[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5464333B2 - Front collision overlap amount control device - Google Patents

Front collision overlap amount control device Download PDF

Info

Publication number
JP5464333B2
JP5464333B2 JP2009218034A JP2009218034A JP5464333B2 JP 5464333 B2 JP5464333 B2 JP 5464333B2 JP 2009218034 A JP2009218034 A JP 2009218034A JP 2009218034 A JP2009218034 A JP 2009218034A JP 5464333 B2 JP5464333 B2 JP 5464333B2
Authority
JP
Japan
Prior art keywords
obstacle
vehicle
collision
driver
host vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009218034A
Other languages
Japanese (ja)
Other versions
JP2011063225A (en
Inventor
剛 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mercedes Benz Group AG
Original Assignee
Daimler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler AG filed Critical Daimler AG
Priority to JP2009218034A priority Critical patent/JP5464333B2/en
Publication of JP2011063225A publication Critical patent/JP2011063225A/en
Application granted granted Critical
Publication of JP5464333B2 publication Critical patent/JP5464333B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/085Taking automatic action to adjust vehicle attitude in preparation for collision, e.g. braking for nose dropping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/08Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to drivers or passengers
    • B60W2040/0881Seat occupation; Driver or passenger presence

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Regulating Braking Force (AREA)

Description

本発明は、車両の前面衝突時における運転者の衝突被害を軽減するために、車両と障害物とのオーバーラップ量を制御する装置に関するものである。   The present invention relates to an apparatus for controlling an overlap amount between a vehicle and an obstacle in order to reduce a driver's collision damage at the time of a frontal collision of the vehicle.

ミリ波レーダー等により自車両前方の障害物を検知し、自車両が障害物に衝突する可能性がある場合には運転者に音や表示や弱い自動ブレーキ等で警告し、なおも接近し、衝突が避けられないと判断した場合には強い自動ブレーキを作動させて被害を軽減する前方障害物衝突被害軽減制動装置(以下、被害軽減制動装置という)が実用化されている。
また、特許文献1及び特許文献2に記載されているように、この被害軽減制動装置を改良し、前面衝突の可能性が高い場合には自車両と前方障害物との車軸方向の重なり(オーバーラップ量という)を大きくとるように自車を回頭させることで、オフセット衝突を防いで、即ちフルラップ衝突に近づけて乗員への衝撃を低減させる技術が開発されている。
Detect obstacles ahead of your vehicle with millimeter wave radar, etc., and if your vehicle may collide with obstacles, warn the driver with sound, display, weak automatic brake, etc., and still approach, When it is determined that a collision is unavoidable, a forward obstacle collision damage reduction braking device (hereinafter referred to as a damage reduction braking device) that operates a strong automatic brake to reduce damage has been put into practical use.
Further, as described in Patent Document 1 and Patent Document 2, when this damage reduction braking device is improved and the possibility of a frontal collision is high, an overlap (overover) of the host vehicle and a front obstacle is caused. A technique has been developed that prevents an offset collision, that is, close to a full lap collision and reduces an impact on an occupant by turning the host vehicle so as to increase the lap amount.

特開2007−125997号公報JP 2007-125997 A 特開2007−145152号公報JP 2007-145152 A

しかしながら、特許文献1及び特許文献2に記載された技術は何れも、自車両と前方障害物とのオーバーラップ量が大きくなるように自車両を制御するため、本来は自車両の操舵操作あるいは先行車の右左折等による衝突回避の可能性が残っていても、その可能性を完全になくしてしまうようなケースがあると考えられる。
また、トラックやバスは、自車両前部が破損する事故の場合に普通乗用車等に比べてクラッシャブルゾーンが少ないことや、乗員が運転者のみの場合が多いことを考慮すると、乗員が運転者のみの場合は、オーバーラップ量を増大してフルラップ衝突に近づけるよりも、運転席のない側が破損するようなオフセット衝突の方が、運転者の被害が軽減するケースが多いと考えられる。
However, since the techniques described in Patent Document 1 and Patent Document 2 both control the host vehicle so that the amount of overlap between the host vehicle and the front obstacle increases, Even if there is a possibility of avoiding a collision due to a right or left turn of the car, it is considered that there is a case where the possibility is completely eliminated.
In addition, in the case of an accident that damages the front of the vehicle, trucks and buses have less crushable zones than ordinary passenger cars, etc., and passengers are often only drivers. In the case of only the case, it is considered that the offset collision in which the side without the driver's seat is damaged is more likely to reduce the driver's damage than the case where the overlap amount is increased to approach the full-lap collision.

本発明はこのような課題に鑑みて案出されたもので、運転者の操舵操作等による衝突回避の可能性を確保しながら、運転者の衝突被害を軽減することができるようにした、前面衝突時オーバーラップ量制御装置を提供することを目的とする。   The present invention has been devised in view of such a problem, and it is possible to reduce the collision damage of the driver while ensuring the possibility of collision avoidance due to the steering operation of the driver, etc. It is an object of the present invention to provide a collision overlap amount control device.

上記目的を達成するため、本発明の前面衝突時オーバーラップ量制御装置は、自車両前方に衝突可能性のある障害物が検知された場合に前記自車両を横移動させ、前記障害物との前面衝突時のオーバーラップ量を制御する装置であって、前記自車両前方の前記衝突可能性のある障害物を検知する前方障害物検知手段と、前記自車両の前部において運転席に着座する運転者以外に乗員がいないことを検知する乗員検知手段と、運転者による衝突回避とみなせる操舵操作があるか否かを判断する回避操作判断手段と、前記障害物との衝突予測時点において、前記運転席の前部と前記障害物とのオーバーラップ部分で前記障害物と衝突するか否かを判断するオーバーラップ判断手段と、前記自車両を横移動させる横移動手段と、前記自車両の周辺の状況に基づき、前記横移動手段が前記自車両を横移動させることが可能な空間的余地があるか否かを判断する横移動可能余地判断手段と、前記前方障害物検知手段により前記自車両前方に前記衝突可能性のある障害物が検知されたときに、前記乗員検知手段により前記自車両の前部に運転者以外に乗員がいないことが検知され、また、前記回避操作判断手段により運転者による衝突回避とみなせる操舵操作がないと判断され、また、前記オーバーラップ判断手段により衝突予測時点において前記オーバーラップ部分で前記障害物と衝突すると判断され、さらに、前記横移動可能余地判断手段により前記オーバーラップ部分のオーバーラップ量をゼロにすることが可能な前記空間的余地があると判断された場合に、前記オーバーラップ量をゼロにする方向に前記自車両を横移動させるように前記横移動手段を制御する制御手段と、を備えたことを特徴としている。 In order to achieve the above object, the overlap amount control device at the time of frontal collision of the present invention moves the host vehicle laterally when an obstacle that may collide is detected in front of the host vehicle, and A device for controlling the amount of overlap at the time of a frontal collision, wherein the front obstacle detection means detects the obstacle with the possibility of collision in front of the host vehicle, and is seated in the driver's seat at the front part of the host vehicle. An occupant detection means for detecting that there is no occupant other than the driver, an avoidance operation determination means for determining whether or not there is a steering operation that can be regarded as collision avoidance by the driver, and at the time of collision prediction with the obstacle, Overlap determination means for determining whether or not the obstacle collides with the obstacle at an overlap portion between the front part of the driver's seat and the obstacle, lateral movement means for laterally moving the own vehicle, and surroundings of the own vehicle of Based on the situation, the lateral movement means determines whether or not there is a spatial room in which the own vehicle can be moved laterally. When the obstacle with the possibility of collision is detected, it is detected by the occupant detection means that there is no occupant other than the driver in front of the host vehicle, and the avoidance operation determination means detects the driver It is determined that there is no steering operation that can be regarded as collision avoidance due to, and it is determined by the overlap determining means that the obstacle collides with the obstacle at the overlap prediction time point, and further, the laterally movable margin determining means When it is determined that there is room for the overlap that can make the overlap amount of the overlap portion zero, the overlap amount is set to zero. Is characterized in that the and a control means for controlling said lateral movement means so as to laterally move the vehicle in the direction of.

なお、前記障害物が前記自車両よりも小型の車両であるか否かを判断する障害物判断手段をさらに備え、前記制御手段は、前記障害物判断手段により前記障害物が自車両よりも小型の車両であると判断された場合には、前記横移動手段による前記横移動を禁止することが好ましい。
また、前記自車両の前記障害物との衝突可能性が予め設定された所定の段階に達したか否かを判断する衝突可能性判断手段をさらに備え、前記自車両には、前記衝突可能性判断手段により衝突可能性が高まって前記所定の段階に達したと判断された場合に前記自車両を自動制動する被害軽減制動装置が装備され、前記制御手段は、前記被害軽減制動装置が前記自動制動を実施するときに前記横移動手段を制御して、前記自車両の横移動を実施することが好ましい。
The obstacle determining means for determining whether the obstacle is a vehicle smaller than the own vehicle is further provided, and the control means is configured such that the obstacle is smaller than the own vehicle by the obstacle determining means. When it is determined that the vehicle is a vehicle, it is preferable to prohibit the lateral movement by the lateral movement means.
The vehicle further includes a collision possibility determination unit that determines whether or not the collision possibility of the own vehicle with the obstacle has reached a predetermined level set in advance. A damage mitigation braking device is provided that automatically brakes the host vehicle when it is judged by the judging means that the possibility of a collision has increased and has reached the predetermined stage. It is preferable to perform the lateral movement of the host vehicle by controlling the lateral movement means when braking.

本発明の前面衝突時オーバーラップ量制御装置によれば、運転者の操舵操作等による衝突回避の可能性を確保することができるとともに、自車両前部に運転者以外に乗員がいない場合には、自車両の運転席の前部を含んで前面衝突することを回避する方向に横移動して、運転者の衝突被害を軽減することができる。   According to the overlap amount control device at the time of frontal collision of the present invention, it is possible to ensure the possibility of collision avoidance by the driver's steering operation and the like, and when there is no passenger other than the driver at the front of the host vehicle Further, it is possible to reduce the collision damage of the driver by laterally moving in the direction of avoiding the frontal collision including the front part of the driver's seat of the own vehicle.

本発明の一実施形態に係る前面衝突時オーバーラップ量制御装置の全体像を示す車両の模式的な平面図である。1 is a schematic plan view of a vehicle showing an overall image of a front collision overlap amount control apparatus according to an embodiment of the present invention. 本発明の一実施形態に係る前面衝突時オーバーラップ量制御装置の全体像を示すブロック図である。It is a block diagram which shows the whole image of the overlap amount control apparatus at the time of front collision which concerns on one Embodiment of this invention. (a),(b)ともに、本発明の一実施形態に係る前面衝突時オーバーラップ量制御装置における、オーバーラップを説明するための模式図である。(A), (b) is a schematic diagram for demonstrating the overlap in the overlap amount control apparatus at the time of frontal collision which concerns on one Embodiment of this invention. (a),(b)ともに、本発明の一実施形態に係る前面衝突時オーバーラップ量制御装置における、回避スペースを説明するための模式図である。(A), (b) is a schematic diagram for demonstrating the avoidance space in the overlap amount control apparatus at the time of frontal collision which concerns on one Embodiment of this invention. 本発明の一実施形態に係る前面衝突時オーバーラップ量制御装置の制御順序を示すフローチャートである。It is a flowchart which shows the control order of the overlap amount control apparatus at the time of front collision which concerns on one Embodiment of this invention.

以下、図面により本発明の前面衝突時オーバーラップ量制御装置の実施の形態について説明する。
<構成>
図1に示すように、本実施形態の前面衝突時オーバーラップ量制御装置1は車両2(図1ではトラックを図示している)に搭載されており、ミリ波レーダー(前方障害物検知手段)11と、警報ブザー(警報手段)12と、ブレーキECU(自動制動手段)13と、舵角センサ(操舵角検知手段)14と、前方認識カメラ(前方認識手段)21と、側方認識カメラ(側方認識手段)22と、後側方認識カメラ(後方認識手段)23と、シート圧センサ(乗員検知手段)24と、自動操舵装置(横移動手段)25と、メインECU30と、を備えている。各部11〜14,21〜25は、図2に示すようにメインECU30に電気的に接続されている。なお、ECUは、電子制御ユニット(Electric Control Unit)の略称である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of an overlap amount control device for a frontal collision according to the present invention will be described below with reference to the drawings.
<Configuration>
As shown in FIG. 1, a front collision overlap amount control device 1 of this embodiment is mounted on a vehicle 2 (a truck is shown in FIG. 1), and a millimeter wave radar (front obstacle detection means). 11, an alarm buzzer (alarm means) 12, a brake ECU (automatic braking means) 13, a steering angle sensor (steering angle detection means) 14, a front recognition camera (front recognition means) 21, and a side recognition camera ( Side recognition means) 22, rear side recognition camera (rear recognition means) 23, seat pressure sensor (occupant detection means) 24, automatic steering device (lateral movement means) 25, and main ECU 30. Yes. Each part 11-14, 21-25 is electrically connected to main ECU30 as shown in FIG. Note that ECU is an abbreviation for Electronic Control Unit.

ミリ波レーダー11,警報ブザー12,ブレーキECU13,舵角センサ14及びメインECU30は、被害軽減制動装置を構成している。
ミリ波レーダー11は、自車両2前方に衝突可能性のある障害物が存在することを検知するものである。障害物としては、主に他車両が想定される。ミリ波レーダー11にはレーダーECUが内蔵されている。
The millimeter wave radar 11, the alarm buzzer 12, the brake ECU 13, the rudder angle sensor 14 and the main ECU 30 constitute a damage reduction braking device.
The millimeter wave radar 11 detects the presence of an obstacle that may collide in front of the host vehicle 2. As an obstacle, other vehicles are mainly assumed. The millimeter wave radar 11 has a built-in radar ECU.

レーダーECUは、図3(a),(b)に示すように、自車両2と障害物3との自車両走行方向の相対距離Lと、自車両2に対する障害物3の相対速度とを算出する。図3(a),(b)では、障害物として先行車を図示している。そして、それら算出結果をメインECU30へ送信するようになっている。
警報ブザー12は、車内に設けられた警報装置であり、ブザー音を鳴動させることで自車両2の運転者に衝突の可能性を警報するようになっている。警報ブザー12の作動時点は、障害物3との衝突の可能性が生じているものの、運転者の操舵操作やブレーキ操作により衝突を回避可能な時点(後述の、衝突可能性が第1段階にある時点)である。警報ブザー12は、メインECU30の制御信号を受けて作動するようになっている。
As shown in FIGS. 3A and 3B, the radar ECU calculates a relative distance L between the host vehicle 2 and the obstacle 3 in the traveling direction of the host vehicle and a relative speed of the obstacle 3 with respect to the host vehicle 2. To do. 3A and 3B, a preceding vehicle is illustrated as an obstacle. These calculation results are transmitted to the main ECU 30.
The alarm buzzer 12 is an alarm device provided in the vehicle and warns the driver of the host vehicle 2 of the possibility of a collision by sounding a buzzer sound. Although the alarm buzzer 12 is activated at the time when the collision with the obstacle 3 is possible, the collision can be avoided by the driver's steering operation or brake operation (the collision possibility is described in the first stage). At some point). The alarm buzzer 12 operates in response to a control signal from the main ECU 30.

ブレーキECU13は、自車両2の各車輪に設けられた制動装置(図示略)をそれぞれ制御するものであり、メインECU30の制御信号を受けて、運転者によるブレーキペダルの踏込操作がなくても各制動装置を作動させ、自車両2を強制的に制動させるようになっている。
舵角センサ14は、運転者によって操作されるステアリングホイール4の操舵角を検知する検知手段である。そして、検知した操舵角をメインECU30へ送信するようになっている。
The brake ECU 13 controls a braking device (not shown) provided on each wheel of the host vehicle 2, and receives each control signal from the main ECU 30 so that each brake pedal 13 is not depressed by the driver. The braking device is operated to forcibly brake the host vehicle 2.
The steering angle sensor 14 is a detection unit that detects the steering angle of the steering wheel 4 operated by the driver. Then, the detected steering angle is transmitted to the main ECU 30.

前方認識カメラ21は、車両前方の状況を認識する手段であり、画像解析部を内蔵している。画像解析部は、得られた動画像を解析して、道路の形態(カーブ情報)、自車線内における自車両2の前後軸Oの横方向位置、自車両前方の障害物3の情報[横幅(車幅)Wや高さ(車高)といった大きさに係る情報,横方向中心軸(前後軸)Oの自車両2に対する横方向位置]、隣接車線や路肩上の障害物の位置及び種別、といった情報を認識する。認識した情報はメインECU30へ送信するようになっている。 The front recognition camera 21 is a means for recognizing the situation in front of the vehicle and incorporates an image analysis unit. The image analysis unit analyzes the obtained moving image, and describes the road form (curve information), the lateral position of the front-rear axis O 2 of the host vehicle 2 in the host lane, and information on the obstacle 3 in front of the host vehicle [ width (vehicle width) W 3 and height according to (height) such as the size information, a transverse centerline axis lateral position with respect to the vehicle 2 (front and rear axis) O 3], the obstacle on the adjacent lane and shoulder Recognize information such as position and type. The recognized information is transmitted to the main ECU 30.

側方認識カメラ22は、車両側方の状況を認識する手段であり、画像解析部を内蔵している。画像解析部は、得られた動画像を解析して、まず白線等の車線境界部を認識し、自車両2側方の物体の位置、例えば、隣接車線を走行する並走車あるいは対向車や、路肩にあるガードレールや標識等の位置を、自車両2あるいは自車線に対する位置として認識する。認識した情報はメインECU30へ送信するようになっている。   The side recognition camera 22 is a means for recognizing the situation on the side of the vehicle, and incorporates an image analysis unit. The image analysis unit analyzes the obtained moving image, first recognizes a lane boundary such as a white line, and the position of an object on the side of the host vehicle 2, for example, a parallel vehicle or an oncoming vehicle traveling in an adjacent lane, The position of the guardrail or the sign on the shoulder is recognized as the position relative to the own vehicle 2 or the own lane. The recognized information is transmitted to the main ECU 30.

後側方認識カメラ23は、車両後方及び後側方の状況を認識する手段であり、画像解析部を内蔵している。画像解析部は、得られた動画像を解析して、まず白線等の車線境界部を認識し、自車両2後方の物体の位置、例えば自車線や隣接車線を走行する後続車の位置を認識する。認識した情報はメインECU30へ送信するようになっている。
メインECU30は、後述するように、これらの各認識カメラ21〜23からの情報に基づき、自車両2が自動操舵により横移動する際、横移動する方向に周辺交通を阻害しない範囲でどれくらい回避スペース(空間的余地)があるか否かを総合的に算出,判断することができるようになっている。
The rear side recognition camera 23 is a means for recognizing the situation of the rear side and the rear side of the vehicle, and incorporates an image analysis unit. The image analysis unit analyzes the obtained moving image, first recognizes a lane boundary such as a white line, and recognizes the position of an object behind the host vehicle 2, for example, the position of a subsequent vehicle traveling in the host lane or an adjacent lane. To do. The recognized information is transmitted to the main ECU 30.
As will be described later, the main ECU 30, based on the information from each of the recognition cameras 21 to 23, when the host vehicle 2 moves laterally by automatic steering, how much space to avoid in the range in which the surrounding traffic is not obstructed in the lateral movement direction. It is possible to comprehensively calculate and judge whether there is (space).

シート圧センサ24は、運転席5に並んで車両前方に位置するシート(助手席やバスガイド席等の運転席横のシート)6に取り付けられて当該シート6にかかる圧力(乗員検知情報)を検知する。そして、検知した圧力をメインECU30へ送信するようになっている。
自動操舵装置25は、自車両2の操舵輪を自動で操舵(転舵)して自車両2を横移動させる装置であって、後述のメインECU30の演算部41の算出した目標回頭方向と目標横移動距離とを実現するために、メインECU30の制御信号を受けて自車両2の操舵輪を自動操舵するようになっている。
The seat pressure sensor 24 is attached to a seat (a seat next to the driver's seat such as a passenger seat or a bus guide seat) 6 positioned in front of the vehicle along with the driver's seat 5 and pressure (occupant detection information) applied to the seat 6. Detect. Then, the detected pressure is transmitted to the main ECU 30.
The automatic steering device 25 is a device that automatically steers (steers) the steered wheels of the host vehicle 2 to move the host vehicle 2 laterally, and the target turning direction and the target calculated by the calculation unit 41 of the main ECU 30 described later. In order to realize the lateral movement distance, the steering wheel of the host vehicle 2 is automatically steered in response to a control signal from the main ECU 30.

メインECU30は、本装置1全体を制御する電子制御ユニットであり、上述のように各部11〜14,21〜25が電気的に接続されている。そして、このメインECU30には、いずれもソフトウェアとして実現される第1〜第8判断部31〜38と演算部41と指令部(制御手段)42とが設けられている。メインECU30は、各部11,14,21〜24から情報(信号)を受信したら、判断部31〜38や演算部41が適宜に上記情報に基づいて判断や演算を行ない、その判断結果や演算結果を指令部42へ出力し、指令部42がその判断結果や演算結果に基づいて各部12,13,25に制御信号を送信するようになっている。   The main ECU 30 is an electronic control unit that controls the entire apparatus 1 and is electrically connected to the units 11 to 14 and 21 to 25 as described above. The main ECU 30 includes first to eighth determination units 31 to 38, a calculation unit 41, and a command unit (control means) 42, all of which are realized as software. When the main ECU 30 receives information (signals) from the respective units 11, 14, 21 to 24, the determination units 31 to 38 and the calculation unit 41 appropriately perform determination and calculation based on the above information, and the determination result and calculation result. Is output to the command unit 42, and the command unit 42 transmits a control signal to each of the units 12, 13, and 25 based on the determination result and the calculation result.

詳述すると、演算部41は、ミリ波レーダー11と各認識カメラ21〜23とから受信した情報に基づき、目標回頭方向と目標横移動距離とを算出するとともに、目標回頭方向の回避スペース(図4(a),(b)参照)を算出する。目標回頭方向は、自車運転席前部Aと障害物3との衝突予測時点でのオーバーラップ部分OLのオーバーラップ量をゼロにする方向であって、自車両2の前後軸Oと障害物3の前後軸Oとが横方向で離れる方向が算出される。目標横移動距離は、自車運転席前部Aのオーバーラップ量がゼロになる距離が算出される。 More specifically, the calculation unit 41 calculates the target turning direction and the target lateral movement distance based on the information received from the millimeter wave radar 11 and each of the recognition cameras 21 to 23, and also avoids the avoidance space (see FIG. 4 (a), (b)) is calculated. The target turning direction is a direction in which the overlap amount of the overlap portion OL at the time when the collision between the front A of the driver's driver's seat and the obstacle 3 is predicted is zero, and the front / rear axis O 2 of the host vehicle 2 and the obstacle and the longitudinal axis O 3 of the object 3 is away laterally is calculated. The target lateral movement distance is calculated as the distance at which the overlap amount of the front part A of the driver's vehicle is zero.

第1判断部(乗員有無判断手段)31は、シート圧センサ24から受信した圧力に基づき、運転席横のシート6に乗員が着座しているか、換言すれば、自車両2の前部に運転者以外に乗員がいるか否かを判断する。
第2判断部(障害物判断手段)32は、ミリ波レーダー11が自車両2の前方に衝突可能性のある障害物3が存在することを検知した場合に、前方認識カメラ21から受信した情報に基づき、自車両2前方の障害物3が自車両2よりも小型の車両であるか否か、換言すれば、障害物3が自車両2と同程度以上の大きさの車両ではない、あるいは障害物3が車両ではない、の何れかであるか否かを判断する。これは、自車両2よりも小型の車両にオフセット衝突する場合には、オフセット衝突によって相手車両が挙動不安定となることが懸念されるので、自動回頭を禁止するためである。なお、障害物3が車両ではないことの判断は、例えば、左右対称性や、予め入力しておいた輪郭,左右のブレーキランプ,タイヤ等の画像パターンを画像認識で検知すること(パターンマッチング)によって可能である。
Based on the pressure received from the seat pressure sensor 24, the first determination unit (occupant presence / absence determination means) 31 determines whether an occupant is seated on the seat 6 next to the driver's seat, in other words, driving in front of the host vehicle 2. It is determined whether there is a passenger other than the passenger.
The second determination unit (obstacle determination means) 32 receives information received from the front recognition camera 21 when the millimeter wave radar 11 detects that there is an obstacle 3 that may collide in front of the host vehicle 2. Whether or not the obstacle 3 in front of the host vehicle 2 is a smaller vehicle than the host vehicle 2, in other words, the obstacle 3 is not a vehicle of the same size or larger than the host vehicle 2, or It is determined whether or not the obstacle 3 is not a vehicle. This is because, when an offset collision occurs with a vehicle smaller than the host vehicle 2, there is a concern that the opponent vehicle may become unstable in behavior due to the offset collision, and thus automatic turning is prohibited. The determination that the obstacle 3 is not a vehicle is made by, for example, detecting image patterns such as left-right symmetry, pre-input contours, left and right brake lamps, tires, etc. by image recognition (pattern matching). Is possible.

第3判断部(オーバーラップ判断手段)33は、ミリ波レーダー11から受信した自車両2と障害物3との相対距離L及び相対速度から算出した衝突予測時間と、前方認識カメラ21から受信した障害物3の横幅W及び前後軸Oの横位置と、自車両2の車幅W及び前後軸Oの横位置とに基づき、自車両2が現状の運転状態のまま走行した場合、障害物3との衝突予測時点で自車運転席前部Aを含むオーバーラップ部分OLで障害物3と衝突するか否かを判断する。これは、乗員のいる部分を含んで前面衝突すると乗員への衝撃が大きいために、乗員のいる部分での衝突を回避するためである。 The third determination unit (overlap determination means) 33 receives the collision prediction time calculated from the relative distance L and the relative speed between the host vehicle 2 and the obstacle 3 received from the millimeter wave radar 11 and the forward recognition camera 21. and the lateral position of the lateral width W 3 and longitudinal axis O 3 of the obstacle 3, based on the lateral position of the vehicle width W 2 and longitudinal axis O 2 of the own vehicle 2, when the vehicle 2 has traveled as is the operating condition Then, it is determined whether or not the vehicle collides with the obstacle 3 at the overlap portion OL including the front part A of the driver's seat at the time when the collision with the obstacle 3 is predicted. This is for avoiding a collision in the portion where the occupant is present because the impact on the occupant is large when a frontal collision is included including the portion where the occupant is present.

第4判断部(横移動可能余地判断手段)34は、演算部41の算出した目標回頭方向,目標横移動距離及び目標回頭方向の回避スペースに基づき、目標横移動距離を達成可能な(オーバーラップ部分OLのオーバーラップ量をゼロにすることが可能な)回避スペースが目標回頭方向にあるか否かを判断する。つまり、回避スペースの関係から、目標横移動距離を実際に確保することができるか否か、さらには、確保できる場合でも衝突予測時間内に目標横移動距離に到達できるか否かを判断する。もし、第4判断部34が目標横移動距離を達成可能な回避スペースがない、あるいは衝突予測時間内に目標横移動距離に到達できないと判断した場合には、自車運転席前部Aの一部分のみでオフセット衝突させないように、自動操舵装置25による横移動は禁止される。   The fourth determination unit (laterally movable room determination means) 34 can achieve the target lateral movement distance based on the target turning direction, the target lateral movement distance, and the avoidance space in the target turning direction calculated by the calculation unit 41 (overlapping). It is determined whether or not the avoidance space (which can make the overlap amount of the partial OL zero) is in the target turning direction. That is, from the relationship of the avoidance space, it is determined whether or not the target lateral movement distance can be actually ensured, and further whether or not the target lateral movement distance can be reached within the collision prediction time even if it can be ensured. If the fourth determination unit 34 determines that there is no avoidance space that can achieve the target lateral movement distance or that the target lateral movement distance cannot be reached within the predicted collision time, a part of the front part A of the driver's seat Thus, the lateral movement by the automatic steering device 25 is prohibited so as not to cause an offset collision.

第5判断部(回避操作判断手段)35は、舵角センサ14から受信した操舵角と演算部41の算出した目標回頭方向とに基づき、運転者の積極的な衝突回避操舵操作がなされているか否かを判断する。このとき、目標回頭方向に操舵角が一致し且つ一定以上の操舵速度であれば、運転者の積極的な衝突回避操舵操作がなされていると判断すると良い。
第6判断部(衝突可能性判断手段)36は、ミリ波レーダー11から受信した情報に基づき、自車両2と障害物3との衝突可能性が第1段階に達したか否か、あるいは、自車両2が障害物3にさらに接近して衝突可能性が高まり第2段階に達したか否かを判断する。第1段階は、運転者の操舵操作やブレーキ操作で衝突を十分に回避可能な段階に設定され、第2段階は、第1段階よりも衝突可能性が高く、衝突回避がやや困難になった段階に設定されている。
Whether the fifth determination unit (avoidance operation determination unit) 35 is actively performing collision avoidance steering operation by the driver based on the steering angle received from the steering angle sensor 14 and the target turning direction calculated by the calculation unit 41. Judge whether or not. At this time, if the steering angle coincides with the target turning direction and the steering speed is equal to or higher than a certain level, it may be determined that the driver is actively performing a collision avoidance steering operation.
The sixth determination unit (collision possibility determination means) 36 determines whether or not the collision possibility between the host vehicle 2 and the obstacle 3 has reached the first stage based on the information received from the millimeter wave radar 11, or It is determined whether or not the host vehicle 2 has further approached the obstacle 3 and the possibility of a collision has increased to reach the second stage. The first stage is set to a stage where the collision can be sufficiently avoided by the driver's steering operation and braking operation, and the second stage has a higher possibility of collision than the first stage, and the collision avoidance is somewhat difficult. Set to stage.

第7判断部(被害軽減制動判断手段)37は、ブレーキECU13が制動装置に送信する制御信号に基づき、被害軽減制動装置が自動制動を実施しているか否かを判断する。
第8判断部(横移動距離到達判断手段)38は、各認識カメラ21〜23から受信した情報に基づき、実際に横移動した距離が演算部41の算出した目標横移動距離に到達したか否かを判断する。
The seventh determination unit (damage reduction brake determination means) 37 determines whether or not the damage reduction brake device is performing automatic braking based on a control signal transmitted from the brake ECU 13 to the brake device.
The eighth determination unit (lateral movement distance arrival determination means) 38 determines whether or not the actual lateral movement distance has reached the target lateral movement distance calculated by the calculation unit 41 based on the information received from each of the recognition cameras 21 to 23. Determine whether.

本衝突被害軽減装置1は、警報ブザー12が作動したことを契機として、つまり、ミリ波レーダー11によって自車両2に衝突の可能性のある障害物3が検知された場合に、図5に示すフローチャートのような制御順序で作動するようになっている。
まず、ステップS10では、警報ブザー12が作動してブザー音を鳴動させ、運転者に警報を発する。この時点では、運転者の操舵操作やブレーキ操作で衝突を回避可能である。
This collision damage alleviating apparatus 1 is shown in FIG. 5 when the alarm buzzer 12 is activated, that is, when an obstacle 3 that may collide with the host vehicle 2 is detected by the millimeter wave radar 11. It operates in the control sequence as shown in the flowchart.
First, in step S10, the alarm buzzer 12 is activated to sound a buzzer sound and issue an alarm to the driver. At this time, the collision can be avoided by the driver's steering operation and brake operation.

ステップS20では、第1判断部31が、シート圧センサ24から受信した圧力によって、運転席横のシート6に着座する乗員の有無を判断する。乗員がいなければステップS30に進み、乗員がいればステップS120に進む。
ステップS30では、第2判断部32が、障害物3が自車両2よりも小型の車両であるか否かを判断する。小型の車両でなければステップS40に進み、小型の車両であればステップS120に進む。
In step S <b> 20, the first determination unit 31 determines whether there is an occupant seated on the seat 6 next to the driver's seat based on the pressure received from the seat pressure sensor 24. If there is no passenger, the process proceeds to step S30, and if there is a passenger, the process proceeds to step S120.
In step S <b> 30, the second determination unit 32 determines whether the obstacle 3 is a smaller vehicle than the host vehicle 2. If it is not a small vehicle, the process proceeds to step S40, and if it is a small vehicle, the process proceeds to step S120.

ステップS40では、第3判断部33が、衝突予測時点で、自車運転席前部Aがオーバーラップ部分OLに含まれるか否かを判断する。オーバーラップ部分OLに含まれていればステップS50に進み、そうでなければステップS120に進む。
ステップS50では、演算部41が目標回頭方向と目標横移動距離と目標回頭方向の回避スペースとを算出する。算出後はステップS70に進む。
In step S40, the third determination unit 33 determines whether or not the vehicle driver's seat front part A is included in the overlap portion OL at the time of the collision prediction. If it is included in the overlap portion OL, the process proceeds to step S50, and if not, the process proceeds to step S120.
In step S50, the calculation unit 41 calculates a target turning direction, a target lateral movement distance, and an avoidance space in the target turning direction. After the calculation, the process proceeds to step S70.

ステップS60では、第4判断部34が、演算部41の算出した目標回頭方向と目標横移動距離と目標回頭方向の回避スペースとに基づき、目標横移動距離を達成可能な回避スペースがあるか否かを判断する。達成可能な回避スペースがあればステップS70に進み、そうでなければステップS120に進む。
ステップS70では、第5判断部35が、舵角センサ14から受信した操舵角に基づき、運転者が衝突回避操舵操作を行なったか否かを判断する。運転者の衝突回避操舵操作がなければステップS80に進み、操舵操作があればステップS120に進む。このステップS70は、被害軽減制動装置の自動制動よりも運転者の積極的な回避操作を優先するためのステップであり、被害軽減制動装置の自動制動実施よりも前であればどの時点で実行されても良いが、被害軽減制動装置の自動制動実施の直前の時点であればより好ましい。
In step S60, whether there is an avoidance space in which the fourth determination unit 34 can achieve the target lateral movement distance based on the target turning direction, the target lateral movement distance, and the avoidance space in the target turning direction calculated by the calculation unit 41. Determine whether. If there is an achievable avoidance space, the process proceeds to step S70, and if not, the process proceeds to step S120.
In step S <b> 70, the fifth determination unit 35 determines whether or not the driver has performed a collision avoidance steering operation based on the steering angle received from the steering angle sensor 14. If there is no collision avoidance steering operation by the driver, the process proceeds to step S80, and if there is a steering operation, the process proceeds to step S120. This step S70 is a step for prioritizing the driver's aggressive avoidance operation over the automatic braking of the damage reducing brake device, and is executed at any point before the automatic braking of the damage reducing brake device is performed. However, it is more preferable if it is just before the automatic braking of the damage reducing brake device.

ステップS80では、第6判断部36が、自車両2が障害物3にさらに接近して障害物3との衝突可能性が高まり第2段階に達したか否かを判断する。第6判断部36が、衝突可能性が第2段階に達したと判断した際には、指令部42がブレーキECU13に制御信号を送信し、ブレーキECU13により自動制動を開始する。この自動制動の開始を第7判断部37が判断する。自動制動が開始されればステップS90に進み、開始されなければステップS70に戻り、運転者の衝突回避操舵操作の有無を再度確認する。   In step S80, the sixth determination unit 36 determines whether or not the own vehicle 2 has further approached the obstacle 3 to increase the possibility of collision with the obstacle 3 and has reached the second stage. When the sixth determination unit 36 determines that the possibility of collision has reached the second stage, the command unit 42 transmits a control signal to the brake ECU 13 and the brake ECU 13 starts automatic braking. The seventh determination unit 37 determines the start of this automatic braking. If automatic braking is started, the process proceeds to step S90, and if not started, the process returns to step S70 to confirm again whether or not the driver has performed a collision avoidance steering operation.

ステップS90では、演算部41の算出した目標回頭方向と目標横移動距離とに基づき、指令部42が自動操舵装置25に指令を送り、自動操舵装置25によって自車両2の横移動を開始する。そして、ステップS100に進む。
ステップS100では、第8判断部38が、実際に横移動した距離が演算部41の算出した目標横移動距離に到達したか否かを判断するとともに、第7判断部37が、被害軽減制動装置による自動制動が解除されたか否かを判断する。目標横移動距離に到達している、あるいは自動制動が解除されている、のうちの少なくとも1つが成立したら、ステップS110に進む。なお、自動制動の解除条件としては、例えば、障害物3との衝突可能性がなくなった(運転者がブレーキ操作や操舵操作で衝突を回避した、障害物3が加速・右左折等していなくなった)、運転者が被害軽減制動装置と相反する操作(アクセル踏み込み等)をした、等が設定される。
In step S90, the command unit 42 sends a command to the automatic steering device 25 based on the target turning direction and the target lateral movement distance calculated by the calculation unit 41, and the automatic steering device 25 starts the lateral movement of the host vehicle 2. Then, the process proceeds to step S100.
In step S100, the eighth determination unit 38 determines whether or not the distance actually moved laterally has reached the target lateral movement distance calculated by the calculation unit 41, and the seventh determination unit 37 determines whether or not the damage reduction braking device. It is determined whether or not the automatic braking by is released. If at least one of the target lateral movement distance has been reached or the automatic braking is released, the process proceeds to step S110. As a condition for releasing automatic braking, for example, there is no possibility of collision with the obstacle 3 (the obstacle 3 has been prevented from accelerating / turning left / right, etc., when the driver has avoided collision by braking or steering operation) In other words, the driver performs an operation (accelerator depression, etc.) contrary to the damage reduction braking device.

ステップS110では、指令部42が自動操舵装置25に指令を送り、自動操舵装置25による自車両2の横移動を終了する。そして、終了後は、自動操舵装置25は、カウンターステアで自車両2を本来の進行方向(車線に平行な進行方向)に復帰させるようにすると良い。
ステップS120では、被害軽減制動装置による自動制動制御を実施する。この自動制動制御は、従来の被害軽減制動装置による自動制動制御と同様のものであり、横移動を伴わない。
In step S110, the command unit 42 sends a command to the automatic steering device 25, and the lateral movement of the host vehicle 2 by the automatic steering device 25 ends. And after completion | finish, it is good for the automatic steering apparatus 25 to return the own vehicle 2 to the original advancing direction (advancing direction parallel to a lane) by countersteer.
In step S120, automatic braking control by the damage reduction braking device is performed. This automatic braking control is the same as the automatic braking control by the conventional damage reduction braking device, and does not involve lateral movement.

<作用・効果>
本発明の一実施形態に係る前面衝突時オーバーラップ量制御装置は上述のように構成されているので、以下のような作用および効果を奏する。
本制御装置1は、被害軽減制動装置による自動制動時に、車両前部に運転者以外に乗員がいない走行状態で被害軽減制動装置の自動制動が開始する場合において、オーバーラップ部分OLに自車運転席前部Aが含まれるならば、自車両2を自動操舵により回頭させて横移動し、自車運転席前部Aのオーバーラップ量をゼロないしは低減する。これによって、自車運転席前部Aの破損が抑えられ、運転者の衝突被害を軽減することができる。
<Action and effect>
Since the overlap amount control device at the time of frontal collision according to an embodiment of the present invention is configured as described above, the following operations and effects are achieved.
When the automatic braking of the damage reduction braking apparatus starts in a traveling state where there is no occupant other than the driver at the front of the vehicle during the automatic braking by the damage reduction braking apparatus, the control apparatus 1 operates the vehicle on the overlap portion OL. If the front seat portion A is included, the own vehicle 2 is turned by automatic steering and moved laterally, and the amount of overlap of the front seat portion A of the own vehicle is reduced to zero or reduced. As a result, damage to the front part A of the driver's vehicle seat is suppressed, and the driver's collision damage can be reduced.

また、横移動が開始される前に、運転者による衝突回避操舵操作が行なわれたか否かを確認し、衝突回避操舵操作があった場合には自動操舵装置25による横移動を行なわないので、運転者の操舵操作による衝突回避の可能性を確保することができる。
また、横移動が開始された後に、例えば運転者が事態を認識して操舵操作やブレーキ操作をした場合には、自動操舵装置25による横移動は終了するので、横移動が開始された後にも運転者の操舵操作による衝突回避の可能性を確保することができる。そして、運転者が自ら操舵操作やブレーキ操作をして衝突を回避しようとする場合には、自車運転席前部Aのオーバーラップ量はすでに低減されているため、運転者の操作による衝突回避の可能性を向上させることができる。
また、障害物3が自車両2よりも小型車両の場合には横移動を禁止するので、オフセット衝突によって相手車両の挙動が不安定になることを回避することができる。
Further, before the lateral movement is started, it is confirmed whether or not the collision avoidance steering operation is performed by the driver, and when the collision avoidance steering operation is performed, the automatic steering device 25 does not perform the lateral movement. The possibility of collision avoidance by the driver's steering operation can be ensured.
Further, after the lateral movement is started, for example, when the driver recognizes the situation and performs a steering operation or a brake operation, the lateral movement by the automatic steering device 25 is finished. Therefore, even after the lateral movement is started, The possibility of collision avoidance by the driver's steering operation can be ensured. When the driver tries to avoid a collision by performing a steering operation or a brake operation, the overlap amount of the front A of the driver's seat has already been reduced. The possibility of this can be improved.
Further, since the lateral movement is prohibited when the obstacle 3 is a smaller vehicle than the host vehicle 2, it is possible to prevent the behavior of the opponent vehicle from becoming unstable due to the offset collision.

[その他]
以上、本発明の実施形態について説明したが、本発明は、上記実施形態に限定されず、本発明の趣旨を逸脱しない範囲で種々変更することが可能である。
[Others]
As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, A various change is possible in the range which does not deviate from the meaning of this invention.

例えば、上記実施形態では、警報ブザー12により運転者に衝突可能性を知らせるようにしたが、ブザー音以外の警告音声を発する警報手段や、明滅することで衝突可能性を知らせる非常ランプ等の警報手段で警報ブザー12を代替しても良い。
また、上記実施形態では、前方認識カメラ21により車両前方の障害物3の大きさを認識したが、ミリ波レーダー11により障害物3の大きさを認識しても良い。
For example, in the above embodiment, the alarm buzzer 12 informs the driver of the possibility of a collision. However, the alarm means for issuing a warning sound other than the buzzer sound, or an alarm such as an emergency lamp for informing the possibility of a collision by blinking. The alarm buzzer 12 may be replaced by means.
Moreover, in the said embodiment, although the magnitude | size of the obstruction 3 ahead of a vehicle was recognized with the front recognition camera 21, you may recognize the magnitude | size of the obstruction 3 with the millimeter wave radar 11. FIG.

また、上記実施形態では、シート圧センサ24により車両前部の運転者以外の乗員の有無を検知したが、車両前部の運転者以外の乗員の有無を検知する乗員検知手段はこれに限らず、例えば、車内を撮影し、撮影した画像を分析して乗員の有無を検知するカメラや、車内の熱を検知することで乗員の有無を検知する熱センサ等で代替しても良い。
また、上記実施形態では、自車両2の横移動を、自動操舵装置25により自動操舵することで行なったが、ブレーキECU13により左右輪の制動力に差をつけることで行なっても良い。つまり、ブレーキECU13を横移動手段として用いても良い。自動操舵による制御によれば、すばやく回頭することができるとともに、ブレーキECU13の制動制御に干渉しないという利点がある。一方、制動力差による制御によれば、自動操舵による制御に比べて安定性が高く、また、運転者の操舵介入余地が大きいという利点がある。したがって、両者の制御を組み合わせて、衝突予測時間が大きいが目標横移動距離は小さい場合には制動力差による制御を行ない、一方、衝突予測時間は小さいが目標横移動距離が大きい場合には自動操舵による制御を行なうようにしても良い。
In the above embodiment, the seat pressure sensor 24 detects the presence of an occupant other than the driver at the front of the vehicle. However, the occupant detection means for detecting the presence of an occupant other than the driver at the front of the vehicle is not limited to this. For example, a camera that captures the interior of a vehicle, analyzes the captured image to detect the presence or absence of an occupant, or a thermal sensor that detects the presence or absence of an occupant by detecting heat in the vehicle may be used instead.
Further, in the above-described embodiment, the lateral movement of the host vehicle 2 is performed by automatically steering by the automatic steering device 25, but may be performed by making a difference in braking force between the left and right wheels by the brake ECU 13. That is, the brake ECU 13 may be used as a lateral movement means. According to the control by automatic steering, there is an advantage that the vehicle can be quickly turned and does not interfere with the braking control of the brake ECU 13. On the other hand, the control based on the braking force difference has the advantages that the stability is higher than the control based on the automatic steering and that the driver has a large room for steering intervention. Therefore, by combining the two controls, control is performed based on the braking force difference when the predicted collision time is large but the target lateral movement distance is small. On the other hand, when the target lateral movement distance is large, the control is performed automatically. Control by steering may be performed.

また、上記実施形態では、横移動する際には被害軽減制動装置による自動制動の開始が前提になっていたが、被害軽減制動装置と組み合わせずに、単に横移動させるだけでも良い。
また、上記実施形態で説明したような本装置1は、トラックやバスといった乗員が運転者のみになる状況の多い大型車両に限らず、普通乗用車に適用しても良い。
Further, in the above-described embodiment, it is assumed that automatic braking by the damage reducing brake device is started when moving laterally, but it may be simply moved laterally without being combined with the damage reducing brake device.
In addition, the present apparatus 1 as described in the above embodiment may be applied not only to a large vehicle in which there are many drivers, such as trucks and buses, but also to ordinary passenger cars.

1 前面衝突時オーバーラップ量制御装置
2 自車両
3 障害物(他車両や固定物)
4 ステアリングホイール
5 運転席
6 運転席横のシート(助手席やバスガイド席)
11 ミリ波レーダー(前方障害物検知手段)
12 警報ブザー(警報手段)
13 ブレーキECU(自動制動手段,横移動手段)
14 舵角センサ(操舵角検知手段)
21 前方認識カメラ
22 側方認識カメラ
23 後側方認識カメラ
24 シート圧センサ(乗員検知手段)
25 自動操舵装置(横移動手段)
30 メインECU
31 第1判断部(乗員有無判断手段)
32 第2判断部(障害物判断手段)
33 第3判断部(オーバーラップ判断手段)
34 第4判断部(横移動可能余地判断手段)
35 第5判断部(回避操作判断手段)
36 第6判断部(衝突可能性判断手段)
37 第7判断部(被害軽減制動判断手段)
38 第8判断部(横移動距離到達判断手段)
41 演算部
42 指令部(制御手段)
1 Front collision overlap amount control device 2 Own vehicle 3 Obstacles (other vehicles and fixed objects)
4 Steering wheel 5 Driver's seat 6 Seat next to the driver's seat (passenger seat and bus guide seat)
11 Millimeter wave radar (front obstacle detection means)
12 Alarm buzzer (alarm means)
13 Brake ECU (automatic braking means, lateral movement means)
14 Steering angle sensor (steering angle detection means)
21 Front recognition camera 22 Side recognition camera 23 Rear side recognition camera 24 Seat pressure sensor (occupant detection means)
25 Automatic steering device (lateral movement means)
30 Main ECU
31 1st judgment part (passenger presence / absence judging means)
32 Second determination unit (obstacle determination means)
33 3rd judgment part (overlap judgment means)
34 Fourth determination unit (horizontal movable room determination means)
35 Fifth determination unit (avoidance operation determination means)
36 6th judgment part (possibility of collision possibility judgment means)
37. Seventh judgment section (damage reduction braking judgment means)
38 Eighth determination section (lateral movement distance arrival determination means)
41 arithmetic unit 42 command unit (control means)

Claims (2)

自車両前方に衝突可能性のある障害物が検知された場合に前記自車両を横移動させ、前記障害物との前面衝突時のオーバーラップ量を制御する装置であって、
前記自車両前方の前記衝突可能性のある障害物を検知する前方障害物検知手段と、
前記自車両の前部において運転席に着座する運転者以外に乗員がいないことを検知する乗員検知手段と、
運転者による衝突回避とみなせる操舵操作があるか否かを判断する回避操作判断手段と、
前記障害物との衝突予測時点において、前記運転席の前部と前記障害物とのオーバーラップ部分で前記障害物と衝突するか否かを判断するオーバーラップ判断手段と、
前記自車両を横移動させる横移動手段と、
前記自車両の周辺の状況に基づき、前記横移動手段が前記自車両を横移動させることが可能な空間的余地があるか否かを判断する横移動可能余地判断手段と、
前記前方障害物検知手段により前記自車両前方に前記衝突可能性のある障害物が検知されたときに、前記乗員検知手段により前記自車両の前部に運転者以外に乗員がいないことが検知され、また、前記回避操作判断手段により運転者による衝突回避とみなせる操舵操作がないと判断され、また、前記オーバーラップ判断手段により衝突予測時点において前記オーバーラップ部分で前記障害物と衝突すると判断され、さらに、前記横移動可能余地判断手段により前記オーバーラップ部分のオーバーラップ量をゼロにすることが可能な前記空間的余地があると判断された場合に、前記オーバーラップ量をゼロにする方向に前記自車両を横移動させるように前記横移動手段を制御する制御手段と、
前記障害物が前記自車両よりも小型の車両であるか否かを判断する障害物判断手段と、を備え、
前記制御手段は、前記障害物判断手段により前記障害物が自車両よりも小型の車両であると判断された場合には、前記横移動手段による前記横移動を禁止する
ことを特徴とする、前面衝突時オーバーラップ量制御装置
A device for laterally moving the host vehicle when an obstacle with a possibility of collision is detected in front of the host vehicle and controlling an overlap amount at the time of a frontal collision with the obstacle,
Forward obstacle detection means for detecting obstacles with a possibility of collision in front of the host vehicle;
Occupant detection means for detecting that there is no occupant other than the driver seated in the driver's seat at the front of the host vehicle;
Avoidance operation determination means for determining whether or not there is a steering operation that can be regarded as collision avoidance by the driver;
Overlap determination means for determining whether or not to collide with the obstacle at the overlap portion between the front of the driver's seat and the obstacle at the time of collision prediction with the obstacle;
Lateral movement means for laterally moving the host vehicle;
A laterally movable room determining means for determining whether or not there is a space for the laterally moving means to laterally move the own vehicle based on a situation around the own vehicle;
When the obstacle having a possibility of collision is detected in front of the own vehicle by the front obstacle detecting means, it is detected by the occupant detecting means that there is no occupant other than the driver at the front of the own vehicle. In addition, it is determined that there is no steering operation that can be regarded as collision avoidance by the driver by the avoidance operation determination means, and it is determined by the overlap determination means that the obstacle collides with the obstacle at the overlap prediction time point, Further, when it is determined by the laterally movable margin determining means that there is a spatial margin that can make the overlap amount of the overlap portion zero, the overlap amount is set to be zero. Control means for controlling the lateral movement means so as to move the own vehicle laterally;
Obstacle judging means for judging whether the obstacle is a vehicle smaller than the host vehicle,
The control means prohibits the lateral movement by the lateral movement means when the obstacle judgment means judges that the obstacle is a smaller vehicle than the own vehicle.
The overlap amount control apparatus at the time of frontal collision characterized by the above-mentioned .
前記自車両の前記障害物との衝突可能性が予め設定された所定の段階に達したか否かを判断する衝突可能性判断手段をさらに備え、
前記自車両には、前記衝突可能性判断手段により衝突可能性が高まって前記所定の段階に達したと判断された場合に前記自車両を自動制動する被害軽減制動装置が装備され、
前記制御手段は、前記被害軽減制動装置が前記自動制動を実施するときに前記横移動手段を制御して、前記自車両の横移動を実施する
ことを特徴とする、請求項1記載の前面衝突時オーバーラップ量制御装置。
A collision possibility judging means for judging whether or not the collision possibility of the own vehicle with the obstacle has reached a predetermined stage set in advance;
The host vehicle is equipped with a damage mitigation braking device that automatically brakes the host vehicle when it is determined by the collision possibility determination means that the possibility of collision has increased and has reached the predetermined stage,
Said control means, said controls lateral movement means when the damage reduction braking device for performing the automatic braking, the characterized by the transverse movement of the vehicle, the front face of claim 1 Symbol placement Overlap amount control device at the time of collision.
JP2009218034A 2009-09-18 2009-09-18 Front collision overlap amount control device Expired - Fee Related JP5464333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009218034A JP5464333B2 (en) 2009-09-18 2009-09-18 Front collision overlap amount control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009218034A JP5464333B2 (en) 2009-09-18 2009-09-18 Front collision overlap amount control device

Publications (2)

Publication Number Publication Date
JP2011063225A JP2011063225A (en) 2011-03-31
JP5464333B2 true JP5464333B2 (en) 2014-04-09

Family

ID=43949925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009218034A Expired - Fee Related JP5464333B2 (en) 2009-09-18 2009-09-18 Front collision overlap amount control device

Country Status (1)

Country Link
JP (1) JP5464333B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013204893A1 (en) 2013-03-20 2014-09-25 Robert Bosch Gmbh Method and system for avoiding a collision in connection with vehicles
JP6183298B2 (en) * 2014-06-10 2017-08-23 株式会社デンソー Collision avoidance device
US10112609B2 (en) 2014-06-10 2018-10-30 Denso Corporation Collision avoidance apparatus
JP6627093B2 (en) * 2014-06-30 2020-01-08 本田技研工業株式会社 VEHICLE CONTROL DEVICE, VEHICLE CONTROL METHOD, AND VEHICLE CONTROL PROGRAM
US9381915B1 (en) * 2015-01-20 2016-07-05 Ford Global Technologies, Llc Vehicle side impact control
US9694777B2 (en) * 2015-06-11 2017-07-04 GM Global Technology Operations LLC Wheel assembly adjustment for vehicle events
JP6491596B2 (en) 2015-12-25 2019-03-27 株式会社デンソー Vehicle control apparatus and vehicle control method
KR102421246B1 (en) * 2017-11-06 2022-07-15 현대자동차주식회사 Vehicle and controlling method for the same
KR102553730B1 (en) * 2018-03-08 2023-07-11 주식회사 에이치엘클레무브 Apparatus and method for controlling collision avoidance of vehicle
JP7264076B2 (en) 2020-01-30 2023-04-25 いすゞ自動車株式会社 Notification device
JP7290120B2 (en) * 2020-02-03 2023-06-13 トヨタ自動車株式会社 Collision avoidance support device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3738575B2 (en) * 1998-09-21 2006-01-25 トヨタ自動車株式会社 Vehicle collision control device
JP2006062397A (en) * 2004-08-24 2006-03-09 Nissan Motor Co Ltd Device for controlling vehicle behavior when contacting obstacle
JP2006273252A (en) * 2005-03-30 2006-10-12 Mitsubishi Fuso Truck & Bus Corp Anti-collision controller for vehicle
JP2006273266A (en) * 2005-03-30 2006-10-12 Denso Corp Occupant protection device
DE102005016009A1 (en) * 2005-04-07 2006-10-12 Robert Bosch Gmbh Method and device for stabilizing a vehicle after a collision
JP2007125997A (en) * 2005-11-04 2007-05-24 Nissan Motor Co Ltd Vehicular intelligent brake assist system
JP2007145152A (en) * 2005-11-28 2007-06-14 Mitsubishi Electric Corp Vehicular automatic braking device

Also Published As

Publication number Publication date
JP2011063225A (en) 2011-03-31

Similar Documents

Publication Publication Date Title
JP5464333B2 (en) Front collision overlap amount control device
US10486692B2 (en) Vehicle collision avoidance assist system
US10266176B2 (en) Vehicle collision avoidance assist system
KR101775856B1 (en) Vehicle control system and vehicle control method
US10227071B2 (en) Vehicle collision avoidance assist system
JP6036724B2 (en) Vehicle surrounding situation recognition device and vehicle control device
JP6593607B2 (en) Vehicle control device
JP6596772B2 (en) Vehicle control device, vehicle control method, and program
CN111204333B (en) Vehicle front blind spot detection and warning system
US11577720B2 (en) Collision avoidance assist apparatus
EP3354525B1 (en) Arrangement and method for mitigating a forward collision between road vehicles
EP1334871A2 (en) Movable body safety system and movable body operation support method
EP2484566A1 (en) Brake assist system
JPWO2017056374A1 (en) Damage reduction apparatus, damage reduction method and program
CN108602494B (en) Vehicle control device and vehicle control method
JP2007186141A (en) Running control device for vehicle
JP2008519725A (en) Method for controlling vehicle equipped with collision avoidance system and apparatus for carrying out this method
JP2017182768A (en) Collision prevention apparatus
JP5146288B2 (en) Vehicle control device
JP3900814B2 (en) Driving support system
JP2012045984A (en) Collision reducing device
JP4175080B2 (en) Vehicle control device
JP2017073060A (en) Lane change support device
KR20130013997A (en) Apparatus for preventing car collision and method thereof
JP2006273252A (en) Anti-collision controller for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131225

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140107

R150 Certificate of patent or registration of utility model

Ref document number: 5464333

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees