[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5875462B2 - Sputtering method - Google Patents

Sputtering method Download PDF

Info

Publication number
JP5875462B2
JP5875462B2 JP2012115318A JP2012115318A JP5875462B2 JP 5875462 B2 JP5875462 B2 JP 5875462B2 JP 2012115318 A JP2012115318 A JP 2012115318A JP 2012115318 A JP2012115318 A JP 2012115318A JP 5875462 B2 JP5875462 B2 JP 5875462B2
Authority
JP
Japan
Prior art keywords
target
substrate
sputtering
magnet unit
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012115318A
Other languages
Japanese (ja)
Other versions
JP2013241647A (en
Inventor
佑介 大谷
佑介 大谷
新井 真
新井  真
敬臣 倉田
敬臣 倉田
重光 佐藤
重光 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2012115318A priority Critical patent/JP5875462B2/en
Priority to TW102116525A priority patent/TWI593819B/en
Priority to CN201310178846.XA priority patent/CN103422066B/en
Priority to KR1020130056979A priority patent/KR101747291B1/en
Publication of JP2013241647A publication Critical patent/JP2013241647A/en
Application granted granted Critical
Publication of JP5875462B2 publication Critical patent/JP5875462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/351Sputtering by application of a magnetic field, e.g. magnetron sputtering using a magnetic field in close vicinity to the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、ターゲットが設置された真空チャンバ内に基板を対向配置し、真空チャンバ内にスパッタガスを導入し、ターゲットに所定の電力を投入して真空チャンバ内にプラズマを形成してターゲットをスパッタリングし、基板のターゲットとの対向面に所定の薄膜を成膜するスパッタリング方法に関する。   In the present invention, a substrate is disposed oppositely in a vacuum chamber where a target is installed, a sputtering gas is introduced into the vacuum chamber, a predetermined power is applied to the target, plasma is formed in the vacuum chamber, and the target is sputtered. The present invention also relates to a sputtering method for forming a predetermined thin film on a surface of a substrate facing a target.

ガラス等の処理すべき基板表面に所定の薄膜を成膜する方法の一つとしてスパッタリング(以下、「スパッタ」という)法があり、特に、マグネトロン方式のスパッタ法は、ターゲットの後方(スパッタ面と背向する側)に配置した磁石ユニットからのトンネル状の磁束により、ターゲットのスパッタ面前方で電離した電子及びスパッタリングによって生じた二次電子を捕捉することで、その前方での電子密度を高め、これらの電子と、真空チャンバ内に導入される希ガスからなるスパッタガスのガス分子との衝突確率を高めてプラズマ密度を高くできる。このため、成膜速度を向上できる等の利点があり、近年では、FPD製造用のガラス基板のように、面積の大きい基板に対する成膜にも多く利用されている。   One of the methods for forming a predetermined thin film on the surface of a substrate to be processed such as glass is a sputtering (hereinafter referred to as “sputtering”) method. By trapping the electrons ionized in front of the sputtering surface of the target and the secondary electrons generated by sputtering with the tunnel-like magnetic flux from the magnet unit arranged on the back side), the electron density in the front is increased, The plasma density can be increased by increasing the collision probability between these electrons and the gas molecules of the sputtering gas composed of a rare gas introduced into the vacuum chamber. For this reason, there is an advantage that the film forming speed can be improved, and in recent years, it is often used for film forming on a substrate having a large area such as a glass substrate for FPD production.

ここで、大面積の基板に対して膜厚分布よく成膜するスパッタ装置として、真空チャンバ内で同一形状のターゲットを等間隔で複数枚並設したものが知られている。このものでは、ターゲット相互間の領域からスパッタ粒子が放出されないため、基板表面に所定の薄膜を成膜すると、薄膜の膜厚分布や反応性スパッタリングの際の膜質分布が波打つように(例えば膜厚分布の場合、同一の周期で薄厚の厚い部分と薄い部分とが繰返すように)不均一になり易い。このように波打つ膜厚分布や膜質分布があると、例えばガラス基板に透明電極(ITO)を形成し、液晶を封入してFPDを製作したとき、表示面にむらが発生するという不具合がある。   Here, as a sputtering apparatus for forming a film with a good film thickness distribution on a large-area substrate, a device in which a plurality of targets having the same shape are arranged in parallel at equal intervals in a vacuum chamber is known. In this case, since sputtered particles are not emitted from the region between the targets, when a predetermined thin film is formed on the surface of the substrate, the film thickness distribution of the thin film and the film quality distribution at the time of reactive sputtering are waved (for example, film thickness In the case of distribution, it tends to be non-uniform (as the thick and thin portions repeat at the same period). When there is such a wavy film thickness distribution or film quality distribution, for example, when an FPD is manufactured by forming a transparent electrode (ITO) on a glass substrate and enclosing liquid crystal, there is a problem that unevenness occurs on the display surface.

そこで、スパッタリング中、各ターゲットを、一体にかつ基板に対し平行に所定ストロークで相対的に往復動させてスパッタ粒子が放出されない領域をかえることで、つまり、基板全面に亘って、ターゲットからスパッタ粒子が放出される領域と対向させることで、上記膜厚分布や膜質分布の不均一を改善することが知られている。この場合、膜厚分布や膜質分布の均一性をより高めるために、各磁石ユニットもまた、基板に対し平行に所定ストロークで相対的に往復動させて、スパッタレートが高くなるトンネル状の磁束の位置をかえている(例えば特許文献1参照)。然しながら、この従来例でも、基板全面に亘って微小に波打つ膜厚分布や膜質分布を十分に改善できない、言い換えると、局所的に微小に波打つ膜厚分布や膜質分布が残ることが判明した。そこで、本発明者らは、鋭意研究を重ね、ターゲット(または基板)の往復動と磁石ユニットの往復動とを同期させれば、波打つ膜厚分布や膜質分布の発生を効果的に抑制できることの知見を得た。   Therefore, during sputtering, each target is moved back and forth integrally with a predetermined stroke in parallel with the substrate to change the region where the sputtered particles are not released, that is, the sputtered particles from the target over the entire surface of the substrate. It is known that the non-uniformity of the film thickness distribution and the film quality distribution is improved by facing the region from which the gas is released. In this case, in order to further improve the uniformity of the film thickness distribution and the film quality distribution, each magnet unit is also reciprocated relatively by a predetermined stroke in parallel with the substrate, thereby generating a tunnel-like magnetic flux that increases the sputter rate. The position is changed (see, for example, Patent Document 1). However, even in this conventional example, it has been found that the film thickness distribution and the film quality distribution which are slightly waved over the entire surface of the substrate cannot be sufficiently improved, in other words, the film thickness distribution and the film quality distribution which are slightly waved locally remain. Therefore, the present inventors have conducted extensive research and can effectively suppress the occurrence of undulating film thickness distribution and film quality distribution by synchronizing the reciprocation of the target (or substrate) and the reciprocation of the magnet unit. Obtained knowledge.

特開2004−346388号公報(例えば、特許請求の範囲の記載参照)JP-A-2004-346388 (for example, refer to the description of the scope of claims)

本発明は、以上の点に鑑み、ターゲットをスパッタリングして成膜する際に、特に、複数枚のターゲットを所定間隔で並設したものをスパッタリングして成膜する際に、波打つ膜厚分布や膜質分布が生じることを効果的に抑制できるスパッタリング法を提供することをその課題とするものである。   In view of the above points, the present invention, when sputtering to form a film, particularly when sputtering a film having a plurality of targets arranged in parallel at a predetermined interval, An object of the present invention is to provide a sputtering method capable of effectively suppressing the occurrence of film quality distribution.

上記課題を解決するために、ターゲットが設置された真空チャンバ内に基板を対向配置し、真空チャンバ内にスパッタガスを導入し、ターゲットに電力投入して真空チャンバ内にプラズマを形成してターゲットをスパッタリングし、基板のターゲットとの対向面に成膜するスパッタリング方法において、ターゲットの基板との対向面側を上として、ターゲット下方でこのターゲットの一方向であるX方向に複数の磁石ユニットを所定間隔で並設して各磁石ユニットによりターゲットの上方にトンネル状の漏洩磁場を形成し、スパッタリング中、各磁石ユニットを一体にX方向に所定のストロークでターゲットに対して相対的に往復動させると共に、基板をX方向に所定のストロークでターゲットに対して相対的に往復動させ、各磁石ユニットと基板とを相反する方向に相対移動させると共に、各磁石ユニットと基板とが往復動の起点から折り返し位置に到達するまでの時間を同等としたことを特徴とする。 In order to solve the above problems, a substrate is placed opposite to a vacuum chamber in which a target is installed, a sputtering gas is introduced into the vacuum chamber, power is applied to the target, and plasma is formed in the vacuum chamber to form the target. In a sputtering method in which sputtering is performed to form a film on a surface of a substrate facing the target, a plurality of magnet units are arranged at predetermined intervals in the X direction, which is one direction of the target, with the surface facing the target substrate facing up. In parallel with each other, each magnet unit forms a tunnel-like leakage magnetic field above the target, and during sputtering, each magnet unit is integrally reciprocated relative to the target with a predetermined stroke in the X direction, Each magnet unit reciprocates relative to the target with a predetermined stroke in the X direction. Causes relatively moving the substrate in the opposite direction, characterized in that the time until the respective magnet unit and the substrate to reach the return position from the starting point of reciprocation was equal.

本発明によれば、各磁石ユニットと基板とを相反する方向に相対移動させると共に、各磁石ユニットと基板とが往復動の起点から折り返し位置に到達するまでの時間を同等としたため、基板全面に亘って、ターゲットからスパッタ粒子が放出される領域と対向するようになり、その結果、局所的に微小に波打つ膜厚分布や膜質分布が残ることがなく、膜厚分布や膜質分布の不均一を効果的に抑制することができる。   According to the present invention, each magnet unit and the substrate are moved relative to each other in the opposite direction, and each magnet unit and the substrate are equalized in time until the magnet unit and the substrate reach the folding position from the starting point of the reciprocating motion. As a result, it becomes opposed to the region where the sputtered particles are emitted from the target. As a result, the film thickness distribution and the film quality distribution that are slightly undulated locally do not remain, and the film thickness distribution and the film quality distribution are not uniform. It can be effectively suppressed.

本発明において、前記ターゲットが同一形状のターゲット材の複数枚をX方向に等間隔で並設して構成され、各ターゲット材に夫々対応させて磁石ユニットを設けたものにおいて、隣接するターゲットの中心間距離を、磁石ユニットのストロークと基板のストロークとの和と同等とすることが好ましい。これによれば、ターゲットからスパッタ粒子が放出される領域が、基板全面に亘ってより一層均等に対向するようになり、膜厚分布や膜質分布の不均一を一層効果的に抑制することができる。尚、本発明において、同一形状を有するターゲットとは、平面視でのターゲット形状が同一であることをいうものとし、各ターゲットの厚さが相互に異なっていてもよい。   In the present invention, the target is formed by arranging a plurality of target materials having the same shape in parallel in the X direction at equal intervals, and provided with a magnet unit corresponding to each target material. It is preferable that the distance is equal to the sum of the stroke of the magnet unit and the stroke of the substrate. According to this, the region where the sputtered particles are emitted from the target is more evenly opposed over the entire surface of the substrate, and the nonuniformity of the film thickness distribution and film quality distribution can be more effectively suppressed. . In the present invention, the target having the same shape means that the target shape in plan view is the same, and the thickness of each target may be different from each other.

本発明のスパッタ装置の構成を説明する模式断面図。The schematic cross section explaining the structure of the sputtering device of this invention. 図1のII−II線に沿った断面図。Sectional drawing along the II-II line of FIG. (a)〜(c)は、相反する方向に移動する基板Wと磁石ユニットとを模式的に示す図。(A)-(c) is a figure which shows typically the board | substrate W and magnet unit which move to the opposite direction. (a)は発明実験の測定結果、(b)は比較実験1の測定結果、(c)は比較実験2の測定結果を夫々示すグラフ。(A) is a graph showing the measurement result of the invention experiment, (b) is a graph showing the measurement result of the comparative experiment 1, and (c) is a graph showing the measurement result of the comparative experiment 2.

以下、図面を参照して、同一形状を有するターゲットの複数枚をスパッタ室内に所定間隔で並設し、この並設されたターゲットのうち、対をなすものに交流電力を投入して各ターゲットをスパッタすると共にスパッタ室内に酸素ガスを導入して、ガラス基板等の処理すべき基板に、ターゲット材からなる金属膜や反応性スパッタにより金属酸化物膜を成膜するものを例に本発明の実施形態のスパッタ装置SMを説明する。   Hereinafter, with reference to the drawings, a plurality of targets having the same shape are arranged in parallel in the sputtering chamber at a predetermined interval, and AC power is supplied to a pair of the arranged targets to form each target. Implementation of the present invention by sputtering and introducing oxygen gas into the sputtering chamber to form a metal film made of a target material or a metal oxide film by reactive sputtering on a substrate to be processed such as a glass substrate The sputtering apparatus SM of the form will be described.

図1及び図2に示すように、マグネトロン方式のスパッタ装置SMはスパッタ室1aを画成する真空チャンバ1を備える。真空チャンバ1の壁面に、排気口11が開設され、この排気口11には、ロータリーポンプ、ターボ分子ポンプなどの真空排気手段Pに通じる排気管12が接続され、スパッタ室1a内を真空引きして所定の真空度に保持できる。真空チャンバ1の壁面に、ガス導入手段2が設けられている。ガス導入手段2は、マスフローコントローラ21a,21bを夫々介設したガス管22a,22bを通して図外のガス源に連通し、アルゴン等の希ガスからなるスパッタガスや反応性スパッタの際に用いる反応ガスを一定の流量で導入することができる。なお、反応ガスとしては、基板W上に成膜しようする薄膜の組成に応じて、酸素、窒素、炭素、水素を含むガス、オゾン、水若しくは過酸化水素またはこれらの混合ガスなどが用いられる。以下においては、スパッタ室1aにて後述のターゲットと基板Wとが対向し、ターゲットから基板に向かう方向を「上」、基板Wからターゲットに向かう方向を「下」、ターゲット及び磁石ユニットの並設方向をX方向(図1中、左右方向)、これに直交する方向をY方向として説明する。   As shown in FIGS. 1 and 2, the magnetron type sputtering apparatus SM includes a vacuum chamber 1 that defines a sputtering chamber 1a. An exhaust port 11 is opened on the wall surface of the vacuum chamber 1, and an exhaust pipe 12 leading to a vacuum exhaust means P such as a rotary pump or a turbo molecular pump is connected to the exhaust port 11 to evacuate the sputtering chamber 1 a. Can be maintained at a predetermined degree of vacuum. A gas introducing means 2 is provided on the wall surface of the vacuum chamber 1. The gas introducing means 2 communicates with a gas source not shown through gas pipes 22a and 22b having mass flow controllers 21a and 21b interposed therebetween, and is used for sputtering gas composed of a rare gas such as argon or reactive gas used in reactive sputtering. Can be introduced at a constant flow rate. As the reactive gas, a gas containing oxygen, nitrogen, carbon, hydrogen, ozone, water, hydrogen peroxide, or a mixed gas thereof is used depending on the composition of the thin film to be formed on the substrate W. In the following, a target and a substrate W, which will be described later, face each other in the sputtering chamber 1a, the direction from the target to the substrate is “up”, the direction from the substrate W to the target is “down”, and the target and magnet unit are arranged in parallel A direction will be described as an X direction (left and right direction in FIG. 1), and a direction perpendicular to the X direction will be described as a Y direction.

スパッタ室1aの底部には、マグネトロンスパッタ電極Cが配置されている。マグネトロンスパッタ電極Cは、スパッタ室1aを臨むように設けられた略直方体(平面視矩形)の4枚のターゲット3〜3と、各ターゲット3〜3の下方に夫々設けられた磁石ユニット4〜4とを備える。なお、ターゲットを並設する個数は上記に限定されるものではなく、また、ターゲットとしては、Si、Al及びその合金、MoやITOなど基板W上に成膜しようとする薄膜の組成に応じて公知の方法で作製したものを用いることができる。また、各ターゲット3〜3は、平面視で同一の形状を有していればよく、厚みが夫々異なっていてもよい。 A magnetron sputtering electrode C is disposed at the bottom of the sputtering chamber 1a. Magnet magnetron sputtering electrode C includes a four target 3 1 to 3 4 substantially provided so as to face the sputtering chamber 1a cuboid (rectangular plan view), provided respectively below each target 3 1 to 3 4 Units 4 1 to 4 4 are provided. The number of targets arranged in parallel is not limited to the above, and the target depends on the composition of the thin film to be formed on the substrate W, such as Si, Al and its alloys, Mo and ITO. What was produced by the well-known method can be used. Each target 3 1 to 3 4 has only to have the same shape in plan view, the thickness may be different respectively.

各ターゲット3〜3は、スパッタリングによる成膜中、当該ターゲット3〜3を冷却する銅製のバッキングプレート31にインジウムやスズなどのボンディング材を介して接合されている。そして、バッキングプレート31にターゲット3〜3を接合し、ターゲット3〜3を上側とした状態で真空シール兼用の絶縁体32を介してスパッタ室1a内に設けられる。この場合、ターゲット3〜3の上面が、成膜時に後述のスパッタガスのイオンでスパッタリングされるスパッタ面3aを構成する。また、各ターゲット3〜3は、スパッタ室1a内においてY方向に等間隔で、かつ、未使用時のスパッタ面3aが、基板Wに平行な同一平面内に位置するように配置され(図2参照)、並設した各スパッタ面3aの総面積が基板Wの外形寸法より大きくなるように各ターゲットの形状が設計されている。 Each target 3 1 to 3 4, in the film formation by sputtering is bonded to a copper backing plate 31 to cool the target 3 1 to 3 4 via a bonding material such as indium or tin. Then, joining the target 3 1 to 3 4 to the backing plate 31, it is provided in the sputtering chamber 1a via an insulator 32 of the vacuum seal combined in a state in which the target 3 1 to 3 4 to the upper side. In this case, the upper surface of the target 3 1 to 3 4 constitutes the sputtering surface 3a to be sputtered with ions of the sputtering gas will be described later at the time of film formation. Further, the targets 3 1 to 3 4 are arranged at equal intervals in the Y direction in the sputtering chamber 1a and so that the unused sputtering surfaces 3a are located in the same plane parallel to the substrate W ( The shape of each target is designed so that the total area of the sputtered surfaces 3a arranged side by side is larger than the outer dimension of the substrate W.

スパッタ室1a内にターゲット3〜3を配置した後、各ターゲット3〜3の周囲には、ターゲット3〜3が臨む開口51を備えた板状のシールド5が夫々配置される。各シールド5は、例えばアルミニウム製のもので構成される。また、並設したターゲット3〜3のうち相互に隣接する2枚のターゲット3と3並びに3と3を夫々対とし、対をなすターゲット3〜3には、交流電源Eからの出力Eoが夫々接続されている。そして、成膜時に、交流電源Eから所定周波数(例えば、1Hz〜100kHz)の交流電力が対をなすターゲット3〜3に夫々投入される。 After placement into the sputtering chamber 1a of the target 3 1 to 3 4, around each of the target 3 1 to 3 4, plate-shaped shield 5 provided with an opening 51 in which the target 3 1 to 3 4 faces are respectively disposed The Each shield 5 is made of, for example, aluminum. Further, two targets 3 1 and 3 2 and 3 3 and 3 4 that are adjacent to each other among the targets 3 1 to 3 4 that are arranged in parallel are paired, and the targets 3 1 to 3 4 that make a pair are exchanged with each other. Outputs Eo from the power source E are connected to each other. Then, at the time of film formation, a predetermined frequency from an AC power source E (e.g., 1Hz~100kHz) AC power are respectively put into the target 3 1 to 3 4 paired.

各バッキングプレート31の下方(スパッタ室1aの外側)に夫々配置された磁石ユニット4〜4は同一形態を有し、一の磁石ユニット4を例に説明すると、磁石ユニット4は、バッキングプレート31に平行に設けられ、磁石の吸着力を増幅する磁性材料製の平板から構成される支持板41(ヨーク)を備える。支持板41上には、この支持板41の長手方向にのびる中心線上に位置させて配置した中央磁石42と、この中央磁石42の周囲を囲うように、支持板41の上面外周に沿って環状に配置した周辺磁石43とがターゲット側の極性をかえて設けられている。この場合、例えば、中央磁石42の同磁化に換算したときの体積をその周囲を囲う周辺磁石43の同磁化に換算したときの体積の和(周辺磁石:中心磁石:周辺磁石=1:2:1(図1参照))程度になるように設計される。これにより、各ターゲット3〜3の上方で釣り合ったトンネル状の漏洩磁場M1、M2が夫々形成される。なお、中央磁石42及び周辺磁石43は、ネオジム磁石等の公知のものであり、これらの中央磁石及び周辺磁石は一体ものでもよく、または、所定体積の磁石片を複数列設して構成してもよい。 Magnet units 4 1 to 4 4 which are respectively disposed below (outside the sputtering chamber 1a) of the backing plate 31 have the same form, will be described one of the magnet unit 4 1 as an example, the magnet unit 4 1, A support plate 41 (yoke) is provided that is provided in parallel to the backing plate 31 and is made of a flat plate made of a magnetic material that amplifies the attractive force of the magnet. On the support plate 41, a central magnet 42 disposed on the center line extending in the longitudinal direction of the support plate 41 and an annular shape along the outer periphery of the upper surface of the support plate 41 so as to surround the center magnet 42. And a peripheral magnet 43 arranged in the direction of the target is provided with the polarity on the target side changed. In this case, for example, the volume when the volume when converted to the same magnetization of the central magnet 42 is converted to the same magnetization of the peripheral magnet 43 surrounding the periphery (peripheral magnet: center magnet: peripheral magnet = 1: 2: 1 (see FIG. 1)). As a result, tunnel-like leakage magnetic fields M1 and M2 that are balanced above the targets 3 1 to 3 4 are formed. The central magnet 42 and the peripheral magnet 43 are known ones such as a neodymium magnet. These central magnet and peripheral magnet may be integrated, or may be configured by arranging a plurality of magnet pieces having a predetermined volume. Also good.

支持板41は、その外形寸法がターゲットの輪郭より一回り小さく形成され、各支持板41を介して各磁石ユニット4〜4が第1の移動手段6に連結されている。第1の移動手段6は、各支持板41の下面に夫々垂設したナット部材41aに螺合する送りねじ61と、この送りねじ61を正逆方向に回転駆動するモータ62とを備える。そして、送りねじ61を回転駆動すると、その回転方向に応じて各磁石ユニット4〜4が一体にX方向で同一平面上を所定速度かつ一定のストロークS1で往復動する。なお、図1に示すように、送りねじ61を、ベース板63上に設けられ、Y方向でターゲット41の長手方向全長に亘って水平にのびる左右一対のレール部材64R、64Lに摺動自在に係合させ、図示省略の駆動モータを備えたスライダ65R,65Lで保持されてもよい。そして、両スライダ65R,65Lを同期してY方向に移動させると、各磁石ユニット4〜4を一体にY方向で同一平面上を所定速度かつ一定のストロークで往復動させることもできる。これにより、各磁石ユニット4〜4が、所定の起点から、磁石ユニット4〜4がその直上に位置するターゲット3〜3に対して相対移動されて前記起点に戻されることが繰り返される。 The support plate 41 is formed so that its outer dimension is slightly smaller than the outline of the target, and the magnet units 4 1 to 4 4 are connected to the first moving means 6 via the support plates 41. The first moving means 6 includes a feed screw 61 that is screwed into a nut member 41 a that is suspended from the lower surface of each support plate 41, and a motor 62 that rotationally drives the feed screw 61 in the forward and reverse directions. When the feed screw 61 is rotationally driven, the magnet units 4 1 to 4 4 reciprocate at a predetermined speed and a constant stroke S1 on the same plane in the X direction according to the rotational direction. As shown in FIG. 1, the feed screw 61 is provided on the base plate 63 and is slidable on a pair of left and right rail members 64R and 64L extending horizontally over the entire length of the target 41 in the Y direction. It may be engaged and held by sliders 65R and 65L provided with a drive motor (not shown). When both sliders 65R and 65L are moved in the Y direction in synchronization, the magnet units 4 1 to 4 4 can be integrally reciprocated on the same plane in the Y direction at a predetermined speed and with a constant stroke. As a result, the magnet units 4 1 to 4 4 are moved relative to the targets 3 1 to 3 4 positioned immediately above the magnet units 4 1 to 4 4 from a predetermined starting point and returned to the starting point. Is repeated.

また、真空チャンバ1内の上部には、並設したターゲット3〜3に対向するように基板Wを保持するホルダ7が設けられている。ホルダ7には、基板Wの輪郭に対応して凹入させた凹部71が設けられ、凹部71の下面には、基板Wの下面(成膜面)がターゲット3〜3を臨む中央開口72が形成されている。また、ホルダ7には、第2の移動手段8が連結されている。第2の移動手段8は、ホルダ7の下面に設けたナット部材73に螺合し、真空チャンバ1の側壁を貫通して設けた送りねじ81と、この送りねじ81を正逆方向に回転駆動するモータ82とを備える。そして、送りねじ81を回転駆動すると、その回転方向に応じてホルダ7、ひいては基板WがX方向で同一平面上を所定速度かつ一定のストロークS2で往復動する。この場合、隣接するターゲット3〜3の中心間距離(「カソードピッチ」ともいう)Dtを、各磁石ユニット4〜4のストロークS1と基板WのストロークS2との和と同等としている。 Further, the upper portion of the vacuum chamber 1, a holder 7 for holding a substrate W so as to face is provided on the target 3 1 to 3 4 arranged side by side. The holder 7, the recess 71 is recessed to correspond to the contour of the substrate W is provided on the lower surface of the recess 71, central opening lower surface of the substrate W (film forming surface) faces the target 3 1 to 3 4 72 is formed. The holder 7 is connected to the second moving means 8. The second moving means 8 is screwed into a nut member 73 provided on the lower surface of the holder 7, and a feed screw 81 provided through the side wall of the vacuum chamber 1, and the feed screw 81 is driven to rotate in forward and reverse directions. And a motor 82. When the feed screw 81 is rotationally driven, the holder 7 and, consequently, the substrate W reciprocate on the same plane in the X direction at a predetermined speed and a constant stroke S2 in accordance with the rotational direction. In this case, the center-to-center distance (also referred to as “cathode pitch”) Dt of the adjacent targets 3 1 to 3 4 is equal to the sum of the stroke S 1 of each magnet unit 4 1 to 4 4 and the stroke S 2 of the substrate W. .

次に、図3を更に参照して、上記スパッタ装置SMを用いたスパッタリング法による成膜を説明する。先ず、基板Wをホルダ7にセットした後、スパッタ室1a内を所定圧力まで真空引きする。このとき、ホルダ7は、図1及び図3(a)に示す如く、往復動の右端の起点位置にあり、また、各磁石ユニット4〜4は、往復動の左端の起点位置にある。そして、ガス導入手段2を介して所定のスパッタガス及び反応ガスを導入し、交流電源Eを介して対をなす各ターゲット3〜3に交流電力を夫々投入する。これにより、対をなす2枚のターゲット3と3並びに3と3が夫々アノードとカソードとの役割を果たし、各ターゲット3〜3の上方に、トンネル状の漏洩磁場が形成され、この漏洩磁場の垂直成分が0となる位置を通るレーストラック状に高密度のプラズマが発生する。図3(a)に示す起点位置では、ターゲット3〜3左側部分の上方に漏洩磁場が形成されるため、ターゲット3〜3の左側部分が夫々スパッタされる。そして、各ターゲット3〜3から放出されたスパッタ粒子が、対向する基板W表面に付着堆積する。 Next, film formation by sputtering using the sputtering apparatus SM will be described with reference to FIG. First, after setting the substrate W in the holder 7, the inside of the sputtering chamber 1a is evacuated to a predetermined pressure. At this time, as shown in FIGS. 1 and 3A, the holder 7 is at the starting position of the right end of the reciprocating motion, and each of the magnet units 4 1 to 4 4 is at the starting position of the left end of the reciprocating motion. . Then, a predetermined sputtering gas and a reactive gas are introduced through the gas introduction means 2, and AC power is supplied to each of the targets 3 1 to 3 4 that form a pair through the AC power source E. Thus, two targets 3 1 and 3 2 and 3 3 and 3 4 in a pair serve the respective anode and cathode, above the respective target 3 1 to 3 4, a tunnel-shaped leakage magnetic field is formed As a result, high-density plasma is generated in a racetrack shape passing through a position where the vertical component of the leakage magnetic field becomes zero. In the start position shown in FIG. 3 (a), since the leakage magnetic field above the target 3 1 to 3 4 left portion is formed, the left portion of the target 3 1 to 3 4 are respectively sputter. Then, sputtering particles emitted from the target 3 1 to 3 4, collected and deposited on the opposite surface of the substrate W.

スパッタ中、第1の移動手段6により各磁石ユニット4〜4は、左端の起点位置から右端の折り返し位置に向けて移動され、他方で、第2の移動手段8によりホルダ7、ひいては基板Wが右端の起点位置から左端の折り返し位置に向けて移動される。図3(b)に示すように、基板Wが左端と右端との中間位置にあるとき、各磁石ユニット4〜4も右端と左端との中間位置にある。このように基板W及び各磁石ユニット4〜4の双方が中間位置にあるとき、各ターゲット3〜3中央部分の上方に漏洩磁場が形成されるので、ターゲット3〜3中央部分がスパッタされ、この中央部分から放出されたスパッタ粒子が、対向する基板W表面に付着する。そして、図3(c)に示す如く基板Wが往復道の折り返し位置(左端位置)にあるとき、各磁石ユニット4〜4も往復動の折り返し位置(右端位置)にある。このとき、各ターゲット3〜3右側部分の上方に漏洩磁場が形成されるので、ターゲット3〜3右側部分がスパッタされ、この右側部分から放出されたスパッタ粒子が、対向する基板W表面に付着する。 During sputtering, the magnet units 4 1 to 4 4 are moved from the starting position at the left end toward the folding position at the right end by the first moving means 6, and on the other hand, the holder 7 and eventually the substrate by the second moving means 8. W is moved from the starting position at the right end toward the folding position at the left end. As shown in FIG. 3B, when the substrate W is at an intermediate position between the left end and the right end, each of the magnet units 4 1 to 4 4 is also at an intermediate position between the right end and the left end. As described above, when both the substrate W and each of the magnet units 4 1 to 4 4 are in the intermediate position, a leakage magnetic field is formed above the center portion of each of the targets 3 1 to 3 4, so that the centers of the targets 3 1 to 3 4 are formed. A portion is sputtered, and sputtered particles emitted from the central portion adhere to the surface of the opposing substrate W. And there when the substrate W as shown in FIG. 3 (c) is in the folded position of the reciprocating path (left end position), also the return position of the reciprocating each magnet unit 41 to 4 (right end position). At this time, since a leakage magnetic field is formed above the right side portion of each target 3 1 to 3 4, the right side portion of the target 3 1 to 3 4 is sputtered, and the sputtered particles emitted from this right side portion are opposed to the opposing substrate W. Adhere to the surface.

その後、各磁石ユニット4〜4は右端の折り返し位置から左端の起点位置に向けて移動され、他方で、基板Wは左端の折り返し位置から右端の起点位置に向けて移動される。 Thereafter, each of the magnet units 4 1 to 4 4 is moved from the rightmost folded position toward the leftmost starting position, while the substrate W is moved from the leftmost folded position to the rightmost starting position.

このように磁石ユニット4〜4と基板Wとを相反する方向に移動させ、このとき、往復動の起点から折り返し位置に到達するまでの時間を同等になるように移動速度が設定される。そして、この操作を繰り返しながら、ターゲット3〜3からのスパッタ粒子が(反応ガスと反応しながら)基板W表面に付着、堆積して所定薄膜が成膜される。 In this way, the magnet units 4 1 to 4 4 and the substrate W are moved in opposite directions, and at this time, the moving speed is set so as to equalize the time from the starting point of the reciprocating movement to the return position. . Then, while repeating this operation, sputtered particles from the targets 3 1 to 3 4 adhere and deposit on the surface of the substrate W (while reacting with the reaction gas) to form a predetermined thin film.

以上によれば、磁石ユニット4〜4と基板Wとを相反する方向に移動させ、往復動の起点から折り返し位置に到達するまでの時間を同等としたため、基板W全面に亘って、ターゲット3〜3からスパッタ粒子が放出される領域と均等に対向するようになり(即ち、基板W全面に亘って、プラズマが照射されるようになり)、その結果、局所的に微小に波打つ膜厚分布や膜質分布が残ることがなく、膜厚分布や膜質分布の不均一を効果的に抑制することができる。 According to the above, the magnet units 4 1 to 4 4 and the substrate W are moved in opposite directions, and the time required to reach the return position from the starting point of the reciprocating motion is equalized. 3 1 to 3 4 are evenly opposed to the region from which sputtered particles are emitted (that is, plasma is irradiated over the entire surface of the substrate W), and as a result, the surface is slightly undulated. The film thickness distribution and the film quality distribution do not remain, and the nonuniformity of the film thickness distribution and the film quality distribution can be effectively suppressed.

更に、上記の如くターゲット中心間距離Dtを、磁石ユニットのストロークS1と基板WのストロークS2との和と同等にすることで、各ターゲット3〜3からスパッタ粒子が放出される領域が、基板W表面の全体に亘ってより一層均等に対向するようになり、膜厚分布や膜質分布の不均一を一層効果的に抑制できる。 Further, the target center distance Dt as described above, by the equivalent sum of the stroke S2 of the stroke S1 and the substrate W of the magnet unit, area where sputtering particles are emitted from the target 3 1 to 3 4, It becomes more evenly opposed over the entire surface of the substrate W, and non-uniformity in film thickness distribution and film quality distribution can be more effectively suppressed.

以上の効果を確認するため、図1に示すスパッタリング装置SMを用いて次の実験を行った。本実験では、ターゲット3〜3としてITO製のものを用い、同一の平面視略長方形に成形し、バッキングプレート31に接合した。また、磁石ユニット4〜4の支持板41として、130mm×1300mmの外形寸法を有するものを用い、各支持板41上に、ターゲット3〜3の長手方向に沿った棒状の中央磁石42と、支持板41の外周に沿って周辺磁石43とを設けた。 In order to confirm the above effects, the following experiment was performed using the sputtering apparatus SM shown in FIG. In this experiment, we used as ITO made of the target 3 1 to 3 4, formed into a substantially rectangular same plan view, and bonded to the backing plate 31. Further, as the support plate 41 of the magnet unit 41 to 4, with those having outer dimensions of 130 mm × 1300 mm, on each support plate 41, rod-shaped central magnet along the longitudinal direction of the target 3 1 to 3 4 42 and peripheral magnets 43 are provided along the outer periphery of the support plate 41.

そして、基板Wとして、所謂第8.5世代フラットパネルディスプレイ用のガラス基板を用い、また、スパッタ条件として、真空排気されているスパッタ室1a内の圧力が0.3Paに保持されるように、マスフローコントローラ21a、21bを制御してスパッタガスであるアルゴンと水蒸気ガスとをスパッタ室1a内に導入し、ターゲット3〜3への投入電力(交流電圧)を15kW投入することで、スパッタを行った。尚、基板Wとターゲット3〜3との間の距離は216mmとした。 Then, a glass substrate for so-called 8.5th generation flat panel display is used as the substrate W, and as a sputtering condition, the pressure in the sputtering chamber 1a evacuated is maintained at 0.3 Pa. The mass flow controllers 21a and 21b are controlled to introduce sputtering gas argon and water vapor gas into the sputtering chamber 1a, and by applying 15 kW of input power (alternating voltage) to the targets 3 1 to 3 4 , sputtering is performed. went. The distance between the substrate W and the targets 3 1 to 3 4 was 216 mm.

発明実験では、上記スパッタ中、磁石ユニット4〜4とホルダ7、ひいては基板Wとを相反する方向に移動させ、往復動の起点から折り返し位置に到達するまでの時間を同等とした。このとき、隣接するターゲット3〜3の中心間距離Dt(=250mm)を、磁石ユニット4〜4のストロークS1(=84mm)と基板WのストロークS2(=166mm)との和と同等とし、磁石ユニット4〜4の移動速度を14.8mm/secとし、ホルダ7(基板W)の移動速度を47.88mm/secとした。発明実験で成膜されたITO薄膜につき、300〜800nmの波長領域の光に対する反射率を測定し、その測定結果を図4(a)に示す。測定箇所は、基板Wの左側(上記往復動の起点側)の端部をゼロとしたとき、0mm、100mm、200mm、300mm、400mmの箇所とした。測定した反射率の面内均一性は0.61%であり、波打つ膜厚分布や膜質分布が生じることを効果的に抑制できることが確認された。 In the invention experiment, during the above sputtering, the magnet units 4 1 to 4 4 and the holder 7 and eventually the substrate W were moved in opposite directions, and the time from the reciprocation starting point to the return position was made equal. In this case, the sum of the distance between the centers Dt of adjacent target 3 1 ~3 4 (= 250mm) , the stroke S1 of the magnet units 4 1 ~4 4 (= 84mm) and the substrate W stroke S2 and (= 166 mm) was equal, the moving speed of the magnet unit 41 to 4 and 14.8 mm / sec, the moving speed of the holder 7 (substrate W) was 47.88mm / sec. With respect to the ITO thin film formed in the inventive experiment, the reflectance with respect to light in the wavelength region of 300 to 800 nm was measured, and the measurement result is shown in FIG. The measurement locations were locations of 0 mm, 100 mm, 200 mm, 300 mm, and 400 mm when the end of the left side of the substrate W (starting side of the reciprocating motion) was set to zero. The in-plane uniformity of the measured reflectance was 0.61%, and it was confirmed that the occurrence of undulating film thickness distribution and film quality distribution can be effectively suppressed.

上記発明実験に対する比較実験1では、上記スパッタ中、基板Wは移動させずに固定し、磁石ユニット4〜4を14.8mm/secの速度で往復動させた。上記発明実験と同様に、本比較実験1で成膜されたITO薄膜の反射率の測定結果を図4(b)に示す。反射率の面内均一性は1.12%と低く、膜厚分布や膜質分布が不均一であることが確認された。 In comparative experiment 1 with respect to the above-described invention experiment, the substrate W was fixed without moving during the sputtering, and the magnet units 4 1 to 4 4 were reciprocated at a speed of 14.8 mm / sec. Similar to the above-described invention experiment, the measurement result of the reflectance of the ITO thin film formed in this comparative experiment 1 is shown in FIG. The in-plane uniformity of reflectance was as low as 1.12%, and it was confirmed that the film thickness distribution and film quality distribution were non-uniform.

他の比較実験2では、上記スパッタ中、基板Wと磁石ユニット4〜4の双方を移動させたが、これら基板Wと磁石ユニット4〜4との同期を行わないようにした。即ち、両者を相反する方向だけでなく同一方向にも移動させた。上記発明実験と同様に、本比較実験2で得られたITO薄膜の反射率の測定結果を図4(c)に示す。反射率の面内均一性は0.74%であり、比較実験1に比べて面内均一性が向上するものの、発明実験に比べて面内均一性が低いことが判った。この場合も、波打つ膜厚分布や膜質分布が生じることとなる。 In another comparative experiment 2, both the substrate W and the magnet units 4 1 to 4 4 were moved during the sputtering, but the substrate W and the magnet units 4 1 to 4 4 were not synchronized. That is, both were moved not only in the opposite direction but also in the same direction. Similar to the above-described invention experiment, the measurement result of the reflectance of the ITO thin film obtained in this comparative experiment 2 is shown in FIG. The in-plane uniformity of the reflectance is 0.74%, and it is found that the in-plane uniformity is lower than that of the invention experiment, although the in-plane uniformity is improved as compared with the comparative experiment 1. Also in this case, a undulating film thickness distribution and film quality distribution are generated.

以上、本発明の実施形態のマグネトロン式のスパッタ装置SMについて説明したが、本発明は、上記の形態のものに限定されるものではない。上記実施形態では、真空チャンバ1内にホルダ7を設けて基板Wを往復動するものを例に説明したが、例えば、スパッタリング装置SMがインライン式のものとして構成され、真空チャンバのターゲットと対向した位置にキャリアを用いて基板が搬送されてくるような場合には、スパッタリング中に、当該キャリアを往復動させるようにしてもよい。   The magnetron type sputtering apparatus SM according to the embodiment of the present invention has been described above, but the present invention is not limited to the above-described embodiment. In the above embodiment, the case where the holder 7 is provided in the vacuum chamber 1 and the substrate W is reciprocated has been described as an example. However, for example, the sputtering apparatus SM is configured as an inline type and faces the target of the vacuum chamber. In the case where the substrate is transported using a carrier at a position, the carrier may be reciprocated during sputtering.

また、上記実施形態では、複数枚のターゲットを並設し、対をなすものに交流電源により交流電力を投入するものを例に説明したが、これに限定されるものではなく、ターゲットを1枚で構成する場合にも本発明を適用できる。ターゲットが1枚の場合、上記実施形態の如くターゲット間の隙間が存在しない。このため、バッキングプレート31がスパッタされて異常放電が発生することを防止すべく、図3(a)に示すように、磁石ユニット4〜4を移動させない領域Dmを設ける必要がないが、何らかの理由により当該領域Dmが存する場合には、本発明を好適に適用することができる。 In the above embodiment, a plurality of targets are arranged in parallel, and AC power is supplied to a pair of targets by an AC power source. However, the present invention is not limited to this, and one target is used. The present invention can also be applied to the case of comprising. When there is one target, there is no gap between the targets as in the above embodiment. For this reason, as shown in FIG. 3A, it is not necessary to provide a region Dm in which the magnet units 4 1 to 4 4 are not moved in order to prevent the abnormal discharge due to the backing plate 31 being sputtered. When the region Dm exists for some reason, the present invention can be preferably applied.

また、DC電源にて直流電力を投入するような場合にも本発明は適用し得る。また、円形のターゲットで磁石ユニットがターゲットの中心を回転中心として回動するようにしたものにも本発明は適用し得る。   The present invention can also be applied to the case where DC power is input from a DC power source. The present invention can also be applied to a circular target in which the magnet unit rotates about the center of the target.

SM…スパッタリング装置、1a…スパッタ室、31〜34…ターゲット、41〜44…磁石ユニット、5…フローティングシールド、6…移動手段、E…交流電源、M1、M2…漏洩磁場、W…基板。
SM ... Sputtering apparatus, 1a ... Sputtering chamber, 31-34 ... Target, 41-44 ... Magnet unit, 5 ... Floating shield, 6 ... Moving means, E ... AC power supply, M1, M2 ... Leakage magnetic field, W ... Substrate.

Claims (2)

ターゲットが設置された真空チャンバ内に基板を対向配置し、真空チャンバ内にスパッタガスを導入し、ターゲットに電力投入して真空チャンバ内にプラズマを形成してターゲットをスパッタリングし、基板のターゲットとの対向面に成膜するスパッタリング方法において、
ターゲットの基板との対向面側を上として、ターゲット下方でこのターゲットの一方向であるX方向に複数の磁石ユニットを所定間隔で並設して各磁石ユニットによりターゲットの上方にトンネル状の漏洩磁場を形成し、
スパッタリング中、各磁石ユニットを一体にX方向に所定のストロークでターゲットに対して相対的に往復動させると共に、基板をX方向に所定のストロークでターゲットに対して相対的に往復動させ、
各磁石ユニットと基板とを相反する方向に相対移動させると共に、各磁石ユニットと基板とが往復動の起点から折り返し位置に到達するまでの時間を同等としたことを特徴とするスパッタリング方法。
The substrate is placed opposite to the vacuum chamber in which the target is installed, sputtering gas is introduced into the vacuum chamber, power is applied to the target, plasma is formed in the vacuum chamber, and the target is sputtered. In the sputtering method of forming a film on the opposite surface,
A plurality of magnet units are arranged in parallel at a predetermined interval in the X direction, which is one direction of the target, with the surface facing the target substrate facing upward, and a tunnel-like leakage magnetic field is formed above the target by each magnet unit. Form the
During sputtering, each magnet unit is integrally reciprocated relative to the target with a predetermined stroke in the X direction, and the substrate is reciprocated relative to the target with a predetermined stroke in the X direction.
A sputtering method, wherein each magnet unit and the substrate are relatively moved in opposite directions, and the time required for each magnet unit and the substrate to reach the turn-back position from the starting point of the reciprocating motion is equalized.
請求項1記載のスパッタリング方法であって、前記ターゲットが同一形状のターゲット材の複数枚をX方向に等間隔で並設して構成され、各ターゲット材に夫々対応させて磁石ユニットを設けたものにおいて、
隣接するターゲットの中心間距離を、磁石ユニットのストロークと基板のストロークとの和と同等としたことを特徴とするスパッタリング方法。
2. The sputtering method according to claim 1, wherein the target is formed by arranging a plurality of target materials having the same shape in parallel in the X direction at equal intervals, and a magnet unit is provided corresponding to each target material. In
A sputtering method, wherein a distance between centers of adjacent targets is made equal to a sum of a stroke of a magnet unit and a stroke of a substrate.
JP2012115318A 2012-05-21 2012-05-21 Sputtering method Active JP5875462B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012115318A JP5875462B2 (en) 2012-05-21 2012-05-21 Sputtering method
TW102116525A TWI593819B (en) 2012-05-21 2013-05-09 Sputtering method
CN201310178846.XA CN103422066B (en) 2012-05-21 2013-05-15 Sputtering method
KR1020130056979A KR101747291B1 (en) 2012-05-21 2013-05-21 Sputtering method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012115318A JP5875462B2 (en) 2012-05-21 2012-05-21 Sputtering method

Publications (2)

Publication Number Publication Date
JP2013241647A JP2013241647A (en) 2013-12-05
JP5875462B2 true JP5875462B2 (en) 2016-03-02

Family

ID=49647445

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012115318A Active JP5875462B2 (en) 2012-05-21 2012-05-21 Sputtering method

Country Status (4)

Country Link
JP (1) JP5875462B2 (en)
KR (1) KR101747291B1 (en)
CN (1) CN103422066B (en)
TW (1) TWI593819B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101642188B1 (en) * 2014-08-19 2016-07-22 재단법인 하이브리드 인터페이스기반 미래소재 연구단 Jig system with playing torsion angle for uniform deposition of structural article
CN104213093B (en) * 2014-09-23 2016-08-24 电子科技大学 A kind of substrate motion method improving magnetron sputtering rectangular target thickness evenness
JP6608615B2 (en) * 2015-05-18 2019-11-20 株式会社アルバック Positive electrode active material film and film forming method
US11111577B2 (en) * 2016-03-29 2021-09-07 Ulvac, Inc. Film-forming apparatus and film-forming method
JP6641472B2 (en) * 2016-05-23 2020-02-05 株式会社アルバック Film forming method and sputtering apparatus
CN106591787B (en) * 2016-11-17 2019-04-09 燕山大学 A kind of preparation method of thickness gradient patterned film
KR102376098B1 (en) * 2018-03-16 2022-03-18 가부시키가이샤 알박 film formation method
US11230760B2 (en) * 2018-08-27 2022-01-25 Ulvac, Inc. Sputtering apparatus and method of forming film
CN112553583B (en) * 2019-09-25 2023-03-28 亚威科股份有限公司 Sputtering apparatus and sputtering apparatus control method
CN115558898B (en) * 2022-09-27 2024-09-13 信利(惠州)智能显示有限公司 Method for improving target utilization rate

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4246547B2 (en) * 2003-05-23 2009-04-02 株式会社アルバック Sputtering apparatus and sputtering method
TWI394856B (en) * 2004-06-07 2013-05-01 Ulvac Inc Magnetron sputtering method and magnetron sputtering device
JP4721878B2 (en) * 2005-11-22 2011-07-13 キヤノンアネルバ株式会社 Sputtering equipment
US8460522B2 (en) * 2006-10-24 2013-06-11 Ulvac, Inc. Method of forming thin film and apparatus for forming thin film
JP4707693B2 (en) * 2007-05-01 2011-06-22 株式会社アルバック Sputtering apparatus and sputtering method
JP5291907B2 (en) * 2007-08-31 2013-09-18 株式会社アルバック Sputtering equipment
TW200948999A (en) * 2008-01-21 2009-12-01 Ulvac Inc Sputtering film forming method and sputtering film forming apparatus
JP5493467B2 (en) 2009-05-22 2014-05-14 日本電気株式会社 Display device and electronic device

Also Published As

Publication number Publication date
CN103422066A (en) 2013-12-04
KR20130129859A (en) 2013-11-29
KR101747291B1 (en) 2017-06-14
CN103422066B (en) 2017-04-12
TWI593819B (en) 2017-08-01
TW201348486A (en) 2013-12-01
JP2013241647A (en) 2013-12-05

Similar Documents

Publication Publication Date Title
JP5875462B2 (en) Sputtering method
JP5454976B2 (en) Thin film forming method and thin film forming apparatus
JP4707693B2 (en) Sputtering apparatus and sputtering method
JP5004931B2 (en) Sputtering source, sputtering apparatus, and sputtering method
KR102163937B1 (en) Film formation method
JP6588351B2 (en) Deposition method
KR101135389B1 (en) Sputtering method and sputtering apparatus
JP5903217B2 (en) Magnetron sputtering electrode and sputtering apparatus
JP4922581B2 (en) Sputtering apparatus and sputtering method
JP2011122195A (en) Magnet unit for magnetron sputtering electrode and sputtering apparatus
KR20110122456A (en) Manufacturing apparatus and manufacturing method of liquid crystal display
JP2013001943A (en) Sputtering apparatus
WO2021230017A1 (en) Magnetron sputtering device, and film forming method using said magnetron sputtering device
WO2017221650A1 (en) Film formation method
JP6887230B2 (en) Film formation method
JP7219140B2 (en) Deposition method
JP2023086573A (en) Sputtering apparatus and manufacturing method of substrate with film
JP5965686B2 (en) Sputtering equipment
JP2020117772A (en) Sputtering apparatus and film deposition method
JP2020139212A (en) Cathode unit for magnetron sputtering device
JP2013057095A (en) Magnetron sputter cathode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160119

R150 Certificate of patent or registration of utility model

Ref document number: 5875462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250