02-16 | ヤマハ発動機株式会社 | Printed circuit board inspection equipment |
JP2014041734A (en) * | 2012-08-22 | 2014-03-06 | Hitachi High-Technologies Corp | Composite charged particle beam device |
JP6040632B2 (en) * | 2012-08-23 | 2016-12-07 | 富士通株式会社 | Sample thickness measurement method, sample preparation method, and sample preparation apparatus |
KR101241007B1 (en) * | 2012-10-26 | 2013-03-11 | 나노씨엠에스(주) | Method and apparatus for measuring thickness of thin film using x-ray |
KR101709433B1 (en) * | 2013-04-22 | 2017-02-22 | 가부시키가이샤 히다치 하이테크놀로지즈 | Sample observation device |
GB201308436D0 (en) * | 2013-05-10 | 2013-06-19 | Oxford Instr Nanotechnology Tools Ltd | Metrology for preparation of thin samples |
GB201413422D0 (en) * | 2014-07-29 | 2014-09-10 | Oxford Instr Nanotechnology Tools Ltd | A method for measuring the mass thickness of a target sample for electron microscopy |
EP3115744B1 (en) * | 2015-07-09 | 2020-02-05 | TE Connectivity Germany GmbH | Device for producing a patch of a layer on a substrate and measuring the thickness of the patch and method of measuring a thickness of a patch of a layer structure on a substrate |
CN205102804U (en) * | 2015-11-17 | 2016-03-23 | 北京金自天正智能控制股份有限公司 | X fluorescence layer thickness meter |
CN105758345B (en) * | 2016-04-22 | 2018-06-05 | 武汉科技大学 | A kind of x-ray fluorescence imaging device of on-line measurement strip coating thickness |
-
2017
- 2017-06-13 JP JP2019524581A patent/JP6770645B2/en active Active
- 2017-06-13 US US16/618,835 patent/US11067391B2/en active Active
- 2017-06-13 WO PCT/JP2017/021737 patent/WO2018229848A1/en active Application Filing
- 2017-06-13 CN CN201780091972.8A patent/CN110770537B/en active Active
- 2017-06-13 KR KR1020197035055A patent/KR102262435B1/en active IP Right Grant
- 2017-06-13 DE DE112017007508.4T patent/DE112017007508T5/en active Pending
Also Published As
Publication number | Publication date |
---|---|
DE112017007508T5 (en) | 2020-03-19 |
WO2018229848A1 (en) | 2018-12-20 |
JPWO2018229848A1 (en) | 2020-04-02 |
US11067391B2 (en) | 2021-07-20 |
CN110770537A (en) | 2020-02-07 |
US20200132448A1 (en) | 2020-04-30 |
KR20200003046A (en) | 2020-01-08 |
CN110770537B (en) | 2021-06-22 |
KR102262435B1 (en) | 2021-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6770645B2 (en) | Charged particle beam device and sample thickness measurement method | |
Bassim et al. | Recent advances in focused ion beam technology and applications | |
TW200947497A (en) | Sample observation method and apparatus, and inspection method and apparatus using the same | |
US10345250B2 (en) | Method of inspecting a sample with a charged particle beam device, and charged particle beam device | |
Lechner et al. | Improved focused ion beam target preparation of (S) TEM specimen—A method for obtaining ultrathin lamellae | |
JP6112929B2 (en) | Focused ion beam apparatus, sample processing method using the same, and sample processing computer program using focused ion beam | |
JP5777967B2 (en) | Charged particle beam apparatus and measurement method | |
JP4987486B2 (en) | Thin film sample measurement method and apparatus, and thin film sample preparation method and apparatus | |
US7928384B2 (en) | Localized static charge distribution precision measurement method and device | |
JP3923468B2 (en) | Method and apparatus for calibration of scanning metrology devices | |
de Jonge et al. | The influence of beam broadening on the spatial resolution of annular dark field scanning transmission electron microscopy | |
EP3953961A1 (en) | Method of automatically focusing a charged particle beam on a surface region of a sample, method of calculating a converging set of sharpness values of images of a charged particle beam device and charged particle beam device for imaging a sample | |
Xia et al. | Enhancement of XeF2-assisted gallium ion beam etching of silicon layer and endpoint detection from backside in circuit editing | |
Sharp et al. | Uranium ion yields from monodisperse uranium oxide particles | |
Rödiger et al. | Evaluation of chamber contamination in a scanning electron microscope | |
TWI827955B (en) | Method of imaging a sample with a charged particle beam device, method of calibrating a charged particle beam device, and charged particle beam device | |
JP2012178236A (en) | Pattern measurement device and method | |
RU2622896C2 (en) | Method for quantitative three-dimensional reconstruction of silicon micro- and nanostructures surface | |
JP7504102B2 (en) | Method and device for analyzing SIMS mass spectral data - Patents.com | |
JP2008004367A (en) | Device and means for electron beam dimension measurement | |
Richter et al. | GaBiLi-A Novel Focused Ion Beam (FIB) Source for Ion Microscopy and Related Workflows for 3D Tomography with a Top-Down FIB From Liquid Metal Alloy Ion Sources (LMAIS) | |
WO2010000732A1 (en) | Method and apparatus combining secondary ion mass spectrometry and scanning probe microscopy in one single instrument | |
JP2015004604A (en) | Depth direction analysis method for organic sample | |
RU2657000C1 (en) | Method of quantitative three-dimensional reconstruction of a sample surface in a scanning- electron microscope | |
Park et al. | FIB overview |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A529 | Written submission of copy of amendment under article 34 pct |
Free format text: JAPANESE INTERMEDIATE CODE: A5211 Effective date: 20191128 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191128 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200616 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200727 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200908 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200925 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6770645 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |