[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6747368B2 - The fuselage of the flying body - Google Patents

The fuselage of the flying body Download PDF

Info

Publication number
JP6747368B2
JP6747368B2 JP2017084252A JP2017084252A JP6747368B2 JP 6747368 B2 JP6747368 B2 JP 6747368B2 JP 2017084252 A JP2017084252 A JP 2017084252A JP 2017084252 A JP2017084252 A JP 2017084252A JP 6747368 B2 JP6747368 B2 JP 6747368B2
Authority
JP
Japan
Prior art keywords
heat
fuselage
metal part
porous metal
flying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017084252A
Other languages
Japanese (ja)
Other versions
JP2018179470A (en
Inventor
永 中▲西▼
永 中▲西▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2017084252A priority Critical patent/JP6747368B2/en
Publication of JP2018179470A publication Critical patent/JP2018179470A/en
Application granted granted Critical
Publication of JP6747368B2 publication Critical patent/JP6747368B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Details Of Aerials (AREA)

Description

本発明は、耐熱構造を有した飛しょう体の胴体に関する。 The present invention relates to a fuselage of a flying body having a heat resistant structure.

高速で飛しょうする飛しょう体は、空力加熱の影響を受ける。空力加熱による影響を低減するために、飛しょう体のレドームリングの外周に断熱材を設ける技術が知られている(例えば特許文献1参照)。 Flying objects flying at high speed are affected by aerodynamic heating. In order to reduce the influence of aerodynamic heating, a technique of providing a heat insulating material on the outer circumference of a radome ring of a flying vehicle is known (see, for example, Patent Document 1).

また、飛しょう体は軽量化が望まれるため、比重が小さいアルミニウム合金を用いることが一般的である。しかしながら、空力加熱に対する耐熱温度性能の要求が高い場合は、アルミニウム合金に比べて比重が大きいチタン合金を用いることがある。 Further, since it is desired that the flying body be lightweight, it is common to use an aluminum alloy having a small specific gravity. However, when there is a high demand for heat resistant temperature performance for aerodynamic heating, a titanium alloy having a larger specific gravity than an aluminum alloy may be used.

さらに、特許文献1に開示されるように、飛しょう体の空力加熱による温度上昇を抑制するために冷媒を用いた冷却をする方法もある。しかしながら、冷媒を供給するための管部が必要となり、管部を配管する空間や取り付け構造を設けることで質量が増加する(例えば特許文献2参照)。 Further, as disclosed in Patent Document 1, there is also a method of cooling using a refrigerant in order to suppress a temperature increase due to aerodynamic heating of a flying object. However, a pipe portion for supplying the refrigerant is required, and the mass is increased by providing a space for connecting the pipe portion and a mounting structure (see Patent Document 2, for example).

特開2016−173189号公報JP, 2016-173189, A 特開平6−249598号公報JP-A-6-249598

飛しょう体において、数秒という短い時間で超音速または極超音速に達して飛しょうするものがある。中には超音速で数分間以上飛しょうするものもあり、空力加熱により機体が高温に晒される。 Some flying objects reach supersonic or hypersonic speed in a short time of a few seconds and fly. Some of them fly at supersonic speed for several minutes or longer, and the aircraft is exposed to high temperatures due to aerodynamic heating.

このような飛しょう体の胴体は、大きな空力加重、空力加熱及び熱衝撃を受けることになるため、高強度、高耐熱性及び高耐熱衝撃性が求められる。このため胴体材料として、耐熱性の高いチタン合金を用いるか、または金属の中でも比重が低いアルミニウム合金を用いてその外周に断熱材を設けることが一般的である。 Since the body of such a flying body is subjected to a large aerodynamic load, aerodynamic heating and thermal shock, high strength, high heat resistance and high thermal shock resistance are required. For this reason, it is common to use a titanium alloy having high heat resistance or an aluminum alloy having a low specific gravity among metals as the body material to provide a heat insulating material on the outer periphery thereof.

飛しょう速度が更に高速になり、もしくは飛しょう時間が更に長くなって空力加熱総量が増加すると、飛しょう体の胴体の温度が耐熱温度を超えて、構造上必要な耐熱強度を確保できなくなる可能性を生じるという問題があった。また、飛しょう体内部へ熱が流入して内部搭載機器が許容温度を超えてしまう可能性を生じるという問題もあった。 If the flight speed becomes faster or the flight time becomes longer and the total amount of aerodynamic heating increases, the temperature of the fuselage of the flying body will exceed the heat resistant temperature, and it will be impossible to secure the heat resistance strength necessary for the structure. There was a problem of causing sex. There is also a problem in that heat may flow into the flying body and the temperature of the internal equipment may exceed the allowable temperature.

この場合、胴体や断熱材を厚くして熱容量を大きくすることにより、空力加熱に対する胴体の温度上昇を抑制することも可能であるが、これによって質量が増加し、飛しょう体の飛しょう性能が劣化するという問題もあった。 In this case, it is possible to suppress the temperature rise of the fuselage due to aerodynamic heating by increasing the heat capacity by thickening the fuselage and heat insulating material, but this increases the mass and the flight performance of the flying body. There was also the problem of deterioration.

本発明は、上記に鑑みてなされたものであって、空力加熱に対する耐熱性の高い飛しょう体の胴体構造を得ることを目的とする。 The present invention has been made in view of the above, and an object thereof is to obtain a fuselage structure of a flying body having high heat resistance against aerodynamic heating.

本発明による飛しょう体の胴体は、空孔率の異なる多孔質の金属部を複数積層してなる円筒形状の多孔質金属部と、上記多孔質金属部の外周に固着された断熱部を備えたものである。 A fuselage of a flying object according to the present invention comprises a cylindrical porous metal part formed by laminating a plurality of porous metal parts having different porosities, and a heat insulating part fixed to the outer periphery of the porous metal part. It is a thing.

本発明によれば、空力加熱に対する耐熱性の高い飛しょう体の胴体構造を得られるという効果を奏する。 According to the present invention, there is an effect that a fuselage structure of a flying body having high heat resistance against aerodynamic heating can be obtained.

実施の形態1に係る飛しょう体の構成を示す図である。It is a figure which shows the structure of the flying body which concerns on Embodiment 1. 実施の形態1に係る飛しょう体の耐熱性胴体の構造を示す断面図である。FIG. 3 is a cross-sectional view showing the structure of the heat resistant fuselage body of the flying object according to the first embodiment. 実施の形態2に係る飛しょう体の耐熱性胴体の構造を示す断面図である。FIG. 6 is a cross-sectional view showing the structure of a heat resistant fuselage body of a flying object according to a second embodiment.

以下に、本発明に係る実施の形態1による飛しょう体の胴体構造を、図面に基いて詳細に説明する。なお、実施の形態1によってこの発明が限定されるものではない。 Hereinafter, a fuselage structure of a flying object according to Embodiment 1 of the present invention will be described in detail with reference to the drawings. The present invention is not limited to the first embodiment.

図1は、実施の形態1による飛しょう体の構成を示す図である。図1において、飛しょう体20は、レドーム30と、耐熱性胴体10と、推進装置1から構成される。レドーム30は、飛しょう体20の前方に設けられる。推進装置1は、飛しょう体20の後方に設けられる。耐熱性胴体10は、レドーム30と推進装置1の間に設けられ、その後縁部が推進装置1の外周における胴体40に固定されている。 FIG. 1 is a diagram showing a structure of a flying object according to the first embodiment. In FIG. 1, the flying body 20 is composed of a radome 30, a heat-resistant body 10, and a propulsion device 1. The radome 30 is provided in front of the flying body 20. The propulsion device 1 is provided behind the flying body 20. The heat-resistant body 10 is provided between the radome 30 and the propulsion device 1, and its rear edge is fixed to the body 40 on the outer periphery of the propulsion device 1.

レドーム30は、内部が空洞の円錐形状をなしており、耐熱性の高い誘電体材料によって構成される。レドーム30は、内部に電子機器7の一部が収納され、耐熱性胴体10の前縁部に固定される。耐熱性胴体10は、円筒形状をなしている。耐熱性胴体10の内側には、電子機器7の他の部分が配置されており、耐熱性胴体10の内面に電子機器7が固定される。 The radome 30 has a hollow conical shape and is made of a dielectric material having high heat resistance. The radome 30 accommodates a part of the electronic device 7 inside and is fixed to the front edge of the heat-resistant body 10. The heat resistant body 10 has a cylindrical shape. The other part of the electronic device 7 is arranged inside the heat resistant body 10, and the electronic device 7 is fixed to the inner surface of the heat resistant body 10.

推進装置1は、円筒形状の胴体40から構成される。推進装置1は、胴体40の内部に飛しょう体20の推進に不可欠な燃料タンク、推進エンジン、ノズル等からなる推進機器部8が配置されており、推進機器部8は推進装置1の胴体40の内側に取り付けられている。胴体40は、外周に複数の翼50が取り付けられている。翼50は、例えば前方部に安定翼を設け、後方部に操舵翼を設ける。胴体40は、前端部から突出した外形が小径となる嵌合筒60を有している。 The propulsion device 1 includes a cylindrical body 40. In the propulsion device 1, a propulsion device section 8 including a fuel tank, a propulsion engine, a nozzle, and the like, which are indispensable for propelling the flying vehicle 20, is disposed inside the fuselage 40. Is installed inside the. A plurality of wings 50 are attached to the outer periphery of the body 40. The wing 50 has, for example, a stabilizing wing at the front part and a steering wing at the rear part. The body 40 has a fitting cylinder 60 whose outer diameter protruding from the front end has a small diameter.

図2は、実施形態1による飛しょう体の耐熱性胴体10の構造を示す断面図である。
図2において、耐熱性胴体10は、断熱部2と、多孔質金属部9から構成される。多孔質金属部9は円筒形状をなしている。断熱部2は、多孔質金属部9および胴体40の外側にそれぞれ接着により固着される。耐熱性胴体10における多孔質金属部9の内周は、胴体40の嵌合筒60の外周に嵌合し、胴体40に固定される。耐熱性胴体10は、例えば図示しない雄螺子(ボルト)と雌螺子(ねじ穴、ナット等)の係合によって、胴体40の嵌合筒60に締結される。
FIG. 2 is a cross-sectional view showing the structure of the heat resistant fuselage body 10 of the flying object according to the first embodiment.
In FIG. 2, the heat resistant body 10 is composed of a heat insulating part 2 and a porous metal part 9. The porous metal part 9 has a cylindrical shape. The heat insulating part 2 is fixed to the outside of the porous metal part 9 and the body 40 by adhesion. The inner circumference of the porous metal portion 9 of the heat resistant body 10 is fitted to the outer circumference of the fitting cylinder 60 of the body 40 and is fixed to the body 40. The heat-resistant body 10 is fastened to the fitting cylinder 60 of the body 40, for example, by engaging a male screw (bolt) and a female screw (screw hole, nut, etc.) not shown.

多孔質金属部9は、金属部3と金属部4と金属部5が一体的に焼結され、積層されて一体成型される。金属部3,4,5は、それぞれ空孔率の異なる多孔質の金属で構成されている。金属部3,4,5は、例えば3次元金属積層造形技術を用いて、粉末状のタングステン合金をレーザ溶融し、かつ積層して、一体的に成型される。 The porous metal part 9 is formed by integrally sintering the metal part 3, the metal part 4, and the metal part 5 and laminating them. The metal parts 3, 4, and 5 are made of porous metals having different porosities. The metal parts 3, 4, and 5 are integrally molded by, for example, using a three-dimensional metal additive manufacturing technique, laser melting a powdery tungsten alloy and laminating it.

ここで、金属部3の空孔率は金属部4の空孔率よりも高く耐熱性が高い。金属部4の空孔率は金属部5の空孔率よりも高く耐熱性が高い。金属部5は金属部3と比較して剛性が倍以上高く、また金属部5は金属部4よりも剛性が高い。金属部4は金属部3と比較して剛性が高い。 Here, the porosity of the metal part 3 is higher than that of the metal part 4, and the heat resistance is high. The porosity of the metal part 4 is higher than that of the metal part 5, and the heat resistance is high. The rigidity of the metal part 5 is more than double that of the metal part 3, and the rigidity of the metal part 5 is higher than that of the metal part 4. The metal portion 4 has higher rigidity than the metal portion 3.

これによって、金属部3は、耐熱部材として作用し、金属部4,5は、構造部材として作用する。胴体40の嵌合筒60の外周は金属部5の内周に挿入され、固定される。 Thereby, the metal part 3 acts as a heat resistant member, and the metal parts 4 and 5 act as structural members. The outer circumference of the fitting cylinder 60 of the body 40 is inserted and fixed to the inner circumference of the metal part 5.

なお、耐熱性胴体10の推進装置1側の端縁部に限り、上下層が全て金属部5によって形成されても良い。これによって、耐熱性胴体10を胴体40の嵌合筒60に締結する際に、ボルト穴とその周辺の圧縮力に抗する材料強度および締結力を高めることが可能となる。 Note that the upper and lower layers may be entirely formed by the metal part 5 only at the edge portion of the heat-resistant body 10 on the propulsion device 1 side. Accordingly, when the heat resistant body 10 is fastened to the fitting tube 60 of the body 40, it is possible to increase the material strength and the fastening force against the compressive force of the bolt hole and its periphery.

断熱部2は、空力加熱によって発生した熱による温度上昇を気化熱により抑制するものである。断熱部2は、セラミックス、炭素繊維含有樹脂等や、アブレーション材により形成されるが、これに限定されることはない。
胴体40は、例えばタングステン合金により形成される。
The heat insulating section 2 suppresses a temperature rise due to heat generated by aerodynamic heating by vaporization heat. The heat insulating portion 2 is formed of ceramics, carbon fiber-containing resin, or the like, or an ablation material, but is not limited to this.
The body 40 is formed of, for example, a tungsten alloy.

実施の形態1による飛しょう体20の胴体構造は、以上のように構成され、次のように動作する。
飛しょう体20が超音速で飛しょうする時、断熱部2の外周において、図2中の矢印Aで示す方向に、空力加熱による熱流入が発生する。この空力加熱により発生した熱は、断熱部2を介して金属部3と推進装置1の胴体40へそれぞれ伝熱される。
The fuselage structure of the flying vehicle 20 according to the first embodiment is configured as described above and operates as follows.
When the flying body 20 flies at supersonic speed, heat inflow due to aerodynamic heating occurs on the outer periphery of the heat insulating portion 2 in the direction indicated by arrow A in FIG. The heat generated by the aerodynamic heating is transferred to the metal part 3 and the body 40 of the propulsion device 1 via the heat insulating part 2.

金属部3は多孔質の金属で空孔率が大きいため、複数の空孔により熱伝導率が低くなり、空力加熱による温度上昇を内部に伝え難い。このため断熱部2を介して伝わる空力加熱による金属部4,5の温度上昇が抑制される。 Since the metal part 3 is a porous metal and has a high porosity, the plurality of holes have a low thermal conductivity, and it is difficult to convey the temperature rise due to aerodynamic heating to the inside. Therefore, the temperature rise of the metal parts 4 and 5 due to the aerodynamic heating transmitted through the heat insulating part 2 is suppressed.

また、金属部3は、金属部4,5より温度上昇するが、構造部材として扱わないため、材料の耐熱温度は考慮しなくて良い。
金属部4は、金属部3と金属部5の中間にあり、それぞれを熱的および構造的に中継する。
Further, although the temperature of the metal portion 3 rises higher than that of the metal portions 4 and 5, since it is not treated as a structural member, it is not necessary to consider the heat resistant temperature of the material.
The metal portion 4 is located between the metal portion 3 and the metal portion 5, and relays each of them thermally and structurally.

金属部5は金属部3と比較して空孔率が倍以上低く剛性および材料強度が高い。このため金属部5は推進装置1に固定するための構造上の強度部材として用いている。
また、耐熱性胴体10は、一体型の多孔質金属部3〜5を用いるとともに、飛しょう体20の胴体外表面の断熱部2に最も近い部分に金属部3を配置し、かつ飛しょう体20の胴体内部に最も近い部分に金属部5を配置している。このため耐熱性胴体10の温度上昇の抑制と通常の金属部材と同様の構造的な高剛性を実現することが可能である。延いては、飛しょう体20の前方からの空力加熱による熱流入に耐えることの可能な耐熱性の高い飛しょう体20の胴体構造を得ることができる。
The metal part 5 has a porosity more than twice as low as that of the metal part 3 and has high rigidity and high material strength. For this reason, the metal part 5 is used as a structural strength member for fixing to the propulsion device 1.
The heat-resistant fuselage 10 uses the integrated porous metal parts 3 to 5 and arranges the metal part 3 on the outer surface of the fuselage 20 closest to the heat insulating part 2 and The metal part 5 is arranged at a portion of the 20 closest to the inside of the body. Therefore, it is possible to suppress the temperature rise of the heat-resistant body 10 and achieve the structural high rigidity similar to that of a normal metal member. As a result, it is possible to obtain a fuselage structure of the flying body 20 having high heat resistance capable of withstanding heat inflow due to aerodynamic heating from the front of the flying body 20.

加えて、耐熱性胴体10は、多孔質金属部9を構成する多孔質の金属部3〜5において、多孔質金属部9に空孔率の高い金属部3を用いることで、軽量化を図ることが可能である。 In addition, in the heat-resistant body 10, in the porous metal parts 3 to 5 forming the porous metal part 9, the metal part 3 having a high porosity is used for the porous metal part 9 to reduce the weight. It is possible.

なお、耐熱性胴体10は、レドーム30と推進装置1の間の胴体に適用することで、飛しょう体20の前方部の耐熱性を高めるとともに、飛しょう体20の前方部を軽量化することができるので、飛しょう体20の操舵翼による操舵安定性を維持しつつ飛しょう体20の軽量化を図ることができる。
勿論、耐熱性胴体10は、推進装置1を構成する胴体40に適用しても良い。
By applying the heat resistant fuselage 10 to the fuselage between the radome 30 and the propulsion device 1, the heat resistance of the front part of the flying body 20 is increased and the front part of the flying body 20 is reduced in weight. Therefore, it is possible to reduce the weight of the flying object 20 while maintaining the steering stability of the flying wings of the flying object 20.
Of course, the heat-resistant body 10 may be applied to the body 40 that constitutes the propulsion device 1.

以上説明した通り、実施の形態1による飛しょう体20の胴体は、空孔率の異なる多孔質の金属部(3,4,5)を複数積層してなる円筒形状の多孔質金属部9と、上記多孔質金属部9の外周に固着された断熱部2を有した耐熱性胴体10を備えたことを特徴とする。 As described above, the fuselage of the flying body 20 according to the first embodiment includes the cylindrical porous metal portion 9 formed by laminating a plurality of porous metal portions (3, 4, 5) having different porosities. A heat-resistant body 10 having a heat insulating portion 2 fixed to the outer periphery of the porous metal portion 9 is provided.

また、上記多孔質金属部9は、その円筒外面から内面に向かって、空孔率が段階的に低くなるように金属部(3,4,5)を順に積層したことを特徴としても良い。
さらに、上記多孔質金属部9は、推進装置1の胴体40に結合されたことを特徴としても良い。
Further, the porous metal part 9 may be characterized in that the metal parts (3, 4, 5) are laminated in order from the outer surface of the cylinder toward the inner surface thereof so that the porosity gradually decreases.
Further, the porous metal part 9 may be connected to the body 40 of the propulsion device 1.

これによって、空力加熱に対する耐熱性の高い飛しょう体20の胴体構造を得られるという効果を奏する。
また、多孔質金属部9は複数の空孔を有しているので、断熱部2を介して多孔質金属部9に伝わる空力加熱による温度上昇を抑制することができる。
かくして、多孔質金属部9の金属部5の内側への熱流入を抑制し、電子機器7,推進機器部8等の飛しょう体の内部搭載機器が許容温度を超えて温度上昇することを防ぐことが可能となる。
As a result, the fuselage structure of the flying body 20 having high heat resistance against aerodynamic heating can be obtained.
Further, since the porous metal portion 9 has a plurality of holes, it is possible to suppress the temperature rise due to aerodynamic heating transmitted to the porous metal portion 9 via the heat insulating portion 2.
Thus, the heat inflow of the porous metal portion 9 to the inside of the metal portion 5 is suppressed, and the temperature of the electronic equipment 7, the propulsion equipment portion 8 and the like mounted on the inside of the flying body is prevented from exceeding the allowable temperature. It becomes possible.

また、多孔質金属部9は、積層した金属部3,4,5の空孔率が段階的に低くなるように変化させているので、金属部3、4に比して空孔率の特に低い金属部5を高剛性の構造部材として利用することができる。
さらに、上記多孔質金属部9に、金属部4、5に比して空孔率の特に高い金属部3を用いることで、飛しょう体20の胴体の軽量化を図ることができる。
In addition, since the porous metal portion 9 is changed so that the porosity of the laminated metal portions 3, 4, and 5 gradually decreases, the porosity of the metal portions 3 and 4 is particularly higher than that of the metal portions 3 and 4. The low metal part 5 can be used as a highly rigid structural member.
Further, by using the metal part 3 having a particularly high porosity as compared with the metal parts 4 and 5 for the porous metal part 9, the weight of the body of the flying body 20 can be reduced.

実施の形態2.
図3は、本発明に係る実施の形態2による飛しょう体20の耐熱性胴体10の構造を示す図である。
実施の形態2による耐熱性胴体10の多孔質金属部9は、金属部3,4,5の空孔内に含浸剤6が浸透している。その他の構成および動作は実施の形態1と同一であって、多孔質金属部9の上面に断熱部2が固着している。
Embodiment 2.
FIG. 3 is a diagram showing the structure of the heat resistant fuselage 10 of the flying body 20 according to the second embodiment of the present invention.
In the porous metal part 9 of the heat-resistant body 10 according to the second embodiment, the impregnating agent 6 has penetrated into the pores of the metal parts 3, 4, and 5. Other configurations and operations are the same as those in the first embodiment, and the heat insulating portion 2 is fixed to the upper surface of the porous metal portion 9.

実施の形態2による耐熱性胴体10は、断熱部2を介して伝わる空力加熱による温度上昇によって、多孔質金属部9の含浸剤6が融解または気化し、固相から液相または気相に相変化する。この相変化に伴う潜熱により、耐熱性胴体10内側の金属部5側の温度上昇が抑制される。 In the heat-resistant body 10 according to the second embodiment, the impregnating agent 6 of the porous metal part 9 is melted or vaporized due to the temperature rise due to aerodynamic heating transmitted through the heat insulating part 2, and the solid phase is changed to the liquid phase or the gas phase. Change. Due to the latent heat accompanying the phase change, the temperature rise on the metal portion 5 side inside the heat resistant body 10 is suppressed.

このように実施の形態2による耐熱性胴体10は、多孔質金属部9に含浸剤6を浸透したことを特徴とする。 As described above, the heat-resistant body 10 according to the second embodiment is characterized in that the impregnating agent 6 is permeated into the porous metal portion 9.

この多孔質金属部9に含浸した含浸剤6の潜熱を利用して、多孔質金属部9の温度上昇の抑制および飛しょう体20内部への熱流入が抑制される。かくして、電子機器7,推進機器部8等の飛しょう体の内部搭載機器が許容温度を超えて温度上昇することを防ぐことが可能となる。 By utilizing the latent heat of the impregnating agent 6 with which the porous metal portion 9 is impregnated, the temperature rise of the porous metal portion 9 and the heat flow into the flying body 20 are suppressed. Thus, it becomes possible to prevent the temperature of the electronic equipment 7, the propulsion equipment 8 and other internal equipment mounted on the flying body from exceeding the allowable temperature.

1 推進装置、2 断熱部、3 金属部、4 金属部、5 金属部、6 金属部、7 電子機器、8 推進機器部、9 多孔質金属部、10 耐熱性胴体、20 飛しょう体、30 レドーム、40 胴体、50 翼、60 嵌合筒。 1 propulsion device, 2 heat insulation part, 3 metal part, 4 metal part, 5 metal part, 6 metal part, 7 electronic equipment, 8 propulsion equipment part, 9 porous metal part, 10 heat resistant fuselage, 20 flying body, 30 Radome, 40 body, 50 wings, 60 fitting cylinder.

Claims (2)

空孔率の異なる多孔質の金属部を複数積層してなる円筒形状の多孔質金属部と、
上記多孔質金属部の外周に固着された断熱部と、
を備え、
上記多孔質金属部は、円筒外面から内面に向かって、空孔率が段階的に低くなるように順に積層されて一体的に焼結した複数の金属部により形成され、内側の金属部が推進装置の胴体に結合される
飛しょう体の胴体。
A cylindrical porous metal part formed by laminating a plurality of porous metal parts having different porosities,
A heat insulating portion fixed to the outer periphery of the porous metal portion,
Equipped with
The porous metal portion is formed by a plurality of metal portions that are sequentially laminated and integrally sintered so that the porosity gradually decreases from the outer surface to the inner surface of the cylinder, and the inner metal portion is driven. A fuselage of a flying body that is joined to the fuselage of the device .
上記多孔質金属部は、上記金属部の空孔内に含浸剤を浸透したことを特徴とする請求項1に記載の飛しょう体の胴体。 The fuselage of the flying body according to claim 1 , wherein the porous metal part has an impregnating agent penetrated into the pores of the metal part .
JP2017084252A 2017-04-21 2017-04-21 The fuselage of the flying body Active JP6747368B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017084252A JP6747368B2 (en) 2017-04-21 2017-04-21 The fuselage of the flying body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017084252A JP6747368B2 (en) 2017-04-21 2017-04-21 The fuselage of the flying body

Publications (2)

Publication Number Publication Date
JP2018179470A JP2018179470A (en) 2018-11-15
JP6747368B2 true JP6747368B2 (en) 2020-08-26

Family

ID=64276227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017084252A Active JP6747368B2 (en) 2017-04-21 2017-04-21 The fuselage of the flying body

Country Status (1)

Country Link
JP (1) JP6747368B2 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04237700A (en) * 1991-01-17 1992-08-26 Hitachi Ltd Heat protective material for space ship
JPH05117052A (en) * 1991-10-25 1993-05-14 Inax Corp Refractory heat-insulating material
JPH06249598A (en) * 1993-02-26 1994-09-06 Mitsubishi Heavy Ind Ltd Cooling device using coolant
JPH085297A (en) * 1994-06-21 1996-01-12 Asahi Chem Ind Co Ltd Structure for forming high-speed missile
DE10318514B3 (en) * 2003-04-24 2004-09-16 Dornier Gmbh Multiple layer ceramic composite material used as a heat-resistant electromagnetic window comprises an oxidic carbon-free fiber-reinforced ceramic layer, and a layer made from a thermal insulating layer consisting of a pure oxidic foam
JP2004339018A (en) * 2003-05-16 2004-12-02 Matsushita Electric Ind Co Ltd Porous structure and composite including the same
WO2007112783A1 (en) * 2006-04-06 2007-10-11 Siemens Aktiengesellschaft Layered thermal barrier coating with a high porosity, and a component
KR20080032324A (en) * 2006-10-09 2008-04-15 정의수 Heat sink using foamed metal and its manufacturing method
JP2011167994A (en) * 2010-02-22 2011-09-01 Hitachi Ltd Heat-resistant member having thermal barrier coating and gas turbine component using the same
JP2012162756A (en) * 2011-02-03 2012-08-30 Mitsubishi Materials Corp Light weight structure
JP2016173189A (en) * 2015-03-16 2016-09-29 三菱電機株式会社 Missile radome

Also Published As

Publication number Publication date
JP2018179470A (en) 2018-11-15

Similar Documents

Publication Publication Date Title
US10081431B2 (en) Load bearing element and a method for manufacturing a load bearing element
US8127555B2 (en) Flowpath heat exchanger for thermal management and power generation within a hypersonic vehicle
AU2004202946B2 (en) A transpiration cooling system
US10321519B2 (en) Metal and composite leading edge assemblies
EP2781728A2 (en) Thrust reverser inner fixed structure with corner fitting
US10583934B2 (en) Fuel pipe of aircraft and aircraft
JP2010126133A (en) Fuel tank of aircraft
JP7029288B2 (en) Cured Hybrid Insulated Non-Oxide Insulation Systems, and Methods of Producing Non-Oxide Ceramic Composites for Manufacturing Cured Hybrid Insulated Non-Oxide Insulation Systems
CN104724291A (en) Assembly for aircraft, and aircraft
US9551239B2 (en) Exhaust assembly center body
US20170108321A1 (en) In-flight insulation generation using matrix-based heat sink for missiles and other flight vehicles
JP6747368B2 (en) The fuselage of the flying body
EP3334998B1 (en) Metallic nosecone with unitary assembly
EP3670865B1 (en) Attritable engine integrated with vehicle
CN110087996B (en) Thrust link with tuned absorber
CN106568354B (en) A kind of heat-preservation cylinder with temperature control function
US9863368B1 (en) Aircraft with gas turbine engine having outer bypass elements removed
JP6727151B2 (en) Radome for flying objects
RU2680949C2 (en) Aerodynamic steering wheel of a hypersonic aircraft in the conditions of its aerodynamic heating
US9800119B2 (en) Electromechanical actuator having an oil and water thermal system
RU2536361C1 (en) Antenna dome
JP2016161270A (en) Radome ring for flying body
EP3480447B1 (en) Exhaust assembly mounting configuration
JP6906440B2 (en) Flying body
US12151832B2 (en) Heat transfer control structure, flying object and spacecraft with high heat resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200707

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200720

R151 Written notification of patent or utility model registration

Ref document number: 6747368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250