[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP6502921B2 - Purification method of target gas - Google Patents

Purification method of target gas Download PDF

Info

Publication number
JP6502921B2
JP6502921B2 JP2016510282A JP2016510282A JP6502921B2 JP 6502921 B2 JP6502921 B2 JP 6502921B2 JP 2016510282 A JP2016510282 A JP 2016510282A JP 2016510282 A JP2016510282 A JP 2016510282A JP 6502921 B2 JP6502921 B2 JP 6502921B2
Authority
JP
Japan
Prior art keywords
adsorption
gas
adsorption tank
tank
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016510282A
Other languages
Japanese (ja)
Other versions
JPWO2015146766A1 (en
Inventor
岩本 純一
純一 岩本
充 岸井
充 岸井
康一 志摩
康一 志摩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Sumitomo Seika Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Seika Chemicals Co Ltd filed Critical Sumitomo Seika Chemicals Co Ltd
Publication of JPWO2015146766A1 publication Critical patent/JPWO2015146766A1/en
Application granted granted Critical
Publication of JP6502921B2 publication Critical patent/JP6502921B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/16Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/18Noble gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/502Carbon monoxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7022Aliphatic hydrocarbons
    • B01D2257/7025Methane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/702Hydrocarbons
    • B01D2257/7027Aromatic hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/40011Methods relating to the process cycle in pressure or temperature swing adsorption
    • B01D2259/40058Number of sequence steps, including sub-steps, per cycle
    • B01D2259/40075More than ten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/404Further details for adsorption processes and devices using four beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/40Further details for adsorption processes and devices
    • B01D2259/41Further details for adsorption processes and devices using plural beds of the same adsorbent in series
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/20Capture or disposal of greenhouse gases of methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2
    • Y02P20/156Methane [CH4]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Industrial Gases (AREA)

Description

本発明は、圧力変動吸着法を利用して、例えば水素などの目的成分を含む混合ガスから不純物成分を除去して目的成分ガスを精製し取得する方法および装置に関する。   The present invention relates to a method and apparatus for purifying a target component gas by removing impurity components from a mixed gas containing the target component such as hydrogen by using a pressure fluctuation adsorption method.

近年、燃料電池の原料といった、炭化水素に代わるエネルギー源として、また風力発電や太陽光発電などの出力変動の大きなエネルギーのエネルギー貯蔵媒体として、水素が注目されている。水素の製造方法としては、たとえばコークス炉ガス(以下、適宜「COG」という)など水素含有ガスから分離する方法や、天然ガスやメタノールなどの炭化水素系原料の改質により得る方法が知られている。コークス炉ガスは、主成分としての水素の他に、不純物として、一酸化炭素、二酸化炭素、メタンなどの軽質炭化水素を含み、さらに重質炭化水素、BTX(ベンゼン、トルエン、キシレン)、硫黄化合物などを少量含む。このような水素含有ガスを精製して高純度の水素ガスを得るための代表的な手法として、圧力変動吸着法(以下、「PSA法」という)が知られている。PSA法による水素ガスの精製は、例えば、吸着剤が充填された吸着槽に水素を含む混合ガスを高圧下で導入して不純物を吸着剤に吸着させ、水素が富化された水素富化ガスを排出する工程と、吸着槽内を減圧して吸着剤から不純物を脱着させ、当該吸着槽からガスを排出する工程と、を含むサイクルを繰り返すことにより行う。   In recent years, hydrogen has attracted attention as an energy source to replace hydrocarbons, such as a fuel cell raw material, and as an energy storage medium of energy having a large output fluctuation such as wind power generation and solar power generation. As a method of producing hydrogen, for example, a method of separating from hydrogen-containing gas such as coke oven gas (hereinafter referred to as "COG" appropriately) and a method of obtaining it by reforming a hydrocarbon-based material such as natural gas or methanol are known. There is. Coke oven gas contains light hydrocarbons such as carbon monoxide, carbon dioxide and methane as impurities in addition to hydrogen as the main component, and further heavy hydrocarbons, BTX (benzene, toluene, xylene), sulfur compounds Includes a small amount of etc. A pressure fluctuation adsorption method (hereinafter referred to as "PSA method") is known as a representative method for purifying such hydrogen-containing gas to obtain high purity hydrogen gas. For purification of hydrogen gas by PSA method, for example, a mixed gas containing hydrogen is introduced into an adsorption tank filled with an adsorbent under high pressure to adsorb impurities to the adsorbent, and hydrogen-enriched hydrogen-enriched gas And a step of depressurizing the inside of the adsorption tank to desorb the impurities from the adsorbent and discharging the gas from the adsorption tank.

COGからPSA法によって水素を精製する場合、COG中に含まれる重質炭化水素、BTX、硫黄化合物などの不純物はPSAの精製能力を低下させるため、PSA法による精製の前にあらかじめ除去することが望ましい。これら特定の不純物を除去する方法としては、例えば事前吸着法(以下、「プレ吸着」という)がある。プレ吸着は、PSA法の前に、不純物を吸着するための吸着剤が充填された吸着槽(以下、「プレ吸着槽」という)を置き、COGから不純物を吸着除去するものである。このプレ吸着は、プレ吸着槽内にCOGを一方向に流してこれら不純物を除去し、不純物がプレ吸着槽を破過する前に新しい吸着槽と交換する方法(特許文献1)や、PSA法を行うメイン吸着槽と連動してプレ吸着槽(プレフィルター)から不純物を脱着させることによってプレ吸着槽を再生させる方法(特許文献2)がある。   When purifying hydrogen from COG by the PSA method, impurities such as heavy hydrocarbons, BTX, and sulfur compounds contained in the COG may be removed before purification by the PSA method in order to reduce the purification ability of the PSA. desirable. As a method of removing these specific impurities, for example, there is a pre-adsorption method (hereinafter referred to as "pre-adsorption"). In pre-adsorption, an adsorption tank (hereinafter referred to as "pre-adsorption tank") filled with an adsorbent for adsorbing impurities is placed prior to the PSA method to adsorb and remove impurities from COG. In this pre-adsorption, a method of flowing COG in one direction in the pre-adsorption tank to remove these impurities and replacing it with a new adsorption tank before the impurities break through the pre-adsorption tank (Patent Document 1), a PSA method There is a method (Patent Document 2) of regenerating the pre-adsorption tank by desorbing impurities from the pre-adsorption tank (pre-filter) in conjunction with the main adsorption tank which performs

しかしながら、特許文献1のように不純物が破過する前に吸着槽を交換する場合、交換頻度を少なくするためには吸着槽を大型化しなければならない。また、特許文献2のようにPSA法と連動させてプレ吸着槽を再生する場合、プレ吸着槽を取り替える方法と比べるとプレ吸着槽の寿命は長くなり、コストダウンを図れるが、プレ吸着槽で吸着除去した不純物がPSA法のメイン吸着槽に入る可能性が高まる。   However, in the case where the adsorption tank is replaced before the impurities are breakthrough as in Patent Document 1, it is necessary to make the adsorption tank larger in order to reduce the replacement frequency. In addition, when the pre-adsorption tank is regenerated in conjunction with the PSA method as in Patent Document 2, the life of the pre-adsorption tank becomes longer than in the method of replacing the pre-adsorption tank, and the cost can be reduced. Impurities removed by adsorption are more likely to enter the main adsorption tank of the PSA method.

特公平3−9391号公報Japanese Examined Patent Publication 3-9391 特公平8−32549号公報Japanese Examined Patent Publication 8-32549

本発明は、このような事情のもとで考え出されたものであって、目的成分を含む混合ガスから目的ガスを精製するにあたり、PSA法の利用により高純度目的ガスを効率よく回収するとともに、不純物のうちPSAの吸着剤の精製能力を低下させる成分について、当該不純物成分による吸着剤への影響を防止するのに適した方法および装置を提供することを課題としている。   The present invention has been conceived under such circumstances, and in purifying the target gas from the mixed gas containing the target component, the high purity target gas is efficiently recovered by using the PSA method. It is an object of the present invention to provide a method and apparatus suitable for preventing the influence of the impurity component on the adsorbent, among the impurities, among the components that reduce the purification ability of the PSA adsorbent.

本発明の第1の側面によって提供される目的ガスの精製方法は、目的成分および複数の不純物成分を含む混合ガスから目的ガスを精製するための方法であって、上記不純物成分を選択的に吸着する吸着剤が充填された複数の吸着ユニットを用いて行う圧力変動吸着法により、上記吸着ユニットが相対的に高圧である状態にて、上記吸着ユニットに上記混合ガスを導入して当該混合ガス中の上記不純物成分を上記吸着剤に吸着させ、当該吸着ユニットから上記目的成分が富化された目的成分富化ガスを排出する吸着工程と、上記吸着ユニットを減圧して当該吸着ユニットからガスを排出する減圧工程と、を含むサイクルを上記吸着ユニットの各々において繰り返し行う目的ガスの精製方法において、上記各吸着ユニットは、直列に連結された第1および第2の吸着槽を含み、上記減圧工程においては、上記第1および第2の吸着槽の間に設けられた開閉弁により、上記第1および第2の吸着槽が連通する状態と連通しない状態とに切り換えることを特徴とする。   The method for purifying a target gas provided by the first aspect of the present invention is a method for purifying a target gas from a mixed gas containing a target component and a plurality of impurity components, wherein the impurity components are selectively adsorbed. The mixed gas is introduced into the adsorption unit while the adsorption unit is at a relatively high pressure by a pressure fluctuation adsorption method performed using a plurality of adsorption units filled with the adsorbent to An adsorption step of adsorbing the above-mentioned impurity component of the above to the adsorbent and discharging the target component-enriched gas enriched from the target component from the adsorption unit, and decompressing the adsorption unit to discharge the gas from the adsorption unit In the target gas purification method in which the cycle including the pressure reduction step is repeated in each of the adsorption units, the adsorption units are connected in series. And a second adsorption tank, and in the decompression step, the on-off valve provided between the first and second adsorption tanks does not communicate with the state in which the first and second adsorption tanks are in communication It is characterized by switching to the state.

本発明者は、上記課題を解決するために、次のような要因解析を行った。まず、プレ吸着槽の寿命を延ばす(槽内の吸着剤の交換頻度を減らす)ためには、PSA法による精製サイクルとプレ吸着槽の吸着・脱着を同期させることによる、プレ吸着槽の再生が必要である。また、例えば原料ガスがCOGである場合に当該COG中からより多くの水素(目的ガス)を回収するためには、再生工程前に、プレ吸着槽中に含まれる水素も回収できることが望ましい。しかしながら、プレ吸着槽中の水素を回収しようとすると、プレ吸着により除去した不純物も同時に回収されるおそれがある。そして、いったんこれら不純物が回収されてしまうと、これら不純物は脱着されにくいため、PSA法での水素精製能力が著しく悪化する。そのため、プレ吸着槽をPSA法と同期させても、上記不純物がメイン吸着槽へ回収されることの無いよう、過大なプレ吸着槽とする必要があった。   The inventor conducted the following factor analysis to solve the above-mentioned problems. First, in order to extend the life of the pre-adsorption tank (reduce the frequency of replacement of the adsorbent in the tank), regeneration of the pre-adsorption tank by synchronizing the adsorption / desorption of the pre-adsorption tank with the purification cycle by the PSA method is necessary. Also, for example, when the source gas is COG, in order to recover more hydrogen (target gas) from the COG, it is desirable that the hydrogen contained in the pre-adsorption tank can also be recovered before the regeneration step. However, when trying to recover hydrogen in the pre-adsorption tank, there is a possibility that the impurities removed by the pre-adsorption are also recovered at the same time. Once these impurities are recovered, these impurities are difficult to be desorbed, so the hydrogen purification ability in the PSA method is significantly degraded. Therefore, even if the pre-adsorption tank is synchronized with the PSA method, it has been necessary to use an excessive pre-adsorption tank so that the above-mentioned impurities are not recovered to the main adsorption tank.

本発明者は、上記課題を解決するべく鋭意検討したところ、プレ吸着槽(第1の吸着槽)とPSAを行うメイン吸着槽(第2の吸着槽)の間に自動弁(開閉弁)を取り付け、プレ吸着槽のPSAサイクルへの同期を一部分とする、つまり、プレ吸着された不純物がメイン吸着槽へ流れにくい工程中のみ、プレ吸着槽内のガスを回収するシステムとすることで、水素回収率を向上させつつ、プレ吸着槽からメイン吸着槽への不純物流入の可能性を低減させることが可能であることを見出した。また、上記のように、プレ吸着槽からメイン吸着槽への不純物流入の可能性を低減させることで、プレ吸着槽を適切なサイズへとコンパクト化できる。   The inventors of the present invention have conducted intensive studies to solve the above problems, and have found that an automatic valve (open / close valve) is provided between the pre-adsorption tank (first adsorption tank) and the main adsorption tank (second adsorption tank) performing PSA. The system is based on the installation and recovery of the gas in the pre-adsorption tank only during the process in which the pre-adsorbed impurities are difficult to flow to the main adsorption tank. It has been found that it is possible to reduce the possibility of impurity inflow from the pre-adsorption tank to the main adsorption tank while improving the recovery rate. Further, as described above, by reducing the possibility of the inflow of impurities from the pre-adsorption tank to the main adsorption tank, the pre-adsorption tank can be made compact to an appropriate size.

好ましくは、上記減圧工程は、上記第1および第2の吸着槽を連通させつつ上記第1の吸着槽内の目的成分を主とするガスを上記第2の吸着槽に導入する工程と、上記第1および第2の吸着槽を連通させずに上記第1の吸着槽内の不純物成分を主とするガスを外部に排出する工程と、を含む。   Preferably, the depressurizing step includes a step of introducing a gas mainly composed of a target component in the first adsorption tank into the second adsorption tank while communicating the first and second adsorption tanks with each other. Discharging the gas mainly containing the impurity component in the first adsorption tank to the outside without communicating the first and second adsorption tanks.

好ましくは、上記目的成分を主とするガスを上記第2の吸着槽に導入する工程において、上記第2の吸着槽内のガスを他の上記第2の吸着槽に導入し、上記不純物成分を主とするガスを外部に排出する工程は、上記目的成分を主とするガスを上記第2の吸着槽に導入する工程の後に行う。   Preferably, in the step of introducing the gas mainly containing the target component into the second adsorption tank, the gas in the second adsorption tank is introduced into the other second adsorption tank, and the impurity component is introduced. The step of discharging the main gas to the outside is performed after the step of introducing the gas mainly containing the target component into the second adsorption tank.

好ましくは、上記第1の吸着槽は、対応する直列の上記第2の吸着槽に対して互いに並列となるように複数設けられており、上記目的成分を主とするガスを上記第2の吸着槽に導入する工程および上記不純物成分を主とするガスを外部に排出する工程において、上記複数設けられた上記第1の吸着槽のいずれか1つにおいてガスの出入りを可能とするようにガス流れ状態を切り換える。   Preferably, a plurality of the first adsorption vessels are provided in parallel with each other with respect to the corresponding second adsorption vessels in series, and the second adsorption of the gas mainly composed of the target component is performed. In the step of introducing into the tank and the step of discharging the gas mainly containing the above-mentioned impurity component, the gas flow so as to allow the gas to enter and exit in any one of the plurality of first adsorption tanks provided in a plurality. Switch the state.

好ましくは、上記第1の吸着槽には、上記複数の不純物成分のうち少なくとも1種を選択的に吸着する第1吸着剤が充填され、上記第2の吸着槽には、上記複数の不純物成分のうち他の少なくとも1種を選択的に吸着する第2吸着剤が充填される。   Preferably, the first adsorption tank is filled with a first adsorbent which selectively adsorbs at least one of the plurality of impurity components, and the second adsorption tank contains the plurality of impurity components. And a second adsorbent that selectively adsorbs at least one of the other.

好ましくは、上記目的成分は、水素である。   Preferably, the target component is hydrogen.

本発明の第2の側面によって提供される目的ガスの精製装置は、目的成分および複数の不純物成分を含む混合ガスから目的ガスを精製するための装置であって、一端部どうしが連通路を介して連通し、それぞれの他端部に第1ガス通過口および第2ガス通過口が設けられ且つ内部に不純物成分を選択的に吸着する吸着剤が充填さるとともに、相互に直列に連結された複数組の第1および第2の吸着槽と、上記連通路に付設された開閉弁と、ガス導入端を有する主幹路、および、上記第1および第2の吸着槽の組ごとに設けられて当該第1の吸着槽の上記第1ガス通過口側に接続され且つ開閉弁が付設された複数の分枝路、を有する第1配管と、ガス取り出し端を有する主幹路、および、上記第1および第2の吸着槽の組ごとに設けられて当該第2の吸着槽の上記第2ガス通過口側に接続され且つ開閉弁が付設された複数の分枝路、を有する第2配管と、上記第2配管の上記主幹路に接続され且つ流量調整手段が付設された主幹路、および、上記第1および第2の吸着槽の組ごとに設けられて当該第2の吸着槽の上記第2ガス通過口側に接続され且つ開閉弁が付設された複数の分枝路、を有する第3配管と、流量調整弁が付設された主幹路、および、この主幹路の一方端と他方端とに繋がり、上記第1および第2の吸着槽の組ごとに設けられて当該第2の吸着槽の上記第2ガス通過口側に接続され且つ開閉弁が付設された複数ずつの分枝路、を有する第4配管と、ガス排出端を有する主幹路、および、上記第1および第2の吸着槽の組ごとに設けられて当該第1の吸着槽の上記第1ガス通過口側に接続され且つ開閉弁が付設された複数の分枝路、を有する第5配管と、を備えることを特徴とする。   The apparatus for purifying target gas provided by the second aspect of the present invention is an apparatus for purifying a target gas from a mixed gas containing a target component and a plurality of impurity components, wherein one ends thereof are connected via a communication passage. A plurality of adsorbents which are in fluid communication with each other and which are provided with a first gas passage port and a second gas passage port and which are filled with an adsorbent which selectively adsorbs an impurity component are internally connected in series A set of first and second adsorption vessels, an on-off valve attached to the communication passage, a main trunk passage having a gas introduction end, and the set of first and second adsorption vessels are provided A first pipe having a plurality of branch paths connected to the first gas passage port side of the first adsorption tank and provided with an on-off valve; a main trunk path having a gas outlet end; Provided for each second set of adsorption tanks A second pipe having a plurality of branch paths connected to the second gas passage port side of the second adsorption tank and provided with an on-off valve, and connected to the main trunk path of the second pipe and flow rate adjusting means And a plurality of main passages provided with each of the first and second adsorption vessels, connected to the second gas passage side of the second adsorption vessel, and provided with an on-off valve. And a main trunk path provided with a flow control valve, and one end and the other end of the main trunk path, for each set of the first and second adsorption vessels A fourth pipe having a plurality of branch paths provided and connected to the second gas passage side of the second adsorption tank and having a plurality of branch valves attached thereto; a main trunk path having a gas discharge end; And each of the first and second adsorption vessels is provided for each of the first and second adsorption vessels. A plurality of branch passage connected to and closing valve on the passage port side is attached, a fifth pipe having, characterized in that it comprises a.

好ましくは、上記第1の吸着槽は、対応する直列の上記第2の吸着槽に対して互いに並列となるように複数設けられており、これら複数設けられた上記第1の吸着槽のいずれか1つにおいてガスの出入りを可能とするようにガス流れ状態を切り換える切換手段を備える。   Preferably, a plurality of the first adsorption vessels are provided in parallel with each other with respect to the corresponding second adsorption vessels in series, and any one of the plurality of provided first adsorption vessels is provided. A switching means is provided to switch the gas flow conditions to allow gas in and out in one.

好ましくは、上記第1の吸着槽には、上記複数の不純物成分のうち少なくとも1種を選択的に吸着する第1吸着剤が充填され、上記第2の吸着槽には、上記複数の不純物成分のうち他の少なくとも1種を選択的に吸着する第2吸着剤が充填される。   Preferably, the first adsorption tank is filled with a first adsorbent which selectively adsorbs at least one of the plurality of impurity components, and the second adsorption tank contains the plurality of impurity components. And a second adsorbent that selectively adsorbs at least one of the other.

本発明に係る目的ガスの精製方法を実行するのに使用することのできるガス精製装置の概略構成を表す。The schematic structure of the gas purification apparatus which can be used for enforcing the purification method of the target gas based on this invention is represented. 本発明に係る目的ガスの精製方法のステップ1〜5におけるガス流れ状態を表す。The gas flow state in steps 1 to 5 of the purification method of the target gas according to the present invention is shown. 本発明に係る目的ガスの精製方法のステップ6〜10におけるガス流れ状態を表す。The gas flow state in steps 6 to 10 of the purification method of the target gas according to the present invention is shown. 本発明に係る目的ガスの精製方法のステップ11〜15におけるガス流れ状態を表す。The gas flow state in steps 11-15 of the purification method of the target gas which concerns on this invention is represented. 本発明に係る目的ガスの精製方法のステップ16〜20におけるガス流れ状態を表す。The gas flow state in steps 16-20 of the purification method of the target gas which concerns on this invention is represented. 本発明に係る目的ガスの精製方法を実行するのに使用することのできるガス精製装置の変形例の要部を示す図である。It is a figure which shows the principal part of the modification of the gas purification apparatus which can be used to perform the purification method of the target gas which concerns on this invention.

以下、本発明の好ましい実施の形態について、図面を参照して具体的に説明する。   Hereinafter, preferred embodiments of the present invention will be specifically described with reference to the drawings.

図1は、本発明の実施形態に係る目的ガスの精製方法を実行するのに使用することができるガス精製装置X1の一例の概略構成を示している。ガス精製装置X1は、例えばプレ吸着槽として機能する第1の吸着槽10A,10B,10C,10Dと、メイン吸着槽として機能する第2の吸着槽20A,20B,20C,20Dと、連通路16と、配管31〜35と、を備え、目的ガスを含む混合ガスから圧力変動吸着法(PSA法)を利用して目的ガスを濃縮精製するように構成されている。混合ガスは、目的ガスが水素である場合、例えばコークス炉ガス(COG)が挙げられる。COGには、主成分たる水素の他に、例えば二酸化炭素、一酸化炭素、メタン等が不純物として含まれ、さらに重質炭化水素、BTX(ベンゼン、トルエン、キシレン)、硫黄化合物など、PSA法による水素精製に悪影響を及ぼす不純物が含まれる。混合ガスの組成は、特に限定されないが、例えば、水素が54.0モル%、メタンが30.0モル%、一酸化炭素が7.0モル%、二酸化炭素が3.0モル%、その他軽質炭化水素が4.0モル%、重質炭化水素、BTX、硫黄化合物などが2.0モル%である。以下においては、混合ガスがCOGであるものとして説明を進めるが、本発明はこれに限定されるものではない。   FIG. 1 shows a schematic configuration of an example of a gas purification apparatus X1 that can be used to carry out a method for purifying a target gas according to an embodiment of the present invention. The gas purification apparatus X1 includes, for example, a first adsorption tank 10A, 10B, 10C, 10D functioning as a pre-adsorption tank, a second adsorption tank 20A, 20B, 20C, 20D functioning as a main adsorption tank, and a communication passage 16 And pipes 31 to 35, and is configured to concentrate and purify the target gas from a mixed gas containing the target gas using a pressure fluctuation adsorption method (PSA method). The mixed gas is, for example, coke oven gas (COG) when the target gas is hydrogen. COG contains, for example, carbon dioxide, carbon monoxide, methane, etc. as impurities in addition to hydrogen as the main component, and further, heavy hydrocarbons, BTX (benzene, toluene, xylene), sulfur compounds, etc. by the PSA method. It contains impurities that adversely affect hydrogen purification. The composition of the mixed gas is not particularly limited. For example, 54.0 mol% of hydrogen, 30.0 mol% of methane, 7.0 mol% of carbon monoxide, 3.0 mol% of carbon dioxide, and other light The amount of hydrocarbon is 4.0 mol%, and heavy hydrocarbon, BTX, sulfur compound, etc. is 2.0 mol%. Although the following description will be made on the assumption that the mixed gas is COG, the present invention is not limited thereto.

第1の吸着槽10A〜10Dと第2の吸着槽20A〜20Dとは、それぞれ対をなすように対応しており、本実施形態では4組(4対)の第1および第2の吸着槽が設けられている。各組をなす第1および第2の吸着槽(例えば第1および第2の吸着槽10A,20A)は、連通路16を介して、ガスの流れ方向にみて直列に連結されており、個別の吸着ユニットを構成している。   The first adsorption tank 10A to 10D and the second adsorption tank 20A to 20D correspond to each other so as to form a pair, and in the present embodiment, four pairs (4 pairs) of the first and second adsorption tanks Is provided. Each pair of first and second adsorption vessels (for example, the first and second adsorption vessels 10A and 20A) are connected in series in the flow direction of the gas through the communication passage 16, and It constitutes an adsorption unit.

第1の吸着槽10A〜10Dの各々は、両端にガス通過口11,12を有する。第2の吸着槽20A〜20Dの各々は、両端にガス通過口21,22を有する。各連通路16は、それぞれの組をなす第1および第2の吸着槽をつないでおり、連通路16の一端はガス通過口12に接続され、他端はガス通過口21に接続されている。連通路16には、開状態と閉状態との間を切り替えるための自動弁16a(16b,16c,16d)が設けられている。   Each of the first adsorption tanks 10A to 10D has gas passage ports 11 and 12 at both ends. Each of the second adsorption tanks 20A to 20D has gas passage ports 21 and 22 at both ends. Each communication passage 16 connects the first and second adsorption tanks forming the respective sets, one end of the communication passage 16 is connected to the gas passage 12, and the other end is connected to the gas passage 21. . The communication passage 16 is provided with an automatic valve 16a (16b, 16c, 16d) for switching between an open state and a closed state.

第1の吸着槽10A〜10Dの各々には、混合ガス(COG)に含まれる重質炭化水素、BTX、硫黄化合物を選択的に吸着するための吸着剤(第1吸着剤)が充填されている。第1吸着剤としては、たとえば活性炭が挙げられる。また、第2の吸着槽20A〜20Dの各々には、混合ガスに含まれるメタン、一酸化炭素、二酸化炭素、その他軽質炭化水素を選択的に吸着するための吸着剤(第2吸着剤)が充填されている。第2吸着剤としては、例えば、炭素モレキュラーシーブ(CMS)やゼオライトモレキュラーシーブ(ZMS)などが挙げられ、これらは単独で使用しても複数種を併用してもよい。また、混合ガス中に水分が含まれている場合、第2吸着剤にアルミナを追加的に含ませてもよい。   Each of the first adsorption tanks 10A to 10D is filled with an adsorbent (first adsorbent) for selectively adsorbing heavy hydrocarbons, BTX and sulfur compounds contained in the mixed gas (COG). There is. Examples of the first adsorbent include activated carbon. In each of the second adsorption vessels 20A to 20D, an adsorbent (second adsorbent) for selectively adsorbing methane, carbon monoxide, carbon dioxide, and other light hydrocarbons contained in the mixed gas It is filled. Examples of the second adsorbent include carbon molecular sieve (CMS) and zeolite molecular sieve (ZMS). These may be used alone or in combination of two or more. In addition, when the mixed gas contains water, the second adsorbent may additionally contain alumina.

配管31は、混合ガス(原料ガス)を第1の吸着槽10A〜10Dに供給するためのものであり、原料ガス導入端E1を有する主幹路31’、および、第1の吸着槽10A〜10Dのガス通過口11にそれぞれ接続された分枝路31A〜31Dを有する。分枝路31A〜31Dには、開状態と閉状態との間を切り替えるための自動弁31a,31b,31c,31dがそれぞれ設けられている。なお、配管31の主幹路31’には、混合ガスを第1の吸着槽10A〜10Dに圧送するための圧縮機(図示略)を設けてもよい。   The pipe 31 is for supplying mixed gas (raw material gas) to the first adsorption tank 10A to 10D, and a main trunk path 31 'having the raw material gas introduction end E1, and the first adsorption tank 10A to 10D The branch passages 31A to 31D are respectively connected to the gas passage openings 11 of The branch paths 31A to 31D are respectively provided with automatic valves 31a, 31b, 31c, and 31d for switching between the open state and the closed state. In addition, in the main trunk passage 31 ′ of the pipe 31, a compressor (not shown) may be provided to pressure-feed the mixed gas to the first adsorption tanks 10A to 10D.

配管32は、第2の吸着槽20A〜20Dから製品ガス(目的成分富化ガス)を取り出すための流路であり、製品ガス取り出し端E2を有する主幹路32’、および、第2の吸着槽20A〜20Dのそれぞれのガス通過口22に接続された分枝路32A,32B,32C,32Dを有する。分枝路32A〜32Dには、開状態と閉状態との間を切り替えるための自動弁32a,32b,32c,32dがそれぞれ設けられている。また、配管32の製品ガス取り出し端E2は、例えば、製品ガスを一時的に蓄えるためのバッファタンク(図示せず)に接続される。   The pipe 32 is a flow path for taking out the product gas (target component-enriched gas) from the second adsorption tank 20A to 20D, and the main trunk path 32 ′ having the product gas outlet end E2 and the second adsorption tank 20A to 20D have branch passages 32A, 32B, 32C, 32D connected to the gas passage openings 22 respectively. The branch paths 32A to 32D are provided with automatic valves 32a, 32b, 32c and 32d for switching between the open state and the closed state, respectively. The product gas outlet end E2 of the pipe 32 is connected to, for example, a buffer tank (not shown) for temporarily storing the product gas.

配管33は、配管32(主幹路32’)を通流する製品ガスの一部を第2の吸着槽20A〜20Dに供給するためのものであり、配管32の主幹路32’に接続された主幹路33’、および、第2の吸着槽20A〜20Dのそれぞれのガス通過口22に接続された分枝路33A,33B,33C,33Dを有する。主幹路33’には、開状態と閉状態との間を切り替えるための自動弁331と、流量調整弁332とが設けられている。分枝路33A〜33Dには、開状態と閉状態との間を切り替えるための自動弁33a,33b,33c,33dがそれぞれ設けられている。   The pipe 33 is for supplying a part of the product gas flowing through the pipe 32 (main trunk path 32 ′) to the second adsorption tanks 20A to 20D, and is connected to the main trunk path 32 ′ of the pipe 32. It has a branch passage 33A, 33B, 33C, 33D connected to the gas passage 22 of each of the main adsorption passage 33 'and the second adsorption tanks 20A to 20D. The main passage 33 ′ is provided with an automatic valve 331 for switching between an open state and a closed state, and a flow control valve 332. The branch paths 33A to 33D are provided with automatic valves 33a, 33b, 33c, and 33d, respectively, for switching between the open state and the closed state.

配管34は、第2の吸着槽20A〜20Dのいずれか2つを互いに接続するためのものであり、主幹路34’、および、この主幹路34’の一方の脚に繋がり、第2の吸着槽20A〜20Dのそれぞれのガス通過口22に接続された分枝路34A,34B,34C,34D、および、主幹路34’の他方の脚に繋がり、第2の吸着槽20A〜20Dのそれぞれのガス通過口22に接続された分枝路34A’,34B’,34C’,34D’を有する。主幹路34’には、流量調整弁341が設けられている。分枝路34A〜34Dおよび34A’〜34D’には、開状態と閉状態との間を切り替えるための自動弁34a,34b,34c,34dおよび34a’,34b’,34c’,34d’がそれぞれ設けられている。   The pipe 34 is for connecting any two of the second adsorption tanks 20A to 20D to each other, and is connected to the main trunk path 34 'and one leg of this main trunk path 34', and the second adsorption The branch channels 34A, 34B, 34C, 34D connected to the gas passage ports 22 of the tanks 20A to 20D, respectively, and the other leg of the main trunk channel 34 'are connected to the second adsorption tanks 20A to 20D, respectively. It has branch passages 34A ', 34B', 34C ', 34D' connected to the gas passage 22. A flow control valve 341 is provided in the main passage 34 '. In the branch paths 34A to 34D and 34A 'to 34D', automatic valves 34a, 34b, 34c, 34d and 34a ', 34b', 34c ', 34d' for switching between the open state and the closed state, respectively It is provided.

配管35は、各第1の吸着槽10A〜10Dから排出されるガス(主に脱着ガス)の流路であり、ガス排出端E3を有する主幹路35’、および、第1の吸着槽10A〜10Dのそれぞれのガス通過口11側に接続された分枝路35A,35B,35C,35Dを有する。分枝路35A〜35Dには、開状態と閉状態との間を切り替えるための自動弁35a,35b,35c,35dが設けられている。   The pipe 35 is a flow path of gas (mainly desorbed gas) discharged from each of the first adsorption vessels 10A to 10D, and a main trunk path 35 'having a gas discharge end E3 and the first adsorption vessels 10A to 10D. There are branch passages 35A, 35B, 35C, 35D connected to the respective gas passage ports 11 of 10D. The branch paths 35A to 35D are provided with automatic valves 35a, 35b, 35c, 35d for switching between the open state and the closed state.

本実施形態においては、以上のような構成を有するガス精製装置X1を用いて本発明に係る目的ガスの精製方法を実行することができる。具体的には、ガス精製装置X1の稼働時において自動弁16a〜16d,31a〜31d,32a〜32d,33a〜33d,34a〜34d,34a’〜34d’,35a〜35d,331、および流量制御弁332,341を適宜切り替えることにより、装置内において所望のガス流れ状態を実現し、以下のステップ1〜20からなる1サイクルを繰り返す。本方法の1サイクルにおいては、第1の吸着槽10A〜10Dの各々にて、吸着工程、均圧(第1均圧化減圧)工程、待機工程、向流減圧工程、向流洗浄工程、均圧(第1均圧化昇圧)工程、待機工程、均圧(第2均圧化昇圧)工程、および製品ガス昇圧工程が行われる。また、第2の吸着槽20A〜20Dの各々にて、吸着工程、均圧(第1均圧化減圧)工程、並流減圧工程、均圧(第2均圧化減圧)工程、待機工程、向流減圧工程、向流洗浄工程、均圧(第1均圧化昇圧)工程、待機工程、均圧(第2均圧化昇圧)工程、および製品ガス昇圧工程が行われる。本実施形態では、第1の吸着槽10A〜10Dの各々には、第1吸着剤としての活性炭が充填され、第2の吸着槽20A〜20Dの各々における下部(ガス通過口21寄り)および上部(ガス通過口22寄り)には、第2吸着剤としてのCMSおよびZMSが等量ずつ積層充填されている。図2〜図5は、ステップ1〜20におけるガス精製装置X1でのガスの流れ状態を模式的に表したものである。   In the present embodiment, the target gas purification method according to the present invention can be performed using the gas purification device X1 having the above configuration. Specifically, during operation of the gas purification apparatus X1, the automatic valves 16a-16d, 31a-31d, 32a-32d, 33a-33d, 34a-34d, 34a'-34d ', 35a-35d, 331, and flow rate control By appropriately switching the valves 332 and 341, a desired gas flow state is realized in the apparatus, and one cycle consisting of the following steps 1 to 20 is repeated. In one cycle of this method, in each of the first adsorption tanks 10A to 10D, an adsorption step, a pressure equalization (first pressure equalization / decompression) step, a standby step, a countercurrent pressure reduction step, a countercurrent washing step, equalization A pressure (first pressure equalization boosting) process, a standby process, a pressure equalization (second pressure equalization boosting) process, and a product gas pressure boosting process are performed. In each of the second adsorption tanks 20A to 20D, an adsorption step, a pressure equalization (first pressure equalization depressurization) step, a cocurrent pressure reduction step, a pressure equalization (second pressure equalization depressurization) step, a standby step, A countercurrent pressure reduction process, a countercurrent cleaning process, a pressure equalization (first pressure equalization and pressure increase) process, a standby process, a pressure equalization (second pressure equalization and pressure increase) process, and a product gas pressure pressurization process are performed. In the present embodiment, each of the first adsorption tanks 10A to 10D is filled with activated carbon as a first adsorbent, and the lower part (closer to the gas passage port 21) and the upper part in each of the second adsorption tanks 20A to 20D The CMS and ZMS as the second adsorbent are stacked and filled in equal amounts in the vicinity of the gas passage port 22. FIGS. 2 to 5 schematically show the flow of gas in the gas purification apparatus X1 in steps 1 to 20. FIG.

ステップ1では、図2aに示すようなガス流れ状態が達成されて、第1の吸着槽10Aおよび第2の吸着槽20Aにて吸着工程が、第1の吸着槽10Bおよび第2の吸着槽20Bにて均圧(第2均圧化昇圧)工程が、第1の吸着槽10Cおよび第2の吸着槽20Cにて向流減圧工程が、第1の吸着槽10Dおよび第2の吸着槽20Dにて均圧(第1均圧化減圧)工程が行われる。本ステップでは、第1の吸着槽10A〜10Dおよび第2の吸着槽20A〜20Dを同期させるよう、各自動弁16a〜16dは開状態となる。したがって、これら第1の吸着槽10A〜10Dおよび第2の吸着槽20A〜20Dにおいて、組をなす、第1の吸着槽10A(10B,10C,10D)と第2の吸着槽20A(20B,20C,20D)とは、連通している。ステップ1のプロセスタイムは、例えば20秒とされる。   In step 1, the gas flow state as shown in FIG. 2a is achieved, and the adsorption step is performed in the first adsorption tank 10A and the second adsorption tank 20A, the first adsorption tank 10B and the second adsorption tank 20B. In the pressure equalizing (second pressure equalizing and pressurizing) step, in the first adsorption tank 10C and the second adsorption tank 20C, the countercurrent pressure reduction step is performed in the first adsorption tank 10D and the second adsorption tank 20D. A pressure equalization (first pressure equalization) step is performed. In this step, the automatic valves 16a to 16d are opened to synchronize the first adsorption tanks 10A to 10D and the second adsorption tanks 20A to 20D. Therefore, in the first adsorption tank 10A to 10D and the second adsorption tank 20A to 20D, the first adsorption tank 10A (10B, 10C, 10D) and the second adsorption tank 20A (20B, 20C) are combined. , 20D) are in communication. The process time of step 1 is, for example, 20 seconds.

図1および図2aを併せて参照するとよく理解できるように、ステップ1では、原料ガス(混合ガス)が、配管31およびガス通過口11を介して第1の吸着槽10Aに導入される。吸着工程にある第1および第2の吸着槽10A,20A内は所定の高圧状態に維持されており、混合ガス中の不純物(例えば重質炭化水素、BTX、硫黄化合物など)が第1の吸着槽10A内の第1吸着剤に吸着される。また、第1の吸着槽10Aのガス通過口12を介して排出されるプレ吸着された後のガス(プレ吸着透過ガス)が、連通路16およびガス通過口21を介して第2の吸着槽20Aに導入される。この結果、プレ吸着透過ガス中の不純物(例えば一酸化炭素、二酸化炭素、メタンなど)が第2の吸着槽20A内の第2吸着剤に吸着されるとともに、水素ガス濃度の高い製品ガス(水素富化ガス)が第2の吸着槽20Aのガス通過口22を介して排出される。この製品ガスは、配管32を介して製品ガス取り出し端E2から、例えば外部のバッファタンク(図示せず)に回収される。なお、以下においては、説明を簡単にするために、単なるガスの出入り口に過ぎないガス通過口11,12,21,22への言及は省略する。   As well understood by referring to FIGS. 1 and 2a together, in step 1, a raw material gas (mixed gas) is introduced into the first adsorption tank 10A via the pipe 31 and the gas passage port 11. The first and second adsorption vessels 10A and 20A in the adsorption step are maintained at a predetermined high pressure state, and impurities (for example, heavy hydrocarbons, BTX, sulfur compounds, etc.) in the mixed gas are absorbed by the first adsorption. It is adsorbed by the first adsorbent in the tank 10A. In addition, the gas (pre-adsorbed permeating gas) after pre-adsorption which is discharged through the gas passage port 12 of the first adsorption tank 10A (secondary adsorption tank) is transmitted through the communication passage 16 and the gas passage port 21. It will be introduced at 20A. As a result, impurities (for example, carbon monoxide, carbon dioxide, methane, etc.) in the pre-adsorbed permeation gas are adsorbed by the second adsorbent in the second adsorption tank 20A, and a product gas with high hydrogen gas concentration (hydrogen The enrichment gas is exhausted through the gas passage port 22 of the second adsorption tank 20A. The product gas is recovered from the product gas outlet E2 via the pipe 32, for example, to an external buffer tank (not shown). In the following, in order to simplify the description, the reference to the gas passage ports 11, 12, 21 and 22 which are merely the gas inlet and outlet ports will be omitted.

第2の吸着槽20Bおよび第1の吸着槽10Bには、第2の吸着槽20Dから排出された第2の吸着槽20D内の槽内ガスが配管34を介して導入される。第2の吸着槽20Dおよび第1の吸着槽10Dは、先に吸着工程を行っていたから(図5eに示されるステップ20参照)、第2の吸着槽20Dおよび第1の吸着槽10Dの内部の方が第2の吸着槽20Bおよび第1の吸着槽10Bの内部よりも高圧となっている。そのため、第2の吸着槽20Dからの槽内ガスを第2の吸着槽20Bおよび第1の吸着槽10Bに導入することにより、第2の吸着槽20Dおよび第1の吸着槽10Dの内部が減圧されるとともに、第2の吸着槽20Bおよび第1の吸着槽10Bの内部が昇圧される。また、第1の吸着槽10Dからの槽内ガスは、連通路16を介して第2の吸着槽20Dに導入される。上述のように第1の吸着槽10Dは先に吸着工程を行っていたから、第1の吸着槽10D内において吸着剤によって不純物成分(重質炭化水素、BTX、硫黄化合物など)が優位に吸着されており、槽内ガスは、目的ガスたる水素ガスの濃度が高い。このような水素濃度の高いガスが、第1の吸着槽10Dから第2の吸着槽20Dに移動する。   The gas in the second adsorption tank 20D discharged from the second adsorption tank 20D is introduced into the second adsorption tank 20B and the first adsorption tank 10B through the pipe 34. Since the second adsorption tank 20D and the first adsorption tank 10D have previously performed the adsorption step (see step 20 shown in FIG. 5e), the second adsorption tank 20D and the inside of the first adsorption tank 10D Is higher than the pressure in the second adsorption tank 20B and the first adsorption tank 10B. Therefore, the pressure in the second adsorption tank 20D and the first adsorption tank 10D is reduced by introducing the in-tank gas from the second adsorption tank 20D into the second adsorption tank 20B and the first adsorption tank 10B. The pressure inside the second adsorption tank 20B and the first adsorption tank 10B is raised. Further, the in-tank gas from the first adsorption tank 10D is introduced into the second adsorption tank 20D via the communication passage 16. As described above, since the first adsorption tank 10D has previously performed the adsorption step, the impurity component (heavy hydrocarbon, BTX, sulfur compound, etc.) is adsorbed predominantly by the adsorbent in the first adsorption tank 10D. The gas in the tank has a high concentration of hydrogen gas which is the target gas. Such hydrogen-rich gas moves from the first adsorption tank 10D to the second adsorption tank 20D.

第2の吸着槽20Cおよび第1の吸着槽10Cについては、先のステップ20(図5e)に引き続いて、向流方向で減圧することにより第1吸着剤および第2吸着剤から不純物が脱着され、生じる脱着ガスが第2の吸着槽20Cおよび第1の吸着槽10Cに残留するガスとともに排出される(以下、脱着ガスと残留ガスとを総称して「槽内ガス」という)。槽内ガスは、配管35を通り、ガス排出端E3から外部へ排出される。なお、配管35の主幹路35’にオフガスタンク(図示略)を設置し、当該オフガスタンク内に第1の吸着槽からの排出ガスを一時的に貯留するように構成してもよい。   In the second adsorption tank 20C and the first adsorption tank 10C, the impurities are desorbed from the first adsorbent and the second adsorbent by reducing the pressure in the countercurrent direction following step 20 (FIG. 5e). The generated desorbed gas is discharged together with the gas remaining in the second adsorption tank 20C and the first adsorption tank 10C (hereinafter, the desorption gas and the residual gas are collectively referred to as “in-tank gas”). The gas in the tank passes through the pipe 35 and is discharged from the gas discharge end E3 to the outside. In addition, an off gas tank (not shown) may be installed in the main trunk passage 35 'of the pipe 35, and the exhaust gas from the first adsorption tank may be temporarily stored in the off gas tank.

ステップ2では、図2bに示すようなガス流れ状態が達成されて、第1の吸着槽10Aおよび第2の吸着槽20Aにて引き続き吸着工程が、第2の吸着槽20Bおよび第1の吸着槽10Bにて製品ガス昇圧工程が、第2の吸着槽20Cおよび第1の吸着槽10Cにて向流洗浄工程が、第2の吸着槽20Dにて並流減圧工程が、第1の吸着槽10Dにて待機工程が行われる。本ステップでは、第1の吸着槽10A〜10Cおよび第2の吸着槽20A〜20Cを同期させるよう、各自動弁16a〜16cは開状態となる。一方、自動弁16dは閉状態とされており、第1の吸着槽10Dおよび第2の吸着槽20Dは、連通しない(同期しない)状態にある。ステップ2のプロセスタイムは、例えば70秒とされる。   In step 2, the gas flow state as shown in FIG. 2b is achieved, and the adsorption step continues in the first adsorption tank 10A and the second adsorption tank 20A, the second adsorption tank 20B and the first adsorption tank The product gas boosting step in 10B, the countercurrent cleaning step in the second adsorption tank 20C and the first adsorption tank 10C, the cocurrent pressure reduction step in the second adsorption tank 20D, the first adsorption tank 10D Standby process is performed. In this step, the automatic valves 16a to 16c are opened to synchronize the first adsorption tanks 10A to 10C and the second adsorption tanks 20A to 20C. On the other hand, the automatic valve 16d is in the closed state, and the first adsorption tank 10D and the second adsorption tank 20D are not in communication (in synchronization) with each other. The process time of step 2 is, for example, 70 seconds.

図1および図2bを併せて参照するとよく理解できるように、ステップ2では、ステップ1から引き続いて、混合ガスが配管31を介して第1の吸着槽10Aに導入されて、第2の吸着槽20Aから製品ガスが排出される。製品ガスは、ステップ1と同様にして回収されるが、その一部が配管33を介して第2の吸着槽20Bおよび第1の吸着槽10Bに導入され、これら吸着槽20B,10Bの製品ガスによる昇圧が行われる。これとともに、ステップ2では、第2の吸着槽20Dから導出された当該吸着槽20D内のガスが配管34を介して第2の吸着槽20Cに導入され、第2の吸着槽20Cおよび第1の吸着槽10Cの槽内ガス(主に脱着ガス)がガス通過口11側から排出される。当該槽内ガスは、配管35を介して、ガス排出端E3から外部へ排出される。   As well as referring to FIGS. 1 and 2b in combination, in step 2, the mixed gas is introduced into the first adsorption tank 10A via the pipe 31 and the second adsorption tank is continued from step 1 Product gas is discharged from 20A. The product gas is recovered in the same manner as in step 1, but a portion thereof is introduced into the second adsorption tank 20B and the first adsorption tank 10B through the piping 33, and the product gas of these adsorption tanks 20B and 10B Boosting is performed. At the same time, in step 2, the gas in the adsorption tank 20D derived from the second adsorption tank 20D is introduced into the second adsorption tank 20C via the pipe 34, and the second adsorption tank 20C and the first The gas (mainly desorption gas) in the adsorption tank 10C is discharged from the gas passage port 11 side. The gas in the tank is discharged from the gas discharge end E3 to the outside through the pipe 35.

また、ステップ2では、第2の吸着槽20Dにおいて並流減圧工程が行われるところ、第1の吸着槽10Dは、第2の吸着槽20Dと同期しておらず、ガスの出入りがなされない待機工程である。仮に第1の吸着槽10Dにおいても並流減圧工程が行われると、当該第1の吸着槽10Dにおいて吸着された不純物が連通路16を介して第2の吸着槽20Dに流入するおそれがある。かかる理由により、第1の吸着槽10Dについては、第2の吸着槽20Dの並流減圧工程と同期させずに待機工程とした。   Further, in step 2, while the cocurrent flow depressurizing step is performed in the second adsorption tank 20D, the first adsorption tank 10D is not synchronized with the second adsorption tank 20D, and a standby state in which gas does not enter or leave It is a process. If the cocurrent flow depressurizing step is performed also in the first adsorption tank 10D, the impurities adsorbed in the first adsorption tank 10D may flow into the second adsorption tank 20D through the communication passage 16. Due to this reason, the first adsorption tank 10D is a standby process without being synchronized with the cocurrent flow depressurization process of the second adsorption tank 20D.

ステップ3では、図2cに示すようなガス流れ状態が達成されて、第1の吸着槽10Aおよび第2の吸着槽20Aにて引き続き吸着工程が、第2の吸着槽20Bおよび第1の吸着槽10Bにて引き続き製品ガス昇圧工程が、第2の吸着槽20Cおよび第1の吸着槽10Cにて均圧(第1均圧化昇圧)工程が、第2の吸着槽20Dにて均圧(第2均圧化減圧)工程が行われる。一方、第1の吸着槽10Dは、ステップ2と同様に待機工程とする。自動弁16a〜16cは開状態で、自動弁16dは閉状態となる。ステップ3のプロセスタイムは、例えば20秒とされる。   In step 3, a gas flow state as shown in FIG. 2c is achieved, and the adsorption step continues in the first adsorption tank 10A and the second adsorption tank 20A, the second adsorption tank 20B and the first adsorption tank The product gas boosting step continues at 10 B, the pressure equalization (first pressure equalization boosting) step at the second adsorption tank 20 C and the first adsorption tank 10 C, the pressure equalization at the second adsorption tank 20 D 2 equalization pressure reduction) step is performed. On the other hand, as in step 2, the first adsorption tank 10D is a standby process. The automatic valves 16a to 16c are open, and the automatic valve 16d is closed. The process time of step 3 is, for example, 20 seconds.

図1および図2cを併せて参照するとよく理解できるように、ステップ3では、ステップ2から引き続いて、混合ガスが配管31を介して第1の吸着槽10Aに導入されて、第2の吸着槽20Aから製品ガスが排出される。製品ガスの一部は配管33を介して第2の吸着槽20Bおよび第1の吸着槽10Bに導入され、これら吸着槽20B,10Bの製品ガスによる昇圧が引き続き行われる。これとともに、ステップ3では、第2の吸着槽20Dから導出されたガスが配管34を介して第2の吸着槽20Cに導入されるとともに、連通路16を介して第1の吸着槽10Cにも導入される。   As can be better understood by referring to FIGS. 1 and 2c together, in step 3, the mixed gas is introduced into the first adsorption tank 10A via the pipe 31 and the second adsorption tank is continued from step 2 Product gas is discharged from 20A. Part of the product gas is introduced into the second adsorption tank 20B and the first adsorption tank 10B through the pipe 33, and the pressure increase by the product gas of these adsorption tanks 20B and 10B is subsequently performed. At the same time, in step 3, the gas derived from the second adsorption tank 20D is introduced into the second adsorption tank 20C through the pipe 34, and also through the communication passage 16 to the first adsorption tank 10C. be introduced.

ステップ4では、図2dに示すようなガス流れ状態が達成されて、第1の吸着槽10Aおよび第2の吸着槽20Aにて引き続き吸着工程が、第2の吸着槽20Bおよび第1の吸着槽10Bにて引き続き製品ガス昇圧工程が、第2の吸着槽20Cおよび第1の吸着槽10Cにて待機工程が行われる。また、第2の吸着槽20Dにて待機工程が、第1の吸着槽10Dにて向流減圧工程が行われる。自動弁16a〜16cは開状態で、自動弁16dは閉状態である。ステップ4のプロセスタイムは、例えば10秒とされる。   In step 4, a gas flow state as shown in FIG. 2d is achieved, and the adsorption step continues in the first adsorption tank 10A and the second adsorption tank 20A, the second adsorption tank 20B and the first adsorption tank A product gas boosting step is subsequently performed at 10 B, and a standby step is performed at the second adsorption tank 20 C and the first adsorption tank 10 C. Further, the standby process is performed in the second adsorption tank 20D, and the countercurrent pressure reduction process is performed in the first adsorption tank 10D. The automatic valves 16a to 16c are open, and the automatic valve 16d is closed. The process time of step 4 is, for example, 10 seconds.

ステップ2やステップ3において第2の吸着槽20Dでは並流減圧工程や均圧(第2均圧化減圧)工程が行われる一方で、第1の吸着槽10Dは待機工程であったことから、第2の吸着槽20Dと比べて第1の吸着槽10Dは相対的に高圧になっている。このため、第2の吸着槽20Dと第1の吸着槽10Dを同期させて向流減圧工程を開始すると第1の吸着槽10Dから第2の吸着槽20Dへのガス流れが生じ、第1の吸着槽10D内にある不純物が連通路16を介して第2の吸着槽20Dに流入するおそれがある。そのような事態を防ぐため、第1の吸着槽10Dの圧力が第2の吸着槽20Dと同程度となるまで、第1の吸着槽10Dのみ向流減圧工程を行う。   In steps 2 and 3, while the cocurrent flow depressurization step and the pressure equalization (second pressure equalization depressurization) step are performed in the second adsorption tank 20D, the first adsorption tank 10D is the standby step, The first adsorption tank 10D has a relatively high pressure as compared to the second adsorption tank 20D. Therefore, when the second adsorption tank 20D and the first adsorption tank 10D are synchronized and the countercurrent pressure reduction process is started, a gas flow from the first adsorption tank 10D to the second adsorption tank 20D is generated, and the first adsorption tank 20D is generated. Impurities present in the adsorption tank 10D may flow into the second adsorption tank 20D via the communication passage 16. In order to prevent such a situation, only the first adsorption tank 10D is subjected to the countercurrent pressure reduction process until the pressure of the first adsorption tank 10D becomes approximately the same as that of the second adsorption tank 20D.

図1および図2dを併せて参照するとよく理解できるように、ステップ4では、ステップ3から引き続いて、混合ガスが配管31を介して第1の吸着槽10Aに導入されて、第2の吸着槽20Aから製品ガスが排出される。製品ガスの一部は配管33を介して第2の吸着槽20Bおよび第1の吸着槽10Bに導入され、これら吸着槽20B,10Bの製品ガスによる昇圧が引き続き行われる。第2の吸着槽20Cおよび第1の吸着槽10Cについては、先のステップ3で一度目の均圧(第1均圧化昇圧)を受けているが、後のステップ6(図3a)にて二度目の均圧(第2均圧化昇圧)を受けるために待機する。第1の吸着槽10Dについては、向流方向で減圧することにより吸着剤から不純物が脱着され、第1の吸着槽10Dから槽内ガス(主に脱着ガス)が排出される。第2の吸着槽20Dについては、後のステップ5(図2e)にて第1の吸着槽10Dとともに向流減圧をするために、第1の吸着槽10Dの内部圧力が第2の吸着槽20Dの内部圧力と同等程度に減圧されるまで待機する。   As well understood by referring to FIGS. 1 and 2d together, in step 4, the mixed gas is introduced into the first adsorption tank 10A through the pipe 31 and the second adsorption tank is continued from step 3 Product gas is discharged from 20A. Part of the product gas is introduced into the second adsorption tank 20B and the first adsorption tank 10B through the pipe 33, and the pressure increase by the product gas of these adsorption tanks 20B and 10B is subsequently performed. The second adsorption tank 20C and the first adsorption tank 10C are subjected to the first pressure equalization (first pressure equalization pressurization) in the previous step 3, but in the subsequent step 6 (FIG. 3a) Wait to receive a second equalization (second equalization boosting). In the first adsorption tank 10D, impurities are desorbed from the adsorbent by reducing the pressure in the countercurrent direction, and gas in the tank (mainly desorption gas) is discharged from the first adsorption tank 10D. With regard to the second adsorption tank 20D, the internal pressure of the first adsorption tank 10D is the second adsorption tank 20D in order to carry out countercurrent pressure reduction with the first adsorption tank 10D in the later step 5 (FIG. 2e) Wait until the pressure is reduced to the same degree as the internal pressure of.

ステップ5では、図2eに示すようなガス流れ状態が達成されて、第1の吸着槽10Aおよび第2の吸着槽20Aにて引き続き吸着工程が、第2の吸着槽20Bおよび第1の吸着槽10Bにて引き続き製品ガス昇圧工程が、第2の吸着槽20Cおよび第1の吸着槽10Cにて引き続き待機工程が行われる。また、第2の吸着槽20Dおよび第1の吸着槽10Dにて向流減圧工程が行われる。自動弁16a〜16dは開状態である。ステップ5のプロセスタイムは、例えば80秒とされる。   In step 5, a gas flow state as shown in FIG. 2e is achieved, and the adsorption step continues in the first adsorption tank 10A and the second adsorption tank 20A, the second adsorption tank 20B and the first adsorption tank A product gas boosting step is continued at 10 B, and a standby step is performed at the second adsorption tank 20 C and the first adsorption tank 10 C. Further, the countercurrent pressure reduction step is performed in the second adsorption tank 20D and the first adsorption tank 10D. The automatic valves 16a to 16d are in the open state. The process time of step 5 is, for example, 80 seconds.

図1および図2eを併せて参照するとよく理解できるように、ステップ5では、ステップ4から引き続いて、混合ガスが配管31を介して第1の吸着槽10Aに導入されて、第2の吸着槽20Aから製品ガスが排出される。製品ガスの一部は配管33を介して第2の吸着槽20Bおよび第1の吸着槽10Bに導入され、これら吸着槽20B,10Bの製品ガスによる昇圧が引き続き行われる。第2の吸着槽20Cおよび第1の吸着槽10Cについては、後のステップ6(図3a)にて二度目の均圧(第2均圧化昇圧)を受けるために引き続き待機する。第2の吸着槽20Dについては、向流方向で減圧することにより吸着剤から不純物が脱着され、槽内ガス(主に脱着ガス)が排出される。この排出されたガスは連通路16を介して第1の吸着槽10Dに導入される。第1の吸着槽10Dについては、引き続き向流方向で減圧することにより吸着剤から不純物が脱着され、第1の吸着槽10Dから槽内ガス(主に脱着ガス)が排出される。   As well as referring to FIGS. 1 and 2e in combination, in step 5, the mixed gas is introduced into the first adsorption tank 10A through the pipe 31 and the second adsorption tank continues from step 4 Product gas is discharged from 20A. Part of the product gas is introduced into the second adsorption tank 20B and the first adsorption tank 10B through the pipe 33, and the pressure increase by the product gas of these adsorption tanks 20B and 10B is subsequently performed. The second adsorption tank 20C and the first adsorption tank 10C continue to stand by to receive a second pressure equalization (second pressure equalization and pressure increase) in the subsequent step 6 (FIG. 3a). In the second adsorption tank 20D, impurities are desorbed from the adsorbent by reducing the pressure in the countercurrent direction, and the gas in the tank (mainly desorption gas) is discharged. The discharged gas is introduced into the first adsorption tank 10D through the communication passage 16. In the first adsorption tank 10D, the pressure in the countercurrent direction is continuously reduced to desorb the impurities from the adsorbent, and the gas in the tank (mainly desorption gas) is discharged from the first adsorption tank 10D.

ステップ1〜5において、吸着工程にある第1および第2の吸着槽10A,20Aの内部の圧力(吸着圧力)は、例えば0.6〜4.0MPaGである。また、ステップ1〜5において、向流減圧工程にある第1および第2の吸着槽(10C,10D,20C,20D)の内部の最低圧力(脱着圧力)は、例えば30〜50kPaGであり、好ましくは大気圧である。   In steps 1 to 5, the pressure (adsorption pressure) in the first and second adsorption tanks 10A and 20A in the adsorption step is, for example, 0.6 to 4.0 MPaG. In Steps 1 to 5, the minimum pressure (desorption pressure) inside the first and second adsorption tanks (10C, 10D, 20C, 20D) in the countercurrent pressure reduction step is, for example, 30 to 50 kPaG, and is preferably Is the atmospheric pressure.

ステップ1〜5は、ステップ1〜20により構成される1サイクルの1/4に相当し、そのステップ1〜5の工程時間は、例えば合計200秒である。なお、ステップ1〜20からなる1サイクルを繰り返し行う際の第1および第2の吸着槽10A〜10D,20A〜20Dの内部温度については特に限定されないが、季節に応じた温度変化を考慮し、0〜40℃程度であれば問題はない。   Steps 1 to 5 correspond to 1⁄4 of one cycle configured by steps 1 to 20, and the process time of the steps 1 to 5 is, for example, a total of 200 seconds. The internal temperatures of the first and second adsorption tanks 10A to 10D and 20A to 20D when one cycle consisting of steps 1 to 20 is repeated are not particularly limited, but considering the temperature change according to the season, There is no problem if it is about 0 to 40 ° C.

ステップ6〜10においては、図3a〜3eに示すようなガス流れ状態が達成されて、第1の吸着槽10Aでは、ステップ1〜5における第1の吸着槽10Dと同様にして均圧(第1均圧化減圧)工程、待機工程、向流減圧工程が行われ、第2の吸着槽20Aでは、ステップ1〜5における第2の吸着槽20Dと同様にして均圧(第1均圧化減圧)工程、並流減圧工程、均圧(第2均圧化減圧)工程、待機工程、向流減圧工程が行われる。第1の吸着槽10Bおよび第2の吸着槽20Bでは、ステップ1〜5における第1の吸着槽10Aおよび第2の吸着槽20Aと同様にして吸着工程が行われる。第1の吸着槽10Cおよび第2の吸着槽20Cでは、ステップ1〜5における第1の吸着槽10Bおよび第2の吸着槽20Bと同様にして均圧(第2均圧化昇圧)工程、製品ガス昇圧工程が行われる。第1の吸着槽10Dおよび第2の吸着槽20Dでは、ステップ1〜5における第1の吸着槽10Cおよび第2の吸着槽20Cと同様にして向流減圧工程、向流洗浄工程、均圧(第1均圧化昇圧)工程、待機工程が行われる。   In steps 6 to 10, the gas flow state as shown in FIGS. 3a to 3e is achieved, and in the first adsorption tank 10A, pressure equalization (the first adsorption tank 10D in the same manner as the first adsorption tank 10D in steps 1 to 5) 1 pressure equalization), standby process, and countercurrent pressure reduction process are performed, and in the second adsorption tank 20A, pressure equalization (first pressure equalization) is performed in the same manner as the second adsorption tank 20D in steps 1 to 5 A pressure reduction step, a cocurrent flow reduction step, a pressure equalization (second pressure equalization pressure reduction) step, a standby step, and a countercurrent pressure reduction step are performed. In the first adsorption tank 10B and the second adsorption tank 20B, the adsorption step is performed in the same manner as the first adsorption tank 10A and the second adsorption tank 20A in Steps 1 to 5. In the first adsorption tank 10C and the second adsorption tank 20C, in the same manner as the first adsorption tank 10B and the second adsorption tank 20B in Steps 1 to 5, the pressure equalization (second pressure equalization and pressure increase) process, the product A gas boosting step is performed. In the first adsorption tank 10D and the second adsorption tank 20D, in the same manner as the first adsorption tank 10C and the second adsorption tank 20C in Steps 1 to 5, a countercurrent pressure reduction process, a countercurrent washing process, pressure equalization ( The first equalization pressure increase step) and the standby step are performed.

ステップ11〜15においては、図4a〜4eに示すようなガス流れ状態が達成されて、第1の吸着槽10Aおよび第2の吸着槽20Aでは、ステップ1〜5における第1の吸着槽10Cおよび第2の吸着槽20Cと同様にして向流減圧工程、向流洗浄工程、均圧(第1均圧化昇圧)工程、待機工程が行われる。第1の吸着槽10Bでは、ステップ1〜5における第1の吸着槽10Dと同様にして均圧(第1均圧化減圧)工程、待機工程、向流減圧工程が行われ、第2の吸着槽20Bでは、ステップ1〜5における第2の吸着槽20Dと同様にして均圧(第1均圧化減圧)工程、並流減圧工程、均圧(第2均圧化減圧)工程、待機工程、向流減圧工程が行われる。第1の吸着槽10Cおよび第2の吸着槽20Cでは、ステップ1〜5における第1の吸着槽10Aおよび第2の吸着槽20Aと同様にして吸着工程が行われる。第1の吸着槽10Dおよび第2の吸着槽20Dでは、ステップ1〜5における第1の吸着槽10Bおよび第2の吸着槽20Bと同様にして均圧(第2均圧化昇圧)工程、製品ガス昇圧工程が行われる。   In Steps 11 to 15, the gas flow state as shown in FIGS. 4a to 4e is achieved, and in the first adsorption tank 10A and the second adsorption tank 20A, the first adsorption tank 10C and Steps 1 to 5 in Steps 1 to 5 are obtained. Similarly to the second adsorption tank 20C, a countercurrent pressure reduction step, a countercurrent washing step, a pressure equalization (first pressure equalization pressure increase) step, and a standby step are performed. In the first adsorption tank 10B, in the same manner as the first adsorption tank 10D in Steps 1 to 5, the pressure equalization (first pressure equalization pressure reduction) process, the standby process, and the countercurrent pressure reduction process are performed, and the second adsorption In tank 20B, in the same manner as in the second adsorption tank 20D in steps 1 to 5, pressure equalization (first pressure equalization depressurization) process, cocurrent pressure reduction process, pressure equalization (second pressure equalization depressurization) process, standby process , A countercurrent depressurization step is performed. In the first adsorption tank 10C and the second adsorption tank 20C, the adsorption step is performed in the same manner as the first adsorption tank 10A and the second adsorption tank 20A in Steps 1 to 5. In the first adsorption tank 10D and the second adsorption tank 20D, in the same manner as the first adsorption tank 10B and the second adsorption tank 20B in Steps 1 to 5, the pressure equalization (second pressure equalization and pressure increase) process, the product A gas boosting step is performed.

ステップ16〜20においては、図5a〜5eに示すようなガス流れ状態が達成されて、第1の吸着槽10Aおよび第2の吸着槽20Aでは、ステップ1〜5における第1の吸着槽10Bおよび第2の吸着槽20Bと同様にして均圧(第2均圧化昇圧)工程、製品ガス昇圧工程が行われる。第1の吸着槽10Bおよび第2の吸着槽20Bでは、ステップ1〜5における第1の吸着槽10Cおよび第2の吸着槽20Cと同様にして向流減圧工程、向流洗浄工程、均圧(第1均圧化昇圧)工程、待機工程が行われる。第1の吸着槽10Cでは、ステップ1〜5における第1の吸着槽10Dと同様にして均圧(第1均圧化減圧)工程、待機工程、向流減圧工程が行われ、第2の吸着槽20Cでは、ステップ1〜5における第2の吸着槽20Dと同様にして均圧(第1均圧化減圧)工程、並流減圧工程、均圧(第2均圧化減圧)工程、待機工程、向流減圧工程が行われる。第1の吸着槽10Dおよび第2の吸着槽20Dでは、ステップ1〜5における第1の吸着槽10Aおよび第2の吸着槽20Aと同様にして吸着工程が行われる。   In steps 16 to 20, the gas flow state as shown in FIGS. 5a to 5e is achieved, and in the first adsorption tank 10A and the second adsorption tank 20A, the first adsorption tank 10B and steps 1 to 5 in steps 1 to 5 are obtained. Similar to the second adsorption tank 20B, the pressure equalization (second pressure equalization and pressure increase) process and the product gas pressure increase process are performed. In the first adsorption tank 10B and the second adsorption tank 20B, in the same manner as the first adsorption tank 10C and the second adsorption tank 20C in Steps 1 to 5, a countercurrent pressure reduction process, a countercurrent washing process, pressure equalization ( The first equalization pressure increase step) and the standby step are performed. In the first adsorption tank 10C, in the same manner as the first adsorption tank 10D in Steps 1 to 5, the pressure equalization (first pressure equalization pressure reduction) process, the standby process, and the countercurrent pressure reduction process are performed, and the second adsorption In tank 20C, in the same manner as in the second adsorption tank 20D in steps 1 to 5, pressure equalization (first pressure equalization depressurization) process, cocurrent pressure reduction process, pressure equalization (second pressure equalization depressurization) process, standby process , A countercurrent depressurization step is performed. In the first adsorption tank 10D and the second adsorption tank 20D, the adsorption step is performed in the same manner as the first adsorption tank 10A and the second adsorption tank 20A in Steps 1 to 5.

そして、以上に説明したステップ1〜20が第1の吸着槽10A〜10Dおよび第2の吸着槽20A〜20Dの各々において繰り返し行われることにより、第1および第2の吸着槽10A,20A〜10D,20Dの組のいずれかに混合ガスが連続的に導入され、且つ、水素ガス濃度の高い製品ガスが連続的に取得される。   Then, steps 1 to 20 described above are repeatedly performed in each of the first adsorption tank 10A to 10D and the second adsorption tank 20A to 20D, whereby the first and second adsorption tanks 10A, 20A to 10D are performed. The mixed gas is continuously introduced into any of the sets 20D and 20D, and a product gas with a high concentration of hydrogen gas is continuously obtained.

本実施形態の目的ガスの精製方法において、直列に配置された複数組の第1および第2の吸着槽10A〜10D,20A〜20Dを用いてPSA法によるガス分離を実行する。各組の第1および第2の吸着槽10A,20A(10B,20B、10C,20C、10D,20D)は、連通路16を介して連通しており、当該連通路16に自動弁16a(16b、16c、16d)が設けられている。これにより、PSA法によるガス分離における減圧工程の際、自動弁16a(16b,16c,16d)を適宜閉鎖することにより、第1の吸着槽10A(10B,10C,10D)と第2の吸着槽20A(20B,20C,20D)とは、同期させずに異なる工程を行わせることが可能となる。したがって、例えば、減圧操作の対象となる第1および第2の吸着槽10A,20A(10B,20B、10C,20C、10D,20D)について、ステップ1,6,11,16のように第1の吸着槽10A〜10D内の不純物が第2の吸着槽20A〜20Dに流入するおそれがない工程のみ自動弁16a〜16dを開いて対応する第1および第2の吸着槽どうしを連通させる。一方、ステップ2,3,4,7,8,9,12,13,14,17,18,19のように、第1の吸着槽10A〜10D内の不純物が第2の吸着槽20A〜20Dに流入するおそれがある工程については、自動弁16a〜16dを閉じて対応する第1および第2の吸着槽どうしを連通させない。これにより、回収する製品ガスにおける水素ガス(目的ガス)の回収率を高めつつ、第1の吸着槽10A〜10D内の吸着剤に選択的に吸着される不純物によって第2の吸着槽20A〜20D内の吸着剤の吸着能力が低下するのを防止することができる。   In the purification method of the target gas of the present embodiment, gas separation by the PSA method is performed using a plurality of sets of first and second adsorption tanks 10A to 10D and 20A to 20D arranged in series. The first and second adsorption vessels 10A, 20A (10B, 20B, 10C, 20C, 10D, 20D) of each set are in communication via the communication passage 16, and the automatic passage 16a (16b) is connected to the communication passage 16 , 16c, 16d) are provided. Thereby, in the pressure reduction step in the gas separation by the PSA method, the first adsorption tank 10A (10B, 10C, 10D) and the second adsorption tank are closed by closing the automatic valves 16a (16b, 16c, 16d) appropriately. It becomes possible to carry out different processes without synchronization with 20A (20B, 20C, 20D). Therefore, for example, with respect to the first and second adsorption tanks 10A and 20A (10B, 20B, 10C, 20C, 10D, and 20D) to be subjected to the depressurization operation, the first adsorption step is performed as in steps 1, 6, 11, and 16. The automatic valves 16a to 16d are opened to connect the corresponding first and second adsorption tanks only in the process in which the impurities in the adsorption tanks 10A to 10D do not flow into the second adsorption tanks 20A to 20D. On the other hand, as in steps 2, 3, 4, 7, 8, 9, 12, 13, 14, 17, 18, and 19, the impurities in the first adsorption tank 10A to 10D are the second adsorption tank 20A to 20D. The automatic valves 16a to 16d are closed to prevent communication between the corresponding first and second adsorption tanks. As a result, while the recovery rate of hydrogen gas (target gas) in the product gas to be recovered is enhanced, the second adsorption tank 20A to 20D is caused by the impurities selectively adsorbed by the adsorbents in the first adsorption tank 10A to 10D. It is possible to prevent the adsorption capacity of the inner adsorbent from decreasing.

本実施形態と異なり、連通路16に自動弁16a〜16dを設けず、ステップ2,3,7,8,12,13,17,18においても第1および第2の吸着槽どうしを連通させた場合、並流減圧工程や均圧(第2均圧化減圧)工程において、第1の吸着槽で吸着された不純物が第2の吸着槽に流入し、当該第2の吸着槽の吸着能力が劣化する可能性が高まる。これを防ぐためには、第1の吸着槽の大型化が必要となる。   Unlike the present embodiment, the automatic valves 16a to 16d are not provided in the communication passage 16, and the first and second adsorption tanks are communicated also in steps 2, 3, 7, 8, 12, 13, 13, 17 In the cocurrent flow depressurization step and the pressure equalization (second pressure equalization depressurization) step, the impurities adsorbed in the first adsorption tank flow into the second adsorption tank, and the adsorption capacity of the second adsorption tank is The possibility of deterioration is increased. In order to prevent this, it is necessary to increase the size of the first adsorption tank.

なお、ステップ3における第1の吸着槽10D、ステップ8における第1の吸着槽10A、ステップ13における第1の吸着槽10B、ステップ18における第1吸着槽10Cは待機工程としたが、これらのステップでそれぞれ自動弁35d,35a,35b,35cを開状態にして向流減圧工程としてもよい。ここで、第1の吸着槽10A〜10Dの内部圧力が対応する第2の吸着槽20A〜20Dの内部圧力と同等以下まで減圧されるならば、ステップ4,9,14,19を省略してもよい。   The first adsorption tank 10D in step 3, the first adsorption tank 10A in step 8, the first adsorption tank 10B in step 13, and the first adsorption tank 10C in step 18 are standby steps, but these steps The automatic valves 35d, 35a, 35b and 35c may be opened to make a countercurrent pressure reduction step. Here, if the internal pressure of the first adsorption tank 10A to 10D is reduced to a pressure equal to or lower than the internal pressure of the corresponding second adsorption tank 20A to 20D, steps 4, 9, 14 and 19 are omitted. It is also good.

以上、本発明の具体的な実施形態を説明したが、本発明はこれに限定されるものではなく、発明の思想から逸脱しない範囲内で種々の変更が可能である。例えば、本発明に係る目的ガスの精製方法を実行する装置におけるガス流路をなす配管の構成については、上記実施形態と異なる構成を採用してもよい。吸着ユニット(一組の第1および第2の吸着槽からなるユニット)の数については上記実施形態で示した4ユニット式だけに限定されるものではなく、3ユニット以下、或いは5ユニット以上の場合でも同様の効果が期待できる。   As mentioned above, although specific embodiment of this invention was described, this invention is not limited to this, A various change is possible within the range which does not deviate from the thought of invention. For example, as for the configuration of the pipe forming the gas flow path in the apparatus for executing the method of purifying the target gas according to the present invention, a configuration different from the above embodiment may be adopted. The number of adsorption units (units consisting of a pair of first and second adsorption tanks) is not limited to the four-unit type shown in the above embodiment, and in the case of three or less units or five or more units But the same effect can be expected.

ステップ2や3における第1の吸着槽10D、ステップ7や8における第1の吸着槽10A、ステップ12や13における第1の吸着槽10B、ステップ17や18における第1の吸着槽10Cは待機工程としたが、原料ガスの組成や操作圧力などの条件から、第1の吸着槽(プレ吸着槽)においてプレ吸着された不純物が第2の吸着槽に流入するおそれがない場合には、対応する第2の吸着槽と同期させて並流減圧工程や均圧(第2均圧化減圧)工程とするなど、条件に応じて同期させる工程を自由に選択することができる。   The first adsorption tank 10D in steps 2 and 3, the first adsorption tank 10A in steps 7 and 8, the first adsorption tank 10B in steps 12 and 13, and the first adsorption tank 10C in steps 17 and 18 are waiting processes. However, due to conditions such as the composition of the source gas and the operating pressure, there is no risk that the impurities pre-adsorbed in the first adsorption tank (pre-adsorption tank) will flow into the second adsorption tank It is possible to freely select a process to be synchronized according to the conditions, such as a cocurrent flow depressurization process or a pressure equalization (second pressure equalization depressurization) process in synchronization with the second adsorption tank.

さらに、第2の吸着槽の各々に、複数の並列配置された小型の第1の吸着槽を連結して、いずれの第1の吸着槽にガスを流すかを手動弁などで切り換えることができる構成を採用してもよい。図6は、2個の第1の吸着槽(10A,10A)を並列して設ける場合を示しており、同図に示す例では、並列状の分枝路161に設けられた2個の第1吸着槽10A,10Aのいずれか一方へのガスの流れを許容するための三方弁17,18が、分岐部に設けられている。このようにすることで、各プレ吸着槽(第1の吸着槽)の交換頻度は多くなるが、第1の吸着槽の容積が小さくできるので、減圧時(減圧工程)において排出されるガスに同伴する水素ガス(目的ガス)の量が減少し、前段階でプレ吸着槽を取り付けることによる目的ガス回収率の低下を抑制できる。   Furthermore, a plurality of small-sized first adsorption tanks arranged in parallel can be connected to each of the second adsorption tanks, and it can be switched with a manual valve etc. to which first adsorption tank the gas flows. A configuration may be adopted. FIG. 6 shows the case where two first adsorption vessels (10A, 10A) are provided in parallel, and in the example shown in the figure, two first adsorption vessels (10A, 10A) are provided in the parallel branch passage 161. Three-way valves 17 and 18 for allowing the flow of gas into one of the adsorption vessels 10A and 10A are provided at the branch portion. By doing this, the replacement frequency of each pre-adsorption tank (the first adsorption tank) increases, but the volume of the first adsorption tank can be reduced, so the gas discharged at the time of pressure reduction (pressure reduction step) The amount of accompanying hydrogen gas (target gas) decreases, and it is possible to suppress a decrease in target gas recovery rate due to attaching a pre-adsorption tank in the previous step.

また、目的ガスについても上記実施形態の水素に限定されるものではない。上記実施形態以外でも、PSA法を利用したガス分離により、吸着剤によって吸着され難い難吸着成分(例えば、アルゴン)を目的成分とし、吸着剤によって選択的に吸着される易吸着成分を不純物成分とする態様で精製することが可能であれば、そのような難吸着成分を目的ガスとして、本発明を適用することが可能である。   Further, the target gas is not limited to the hydrogen of the above embodiment. Other than the above embodiment, the target component is a poorly adsorbed component (for example, argon) which is hardly adsorbed by the adsorbent by gas separation using the PSA method, and the easily adsorbed component selectively adsorbed by the adsorbent is the impurity component. It is possible to apply the present invention by using such a poorly adsorbed component as a target gas, as long as purification is possible in the following manner.

X1 ガス精製装置
10A,10B,10C,10D 第1の吸着槽
11 ガス通過口(第1ガス通過口)
12 ガス通過口
16 連通路
16a,16b,16c,16d 自動弁
161 分枝路
17,18 三方弁(切換手段)
20A,20B,20C,20D 第2の吸着槽
21 ガス通過口
22 ガス通過口(第2ガス通過口)
31〜35 配管
31’,32’,33’,34’,35’ 主幹路
31A〜31D,32A〜32D,33A〜33D,34A〜34D,34A’〜34D’,35A〜35D 分枝路
31a〜31d,32a〜32d,33a〜33d,34a〜34d,34a’〜34d’,35a〜35d,331 自動弁
332,341 流量調整弁
X1 Gas purification device 10A, 10B, 10C, 10D first adsorption tank 11 gas passage port (first gas passage port)
12 Gas passage port 16 Communication passages 16a, 16b, 16c, 16d Automatic valve 161 Branching passages 17, 18 Three-way valve (switching means)
20A, 20B, 20C, 20D second adsorption tank 21 gas passage port 22 gas passage port (second gas passage port)
31 to 35 Piping 31 ', 32', 33 ', 34', 35 'Main trunk path 31A to 31D, 32A to 32D, 33A to 33D, 34A to 34D, 34A' to 34D ', 35A to 35D Branching path 31a to 31d, 32a to 32d, 33a to 33d, 34a to 34d, 34a 'to 34d', 35a to 35d, 331 automatic valves 332, 341 flow control valves

Claims (4)

目的成分および複数の不純物成分を含む混合ガスから目的ガスを精製するための方法であって、
上記不純物成分を選択的に吸着する吸着剤が充填された複数の吸着ユニットを用いて行う圧力変動吸着法により、上記吸着ユニットが相対的に高圧である状態にて、上記吸着ユニットに上記混合ガスを導入して当該混合ガス中の上記不純物成分を上記吸着剤に吸着させ、当該吸着ユニットから上記目的成分が富化された目的成分富化ガスを排出する吸着工程と、上記吸着ユニットを減圧して当該吸着ユニットからガスを排出する減圧工程と、相対的に高圧である他の上記吸着ユニットから排出されるガスを上記吸着ユニットに導入する昇圧工程と、を含むサイクルを上記吸着ユニットの各々において繰り返し行う目的ガスの精製方法において、
上記各吸着ユニットは、直列に連結された第1および第2の吸着槽を含み、
上記減圧工程においては、上記第1および第2の吸着槽の間に設けられた開閉弁により、上記第1および第2の吸着槽が連通する状態と連通しない状態とに切り換えられ、
上記減圧工程は、上記第1および第2の吸着槽を連通させつつ上記第1の吸着槽内の目的成分を主とするガスを上記第2の吸着槽に導入する工程と、上記第1および第2の吸着槽を連通させずに上記第2の吸着槽内のガスを他の上記第2の吸着槽に導入する工程と、上記第1および第2の吸着槽を連通させずに上記第1の吸着槽内の不純物成分を主とするガスを外部に排出する工程と、を含み、
上記目的成分を主とするガスを上記第2の吸着槽に導入する工程において、上記第2の吸着槽内のガスを他の上記第2の吸着槽に導入し、
上記第2の吸着槽内のガスを他の上記第2の吸着槽に導入する工程は上記目的成分を主とするガスを上記第2の吸着槽に導入する工程の後に行い、上記第2の吸着槽内のガスを他の上記第2の吸着槽に導入する工程において、上記第2の吸着槽内のガスを、上記昇圧工程にある他の上記第2の吸着槽に導入し、
上記不純物成分を主とするガスを外部に排出する工程は、上記目的成分を主とするガスを上記第2の吸着槽に導入する工程および上記第2の吸着槽内のガスを他の上記第2の吸着槽に導入する工程の後に行うことを特徴とする、目的ガスの精製方法。
A method for purifying a target gas from a mixed gas containing a target component and a plurality of impurity components, comprising:
By the pressure fluctuation adsorption method performed by using a plurality of adsorption units filled with an adsorbent which selectively adsorbs the above-mentioned impurity component, the above-mentioned mixed gas is made to the above-mentioned adsorption unit in a state where the above-mentioned adsorption unit is relatively high pressure. And adsorb the impurity component in the mixed gas to the adsorbent, and discharge the target component-enriched gas enriched in the target component from the adsorption unit, and decompressing the adsorption unit In each of the adsorption units, a cycle including a pressure reduction step of discharging the gas from the adsorption unit and a pressure-up step of introducing the gas discharged from the other adsorption unit at a relatively high pressure to the adsorption unit In the purification method of the target gas to be repeated,
Each adsorption unit includes first and second adsorption vessels connected in series;
In the pressure reduction step, the on-off valve provided between the first and second adsorption vessels switches the state in which the first and second adsorption vessels are in communication and the state in which the first and second adsorption vessels are in communication ,
The depressurizing step includes the steps of: introducing a gas mainly composed of a target component in the first adsorption tank into the second adsorption tank while communicating the first and second adsorption tanks; Introducing the gas in the second adsorption tank into the other second adsorption tank without connecting the second adsorption tank, and the step of connecting the first and second adsorption tanks without communication Discharging the gas mainly containing the impurity component in the adsorption tank 1;
In the step of introducing the gas mainly composed of the target component into the second adsorption tank, the gas in the second adsorption tank is introduced into the other second adsorption tank,
The step of introducing the gas in the second adsorption tank into the other second adsorption tank is performed after the step of introducing the gas mainly composed of the target component into the second adsorption tank, and the second In the step of introducing the gas in the adsorption tank into the other second adsorption tank, the gas in the second adsorption tank is introduced into the other second adsorption tank in the pressure raising step,
In the step of discharging the gas mainly containing the impurity component to the outside, the step of introducing the gas mainly containing the target component into the second adsorption tank, and the gas in the second adsorption tank are other than the above A method for purifying a target gas, which is performed after the step of introducing into the second adsorption tank .
上記第1の吸着槽は、対応する直列の上記第2の吸着槽に対して互いに並列となるように複数設けられており、
上記目的成分を主とするガスを上記第2の吸着槽に導入する工程および上記不純物成分を主とするガスを外部に排出する工程において、上記複数設けられた上記第1の吸着槽のいずれか1つにおいてガスの出入りを可能とするようにガス流れ状態を切り換える、請求項に記載の目的ガスの精製方法。
A plurality of the first adsorption vessels are provided in parallel with each other in relation to the corresponding second adsorption vessels in series;
In the step of introducing the gas mainly containing the target component into the second adsorption tank and the step of discharging the gas mainly containing the impurity component, any one of the plurality of first adsorption tanks provided in plurality switching the gas flow conditions to allow entry and exit of gas in one process for purifying target gas according to claim 1.
上記第1の吸着槽には、上記複数の不純物成分のうち少なくとも1種を選択的に吸着する第1吸着剤が充填され、
上記第2の吸着槽には、上記複数の不純物成分のうち他の少なくとも1種を選択的に吸着する第2吸着剤が充填される、請求項1に記載の目的ガスの精製方法。
The first adsorption tank is filled with a first adsorbent which selectively adsorbs at least one of the plurality of impurity components,
The method for purifying target gas according to claim 1, wherein the second adsorption tank is filled with a second adsorbent which selectively adsorbs at least one other of the plurality of impurity components.
上記目的成分は、水素である、請求項1に記載の目的ガスの精製方法。 The purification method of a target gas according to claim 1, wherein the target component is hydrogen.
JP2016510282A 2014-03-28 2015-03-19 Purification method of target gas Active JP6502921B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2014068970 2014-03-28
JP2014068970 2014-03-28
PCT/JP2015/058189 WO2015146766A1 (en) 2014-03-28 2015-03-19 Purification method and purification device for target gas

Publications (2)

Publication Number Publication Date
JPWO2015146766A1 JPWO2015146766A1 (en) 2017-04-13
JP6502921B2 true JP6502921B2 (en) 2019-04-17

Family

ID=54195287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016510282A Active JP6502921B2 (en) 2014-03-28 2015-03-19 Purification method of target gas

Country Status (5)

Country Link
JP (1) JP6502921B2 (en)
KR (1) KR102317284B1 (en)
PH (1) PH12016501880B1 (en)
TW (1) TWI669270B (en)
WO (1) WO2015146766A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6585545B2 (en) * 2016-05-20 2019-10-02 株式会社神戸製鋼所 Hydrogen gas production method and hydrogen gas production apparatus
JP6611264B2 (en) * 2017-03-24 2019-11-27 大陽日酸株式会社 Gas purification method and apparatus
TWI771584B (en) * 2019-05-13 2022-07-21 純萃材料股份有限公司 Adsorption apparatus and adsorption method

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4264340A (en) * 1979-02-28 1981-04-28 Air Products And Chemicals, Inc. Vacuum swing adsorption for air fractionation
JPS58168876A (en) 1982-03-31 1983-10-05 日本酸素株式会社 Method of recovering hydrogen from coke oven gas
JPS605419U (en) * 1983-06-20 1985-01-16 新日本製鐵株式会社 Pressure swing adsorption/desorption device
DE3543468A1 (en) * 1985-12-09 1987-06-11 Linde Ag PRESSURE EXCHANGE ADDING METHOD
DE3716898A1 (en) 1987-05-20 1988-12-15 Bergwerksverband Gmbh METHOD AND DEVICE FOR HELIUM ENHANCEMENT
JPH06126120A (en) * 1992-10-13 1994-05-10 Nippon Steel Corp Method for increasing CO concentration in cracked gas
EP1354618A4 (en) * 2000-12-26 2004-09-15 Sumitomo Seika Chemicals Method and device for separating object gas
JP4180534B2 (en) * 2004-02-24 2008-11-12 本田技研工業株式会社 Fuel gas production apparatus and operation method thereof
JP4481112B2 (en) * 2004-08-26 2010-06-16 大陽日酸株式会社 Pressure fluctuation adsorption type gas separation method and apparatus

Also Published As

Publication number Publication date
PH12016501880A1 (en) 2017-01-09
WO2015146766A1 (en) 2015-10-01
PH12016501880B1 (en) 2017-01-09
JPWO2015146766A1 (en) 2017-04-13
KR20160137622A (en) 2016-11-30
TWI669270B (en) 2019-08-21
KR102317284B1 (en) 2021-10-25
TW201605722A (en) 2016-02-16

Similar Documents

Publication Publication Date Title
JP5314408B2 (en) PSA equipment for high-purity hydrogen gas production
CN101978235B (en) Separation method and device for blast furnace gas
TWI521056B (en) Methane recovery method and methane recovery unit
US9732297B2 (en) Gas purification method
US8709136B2 (en) Adsorption process
JPWO2008047828A1 (en) Method and apparatus for separating hydrogen gas
JP6502921B2 (en) Purification method of target gas
JP2011167629A (en) Method and apparatus for separating hydrogen gas
JPWO2018055971A1 (en) Hydrogen or helium purification method and hydrogen or helium purification apparatus
JP4814024B2 (en) PSA equipment for high-purity hydrogen gas production
JP7374925B2 (en) Gas separation equipment and gas separation method
JP6667382B2 (en) Hydrogen gas production method and hydrogen gas production device
KR102391642B1 (en) Hydrogen or helium purification method and hydrogen or helium purification apparatus
JP7372131B2 (en) Carbon dioxide recovery device and method
US8512443B2 (en) Hydrogen utilization within a refinery network
JP5462763B2 (en) Operation method of PSA equipment for high purity hydrogen gas production
JP2017222557A (en) Method for producing hydrogen gas and apparatus for producing hydrogen gas
JP3947752B2 (en) High purity hydrogen production method
JP6619687B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
JP2012106961A (en) Method and apparatus for separating methane
US11471819B2 (en) Gas refining apparatus, gas refining method, propene manufacturing apparatus, and propane manufacturing apparatus
WO2022099350A1 (en) A process and plant for producing ultrahigh-purity hydrogen from low-grade hydrogen gas
JP6646526B2 (en) Hydrogen gas production method and hydrogen gas production device
JP2018177567A (en) Hydrogen gas purification apparatus and operation method of hydrogen gas purification apparatus
JP2016187778A (en) Pressure swing adsorption device and gas separation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180905

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190322

R150 Certificate of patent or registration of utility model

Ref document number: 6502921

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250