[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6696025B1 - Laminating apparatus for laminating device, laminating method and laminating device - Google Patents

Laminating apparatus for laminating device, laminating method and laminating device Download PDF

Info

Publication number
JP6696025B1
JP6696025B1 JP2019081205A JP2019081205A JP6696025B1 JP 6696025 B1 JP6696025 B1 JP 6696025B1 JP 2019081205 A JP2019081205 A JP 2019081205A JP 2019081205 A JP2019081205 A JP 2019081205A JP 6696025 B1 JP6696025 B1 JP 6696025B1
Authority
JP
Japan
Prior art keywords
substrate
fill material
seal
enclosed space
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019081205A
Other languages
Japanese (ja)
Other versions
JP2020177191A (en
Inventor
道也 横田
道也 横田
亮一 稲葉
亮一 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Engineering Co Ltd
Original Assignee
Shin Etsu Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Engineering Co Ltd filed Critical Shin Etsu Engineering Co Ltd
Priority to JP2019081205A priority Critical patent/JP6696025B1/en
Application granted granted Critical
Publication of JP6696025B1 publication Critical patent/JP6696025B1/en
Publication of JP2020177191A publication Critical patent/JP2020177191A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)

Abstract

【課題】封入空間に対するフィル材の供給量を多くしても、フィル材の伸展圧力でシールが決壊せず、複数の素子の有効封止領域をフィル材より無気泡で封止する貼り合わせ装置を提供する。【解決手段】複数の素子Eが配列された第一基板1及び第二基板2と、基板の一方あるいは両方に設けられるシール3と、シール3で囲まれた封入空間Sに所定量のフィル材Fを供給する定量吐出部4と、第一基板1及び第二基板2の相対的な接近移動により封入空間S内のフィル材Fを伸展させる駆動部5と、定量吐出部4及び駆動部5を作動制御する制御部6と、を備え、シール3は、封入空間S内において複数の素子Eの有効封止領域S1を囲むように設けられるダム部3aと、漏洩流路31と、を有し、制御部6は、封入空間Sに供給したフィル材Fが、第一基板1及び第二基板2の接近移動により伸展して、有効封止領域S1から漏洩流路31へ流入するように制御する。【選択図】図1PROBLEM TO BE SOLVED: To provide a bonding device for sealing an effective sealing region of a plurality of elements with no bubbles than a fill material, even if the supply amount of the fill material to an enclosed space is increased, the seal is not broken by the expanding pressure of the fill material. I will provide a. SOLUTION: A first substrate 1 and a second substrate 2 in which a plurality of elements E are arranged, a seal 3 provided on one or both of the substrates, and a predetermined amount of a filling material in an enclosed space S surrounded by the seal 3. The constant amount discharge part 4 for supplying F, the drive part 5 for extending the fill material F in the enclosed space S by the relative approach movement of the first substrate 1 and the second substrate 2, the constant amount discharge part 4, and the drive part 5. The control unit 6 for controlling the operation of the seal 3 has a dam portion 3a provided so as to surround the effective sealing region S1 of the plurality of elements E in the enclosed space S, and the leakage flow path 31. Then, the control unit 6 causes the fill material F supplied to the enclosed space S to be expanded by the approach movement of the first substrate 1 and the second substrate 2 and flow into the leakage flow path 31 from the effective sealing region S1. Control. [Selection diagram] Figure 1

Description

本発明は、例えばマイクロLEDなどの微小素子が配列された発光ダイオードディスプレイ(LEDディスプレイ)などのような一対の基板の間にフィル材を供給し、両基板の貼り合わせによりフィル材が伸展して封止される貼合デバイスの貼り合わせ装置、及び、貼合デバイスを生産するための貼り合わせ方法、並びに貼合デバイスに関する。   The present invention supplies a fill material between a pair of substrates such as a light emitting diode display (LED display) in which micro elements such as micro LEDs are arranged, and the fill material is extended by bonding the two substrates. The present invention relates to a bonding device for a bonding device to be sealed, a bonding method for producing a bonding device, and a bonding device.

従来、この種の滴下注入法として、一対の基板のいずれか一方基板に封入空間を囲んで環状(長方形)のメインシールが形成され、封入空間に液晶を滴下して、一対の基板同士が減圧下で貼り合わされた後に大気圧に戻すことで、貼り合わせた一対の基板間を所定の間隔にし、メインシールが硬化されることで液晶を封入する液晶表示パネルの製造方法がある(例えば、特許文献1参照)。
一方基板と他方基板の貼り合わせに伴う基板同士の接近移動と、減圧から大気圧への圧力差に伴う圧縮で、封入空間に滴下された液晶をメインシールの隅々まで伸展させ、液晶が封入空間の全体に隙間なく充填される。これにより、圧力差と毛細管現象を利用して液晶が充填される真空注入方式に比べ、液晶の充填時間を大幅に短縮できる。
また、LEDディスプレイなどの素子実装基板として、第一基板上に密に配列形成された多数の発光ダイオード素子を、第一基板から一時保持用部材に転写して保持させた後、各発光ダイオード素子毎に素子周りの樹脂の被覆を行い、樹脂で固められた各発光ダイオード素子に電極パッドが形成されることで樹脂形成チップ(素子チップ)を形成する転写法がある(例えば、特許文献2参照)。
樹脂で被覆された発光ダイオード素子は、ダイシングにより個別に切り出され、樹脂形成チップの状態にして実装工程へと移行される。また樹脂形成チップには配線が施され、配線の完了後に発光テストの実施で不良発光ダイオード素子を検出している。
さらに特許文献2には、LEDディスプレイに用いられる発光ダイオードは高価であるため、サイズが数十μm×数十μmのマイクロLEDにして、LEDディスプレイなどの画像表示装置のコスト低減を図る点(段落[0004]参照)や、発光源としてLEDを用いたディスプレイにおいて、実装後に点灯しない画素が存在する場合には不良発光ダイオード素子を取り外す点(段落[0006]参照)が記載されている。
Conventionally, as this type of dropping injection method, an annular (rectangular) main seal is formed in one of the pair of substrates so as to surround the enclosed space, and liquid crystal is dropped into the enclosed space to reduce the pressure between the pair of substrates. There is a method of manufacturing a liquid crystal display panel in which a pair of substrates that have been bonded to each other are returned to atmospheric pressure after being bonded to each other under a predetermined distance, and a main seal is cured to enclose liquid crystal (for example, a patent document). Reference 1).
Due to the close movement of the substrates due to the bonding of the one substrate and the other substrate and the compression due to the pressure difference from the reduced pressure to the atmospheric pressure, the liquid crystal dropped in the enclosed space is extended to every corner of the main seal, and the liquid crystal is enclosed. The entire space is filled without gaps. As a result, the filling time of the liquid crystal can be significantly shortened as compared with the vacuum injection method in which the liquid crystal is filled by utilizing the pressure difference and the capillary phenomenon.
Further, as an element mounting substrate for an LED display or the like, a large number of light emitting diode elements densely arranged on the first substrate are transferred from the first substrate to a temporary holding member and held, and then each light emitting diode element is mounted. There is a transfer method of forming a resin-formed chip (element chip) by coating a resin around the element for each element and forming an electrode pad on each light-emitting diode element fixed by the resin (for example, see Patent Document 2). ).
The light emitting diode element covered with the resin is individually cut out by dicing, and is made into a state of a resin-formed chip to be transferred to a mounting step. Wiring is provided on the resin-formed chip, and a defective light emitting diode element is detected by performing a light emission test after the wiring is completed.
Further, in Patent Document 2, since a light emitting diode used for an LED display is expensive, a micro LED having a size of several tens μm × several tens μm is used to reduce the cost of an image display device such as an LED display (paragraph). [0004]), and in a display using LEDs as a light emission source, when defective pixels do not light after mounting, the defective light emitting diode element is removed (see paragraph [0006]).

特開2002−328382号公報JP, 2002-328382, A 特許第3747807号公報Japanese Patent No. 3747807

このような状況下で、特許文献1に記載の滴下注入法を用いてフィル材(液晶)の充填時間を大幅に短縮し、且つ特許文献2に記載の転写法を用いて、多数配列されたマイクロLEDなどを含む微小素子であっても、一括してフィル材(樹脂)の被覆を行うことによりコストの低減を図ることが考えられる。
詳しく説明すると、第一基板に配列保持された多数の素子を囲むようにシールを形成した後、シールで囲まれた封入空間にフィル材が滴下供給され、減圧下における第二基板と貼り合わせに伴う基板同士の接近移動と、減圧から大気圧への圧力差に伴う圧縮で、封入空間に滴下された液晶をシールの隅々まで伸展させて封入空間の全体を隙間なく封止する。フィル材による封止後は多数の素子をダイシングにより個別に切り出すことが要望されている。
しかし、シールで囲まれた封入空間に配列保持される多数の素子は、各素子のサイズ違いや電極パッドの配置ズレなどの要因により、各素子毎に必要なフィル量が異なる。
特に発光テストなどの実施で検出した不良素子のみを取り外した場合には、シールで囲まれた封入空間に滴下するフィル材の滴下量に枚葉毎にバラツキを生じ易くなる。
このため、フィル材を多めに滴下するとシールが決壊し、これと逆にフィル材の滴下量が少ないと、封入空間内の有効封止領域にボイドが生じて、歩留まりの低下になるという問題があった。
Under such a situation, the filling time of the fill material (liquid crystal) was significantly shortened by using the dropping injection method described in Patent Document 1, and a large number were arranged by using the transfer method described in Patent Document 2. It is conceivable that cost can be reduced by collectively covering the filling material (resin) even for minute elements including micro LEDs.
In detail, after forming a seal so as to surround a large number of elements arrayed and held on the first substrate, a filling material is dropped and supplied into an enclosed space surrounded by the seal, and is bonded to the second substrate under reduced pressure. The liquid crystal dripped into the enclosed space is extended to every corner of the seal by the close movement of the substrates accompanying each other and the compression caused by the pressure difference from the reduced pressure to the atmospheric pressure, and the entire enclosed space is sealed without any gap. After sealing with a fill material, it is desired to individually cut out a large number of elements by dicing.
However, in many elements arrayed and held in the enclosed space surrounded by the seal, the required fill amount differs for each element due to factors such as the size difference of each element and the displacement of the electrode pads.
In particular, when only the defective element detected by performing a light emission test or the like is removed, the drop amount of the fill material dropped in the enclosed space surrounded by the seal tends to vary from sheet to sheet.
For this reason, if a large amount of the filling material is dropped, the seal will be broken. Conversely, if the dropping amount of the filling material is small, voids will occur in the effective sealing area in the enclosed space, resulting in a decrease in yield. there were.

このような課題を解決するために本発明に係る貼合デバイスの貼り合わせ装置は、複数の素子が配列された第一基板又は前記第一基板と対向する第二基板のいずれか一方か若しくは両方に前記複数の素子を囲んで設けられるシールと、前記シールで囲まれた封入空間に所定量のフィル材を供給する定量吐出部と、減圧下における前記第一基板及び前記第二基板の相対的な接近移動により前記封入空間内の前記フィル材を伸展させる駆動部と、前記定量吐出部及び前記駆動部を作動制御する制御部と、を備え、前記シールは、前記封入空間内において前記複数の素子の有効封止領域を囲むように設けられるダム部と、前記ダム部の一部に開口して前記第一基板及び前記第二基板の接近移動により進展した前記フィル材が通過するように設けられる流出口と、前記ダム部の外側に配置されて前記有効封止領域と前記流出口を介して連通するように設けられる漏洩流路と、を有し、前記制御部は、前記封入空間に供給した前記フィル材が、前記第一基板及び前記第二基板の接近移動により前記ダム部の隅々まで伸展するとともに、前記有効封止領域から前記流出口を通って溢れ出し、且つ少なくとも前記流出口の通過時において開口する前記漏洩流路へ流入するように制御されることを特徴とする。
さらに、このような課題を解決するために本発明に係る貼合デバイスの貼り合わせ方法は、複数の素子が配列された第一基板又は前記第一基板と対向する第二基板のいずれか一方か若しくは両方にシールが前記複数の素子を囲んで設けられるシール作成工程と、前記シールで囲まれた封入空間に所定量のフィル材を供給するフィル供給工程と、減圧下における前記第一基板及び前記第二基板の相対的な接近移動により前記封入空間内の前記フィル材を伸展させる圧縮工程と、を含み、前記シールは、前記封入空間内において前記複数の素子の有効封止領域を囲むように設けられるダム部と、前記ダム部の一部に開口して前記第一基板及び前記第二基板の接近移動により進展した前記フィル材が通過するように設けられる流出口と、前記ダム部の外側に配置されて前記有効封止領域と前記流出口を介して連通するように設けられる漏洩流路と、を有し、前記圧縮工程では、前記封入空間に供給された前記フィル材を、前記第一基板及び前記第二基板の接近移動により前記ダム部の隅々まで伸展させるとともに、前記有効封止領域から前記流出口を通って溢れ出し、且つ少なくとも前記流出口の通過時において開口する前記漏洩流路へ流入させることを特徴とする。
また、このような課題を解決するために本発明に係る貼合デバイスは、複数の素子が配列された第一基板又は前記第一基板と対向する第二基板のいずれか一方か若しくは両方に前記複数の素子を囲んでシールが設けられ、前記シールで囲まれた封入空間に供給した所定量のフィル材が伸展して前記複数の素子を封止するように貼り合わされた貼合デバイスであって、前記シールは、前記封入空間内において前記複数の素子の有効封止領域を囲んで配置され、前記封入空間内の前記フィル材が隅々まで伸展するように設けられるダム部と、前記ダム部の一部に開口され、前記ダム部の隅々まで伸展した前記フィル材が通過するように設けられる流出口と、前記ダム部の外側に前記有効封止領域と前記流出口を介して連通するように配置され、少なくとも前記フィル材の前記流出口の通過時に開口しており、前記流出口を通って前記有効封止領域から溢れ出した前記フィル材が流入するように設けられる漏洩流路と、を有することを特徴とする。
In order to solve such a problem, the bonding device of the bonding device according to the present invention is one or both of a first substrate on which a plurality of elements are arranged or a second substrate facing the first substrate, or both. A seal that surrounds the plurality of elements, a fixed-quantity discharge unit that supplies a predetermined amount of fill material to the enclosed space surrounded by the seal, and a relative amount of the first substrate and the second substrate under reduced pressure. A drive unit that extends the fill material in the enclosed space by various close movements, and a control unit that controls the operation of the constant-volume discharge unit and the drive unit, and the seal includes the plurality of seals in the enclosed space. A dam portion provided so as to surround an effective sealing region of the element, and provided so as to pass through the fill material which is opened in a part of the dam portion and which has progressed due to the close movement of the first substrate and the second substrate. And a leakage flow path that is provided outside the dam portion and is provided so as to communicate with the effective sealing region through the outflow port. supplying the said fill material, with, extending to every corner of the dam portion by the approach movement of the first substrate and the second substrate, and overflows from the effective sealing area through the outlet, and at least the It is characterized in that it is controlled so as to flow into the leak flow path that opens when passing through the outflow port .
Furthermore, in order to solve such a problem, the bonding method for a bonding device according to the present invention is one of a first substrate on which a plurality of elements are arranged or a second substrate facing the first substrate. Alternatively, a seal forming step in which a seal is provided to surround the plurality of elements on both sides, a fill supplying step of supplying a predetermined amount of a fill material to an enclosed space surrounded by the seal, the first substrate and the A compression step of extending the fill material in the enclosed space by relative movement of a second substrate, wherein the seal surrounds an effective sealing area of the plurality of elements in the enclosed space. A dam portion provided, an outlet opening provided in a part of the dam portion so that the fill material developed by the approach movement of the first substrate and the second substrate passes, and an outside of the dam portion anda leakage flow path that is provided so as to communicate through the outlet port and the effective sealing area is located, said at compression step, the fill material supplied to the enclosed space, said first causes stretched throughout the dam portion by the approach movement of the first substrate and the second substrate, the effective from the sealing region through the outlet by overflow, and an opening at least at the time of passage of the outlet the It is characterized in that it is made to flow into the leakage channel.
Further, in order to solve such a problem, the bonding device according to the present invention, the first substrate on which a plurality of elements are arranged or the second substrate facing the first substrate, either one or both A bonding device in which a seal is provided so as to surround a plurality of elements, and a predetermined amount of a filler material supplied to an enclosed space surrounded by the seal extends and is bonded so as to seal the plurality of elements. The dam portion is disposed so as to surround an effective sealing region of the plurality of elements in the enclosed space, and a dam portion provided so that the fill material in the enclosed space extends to every corner, and the dam portion. is opened in a part of and communicates through an outlet of the fill material which is extended to all corners of the dam portion is provided so as to pass through, the outlet port and the effective sealing area on the outer side of the dam portion are arranged to, at least said is open during the passage of the outlet of the fill material, the outlet of the leakage flow path which is provided so as to enter the fill material flow overflowing from the effective sealing area through And are included.

本発明の実施形態(第一実施形態)に係る貼合デバイスの貼り合わせ装置及び貼り合わせ方法の全体構成を示す説明図であり、(a)がフィル材の供給時における貼合デバイスの横断平面図、(b)が同部分拡大した縦断正面図、(c)がフィル材の伸展開始時における貼合デバイスの横断平面図、(d)が同部分拡大した縦断正面図、(e)がフィル材の伸展終了時における貼合デバイスの横断平面図、(f)が同部分拡大した縦断正面図である。It is explanatory drawing which shows the whole bonding apparatus and bonding method of the bonding device which concerns on embodiment (1st embodiment) of this invention, (a) is a transverse plane of the bonding device at the time of supply of a fill material. Figure, (b) is a vertical sectional front view with the same portion enlarged, (c) is a cross-sectional plan view of the bonding device at the start of the expansion of the fill material, (d) is a vertical sectional front view with the same portion enlarged, (e) is a fill It is a cross-sectional top view of the bonding device at the time of the completion | finish of extension of the material, (f) is the longitudinal cross-sectional front view which expanded the same part. 第一実施形態の変形例を示す説明図であり、フィル材の伸展終了時における貼合デバイスの横断拡大平面図である。It is an explanatory view showing a modification of a first embodiment, and is a transverse expansion top view of a pasting device at the time of completion of extension of a fill material. 第一実施形態の変形例を示す説明図であり、(a)がフィル材の供給時における貼合デバイスの横断平面図、(b)がフィル材の伸展開始時における横断平面図、(c)がフィル材の伸展終了時における横断平面図である。It is explanatory drawing which shows the modification of 1st embodiment, (a) is a cross-sectional plan view of the bonding device at the time of supply of a fill material, (b) is a cross-sectional plan view at the time of extension start of a fill material, (c). FIG. 6 is a transverse plan view at the end of the extension of the fill material. 本発明の第二実施形態に係る貼合デバイスの貼り合わせ装置及び貼り合わせ方法の全体構成を示す説明図であり、(a)がフィル材の供給時における貼合デバイスの横断平面図、(b)が同部分拡大した縦断正面図、(c)がフィル材の伸展開始時における貼合デバイスの横断平面図、(d)が同部分拡大した縦断正面図、(e)がフィル材の伸展終了時における貼合デバイスの横断平面図、(f)が同部分拡大した縦断正面図である。It is explanatory drawing which shows the whole structure of the bonding apparatus and bonding method of the bonding device which concerns on 2nd embodiment of this invention, (a) is a transverse plane view of the bonding device at the time of supply of a fill material, (b) ) Is a longitudinally enlarged front view of the same portion, (c) is a cross-sectional plan view of the bonding device at the time of starting the expansion of the filling material, (d) is a longitudinally enlarged front view of the same portion, and (e) is the end of the expansion of the filling material. FIG. 4A is a cross-sectional plan view of the bonding device at the time, and FIG. 第二実施形態の変形例を示す説明図であり、フィル材の伸展終了時における貼合デバイスの横断拡大平面図である。It is an explanatory view showing a modification of a second embodiment, and is a transverse expansion top view of a pasting device at the time of completion of extension of a fill material. 本発明の第三実施形態に係る貼合デバイスの貼り合わせ装置及び貼り合わせ方法の全体構成を示す説明図であり、フィル材の伸展終了時における貼合デバイスの横断拡大平面図である。It is explanatory drawing which shows the whole bonding apparatus and bonding method of the bonding device which concerns on 3rd embodiment of this invention, Comprising: It is a transverse expansion plan view of the bonding device at the time of the completion | finish of extension of the fill material. 第三実施形態の変形例を示す説明図であり、フィル材の伸展終了時における貼合デバイスの横断拡大平面図である。It is explanatory drawing which shows the modification of 3rd embodiment, Comprising: It is a transverse expansion plan view of the bonding device at the time of the completion | finish of extension of the fill material. 本発明の第四実施形態に係る貼合デバイスの貼り合わせ装置及び貼り合わせ方法の変形例を示す説明図であり、(a)がフィル材の供給時における貼合デバイスの横断平面図、(b)がフィル材の伸展開始時における横断平面図、(c)がフィル材の伸展終了時における貼合デバイスの横断平面図である。It is explanatory drawing which shows the modified example of the bonding apparatus and bonding method of the bonding device which concern on 4th embodiment of this invention, (a) is a transverse plane view of the bonding device at the time of supply of a fill material, (b) 8A is a cross-sectional plan view at the start of extension of the fill material, and FIG. 8C is a cross-sectional plan view of the bonding device at the end of extension of the fill material. 第四実施形態の変形例を示す説明図であり、フィル材の伸展終了時における貼合デバイスの横断拡大平面図である。It is explanatory drawing which shows the modification of 4th embodiment, Comprising: It is a transverse expansion plan view of the bonding device at the time of the completion | finish of extension of the fill material.

以下、本発明の実施形態を図面に基づいて詳細に説明する。
本発明の実施形態に係る貼合デバイスAの貼り合わせ装置Bは、図1〜図9に示されるように、複数の素子Eが配列された第一基板1と第二基板2の間にフィル材Fを供給し、減圧下における第一基板1と第二基板2の接近移動により、フィル材Fが伸展して複数の素子Eを封止する貼合デバイス製造装置である。特に真空状態で第一基板1と第二基板2を相対的に接近移動して貼り合わせた後に、圧力差により第一基板1と第二基板2の間が所定のギャップまで均等に加圧されて無気泡の貼り合わせを行う真空貼り合わせ装置であることが好ましい。
詳しく説明すると、本発明の実施形態に係る貼合デバイスAの貼り合わせ装置Bは、第一基板1又は第二基板2のいずれか一方か若しくは両方に複数の素子Eを囲んで設けられるシール3と、シール3で囲まれた封入空間Sにフィル材Fを供給する定量吐出部4と、第一基板1及び第二基板2の接近移動により封入空間S内のフィル材Fを伸展させる駆動部5と、定量吐出部4及び駆動部5を作動制御する制御部6と、を主要な構成要素として備えている。
さらに第一基板1及び第二基板2が出し入れ自在に収容される真空チャンバーなどの変圧室Cと、第一基板1と第二基板2を外部空間(図示しない)から変圧室Cへ搬入する搬入部材(図示しない)と、フィル材Fによる複数の素子Eの封止が終了した貼合デバイスAを変圧室Cから外部空間へ搬出する搬出部材(図示しない)と、が備えられる。
なお、第一基板1と第二基板2は、通常上下方向へ対向するように配置される。図示例では、下方に第一基板1が配置され、第二基板2が上方に配置されている。ここで、第一基板1と第二基板2が対向する方向を以下「Z方向」という。Z方向と交差する第一基板1や第二基板2に沿った方向を以下「XY方向」という。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
As shown in FIGS. 1 to 9, the bonding apparatus B of the bonding device A according to the embodiment of the present invention is configured to fill a space between the first substrate 1 and the second substrate 2 on which a plurality of elements E are arranged. This is a bonding device manufacturing apparatus in which the material F is supplied and the fill material F is extended by the approach movement of the first substrate 1 and the second substrate 2 under reduced pressure to seal the plurality of elements E. In particular, after the first substrate 1 and the second substrate 2 are moved relatively close to each other in a vacuum state to bond them together, the pressure difference evenly presses between the first substrate 1 and the second substrate 2 to a predetermined gap. It is preferable that the device is a vacuum bonding device that bonds without air bubbles.
More specifically, the bonding apparatus B of the bonding device A according to the embodiment of the present invention includes a seal 3 provided on one or both of the first substrate 1 and the second substrate 2 surrounding a plurality of elements E. And a fixed amount discharge part 4 for supplying the fill material F to the enclosed space S surrounded by the seal 3, and a drive part for extending the fill material F in the enclosed space S by the approach movement of the first substrate 1 and the second substrate 2. 5 and a control unit 6 that controls the operation of the constant-volume discharge unit 4 and the drive unit 5 are provided as main components.
Further, a transformation chamber C such as a vacuum chamber in which the first substrate 1 and the second substrate 2 are housed so that they can be freely taken in and out, and a carry-in for bringing the first substrate 1 and the second substrate 2 into the transformation chamber C from an external space (not shown). A member (not shown) and a carry-out member (not shown) for carrying out the bonding device A from which the sealing of the plurality of elements E by the fill material F has been completed to the external space are provided.
The first substrate 1 and the second substrate 2 are usually arranged so as to face each other in the vertical direction. In the illustrated example, the first substrate 1 is arranged below and the second substrate 2 is arranged above. Here, the direction in which the first substrate 1 and the second substrate 2 face each other is hereinafter referred to as “Z direction”. Hereinafter, the direction along the first substrate 1 and the second substrate 2 which intersects the Z direction is referred to as “XY direction”.

複数の素子Eは、図1(a)〜(f)などに示されるように、それぞれが平滑な矩形(正方形及び長方形を含む角が直角の四辺形)の薄板状に形成された発光ダイオード(LED)やレーザダイオード(LD)などの半導体ダイオードなどである。半導体ダイオードの場合には、赤(Red)緑(Green)青(Blue)のチップLEDも含まれる。
複数の素子Eの具体例としては、主にマイクロLEDと呼ばれる50μm×50μm以下で厚みが50μm未満、詳しくは30μm×30μm以下で厚みが30μm未満、さらに詳しくは数十μm角で厚みが数十μm未満のLEDチップやLDチップなどが挙げられる。
また複数の素子Eの他の例としては、例えばミニLEDと呼ばれる100μm角前後のLEDチップや200〜300μm角などの一般的なLEDチップや、LDチップなどの一般的なサイズの半導体ダイオードを含むことも可能である。
一般的なチップの取扱いにおいて複数の素子Eは、シリコンなどの材料からなる素子形成用基板やウエハに、XY方向へ所定の周期で配列形成され、ダイシングなどの分断工程により配列状態を維持するようにそれぞれ分離される。この分離後に後述する第一基板1に転写されて実装工程に移行する。実装工程では、後述する第一基板1の表面1aに形成された電極パッド(図示しない)に対して複数の素子Eをそれぞれ配線接続して一体的に組み付けられる。
なお、図示例では説明のため、複数の素子Eの配列として、矩形の素子Eをすべて同じサイズに設定している。またその他の例として図示しないが、複数の素子Eの配列形状や素子Eのサイズを図示例以外に変更することも可能である。
As shown in FIGS. 1A to 1F and the like, each of the plurality of elements E is a light-emitting diode (a square or thin quadrilateral having a right angle including a rectangle) formed in a thin plate shape. It is a semiconductor diode such as an LED or a laser diode (LD). In the case of a semiconductor diode, a chip LED of red, green or blue is also included.
As a specific example of the plurality of elements E, mainly referred to as a micro LED, the thickness is 50 μm × 50 μm or less and the thickness is less than 50 μm, more specifically, the thickness is less than 30 μm × 30 μm, the thickness is less than 30 μm. Examples include LED chips and LD chips having a size of less than μm.
Other examples of the plurality of elements E include, for example, a LED chip of about 100 μm square called a mini LED, a general LED chip of 200 to 300 μm square, or a semiconductor diode of a general size such as an LD chip. It is also possible.
In general chip handling, a plurality of elements E are arrayed and formed on an element-forming substrate or wafer made of a material such as silicon in a predetermined cycle in the XY directions, and the array state is maintained by a dividing process such as dicing. Are separated into After this separation, it is transferred to the first substrate 1 to be described later and the mounting process is started. In the mounting step, a plurality of elements E are connected by wiring to electrode pads (not shown) formed on the surface 1a of the first substrate 1 which will be described later, and are integrally assembled.
In the illustrated example, for the sake of explanation, as the array of the plurality of elements E, the rectangular elements E are all set to the same size. Although not shown as another example, the array shape of the plurality of elements E and the size of the elements E can be changed to those other than the illustrated example.

貼合デバイスAは、例えばマイクロLEDなどの微小素子が含まれる複数の素子Eを配列した発光ダイオードディスプレイ(LEDディスプレイ)などのような、構成部品が一体的に組み付けられた薄板状の構造体である。
第一基板1は、ガラスなどの硬質材料やそれに類似する剛性の高い材料で略矩形などの板状に形成され、その表面1aに複数の素子Eを所定の配列状態に配置するとともに実装したTFTなどの素子基板である。第一基板1は、平滑な表面1aから複数の素子Eを突出状に実装(配線接続)することで、後述する第二基板2との対向面が凹凸形状となる。
第二基板2は、ガラスなどの硬質材料やそれに類似する剛性の高い材料で略矩形などの薄板状に形成されたカバーガラスやタッチパネルなどであり、第一基板1に実装された複数の素子Eの表面保護を目的として貼り合わされる。
凹凸形状の第一基板1の表面1a及び複数の素子Eと第二基板2の表面2aとの間には、複数の素子Eを囲むように後述するシール3が設けられる。
貼合デバイスAの具体例として図1〜図9に示される場合には、平面形状が矩形(正方形)の第一基板1の表面1aに、複数の素子Eとして平面形状が矩形(正方形)の素子EをXY方向へ同数ずつ配列している。このため、複数(多数)の素子Eからなるチップ群の外側形状が、矩形(正方形)となるように配置される。複数(多数)の素子Eが実装された第一基板1に対しては、第一基板1と同じサイズで平面形状が矩形(正方形)の第二基板2がZ方向へ重ね合わされて貼り合わせを行っている。
さらに予め複数の素子Eが実装された第一基板1と第二基板2を搬入部材で変圧室Cへ別々に搬入している。
また、その他の例として図示しないが、第一基板1及び第二基板2の平面形状を正方形に代えて長方形や他の形状に変更することや、複数の素子Eの配列個数又は配列形状などを図示例以外の配列個数又は配列形状などに変更することも可能である。
The bonding device A is a thin plate-like structure in which components are integrally assembled, such as a light emitting diode display (LED display) in which a plurality of elements E including micro elements such as micro LEDs are arranged. is there.
The first substrate 1 is formed of a hard material such as glass or a material having a high rigidity similar to it in a plate shape such as a substantially rectangular shape, and a plurality of elements E are arranged and mounted on a surface 1a of the TFT in a predetermined arrangement state. Is the element substrate. By mounting (wiring connection) a plurality of elements E on the smooth surface 1a in a protruding shape, the first substrate 1 has an uneven surface on a surface facing a second substrate 2 to be described later.
The second substrate 2 is a cover glass, a touch panel, or the like formed of a hard material such as glass or a material having a high rigidity similar thereto such as a substantially rectangular plate, and a plurality of elements E mounted on the first substrate 1. It is attached for the purpose of surface protection.
A seal 3 described below is provided so as to surround the plurality of elements E between the surface 1a of the first substrate 1 and the plurality of elements E having the uneven shape and the surface 2a of the second substrate 2.
In the case where the bonding device A is shown in FIGS. 1 to 9 as a specific example, a plurality of elements E having a rectangular (square) planar shape are formed on the surface 1a of the first substrate 1 having a rectangular (square) planar shape. The same number of elements E are arranged in the XY directions. Therefore, the outer shape of the chip group including a plurality (a large number) of elements E is arranged to be a rectangle (square). For a first substrate 1 on which a plurality (a large number) of elements E are mounted, a second substrate 2 having the same size as the first substrate 1 and having a rectangular planar shape (square) is superposed in the Z direction and bonded. Is going.
Further, the first substrate 1 and the second substrate 2 on which a plurality of elements E are mounted in advance are separately carried into the variable pressure chamber C by a carrying-in member.
Although not shown as another example, the planar shape of the first substrate 1 and the second substrate 2 may be changed to a rectangular shape or another shape instead of a square shape, and the arrangement number or arrangement shape of the plurality of elements E may be changed. It is also possible to change the number of arrays or the array shape other than the illustrated example.

シール3は、第一基板1と第二基板2の接近移動に伴って潰れ変形可能な液状のダム材からなる。シール3は、第一基板1の表面1a又は第二基板2の表面2aのいずれか一方か、若しくは第一基板1の表面1a及び第二基板2の表面2aの両方に対して、複数の素子Eを囲む環状に塗布される。
シール3は、複数の素子Eの周囲に設けられるダム部3aと、ダム部3aの一部に開設される流出口3bと、を有している。
シール3を構成するダム材は、ディスペンサ描画法やスクリーン印刷法などを用いて、第一基板1の表面1a又は第二基板2の表面2aのいずれか一方か若しくは両方に対し、複数の素子Eを囲む環状に形成される。シール3のダム材の粘度は、後述するフィル材Fの粘度よりも高く設定されている。シール3のダム材の具体例としては、紫外線などの光エネルギーを吸収して重合が進行することにより硬化して接着性を発現するUV硬化性の光学透明樹脂(OCR)などの光硬化型接着剤や、熱硬化型接着剤や二液混合硬化型接着剤などが用いられる。
このため、複数の素子Eの周囲は、ダム部3aで包囲された封入空間Sとなり、封入空間Sには後述する定量吐出部4でフィル材Fが供給される。封入空間Sに供給されたフィル材Fは、後述する駆動部5による第一基板1と第二基板2の接近移動で伸展する。これにより、ダム部3aよりも内側で且つ配列された複数(多数)の素子Eからなるチップ群よりも外側の部位が、フィル材Fによる有効封止領域S1となる。つまり、ダム部3aは、封入空間S内において複数の素子Eの有効封止領域S1を囲むように設けられる。
またシール3のダム材に対し、スペーサボールなどのギャップ材(図示しない)を予め混入することで、貼り合わされた第一基板1の表面1aと第二基板2の表面2aとの間を所定のギャップにすることが好ましい。なお、その他に第一基板1の表面1a又は第二基板2の表面2aのいずれか一方か若しくは両方にギャップスペーサ(図示しない)を配置することで、貼り合わされた第一基板1の表面1aと第二基板2の表面2aとの間を所定のギャップにすることも可能である。
さらに第一基板1の表面1aに対するシール3の形成は、変圧室Cへの搬入後に行うことも可能であるが、変圧室Cの内部構造が複雑化するため、変圧室Cへの搬入前に行うことが好ましい。
The seal 3 is made of a liquid dam material that can be crushed and deformed as the first substrate 1 and the second substrate 2 move closer to each other. The seal 3 has a plurality of elements for either the surface 1a of the first substrate 1 or the surface 2a of the second substrate 2, or both the surface 1a of the first substrate 1 and the surface 2a of the second substrate 2. It is applied in a ring around E.
The seal 3 has a dam portion 3a provided around the plurality of elements E and an outlet 3b opened in a part of the dam portion 3a.
The dam material forming the seal 3 is formed by a plurality of elements E for one or both of the surface 1a of the first substrate 1 and the surface 2a of the second substrate 2 by using a dispenser drawing method or a screen printing method. It is formed in a ring shape surrounding the. The viscosity of the dam material of the seal 3 is set higher than the viscosity of the fill material F described later. A specific example of the dam material of the seal 3 is a photo-curable adhesive such as a UV-curable optical transparent resin (OCR) which is cured by absorbing light energy such as ultraviolet rays and is polymerized to develop adhesiveness. Agents, thermosetting adhesives, two-component mixed curing adhesives, and the like are used.
For this reason, the periphery of the plurality of elements E becomes the enclosed space S surrounded by the dam portion 3a, and the filled material F is supplied to the enclosed space S by the fixed amount discharge unit 4 described later. The fill material F supplied to the enclosed space S is expanded by the approach movement of the first substrate 1 and the second substrate 2 by the driving unit 5 described later. As a result, a portion inside the dam portion 3a and outside a chip group including a plurality (a large number) of elements E arranged in the dam portion 3a becomes an effective sealing region S1 with the fill material F. That is, the dam portion 3a is provided so as to surround the effective sealing region S1 of the plurality of elements E in the enclosed space S.
In addition, a gap material (not shown) such as a spacer ball is mixed in advance with the dam material of the seal 3 so that a predetermined distance is provided between the surface 1a of the first substrate 1 and the surface 2a of the second substrate 2 that are bonded together. It is preferable to make a gap. In addition, by disposing a gap spacer (not shown) on either one or both of the surface 1a of the first substrate 1 and the surface 2a of the second substrate 2, the surface 1a of the bonded first substrate 1 and It is also possible to form a predetermined gap between the surface 2 a of the second substrate 2.
Further, the formation of the seal 3 on the surface 1a of the first substrate 1 can be performed after loading into the variable pressure chamber C, but since the internal structure of the variable pressure chamber C becomes complicated, before the loading into the variable pressure chamber C. It is preferable to carry out.

シール3を構成するダム部3a及び流出口3bの具体例として図1〜図9に示される場合には、第一基板1の表面1aに対しダム部3aが、配列された複数(多数)の素子Eからなるチップ群よりも外側を囲んだ矩形(正方形)の額縁状に形成されている。ダム部3aの角部分には、流出口3bを四つ開設している。
シール3の外側には、ダミーシール3′がダム部3aを囲む環状に設けられている。ダミーシール3′は、内側のシール3との間を真空状態又は真空に近い減圧状態に保持することにより、内側のダム部3aや漏洩流路31の形状が保護される。
また、その他の例として図示しないが、第一基板1の表面1aに代えて第二基板2の表面2aや第一基板1の表面1a及び第二基板2の表面2aの両方にシール3のダム部3aや流出口3bを形成することも可能である。さらに、シール3のダム部3aを正方形に代えて長方形や他の形状に変更することや、ダミーシール3′の形状を図示例以外に変更することや、ダミーシール3′を不設置するなどの変更も可能である。
1 to 9 as specific examples of the dam portion 3a and the outflow port 3b that form the seal 3, a plurality (a large number) of dam portions 3a arranged on the surface 1a of the first substrate 1 are arranged. It is formed in a rectangular (square) frame shape surrounding the outside of the chip group including the element E. Four outlets 3b are opened at the corners of the dam 3a.
On the outside of the seal 3, a dummy seal 3'is provided in an annular shape surrounding the dam portion 3a. The dummy seal 3 ′ is kept in a vacuum state or a reduced pressure state close to a vacuum with the inner seal 3 to protect the shapes of the inner dam portion 3 a and the leakage flow passage 31.
Although not shown as another example, the dam of the seal 3 is provided on the surface 2a of the second substrate 2 or both the surface 1a of the first substrate 1 and the surface 2a of the second substrate 2 instead of the surface 1a of the first substrate 1. It is also possible to form the part 3a and the outflow port 3b. Further, the dam portion 3a of the seal 3 may be changed to a rectangle or another shape instead of a square, the shape of the dummy seal 3'may be changed to a shape other than the illustrated example, or the dummy seal 3'may be omitted. It can be changed.

これに加えてにシール3は、ダム部3aの一部に流出口3bを介して封入空間Sや有効封止領域S1と連通するように設けられる漏洩流路31を有している。
漏洩流路31は、封入空間Sにおいて後述する駆動部5で第一基板1と第二基板2の接近移動により伸展したフィル材Fの伸展最終位置に設けられる。すなわち漏洩流路31は、後述する定量吐出部4で供給されるフィル材Fの供給位置から最も離れた位置に配置され、第一基板1と第二基板2の接近移動に伴って伸展したフィル材Fが、最終的に漏洩流路31に流れ込むように構成されている。
漏洩流路31には、常時開口している開放口32や、常時閉鎖した閉鎖蓋33や、シール3の潰れ変形に伴って閉鎖する圧壊蓋34を設けることが好ましい。
開放口32や閉鎖蓋33や圧壊蓋34の設置箇所としては、漏洩流路31においてフィル材Fの流入方向途中に配置することが望ましい。詳しくは漏洩流路31においてフィル材Fの流入方向先端側に開放口32や閉鎖蓋33や圧壊蓋34を配置することが好ましい。
In addition to this, the seal 3 has a leakage flow path 31 provided in a part of the dam portion 3a so as to communicate with the enclosed space S and the effective sealing region S1 via the outflow port 3b.
The leakage flow path 31 is provided at the final extension position of the fill material F extended by the approaching movement of the first substrate 1 and the second substrate 2 in the enclosed space S by the drive unit 5 described later. That is, the leakage flow path 31 is disposed at a position farthest from the supply position of the fill material F supplied by the constant-quantity discharge unit 4, which will be described later, and is a fill film extended as the first substrate 1 and the second substrate 2 move closer to each other. The material F is configured so as to finally flow into the leakage channel 31.
The leak passage 31 is preferably provided with an opening 32 that is always open, a closing lid 33 that is always closed, and a crushing lid 34 that closes when the seal 3 is crushed and deformed.
It is desirable that the opening 32, the closing lid 33, and the crushing lid 34 are installed in the leak passage 31 in the middle of the inflow direction of the fill material F. Specifically, it is preferable to arrange the opening 32, the closing lid 33, and the crushing lid 34 on the front end side in the inflow direction of the fill material F in the leakage channel 31.

漏洩流路31の一例として図1(a)〜(f),図2及び図3(a)〜(c)に示される例では、矩形(正方形)のダム部3aの角部分から放射状に突出して、流出口3bよりXY方向へ流れ出る第一漏洩流路31aを形成している。
漏洩流路31の他の例として図4(a)〜(f),図5,図8(a)〜(c)に示される例では、矩形(正方形)のダム部3aの角部分からダム部3aの四辺に沿って、流出口3bより複数方向(X方向及びY方向)へ分岐して流れ出る第二漏洩流路31bを形成している。
さらに図6,図7,図9に示される例では、矩形(正方形)のダム部3aの角部分からダム部3aの対向する二辺に沿って、流出口3bより一方向(X方向又はY方向)のみへ流れ出る第三漏洩流路31cを形成している。
また、その他の例として図示しないが、漏洩流路31として図示例以外の形状に変更することも可能である。
In the example shown in FIGS. 1A to 1F, FIG. 2 and FIGS. 3A to 3C as an example of the leakage flow path 31, radial projections are formed from the corner portions of the rectangular (square) dam portion 3a. A first leakage flow path 31a flowing out in the XY directions from the outlet 3b.
As another example of the leakage flow path 31, in the example shown in FIGS. 4A to 4F, FIG. 5 and FIGS. 8A to 8C, the dam from the corner portion of the rectangular (square) dam portion 3 a is changed. Along the four sides of the portion 3a, a second leakage flow path 31b is formed which branches from the outlet 3b in a plurality of directions (X direction and Y direction) and flows out.
Further, in the example shown in FIGS. 6, 7, and 9, one direction (X direction or Y direction) from the outlet 3b is provided along two opposing sides of the dam portion 3a from the corner portion of the rectangular (square) dam portion 3a. Forming a third leakage flow path 31c that flows out only in the direction).
Although not shown as another example, it is also possible to change the shape of the leakage flow path 31 to a shape other than the illustrated example.

定量吐出部4は、シール3のダム部3aで囲まれた封入空間Sに向けて所定量のフィル材Fを供給する装置であり、例えばディスペンサなどで構成され、後述する制御部6により作動制御される。
フィル材Fは、シール3のダム材と相溶性に乏しい光学透明樹脂(OCR)などの光硬化型接着剤が用いられる。フィル材Fの粘度は、シール3のダム材に比べて低粘度の液状に設定されている。
定量吐出部4としては、特許第3747807号公報(特許文献1)などに記載の滴下注入法(ODF工法)を用いることが好ましい。滴下注入法とは、封入空間Sの中央部分に所定量のフィル材Fを滴下した後、後述する駆動部5による第一基板1と第二基板2の接近移動でフィル材Fをシール3の隅々まで拡散伸展させて充填する。
このため、定量吐出部4からフィル材Fの供給量(滴下量)は、後述する駆動部5によって第一基板1と第二基板2の貼り合わせが終了した時における封入空間Sの体積よりも若干多く設定される。詳しく説明すると、フィル材Fの供給量(滴下量)は、漏洩流路31の開放口32や閉鎖蓋33や圧壊蓋34がそれぞれ構造的に許容できる体積を基準としている。
また定量吐出部4は、変圧室C内に設置され、変圧室Cへ搬入された第一基板1を移動不能に保持するとともに、大気雰囲気APの状態で定量吐出部4から封入空間Sに向けフィル材Fの供給を行うことも可能である。
The fixed amount discharge part 4 is a device that supplies a predetermined amount of the fill material F toward the enclosed space S surrounded by the dam part 3a of the seal 3, and is configured by, for example, a dispenser or the like, and its operation is controlled by the control part 6 described later. To be done.
As the fill material F, a photo-curable adhesive agent such as an optical transparent resin (OCR) having poor compatibility with the dam material of the seal 3 is used. The viscosity of the fill material F is set to a liquid having a lower viscosity than the dam material of the seal 3.
It is preferable to use the drop injection method (ODF method) described in Japanese Patent No. 3747807 (Patent Document 1) or the like as the constant-quantity discharge unit 4. In the drop injection method, a predetermined amount of the fill material F is dropped in the central portion of the enclosed space S, and then the drive unit 5 moves the first substrate 1 and the second substrate 2 closer to each other to seal the fill material F to the seal 3. Fill every corner by spreading and spreading.
For this reason, the supply amount (dropping amount) of the fill material F from the fixed amount discharge unit 4 is larger than the volume of the enclosed space S when the bonding of the first substrate 1 and the second substrate 2 is completed by the driving unit 5 described later. It is set a little more. More specifically, the supply amount (dripping amount) of the fill material F is based on the volume that the open port 32, the closing lid 33, and the crushing lid 34 of the leakage flow path 31 can structurally allow.
Further, the fixed amount discharge part 4 is installed in the variable pressure chamber C, holds the first substrate 1 carried into the variable pressure chamber C immovably, and directs the fixed amount discharge part 4 from the fixed amount discharge part 4 to the enclosed space S in the atmosphere AP. It is also possible to supply the fill material F.

定量吐出部4の一例として図1(a)〜(f)などに示される場合には、定量吐出部4から封入空間SのXY方向の中心位置のみに向けフィル材Fを滴下して、比較的に大きな点状(概ね半球形状)に充填する単点滴下の例である。
また定量吐出部4の他の例として図4(a)〜(f)に示される場合には、定量吐出部4から封入空間Sの複数位置(図示例では四ヶ所)に向けフィル材Fを所定間隔毎に滴下して、比較的に小さな点状(概ね半球形状)に充填する多点滴下の例である。
これにより、図1(a)〜(f)などの単点滴下だけでなく、図4(a)〜(f)の多点滴下も同様に、後述する駆動部5による第一基板1と第二基板2の接近移動でフィル材Fが滴下位置からXY方向へ放射状に拡散伸展することに変わりがない。フィル材Fの伸展は、図1(c)(e)などや図4(c)(e)に示されるように、シール3の隅々(ダム部3aの角部分)への到達が遅れることになる。
なお、それ以外の定量吐出部4の変形例として図示しないが、図1(a)〜(f)などの単点滴下を多点滴下に変更することや、図4(a)〜(f)の多点滴下を単点滴下に変更することや、多点滴下における滴下位置を図示例以外の二箇所,三箇所,五箇所以上に変更することも可能である。
In the case shown in FIGS. 1A to 1F, etc. as an example of the fixed amount discharge part 4, the filler material F is dropped from the fixed amount discharge part 4 only to the center position of the enclosed space S in the XY direction and compared. This is an example of a single-point dropping in which a relatively large dot shape (generally a hemispherical shape) is filled.
4A to 4F as another example of the fixed amount discharge part 4, the fill material F is directed from the fixed amount discharge part 4 to a plurality of positions (four positions in the illustrated example) of the enclosed space S. This is an example of multi-point dropping in which droplets are dropped at predetermined intervals and are filled in relatively small dots (generally hemispherical shape).
Accordingly, not only single-point dropping as shown in FIGS. 1A to 1F but also multi-point dropping as shown in FIGS. As the two substrates 2 move closer to each other, the fill material F remains diffused and extended radially from the dropping position in the XY directions. As for the extension of the fill material F, as shown in FIGS. 1 (c) and (e) and FIGS. 4 (c) and 4 (e), the arrival at the corners of the seal 3 (corners of the dam portion 3a) is delayed. become.
Although not shown as a modified example of the fixed-quantity discharge part 4 other than that, it is possible to change from single-point dropping to multi-point dropping in FIGS. 1 (a) to 1 (f), and to FIGS. 4 (a) to 4 (f). It is also possible to change the multi-point dropping to the single-point dropping and to change the dropping positions in the multi-point dropping to two places, three places, five places or more other than the illustrated example.

駆動部5は、封入空間Sに供給したフィル材Fが伸展するように第一基板1と第二基板2を保持して接近移動させる機構である。駆動部5は、第一基板1又は第二基板2のいずれか一方か、若しくは第一基板1及び第二基板2の両方を相対的に接近移動させる接離用駆動源51を有している。
接離用駆動源51は、Z方向へ往復動可能なアクチュエーターなどで構成され、後述する制御部6により作動制御される。接離用駆動源51の制御例としては、定量吐出部4からのフィル材Fの供給後に、第一基板1と第二基板2の相対的な接近移動を開始し、第一基板1と第二基板2の間が所定幅になるまで加圧する。第一基板1と第二基板2の間が所定幅に到達した後は、加圧を開放して初期状態に戻る。
さらに駆動部5としては、変圧室C内を大気雰囲気APから所定真空度の減圧雰囲気DPに調整する室圧調整源(図示しない)が含まれる。
室圧調整源は、真空ポンプなどで構成され、後述する制御部6により、定量吐出部4による封入空間Sへのフィル材Fの供給後に、変圧室C内を減圧雰囲気DPまで減圧し、接離用駆動源51による加圧解放後は大気雰囲気APに戻すように作動制御される。この圧力差により第一基板1と第二基板2の間が所定のギャップまで均等に加圧される。
The drive unit 5 is a mechanism that holds and moves the first substrate 1 and the second substrate 2 toward each other so that the fill material F supplied to the enclosed space S extends. The drive unit 5 includes a contact / separation drive source 51 that relatively moves either the first substrate 1 or the second substrate 2 or both the first substrate 1 and the second substrate 2. ..
The contact / separation drive source 51 is composed of an actuator or the like that can reciprocate in the Z direction, and its operation is controlled by the controller 6 described later. As an example of the control of the contact / separation drive source 51, after the filling material F is supplied from the constant amount discharge part 4, relative movement of the first substrate 1 and the second substrate 2 is started, and the first substrate 1 and the second substrate 2 are moved. Pressure is applied until the space between the two substrates 2 becomes a predetermined width. After reaching the predetermined width between the first substrate 1 and the second substrate 2, the pressure is released to return to the initial state.
Further, the drive unit 5 includes a room pressure adjusting source (not shown) for adjusting the inside of the variable pressure chamber C from the air atmosphere AP to the depressurized atmosphere DP having a predetermined vacuum degree.
The chamber pressure adjusting source is configured by a vacuum pump or the like, and after the control unit 6 described later supplies the fill material F to the enclosed space S by the constant amount discharge unit 4, the pressure inside the variable pressure chamber C is reduced to the depressurized atmosphere DP, and the contact is made. After release of the pressure by the separation drive source 51, the operation is controlled to return to the atmospheric atmosphere AP. Due to this pressure difference, the space between the first substrate 1 and the second substrate 2 is evenly pressed up to a predetermined gap.

制御部6は、定量吐出部4や駆動部5(接離用駆動源51,室圧調整源)とそれぞれ電気的に接続するコントローラーである。
このコントローラーは、それ以外にも変圧室Cの出し入れ口(図示しない)の開閉用駆動源(図示しない),搬入部材や搬出部材の駆動源(図示しない)などとも電気的に接続している。
制御部6となるコントローラーは、その制御回路(図示しない)に予め設定されたプログラムに従って、予め設定されたタイミングで順次それぞれ作動制御している。
The control unit 6 is a controller that is electrically connected to the fixed-quantity discharge unit 4 and the drive unit 5 (contact / separation drive source 51, room pressure adjustment source).
In addition to this, the controller is electrically connected to a drive source (not shown) for opening / closing an inlet / outlet (not shown) of the variable pressure chamber C, a drive source (not shown) for the carry-in member and the carry-out member, and the like.
The controller serving as the control unit 6 sequentially controls the operation at preset timings according to a preset program in its control circuit (not shown).

そして、制御部6の制御回路に設定されたプログラムを、貼合デバイスAの貼り合わせ方法として説明する。
本発明の実施形態に係る貼合デバイスAの貼り合わせ方法は、複数の素子Eが配列された第一基板1又は第二基板2のいずれか一方か若しくは両方にシール3が複数の素子Eを囲んで設けられるシール作成工程と、シール3で囲まれた封入空間Sに所定量のフィル材Fを供給するフィル供給工程と、第一基板1及び第二基板2の相対的な接近移動で封入空間S内のフィル材Fを伸展させる圧縮工程と、を主要な工程として含んでいる。
フィル供給工程では、図1(a)(b)などに示されるように、定量吐出部4の作動によりフィル材Fが、第一基板1と第二基板2の貼り合わせ終了時における封入空間Sの体積よりも若干多く供給(滴下)される。
圧縮工程では、先ず図1(c)(d)などに示されるように、室圧調整源の作動により変圧室C内が定真空度の減圧雰囲気DPの減圧状態で、接離用駆動源51の作動により、第一基板1と第二基板2を相対的に接近移動させて、第一基板1と第二基板2の間が所定幅になるまでZ方向へ加圧する。第一基板1と第二基板2の間が所定幅に到達した後は、接離用駆動源51による加圧を開放する。これに続いて図1(e)(f)などに示されるように、室圧調整源の作動により、減圧雰囲気DPから大気雰囲気APに戻す。この圧力差で第一基板1と第二基板2の間が所定のギャップまで均等に加圧される。
圧縮工程の後工程としては、シール3と共にフィル材FがUVなどで硬化され、第一基板1と第二基板2の間を所定のギャップに保持した状態で、第一基板1と第二基板2の貼り合わせが終了して貼合デバイスAとなる。完成した貼合デバイスAは、搬出後にダイシングなどにより素子E毎に分離されて使用に供される。
Then, the program set in the control circuit of the control unit 6 will be described as a bonding method of the bonding device A.
In the bonding method for the bonding device A according to the embodiment of the present invention, the seal 3 is provided on the one or both of the first substrate 1 and the second substrate 2 on which the plurality of elements E are arranged. Sealing is provided by enclosing, a fill supplying step of supplying a predetermined amount of fill material F to the enclosed space S surrounded by the seal 3, and relative sealing movement of the first substrate 1 and the second substrate 2. The main process includes a compression process of expanding the fill material F in the space S.
In the fill supply step, as shown in FIGS. 1A and 1B, etc., the fill material F is filled into the enclosed space S at the end of the bonding of the first substrate 1 and the second substrate 2 by the operation of the fixed amount discharge part 4. It is supplied (dropped) a little more than the volume of.
In the compression process, first, as shown in FIGS. 1C and 1D, the contact-separation drive source 51 is operated in a depressurized state of the depressurized atmosphere DP having a constant vacuum degree in the variable pressure chamber C by the operation of the chamber pressure adjusting source. The first substrate 1 and the second substrate 2 are moved relative to each other by the operation of, and pressure is applied in the Z direction until the space between the first substrate 1 and the second substrate 2 becomes a predetermined width. After the space between the first substrate 1 and the second substrate 2 reaches a predetermined width, the pressure from the contact / separation drive source 51 is released. Subsequently, as shown in FIGS. 1E and 1F, the reduced pressure atmosphere DP is returned to the atmospheric atmosphere AP by the operation of the room pressure adjusting source. Due to this pressure difference, the space between the first substrate 1 and the second substrate 2 is evenly pressed up to a predetermined gap.
As a subsequent step of the compressing step, the first substrate 1 and the second substrate are kept in a state where the filler 3 is cured by UV or the like together with the seal 3 and the first substrate 1 and the second substrate 2 are held in a predetermined gap. The pasting of No. 2 is completed and the pasting device A is obtained. The completed bonding device A is separated for each element E by dicing or the like after being carried out and is used.

ところで、第一基板1に実装される複数の素子Eは、第一基板1への転送前においてダイシングなどによる分断時に各素子Eの切断サイズに誤差が発生し易い。また各素子Eを形成する際に用いられる素子形成用基板やウエハの厚み誤差によって、各素子Eの厚みサイズに誤差が発生するおそれもある。さらに第一基板1への各素子Eの実装時においても第一基板1の表面1a(電極パッド)に対する各素子Eの配置ズレ(突出量の誤差)が発生し易い。
このような各素子Eにおける切断サイズや厚みサイズの誤差や突出量の誤差は、例えばマイクロLEDなどの微小素子の場合には顕著な誤差となる。これに加え、実装後の発光テストなどの実施で発光不良と検出された素子Eが取り外される場合や、発光不良の素子Eを機能停止として残したま代替えの発光良好な素子を追加配備する場合もある。このため、複数の素子Eを実装した第一基板1では、複数の素子Eからなる凹凸形状が枚葉毎に異なってバラツキが発生し易く、第一基板1及び第二基板2の間隔(ギャップ)でも枚葉毎に異なってバラツキが発生し易く、これらのバラツキに伴って封入空間Sの体積も枚葉毎に変化してしまう。
ここで仮に、特開2002−328382号公報(特許文献1)などに記載のようにシールを環状に形成し、その四隅が閉塞された封入空間に対して所定量のフィル材が供給された場合には、下記のような問題がある。
複数の素子Eの実装状態が基板の枚葉毎に異なって封入空間Sの体積も変化するため、封入空間Sに対するフィル材の供給量が過剰であると、シールで閉塞された封入空間の内圧が過剰なフィル材で必要以上に高くなる。これにより、シールがフィル材で変形してしまい、シールのダム材をフィル材の粘度よりも高粘度に設定しても、シールがフィル材の伸展圧力に耐えられず決壊させるおそれがある。
これと逆にフィル材の供給量が僅かでも不足すると、フィル材がシールの隅々(四隅)へ到達する前にフィル材の伸展が終了して、封入空間内の有効封止領域にボイドが残ってしまう。
このような状況下で、シール3の決壊防止と有効封止領域S1のボイドVの発生防止を同時に達成することが要望されている。
By the way, in the plurality of elements E mounted on the first substrate 1, an error is likely to occur in the cut size of each element E when divided by dicing or the like before being transferred to the first substrate 1. Further, an error may occur in the thickness size of each element E due to an error in the thickness of the element forming substrate or wafer used when forming each element E. Furthermore, even when each element E is mounted on the first substrate 1, a positional deviation (error in the amount of protrusion) of each element E with respect to the surface 1a (electrode pad) of the first substrate 1 is likely to occur.
Such an error in the cut size or thickness of each element E or an error in the amount of protrusion becomes a remarkable error in the case of a micro element such as a micro LED. In addition to this, when the element E that has been detected as having a light emission failure by performing a light emission test after mounting is removed, or when an alternative element having a good light emission is additionally provided while leaving the element E having the light emission failure as a function stop is there. Therefore, in the first substrate 1 on which the plurality of elements E are mounted, the uneven shape formed by the plurality of elements E is likely to vary from one sheet to another, and variations easily occur. ), Variations are likely to occur for each sheet, and the volume of the enclosed space S also changes for each sheet due to these variations.
If, for example, a seal is formed in an annular shape as described in Japanese Patent Application Laid-Open No. 2002-328382 (Patent Document 1) and a predetermined amount of fill material is supplied to an enclosed space whose four corners are closed. Has the following problems.
Since the mounting state of the plurality of elements E is different for each sheet of the substrate and the volume of the enclosed space S is changed, if the supply amount of the fill material to the enclosed space S is excessive, the internal pressure of the enclosed space closed by the seal is increased. Will be higher than necessary with excess fill material. As a result, the seal is deformed by the fill material, and even if the dam material of the seal is set to have a viscosity higher than that of the fill material, the seal may not withstand the extension pressure of the fill material and may break.
On the contrary, if the supply amount of the fill material is insufficient even a little, the extension of the fill material is completed before the fill material reaches all the corners (four corners) of the seal, and voids are generated in the effective sealing area in the enclosed space. I will remain.
Under such circumstances, it is desired to simultaneously prevent the seal 3 from collapsing and prevent the void V from being generated in the effective sealing region S1.

次に、本発明の第一実施形態〜第四実施形態に係る貼合デバイスAの貼り合わせ装置Bと、それぞれの変形例を図1〜図9に基づいて説明する。
本発明の第一実施形態に係る漏洩流路31では、図1(a)〜(f)や図2や図3(a)〜(c)に示されるように、ダム部3aの角部分から放射状に突出する第一漏洩流路31aに対し、開放口32や閉鎖蓋33や圧壊蓋34が設けられたことを特徴としている。
図1(a)〜(f)に示される例では、第一漏洩流路31aにおいてフィル材Fの流入方向先端側(末端)に、常時開口した開放口32を形成している。
図1(c)(d)に示された圧縮初期では、接離用駆動源51による第一基板1と第二基板2の相対的な接近移動が行われ、図1(e)(f)に示された圧縮末期では、室圧調整源による減圧雰囲気DPから大気雰囲気APへの圧力差が生じる。これらによる第一基板1及び第二基板2のZ方向への圧縮で、フィル材Fが供給位置(滴下位置)からXY方向へ放射状に拡散伸展する。
これに伴って、封入空間S内のボイド(真空ボイド)Vとフィル材Fが、シール3のダム部3aの角部分に開設した流出口3bを通って第一漏洩流路31aへ流れ込む。これにより、フィル材FでボイドVを第一漏洩流路31aの開放口32から押し出し、有効封止領域S1の全体にはフィル材Fが充填される。
図2に示される例では、第一漏洩流路31aに常時閉鎖する閉鎖蓋33を形成した構成が、図1(a)〜(f)に示された例とは異なる。
図示例では、第一漏洩流路31aにおいてフィル材Fの流入方向先端側(末端)に、閉鎖蓋33が配置される。
これにより、図2に示された圧縮末期では、フィル材Fで第一漏洩流路31aに押し出されたボイドVが、閉鎖蓋33で閉鎖された流路中、図示例ではフィル材Fの流入方向先端側(末端)に残留する。しかし有効封止領域S1の全体には、フィル材Fが充填される。
図3(a)〜(c)に示される例では、第一漏洩流路31aにシール3の潰れ変形に伴って閉鎖する圧壊蓋34を形成した構成が、図1(a)〜(f)や図2に示された例とは異なる。
図示例では、第一漏洩流路31aにおいてフィル材Fの流入方向先端側(末端)に、圧壊蓋34が配置される。
これにより、図3(b)に示された第一基板1と第二基板2のZ方向への圧縮初期は、フィル材FでボイドVが第一漏洩流路31aから押し出される。しかし図3(c)に示された圧縮末期では、第一漏洩流路31aを構成するシール3の潰れ変形により接合して圧壊蓋34が閉鎖する。このため、第一漏洩流路31aに押し出されたボイドVは、残留する可能性がある。しかし有効封止領域S1の全体には、フィル材Fが充填される。
Next, a bonding apparatus B for the bonding device A according to the first to fourth embodiments of the present invention and respective modified examples will be described with reference to FIGS. 1 to 9.
In the leakage channel 31 according to the first embodiment of the present invention, as shown in FIGS. 1 (a) to 1 (f), FIG. 2 and FIGS. 3 (a) to 3 (c), from the corner portion of the dam portion 3a An opening 32, a closing lid 33, and a crushing lid 34 are provided for the first leakage flow path 31a that projects radially.
In the example shown in FIGS. 1A to 1F, the open port 32 that is always open is formed on the front end side (terminal end) in the inflow direction of the fill material F in the first leakage flow path 31a.
In the initial stage of compression shown in FIGS. 1C and 1D, the relative movement of the first substrate 1 and the second substrate 2 is performed by the contact / separation drive source 51, and FIGS. At the end of compression shown in (1), a pressure difference occurs from the reduced pressure atmosphere DP to the atmospheric atmosphere AP due to the room pressure adjusting source. By the compression of the first substrate 1 and the second substrate 2 in the Z direction by these, the filler material F is radially diffused and extended from the supply position (dropping position) in the XY directions.
Along with this, the voids (vacuum voids) V and the fill material F in the enclosed space S flow into the first leakage flow passage 31a through the outlets 3b formed at the corners of the dam portion 3a of the seal 3. As a result, the void V is extruded by the fill material F from the opening 32 of the first leakage flow path 31a, and the entire fillable area S1 is filled with the fill material F.
In the example shown in FIG. 2, the configuration in which the closing lid 33 that is always closed is formed in the first leakage flow path 31a is different from the example shown in FIGS. 1 (a) to 1 (f).
In the illustrated example, the closing lid 33 is arranged on the front end side (end) in the inflow direction of the fill material F in the first leakage flow path 31a.
As a result, at the end of compression shown in FIG. 2, the void V pushed out by the fill material F into the first leakage flow path 31a flows into the flow path closed by the closing lid 33, in the illustrated example, the flow of the fill material F. Remains on the tip side (end). However, the fill material F is filled in the entire effective sealing region S1.
In the example shown in FIGS. 3A to 3C, the configuration in which the crushing lid 34 that is closed along with the crush deformation of the seal 3 is formed in the first leakage flow channel 31a is configured as shown in FIGS. And the example shown in FIG.
In the illustrated example, the crush lid 34 is arranged on the front end side (end) in the inflow direction of the fill material F in the first leakage flow path 31a.
As a result, in the initial stage of compression of the first substrate 1 and the second substrate 2 in the Z direction shown in FIG. 3B, the void V is pushed out of the first leakage flow channel 31a by the fill material F. However, at the end of compression shown in FIG. 3C, the crushing lid 34 is closed by joining due to the crushing deformation of the seal 3 that constitutes the first leakage flow path 31a. Therefore, the void V extruded into the first leakage flow path 31a may remain. However, the fill material F is filled in the entire effective sealing region S1.

本発明の第二実施形態に係る漏洩流路31では、図4(a)〜(f)や図5などに示されるように、ダム部3aの四辺に沿って複数方向へ分岐して流れ出る第二漏洩流路31bに対し、開放口32や閉鎖蓋33や圧壊蓋34を設けた構成が、前述した第一実施形態とは異なり、それ以外の構成は第一実施形態と同じものである。
図4(a)〜(f)に示される例では、ダム部3aの四辺の外側に矩形の周囲提部3cが設けられ、ダム部3aと周囲提部3cの間に第二漏洩流路31bを形成している。隣り合う第二漏洩流路31b同士の連続箇所と対向した周囲提部3cの四辺中間部位が閉鎖蓋33となる。
これにより、図4(e)に示された圧縮末期では、フィル材Fで第二漏洩流路31bに押し出されたボイドVが、閉鎖蓋33で閉鎖されたフィル材Fの流入方向先端側(末端)に残留する。しかし有効封止領域S1の全体には、フィル材Fが充填される。
図5に示される例では、ダム部3aの角部分の外側に平面L字型の外提部3dを設け、ダム部3aと外提部3dの間に第二漏洩流路31bが形成されて、第二漏洩流路31bに圧壊蓋34を形成した構成が、図4(a)〜(f)に示された例とは異なる。
図示例では、第二漏洩流路31bにおいてフィル材Fの流入方向先端側(末端)に、圧壊蓋34が配置される。
これにより、図5に示された圧縮末期では、第二漏洩流路31bを構成するシール3の潰れ変形により圧壊蓋34が閉鎖して、第二漏洩流路31bに押し出されたボイドVが残留する可能性はある。しかし有効封止領域S1の全体には、フィル材Fが充填される。
また、その他の例として図示しないが、図5に示される圧壊蓋34に代えて開放口32や閉鎖蓋33を形成するなどの変更も可能である。
In the leakage flow path 31 according to the second embodiment of the present invention, as shown in FIGS. 4 (a) to 4 (f) and FIG. 5, etc., the leakage flow path 31 branches out in a plurality of directions along the four sides of the dam portion 3a and flows out. The configuration in which the opening 32, the closing lid 33, and the crushing lid 34 are provided for the two leakage flow paths 31b is different from the above-described first embodiment, and the other configurations are the same as those in the first embodiment.
In the example shown in FIGS. 4A to 4F, the rectangular surrounding basin portion 3c is provided outside the four sides of the dam portion 3a, and the second leakage channel 31b is provided between the dam portion 3a and the surrounding lantern portion 3c. Is formed. The closing lid 33 is an intermediate portion of the four sides of the peripheral support portion 3c facing the continuous portion of the adjacent second leakage flow paths 31b.
As a result, at the final stage of compression shown in FIG. 4E, the void V extruded by the fill material F into the second leakage flow path 31b is the front side of the fill material F closed in the closing lid 33 in the inflow direction ( Remains at the end). However, the fill material F is filled in the entire effective sealing region S1.
In the example shown in FIG. 5, the planar L-shaped outer feeding portion 3d is provided outside the corner portion of the dam portion 3a, and the second leakage flow path 31b is formed between the dam portion 3a and the outer feeding portion 3d. The configuration in which the crush lid 34 is formed in the second leakage flow path 31b is different from the example shown in FIGS. 4 (a) to 4 (f).
In the illustrated example, the crushing lid 34 is arranged on the front end side (terminal end) in the inflow direction of the fill material F in the second leakage flow path 31b.
As a result, at the final stage of compression shown in FIG. 5, the crushing deformation of the seal 3 forming the second leakage flow passage 31b closes the crush lid 34, and the void V pushed out to the second leakage flow passage 31b remains. There is a possibility. However, the fill material F is filled in the entire effective sealing region S1.
Although not shown as another example, it is also possible to make changes such as forming the opening 32 and the closing lid 33 in place of the crushing lid 34 shown in FIG.

本発明の第三実施形態に係る漏洩流路31では、図6や図7などに示されるように、ダム部3aの対向する二辺に沿って一方向のみへ流れ出る第三漏洩流路31cに対し、開放口32や閉鎖蓋33や圧壊蓋34を設けた構成が、前述した第一実施形態とは異なり、それ以外の構成は第一実施形態と同じものである。
図6に示される例では、ダム部3aにおいてX方向又はY方向へ対向する二辺の末端に亘って連続突堤部3eがそれぞれ設けられ、ダム部3aと連続突堤部3eの間に第三漏洩流路31cを形成している。隣り合う第三漏洩流路31c同士の連続箇所と対向した連続突堤部3eの四辺中間部位が閉鎖蓋33となる。
これにより、図6に示された圧縮末期では、フィル材Fで第三漏洩流路31cに押し出されたボイドVが、閉鎖蓋33で閉鎖されたフィル材Fの流入方向先端側(末端)に残留する。しかし有効封止領域S1の全体には、フィル材Fが充填される。
図7に示される例では、ダム部3aにおいてX方向又はY方向へ対向する二辺の末端に鉤型突堤部3fをそれぞれ設け、ダム部3aと鉤型突堤部3fの間に第三漏洩流路31cが形成されて、第三漏洩流路31cに圧壊蓋34を形成した構成が、図6に示された例とは異なる。
図示例では、第三漏洩流路31cにおいてフィル材Fの流入方向先端側(末端)に、圧壊蓋34が配置される。
これにより、図7に示された圧縮末期では、第三漏洩流路31cを構成するシール3の潰れ変形により圧壊蓋34が閉鎖して、第三漏洩流路31cに押し出されたボイドVは残留する可能性がある。しかし有効封止領域S1の全体には、フィル材Fが充填される。
また、その他の例として図示しないが、図7に示される圧壊蓋34に代えて開放口32や閉鎖蓋33を形成するなどの変更も可能である。
In the leakage flow passage 31 according to the third embodiment of the present invention, as shown in FIG. 6 and FIG. 7, the third leakage flow passage 31c flows out in only one direction along two opposing sides of the dam portion 3a. On the other hand, the configuration in which the opening 32, the closing lid 33, and the crushing lid 34 are provided is different from the first embodiment described above, and the other configurations are the same as those in the first embodiment.
In the example shown in FIG. 6, continuous dam portions 3e are provided over the ends of the two opposite sides in the dam portion 3a in the X direction or the Y direction, and the third leakage occurs between the dam portion 3a and the continuous dam portion 3e. The flow path 31c is formed. The closing lid 33 is formed at an intermediate portion on four sides of the continuous jetty portion 3e facing the continuous portion between the adjacent third leakage flow paths 31c.
As a result, in the final stage of compression shown in FIG. 6, the void V pushed out by the fill material F into the third leakage flow path 31c is directed toward the leading end side (end) of the fill material F closed by the closing lid 33. To remain. However, the fill material F is filled in the entire effective sealing region S1.
In the example shown in FIG. 7, a hook-shaped jetty portion 3f is provided at each end of two opposite sides in the dam portion 3a in the X direction or the Y direction, and the third leakage flow is provided between the dam portion 3a and the hook-shaped jetty portion 3f. The configuration in which the passage 31c is formed and the crush cover 34 is formed in the third leakage flow passage 31c is different from the example shown in FIG.
In the illustrated example, the crush lid 34 is arranged on the front end side (end) in the inflow direction of the fill material F in the third leakage flow path 31c.
As a result, in the final stage of compression shown in FIG. 7, the collapse lid 34 is closed due to the crushing deformation of the seal 3 constituting the third leakage flow passage 31c, and the void V pushed out to the third leakage flow passage 31c remains. there's a possibility that. However, the fill material F is filled in the entire effective sealing region S1.
Although not shown as another example, it is also possible to make changes such as forming the opening 32 and the closing lid 33 in place of the crushing lid 34 shown in FIG. 7.

本発明の第四実施形態に係る漏洩流路31では、図8(a)〜(c)や図9などに示されるように、シール3の潰れ変形に伴って漏洩流路31の略全体が閉鎖する圧壊蓋34を設けた構成が、前述した第一実施形態とは異なり、それ以外の構成は第一実施形態と同じものである。
図8(a)〜(c)に示される例では、ダム部3aの角部分の外側に平面L字型の外提部3dを設け、ダム部3aと外提部3dの間に第二漏洩流路31bが形成されて、第二漏洩流路31bの略全体に亘って圧壊蓋34を形成している。
これにより、図8(c)に示された圧縮末期では、第二漏洩流路31bを構成するシール3の潰れ変形により圧壊蓋34が閉鎖して、ボイドVは流出口3bから第二漏洩流路31bへ至る途中で残留する可能性がある。しかし有効封止領域S1の全体には、フィル材Fが充填される。
図9に示される例では、ダム部3aにおいてX方向又はY方向へ対向する二辺の末端に鉤型突堤部3fをそれぞれ設け、ダム部3aと鉤型突堤部3fの間に第三漏洩流路31cが形成されて、第三漏洩流路31cの略全体に亘って圧壊蓋34を形成した構成が、図8(a)〜(c)に示された例とは異なる。
これにより、図9に示された圧縮末期では、第三漏洩流路31cを構成するシール3の潰れ変形により圧壊蓋34が閉鎖して、ボイドVは流出口3bから第三漏洩流路31cへ至る途中で残留する可能性がある。しかし有効封止領域S1の全体には、フィル材Fが充填される。
また、その他の例として図示しないが、図3(a)〜(c)に示される第一漏洩流路31aの略全体に亘って圧壊蓋34を形成するなどの変更も可能である。
In the leakage flow channel 31 according to the fourth embodiment of the present invention, as shown in FIGS. 8A to 8C, 9 and the like, substantially the entire leakage flow channel 31 is accompanied by the crush deformation of the seal 3. The configuration in which the closing cover 34 is provided is different from that of the first embodiment described above, and the other configurations are the same as those of the first embodiment.
In the example shown in FIGS. 8A to 8C, the planar L-shaped outer feeding portion 3d is provided outside the corner portion of the dam portion 3a, and the second leakage occurs between the dam portion 3a and the outer feeding portion 3d. The flow path 31b is formed, and the crushing lid 34 is formed over substantially the entire second leakage flow path 31b.
As a result, at the end of compression shown in FIG. 8C, the collapse lid 34 is closed due to the crushing deformation of the seal 3 that constitutes the second leakage flow path 31b, and the void V becomes the second leakage flow from the outlet 3b. It may remain on the way to the road 31b. However, the fill material F is filled in the entire effective sealing region S1.
In the example shown in FIG. 9, hook-shaped jetty portions 3f are respectively provided at the ends of two sides facing each other in the X direction or the Y direction in the dam portion 3a, and the third leakage flow is provided between the dam portion 3a and the hook-shaped jetty portion 3f. The configuration in which the passage 31c is formed and the crush cover 34 is formed over substantially the entire third leakage passage 31c is different from the example shown in FIGS. 8 (a) to 8 (c).
As a result, in the final stage of compression shown in FIG. 9, the crushing lid 34 is closed due to the crushing deformation of the seal 3 that constitutes the third leakage flow passage 31c, and the void V flows from the outlet 3b to the third leakage flow passage 31c. May remain on the way. However, the fill material F is filled in the entire effective sealing region S1.
Although not shown as another example, a modification such as forming the crush lid 34 over substantially the entire first leakage flow path 31a shown in FIGS. 3A to 3C is also possible.

このような本発明の実施形態に係る貼合デバイスAの貼り合わせ装置B及び貼り合わせ方法によると、定量吐出部4から封入空間Sにフィル材Fを、第一基板1と第二基板2の貼り合わせ終了時における封入空間Sの体積よりも多めに供給することで、駆動部5による第一基板1及び第二基板2の相対的な接近移動に伴い、封入空間S内のフィル材Fがシール3のダム部3aの隅々まで伸展する。これに続き封入空間S内のフィル材Fが、複数の素子Eの有効封止領域S1から溢れ出て漏洩流路31に流入する。
このため、封入空間Sの内圧が過剰なフィル材Fで必要以上に高くならず、シール3のダム部3aにフィル材Fの過度な伸展圧力がかからない。これにより、封入空間S内の過剰なフィル材FやボイドVを漏洩流路31へ押し出して、有効封止領域S1の全体がフィル材Fで隙間なく満たされる。
したがって、封入空間Sに対するフィル材Fの供給量(滴下量)を多くしても、フィル材Fの伸展圧力でシール3のダム部3aが決壊せず、複数の素子Eの有効封止領域S1をフィル材Fより無気泡で封止することができる。
その結果、第一基板1に実装される複数の素子Eの切断サイズ誤差及び厚みサイズ誤差や検査後の取り外し又は追加などの変動要因によって、複数の素子Eからなる凹凸形状の枚葉毎の相異や、第一基板1及び第二基板2の間隔(ギャップ)における枚葉毎の相異が生じても、フィル材Fの必要供給量のバラツキを漏洩流路31で吸収でき、シール3のダム部3aの決壊防止と有効封止領域S1のボイドVの発生防止を同時に達成できる。
このため、高精度な貼合デバイスAを製造でき、歩留まりの向上が図れる。
According to the bonding apparatus B and the bonding method of the bonding device A according to the embodiment of the present invention as described above, the filling material F is filled in the enclosed space S from the constant-volume discharge unit 4, and the first substrate 1 and the second substrate 2 are combined. By supplying a larger amount than the volume of the enclosed space S at the end of the bonding, the fill material F in the enclosed space S is moved along with the relative movement of the first substrate 1 and the second substrate 2 by the driving unit 5. The seal 3 extends to every corner of the dam portion 3a. Following this, the fill material F in the enclosed space S overflows from the effective sealing region S1 of the plurality of elements E and flows into the leakage flow path 31.
Therefore, the internal pressure of the enclosed space S is not increased more than necessary by the excess fill material F, and the excessive extension pressure of the fill material F is not applied to the dam portion 3a of the seal 3. As a result, excess fill material F and voids V in the enclosed space S are pushed out to the leakage channel 31, and the entire effective sealing area S1 is filled with the fill material F without any gap.
Therefore, even if the supply amount (dropping amount) of the fill material F with respect to the enclosed space S is increased, the dam portion 3a of the seal 3 is not broken by the extension pressure of the fill material F, and the effective sealing area S1 of the plurality of elements E is reduced. Can be sealed from the fill material F without bubbles.
As a result, due to the variation factors such as the cutting size error and the thickness size error of the plurality of elements E mounted on the first substrate 1 and the removal or addition after the inspection, the phase of each uneven surface of the plurality of elements E is different. Even if there is a difference or a difference in the distance (gap) between the first substrate 1 and the second substrate 2 for each sheet, the leakage flow path 31 can absorb the variation in the required supply amount of the fill material F, and the seal 3 It is possible to simultaneously prevent the dam portion 3a from collapsing and prevent the generation of the void V in the effective sealing region S1.
Therefore, the bonding device A with high accuracy can be manufactured, and the yield can be improved.

特に図1(a)(c)(e)などに示されるように、漏洩流路31が開放口32を有することが好ましい。
この場合には、漏洩流路31においてフィル材Fの流入方向先端側に開放口32を配置することにより、封入空間S内の有効封止領域S1から溢れ出たフィル材FやボイドVが、封入空間S内から漏洩流路31に流入して開放口32に向け流動する。
このため、封入空間S内のボイドVを漏洩流路31の開放口32から押し出して、有効封止領域S1の全体がフィル材Fで満たされる。
したがって、簡単な流路構造でありながら封入空間S内のボイドVを開放口32から排出して有効封止領域S1にフィル材Fを確実に充填することができる。
その結果、より高精度な貼合デバイスAを製造でき、歩留まりの更なる向上が図れる。
In particular, as shown in FIGS. 1A, 1C, 1E, etc., it is preferable that the leakage flow path 31 has an opening 32.
In this case, by disposing the opening 32 on the tip side in the inflow direction of the fill material F in the leakage flow path 31, the fill material F and the void V overflowing from the effective sealing region S1 in the enclosed space S are It flows from the inside of the enclosed space S into the leakage flow path 31 and flows toward the opening 32.
Therefore, the void V in the enclosed space S is pushed out from the opening 32 of the leakage channel 31, and the entire effective sealing region S1 is filled with the fill material F.
Therefore, the void V in the enclosed space S can be discharged from the opening 32 and the effective sealing region S1 can be reliably filled with the fill material F with a simple flow path structure.
As a result, a more accurate bonding device A can be manufactured, and the yield can be further improved.

さらに図2などに示されるように、漏洩流路31が閉鎖蓋33を有することが好ましい。
この場合には、漏洩流路31においてフィル材Fの流入方向先端側に閉鎖蓋33を配置することにより、封入空間S内の有効封止領域S1から溢れ出たフィル材FやボイドVが、封入空間S内から漏洩流路31に流入して閉鎖蓋33に向け流動する。
このため、漏洩流路31に押し出したボイドVが、閉鎖蓋33との間に残るものの、有効封止領域S1の全体がフィル材Fで満たされる。
したがって、簡単な流路構造でありながら封入空間S内のボイドVを漏洩流路31の閉鎖蓋33近くに押し込んで有効封止領域S1にフィル材Fを確実に充填することができる。
その結果、より高精度な貼合デバイスAを製造でき、歩留まりの更なる向上が図れる。
Further, as shown in FIG. 2 and the like, it is preferable that the leakage channel 31 has a closing lid 33.
In this case, by disposing the closing lid 33 on the leading end side in the inflow direction of the fill material F in the leakage flow path 31, the fill material F and the void V overflowing from the effective sealing region S1 in the enclosed space S are From the inside of the enclosed space S, it flows into the leakage channel 31 and flows toward the closing lid 33.
Therefore, although the void V pushed out to the leakage flow channel 31 remains between the closing lid 33 and the void V, the entire effective sealing region S1 is filled with the fill material F.
Therefore, the void V in the enclosed space S can be pushed into the vicinity of the closing lid 33 of the leakage channel 31 to reliably fill the effective sealing region S1 with the fill material F with a simple channel structure.
As a result, a more accurate bonding device A can be manufactured, and the yield can be further improved.

また、図3(a)〜(c)などに示されるように、シール3が、第一基板1及び第二基板2の接近移動に伴って潰れ変形する材料からなり、漏洩流路31がシール3の潰れ変形で閉じる圧壊蓋34を有することが好ましい。
この場合には、漏洩流路31においてフィル材Fの流入方向先端側に圧壊蓋34を配置することにより、封入空間S内の有効封止領域S1から溢れ出たフィル材FやボイドVが、封入空間S内から漏洩流路31に流入して圧壊蓋34に向け流動する。
このため、漏洩流路31に押し出したボイドVが、圧壊蓋34との間に残るものの、有効封止領域S1の全体がフィル材Fで満たされる。
したがって、簡単な流路構造でありながら封入空間S内のボイドVを漏洩流路31の圧壊蓋34近くに押し込んで有効封止領域S1にフィル材Fを確実に充填することができる。
その結果、より高精度な貼合デバイスAを製造でき、歩留まりの更なる向上が図れる。
Further, as shown in FIGS. 3A to 3C and the like, the seal 3 is made of a material that is crushed and deformed as the first substrate 1 and the second substrate 2 move closer to each other, and the leakage channel 31 seals. It is preferable to have a crushing lid 34 that closes by the crushing deformation of 3.
In this case, by disposing the crush cover 34 on the tip side in the inflow direction of the fill material F in the leakage flow path 31, the fill material F and the void V overflowing from the effective sealing region S1 in the enclosed space S are From the inside of the enclosed space S, it flows into the leakage channel 31 and flows toward the crush lid 34.
Therefore, although the void V pushed out to the leakage flow path 31 remains between the collapse lid 34 and the collapse lid 34, the entire effective sealing region S1 is filled with the fill material F.
Therefore, the void V in the enclosed space S can be pushed into the vicinity of the crushing lid 34 of the leakage flow path 31 and the effective sealing region S1 can be reliably filled with the fill material F with a simple flow path structure.
As a result, a more accurate bonding device A can be manufactured, and the yield can be further improved.

一方、このような本発明の実施形態に係る貼合デバイスAによると、封入空間Sに対してフィル材Fを、第一基板1と第二基板2の貼り合わせ終了時における封入空間Sの体積よりも多めに供給することで、第一基板1及び第二基板2の相対的な接近移動に伴い、封入空間S内のフィル材Fがシール3のダム部3aの隅々まで伸展する。これに続き封入空間S内のフィル材Fが、複数の素子Eの有効封止領域S1から溢れ出て漏洩流路31に流入する。
このため、封入空間Sの内圧が過剰なフィル材Fで必要以上に高くならず、シール3のダム部3aにフィル材Fの過度な伸展圧力がかからない。これにより、封入空間S内の過剰なフィル材FやボイドVを漏洩流路31へ押し出して、有効封止領域S1の全体がフィル材Fで隙間なく満たされる。
したがって、フィル材Fの伸展圧力でシール3のダム部3aが決壊せずに複数の素子Eの有効封止領域S1をフィル材Fより無気泡で封止可能な貼合デバイスAを提供することができる。
その結果、第一基板1に実装される複数の素子Eの切断サイズ誤差及び厚みサイズ誤差や検査後の取り外し又は追加などの変動要因によって、複数の素子Eからなる凹凸形状の枚葉毎の相異や、第一基板1及び第二基板2の間隔(ギャップ)における枚葉毎の相異が生じても、フィル材Fの必要供給量のバラツキを漏洩流路31で吸収でき、シール3のダム部3aの決壊防止と有効封止領域S1のボイドVの発生防止を同時に達成できる。
このため、高精度な貼合デバイスAが得られて、製造時における歩留まりの向上が図れる。
On the other hand, according to the bonding device A according to the embodiment of the present invention, the volume of the filling space S when the bonding of the first substrate 1 and the second substrate 2 is completed by filling the filling material F into the filling space S. By supplying more than that, the fill material F in the enclosed space S extends to every corner of the dam portion 3a of the seal 3 as the first substrate 1 and the second substrate 2 relatively move closer to each other. Following this, the fill material F in the enclosed space S overflows from the effective sealing region S1 of the plurality of elements E and flows into the leakage flow path 31.
Therefore, the internal pressure of the enclosed space S is not increased more than necessary by the excess fill material F, and the excessive extension pressure of the fill material F is not applied to the dam portion 3a of the seal 3. As a result, excess fill material F and voids V in the enclosed space S are pushed out to the leakage channel 31, and the entire effective sealing area S1 is filled with the fill material F without any gap.
Therefore, it is possible to provide a bonding device A capable of sealing the effective sealing region S1 of a plurality of elements E from the fill material F without bubbles without the dam portion 3a of the seal 3 being broken by the extension pressure of the fill material F. You can
As a result, due to the variation factors such as the cutting size error and the thickness size error of the plurality of elements E mounted on the first substrate 1 and the removal or addition after the inspection, the phase of each uneven surface of the plurality of elements E is different. Even if there is a difference or a difference in the distance (gap) between the first substrate 1 and the second substrate 2 for each sheet, the leakage flow path 31 can absorb the variation in the required supply amount of the fill material F, and the seal 3 It is possible to simultaneously prevent the dam portion 3a from collapsing and prevent the generation of the void V in the effective sealing region S1.
Therefore, the highly accurate bonding device A can be obtained, and the yield at the time of manufacturing can be improved.

なお、前示の実施形態(第一実施形態〜第四実施形態)において図示例では、複数の素子Eが配列された第一基板1を下方に配置し、第二基板2を上方に配置したが、これに限定されず、複数の素子Eが配列された第一基板1を上方に配置し、シール3が設けられた第二基板2を下方に配置してもよい。
この場合には、第二基板2のシール3で囲まれた封入空間Sに対してフィル材Fを供給した後に、第一基板1及び第二基板2の接近移動により封入空間S内のフィル材Fを伸展させる。これにより、この場合であっても、前述した第一実施形態〜第四実施形態と同様な作用や利点が得られる。
また、第一基板1の表面1a及び第二基板2の表面2aの両方に対してシール3をZ方向へ対向するようにそれぞれ設け、第一基板1と第二基板2の接近移動によりそれぞれのシール3が接合して潰れ変形するように変更してもよい。
In the illustrated example in the above-described embodiments (first to fourth embodiments), the first substrate 1 on which the plurality of elements E are arranged is arranged below, and the second substrate 2 is arranged above. However, the present invention is not limited to this, and the first substrate 1 on which the plurality of elements E are arranged may be arranged above, and the second substrate 2 provided with the seal 3 may be arranged below.
In this case, after the fill material F is supplied to the enclosed space S surrounded by the seal 3 of the second substrate 2, the fill material in the enclosed space S is moved by the approach movement of the first substrate 1 and the second substrate 2. Extend F. As a result, even in this case, the same actions and advantages as those of the first to fourth embodiments described above can be obtained.
Further, the seals 3 are respectively provided on both the surface 1a of the first substrate 1 and the surface 2a of the second substrate 2 so as to face each other in the Z direction, and the seals 3 are respectively moved by approaching movement of the first substrate 1 and the second substrate 2. The seal 3 may be joined so that the seal 3 is crushed and deformed.

A 貼合デバイス B 貼り合わせ装置
1 第一基板 2 第二基板
3 シール 3a ダム部
31 漏洩流路 32 開放口
33 閉鎖蓋 34 圧壊蓋
4 定量吐出部 5 駆動部
6 制御部 E 素子
F フィル材 S 封入空間
S1 有効封止領域
A Laminating device B Laminating apparatus 1 First substrate 2 Second substrate 3 Seal 3a Dam part 31 Leakage flow path 32 Opening port 33 Closing lid 34 Crushing lid 4 Constant discharge part 5 Driving part 6 Control part E Element F Fill material S Enclosed space S1 Effective sealing area

Claims (5)

複数の素子が配列された第一基板又は前記第一基板と対向する第二基板のいずれか一方か若しくは両方に前記複数の素子を囲んで設けられるシールと、
前記シールで囲まれた封入空間に所定量のフィル材を供給する定量吐出部と、
減圧下における前記第一基板及び前記第二基板の相対的な接近移動により前記封入空間内の前記フィル材を伸展させる駆動部と、
前記定量吐出部及び前記駆動部を作動制御する制御部と、を備え、
前記シールは、前記封入空間内において前記複数の素子の有効封止領域を囲むように設けられるダム部と、前記ダム部の一部に開口して前記第一基板及び前記第二基板の接近移動により進展した前記フィル材が通過するように設けられる流出口と、前記ダム部の外側に配置されて前記有効封止領域と前記流出口を介して連通するように設けられる漏洩流路と、を有し、
前記制御部は、前記封入空間に供給した前記フィル材が、前記第一基板及び前記第二基板の接近移動により前記ダム部の隅々まで伸展するとともに、前記有効封止領域から前記流出口を通って溢れ出し、且つ少なくとも前記流出口の通過時において開口する前記漏洩流路へ流入するように制御されることを特徴とする貼合デバイスの貼り合わせ装置。
A seal provided to surround the plurality of elements on either or both of a first substrate on which a plurality of elements are arranged or a second substrate facing the first substrate,
A fixed-quantity discharge unit that supplies a predetermined amount of fill material to the enclosed space surrounded by the seal,
A drive unit for extending the fill material in the enclosed space by relative approach movement of the first substrate and the second substrate under reduced pressure,
A control unit that controls the operation of the constant-volume discharge unit and the drive unit;
The seal has a dam portion provided so as to surround an effective sealing area of the plurality of elements in the enclosed space, and an opening in a part of the dam portion so that the first substrate and the second substrate move closer to each other. An outlet provided so that the fill material that has progressed by the passage, and a leakage flow passage provided outside the dam portion so as to communicate with the effective sealing region through the outlet. Have,
The control unit causes the fill material supplied to the enclosed space to extend to every corner of the dam portion due to the approach movement of the first substrate and the second substrate, and the outlet from the effective sealing region. through to overflow, and at least the outlet of the passage during bonding apparatus bonding device being controlled so as to flow into the leakage flow path which opens at.
前記漏洩流路が開放口を有することを特徴とする請求項1記載の貼合デバイスの貼り合わせ装置。   The bonding apparatus for a bonding device according to claim 1, wherein the leakage flow path has an opening. 前記シールが、前記第一基板及び前記第二基板の接近移動に伴って潰れ変形する材料からなり、前記漏洩流路が前記シールの潰れ変形で閉じる圧壊蓋を有することを特徴とする請求項1記載の貼合デバイスの貼り合わせ装置。   2. The seal is made of a material that collapses and deforms as the first substrate and the second substrate move closer to each other, and the leakage flow path has a crushing lid that closes due to the crushing deformation of the seal. A bonding device for the bonding device described. 複数の素子が配列された第一基板又は前記第一基板と対向する第二基板のいずれか一方か若しくは両方にシールが前記複数の素子を囲んで設けられるシール作成工程と、
前記シールで囲まれた封入空間に所定量のフィル材を供給するフィル供給工程と、
減圧下における前記第一基板及び前記第二基板の相対的な接近移動により前記封入空間内の前記フィル材を伸展させる圧縮工程と、を含み、
前記シールは、前記封入空間内において前記複数の素子の有効封止領域を囲むように設けられるダム部と、前記ダム部の一部に開口して前記第一基板及び前記第二基板の接近移動により進展した前記フィル材が通過するように設けられる流出口と、前記ダム部の外側に配置されて前記有効封止領域と前記流出口を介して連通するように設けられる漏洩流路と、を有し、
前記圧縮工程では、前記封入空間に供給された前記フィル材を、前記第一基板及び前記第二基板の接近移動により前記ダム部の隅々まで伸展させるとともに、前記有効封止領域から前記流出口を通って溢れ出し、且つ少なくとも前記流出口の通過時において開口する前記漏洩流路へ流入させることを特徴とする貼合デバイスの貼り合わせ方法。
A seal creating step in which a seal is provided to surround the plurality of elements on either or both of a first substrate on which a plurality of elements are arranged or a second substrate facing the first substrate,
A fill supply step of supplying a predetermined amount of fill material to the enclosed space surrounded by the seal,
A compression step of extending the fill material in the enclosed space by relative approach movement of the first substrate and the second substrate under reduced pressure,
The seal has a dam portion provided so as to surround an effective sealing area of the plurality of elements in the enclosed space, and an opening in a part of the dam portion so that the first substrate and the second substrate move closer to each other. An outlet provided so that the fill material that has progressed by the passage, and a leakage flow passage provided outside the dam portion so as to communicate with the effective sealing region through the outlet. Have,
In the compression step, the fill material supplied to the enclosed space is extended to every corner of the dam portion by the approach movement of the first substrate and the second substrate, and at the same time, from the effective sealing area to the outflow port. and overflowed through, and at least the outlet bonding method lamination device for causing to flow into the leakage flow passage which opens during the passage of.
複数の素子が配列された第一基板又は前記第一基板と対向する第二基板のいずれか一方か若しくは両方に前記複数の素子を囲んでシールが設けられ、前記シールで囲まれた封入空間に供給した所定量のフィル材が伸展して前記複数の素子を封止するように貼り合わされた貼合デバイスであって、
前記シールは、前記封入空間内において前記複数の素子の有効封止領域を囲んで配置され、前記封入空間内の前記フィル材が隅々まで伸展するように設けられるダム部と、
前記ダム部の一部に開口され、前記ダム部の隅々まで伸展した前記フィル材が通過するように設けられる流出口と、
前記ダム部の外側に前記有効封止領域と前記流出口を介して連通するように配置され、少なくとも前記フィル材の前記流出口の通過時に開口しており、前記流出口を通って前記有効封止領域から溢れ出した前記フィル材が流入するように設けられる漏洩流路と、を有することを特徴とする貼合デバイス。
A seal is provided to surround the plurality of elements on either or both of a first substrate on which a plurality of elements are arranged or a second substrate facing the first substrate, and in a sealed space surrounded by the seal. A bonding device in which a predetermined amount of the supplied filler material is spread and bonded so as to seal the plurality of elements,
The seal is arranged so as to surround an effective sealing region of the plurality of elements in the enclosed space, and a dam portion provided so that the fill material in the enclosed space extends to every corner,
An outlet that is opened in a part of the dam portion and is provided so that the fill material that extends to every corner of the dam portion passes through,
It is arranged outside the dam portion so as to communicate with the effective sealing region via the outflow port, opens at least when the fill material passes through the outflow port, and passes through the outflow port to the effective seal. laminating device characterized by having a leakage flow path which is provided as the fill material overflowing from the retaining region is inflows.
JP2019081205A 2019-04-22 2019-04-22 Laminating apparatus for laminating device, laminating method and laminating device Active JP6696025B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019081205A JP6696025B1 (en) 2019-04-22 2019-04-22 Laminating apparatus for laminating device, laminating method and laminating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019081205A JP6696025B1 (en) 2019-04-22 2019-04-22 Laminating apparatus for laminating device, laminating method and laminating device

Publications (2)

Publication Number Publication Date
JP6696025B1 true JP6696025B1 (en) 2020-05-20
JP2020177191A JP2020177191A (en) 2020-10-29

Family

ID=70682464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019081205A Active JP6696025B1 (en) 2019-04-22 2019-04-22 Laminating apparatus for laminating device, laminating method and laminating device

Country Status (1)

Country Link
JP (1) JP6696025B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7530998B2 (en) 2020-08-31 2024-08-08 湖北三安光電有限公司 Micro Light Emitting Diode

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100673765B1 (en) * 2006-01-20 2007-01-24 삼성에스디아이 주식회사 Organic light-emitting display device and the preparing method of the same
KR101278747B1 (en) * 2007-03-20 2013-06-25 신에츠 엔지니어링 가부시키가이샤 Manufacturing method of display apparatus
JP4955070B2 (en) * 2007-11-09 2012-06-20 株式会社アルバック Bonded substrate manufacturing apparatus and bonded substrate manufacturing method
KR101209128B1 (en) * 2008-07-10 2012-12-06 샤프 가부시키가이샤 Organic el display and method for manufacturing same
JP5654155B1 (en) * 2014-04-04 2015-01-14 信越エンジニアリング株式会社 Work bonding machine
JP2015216206A (en) * 2014-05-09 2015-12-03 信越化学工業株式会社 Method for manufacturing components for wafer level optical semiconductor device, method for manufacturing optical semiconductor device, and optical semiconductor device
JP2016138022A (en) * 2015-01-28 2016-08-04 パナソニックIpマネジメント株式会社 Double glazing and optical device
CN105810849B (en) * 2016-03-17 2018-03-30 深圳市华星光电技术有限公司 The method for packing of substrate
US20190198804A1 (en) * 2016-09-01 2019-06-27 Futaba Corporation Organic el display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7530998B2 (en) 2020-08-31 2024-08-08 湖北三安光電有限公司 Micro Light Emitting Diode

Also Published As

Publication number Publication date
JP2020177191A (en) 2020-10-29

Similar Documents

Publication Publication Date Title
TWI405496B (en) Method for sealing electroluminescense element and method for making a light emission panel and a display panel
KR100597141B1 (en) Liquid crystal display panel with fluid control wall
JP5527650B2 (en) Display device
JP2002014360A (en) Method and device for manufacturing liquid crystal panel
JP4828259B2 (en) Manufacturing method of liquid crystal display device
TWI463707B (en) Optoelectronic part producing method, optoelectronic part producing system, and optoelectronic part
KR20010098943A (en) Manufacturing method for manufacturing electro-optical device, sealing member compression curing apparatus, electro-optical device, and electronic equipment
JP2003139910A (en) Optical element, method and device for manufacturing the same, and liquid crystal display device and image projection type display device using the same
JP6266974B2 (en) Organic EL display device and manufacturing method thereof
JP5816388B1 (en) Manufacturing method of bonding device and manufacturing device of bonding device
WO2014002535A1 (en) Semiconductor device manufacturing method
WO2019000923A1 (en) Display substrate and manufacturing method therefor, and display device
TWM455258U (en) Image sensor structure with chamber notch
JP6696025B1 (en) Laminating apparatus for laminating device, laminating method and laminating device
WO2013067887A1 (en) Liquid crystal panel and manufacturing method and display thereof
KR101170942B1 (en) Method of bonding substrates and apparatus for bonding substrates
JP2013076934A (en) Bonding structure and manufacturing method of the same
JP2024525414A (en) Quantum dot composite, three-dimensional display element, and processing method thereof
JP2010224070A (en) Method of manufacturing liquid crystal display panel
WO2017061389A1 (en) Method for manufacturing optical element and method for manufacturing reflective-type aerial image forming element
JP3972587B2 (en) Manufacturing method of fine structure
JP2010096889A (en) Method for manufacturing display panel and display panel
JP2012139821A (en) Compression molding die and compression molding method
JP2003066471A (en) Panel substrate for liquid crystal display, manufacturing method and apparatus for the same and liquid crystal display
CN100397150C (en) Liquid crystal drop process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190627

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20190627

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190820

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200414

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200422

R150 Certificate of patent or registration of utility model

Ref document number: 6696025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150