[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5398559B2 - Lithium ion secondary battery - Google Patents

Lithium ion secondary battery Download PDF

Info

Publication number
JP5398559B2
JP5398559B2 JP2010010580A JP2010010580A JP5398559B2 JP 5398559 B2 JP5398559 B2 JP 5398559B2 JP 2010010580 A JP2010010580 A JP 2010010580A JP 2010010580 A JP2010010580 A JP 2010010580A JP 5398559 B2 JP5398559 B2 JP 5398559B2
Authority
JP
Japan
Prior art keywords
negative electrode
graphite
battery
positive electrode
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010010580A
Other languages
Japanese (ja)
Other versions
JP2011150866A (en
Inventor
浩史 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Maxell Energy Ltd
Original Assignee
Hitachi Maxell Energy Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Energy Ltd filed Critical Hitachi Maxell Energy Ltd
Priority to JP2010010580A priority Critical patent/JP5398559B2/en
Publication of JP2011150866A publication Critical patent/JP2011150866A/en
Application granted granted Critical
Publication of JP5398559B2 publication Critical patent/JP5398559B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Cell Separators (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、初回充放電時の不可逆容量が小さく、充放電サイクル特性が良好で、高温での安全性に優れたリチウムイオン二次電池に関するものである。   The present invention relates to a lithium ion secondary battery having a small irreversible capacity at the time of first charge / discharge, good charge / discharge cycle characteristics, and excellent safety at high temperatures.

リチウムイオン二次電池は、エネルギー密度が高いという特徴から、携帯電話、ノート型パーソナルコンピューターなどの携帯機器や、電動式の工具、電動自転車などの電源として広く用いられている。最近では、これら機器類の高性能化が目覚しく、これに伴い、電源として利用されるリチウムイオン二次電池において、例えば、負荷特性、容量、充放電サイクル特性(寿命特性)に高い水準が求められている。これら諸特性を満足させるために、負極材料、正極材料、セパレータ、非水電解液といった各種電池構成部材の改善が進められている。また、前記電池の諸特性向上に伴い、高い信頼性や安全性も確保していく必要がある。   Lithium ion secondary batteries are widely used as power sources for portable devices such as mobile phones and notebook personal computers, electric tools, and electric bicycles because of their high energy density. Recently, the performance of these devices has been remarkably improved, and accordingly, in a lithium ion secondary battery used as a power source, for example, a high level is required for load characteristics, capacity, and charge / discharge cycle characteristics (life characteristics). ing. In order to satisfy these various characteristics, various battery components such as a negative electrode material, a positive electrode material, a separator, and a non-aqueous electrolyte are being improved. In addition, as the various characteristics of the battery are improved, it is necessary to ensure high reliability and safety.

負極活物質として利用される負極材料の改善も種々提案されている。例えば特許文献1には、負極材料として使用するリン状またはリン片状の黒鉛粒子の表面を、デンプンの誘導体などの有機物で被覆することで、不可逆容量の低減や放電効率の改善を図る技術が提案されている。   Various improvement of the negative electrode material utilized as a negative electrode active material is also proposed. For example, Patent Document 1 discloses a technique for reducing irreversible capacity and improving discharge efficiency by coating the surface of phosphorus-like or flake-like graphite particles used as a negative electrode material with an organic substance such as a starch derivative. Proposed.

特開2003−168433号公報JP 2003-168433 A

ところが、特許文献1に記載の負極材料は、その母材となる黒鉛粒子が、アスペクト比の大きなリン状またはリン片状であるため、電池の充放電時におけるリチウムイオンの挿入・脱離に伴う黒鉛層間の膨張、収縮によるダメージが懸念される。すなわち、電池の充放電を繰り返すことで、黒鉛粒子の表面を被覆した有機物において、剥離や亀裂が生じるなどして、黒鉛粒子の表面が露出する場合があり、これによって充放電のサイクル毎に不可逆容量が発生して、電池の充放電サイクル劣化が引き起こされる虞がある。   However, in the negative electrode material described in Patent Document 1, the graphite particles serving as the base material are in the form of phosphorus or flakes having a large aspect ratio, and therefore accompanying the insertion / extraction of lithium ions during charge / discharge of the battery. There is concern about damage due to expansion and contraction between graphite layers. In other words, by repeating charge and discharge of the battery, the surface of the graphite particles may be exposed due to peeling or cracking in the organic matter covering the surface of the graphite particles, which makes it irreversible for each charge and discharge cycle. There is a possibility that the capacity is generated and the charge / discharge cycle deterioration of the battery is caused.

こうしたことから、電池の初回充放電時における不可逆容量が小さくすることに加えて、充放電を繰り返しても不可逆容量の発生を抑え得る技術の開発が求められる。   For this reason, in addition to reducing the irreversible capacity at the time of initial charge / discharge of the battery, development of a technique capable of suppressing the generation of the irreversible capacity even after repeated charge / discharge is required.

また、充電および放電のいずれもが大電流で行われるパワーツールなどの用途に適用されるリチウムイオン二次電池においては、電極での反応が不均一化しやすく、使用を繰り返すうちに、充放電時に生じる大きな発熱によって電極内での局所的な劣化が生じる場合があり、携帯電話のようにさほど大電流を要求されない用途での使用の場合に比較して、特性低下が大きくなることが問題となることもある。   In addition, in lithium ion secondary batteries applied to applications such as power tools where both charging and discharging are performed with a large current, the reaction at the electrodes tends to be non-uniform, and during repeated use, The large heat generation may cause local deterioration in the electrode, and there is a problem that the deterioration of the characteristics becomes large compared to the use in applications where a large current is not required like a mobile phone. Sometimes.

そして、前記充放電時の発熱が、電極以外の電池部材にも影響を与え、問題を生じる虞もある。リチウムイオン二次電池は、数本の単電池をパック化して用いられることが多々あるため、充放電により単電池内部の温度が上昇すると、パック内部に熱がこもり単電池の温度は更に上昇する。その結果、セパレータの融点付近まで電池の内部温度が上昇し、セパレータが徐々に目詰まりを生じて大電流で充放電できなくなるという問題もある。よって、前記のような問題を回避して、充放電を繰り返しても良好な特性を維持することのできるリチウムイオン二次電池が必要とされている。   And the heat_generation | fever at the time of the said charge / discharge may also affect battery members other than an electrode, and there exists a possibility of producing a problem. Lithium ion secondary batteries are often used in packs of several unit cells. Therefore, when the temperature inside the unit cell rises due to charging / discharging, the temperature of the unit cell further rises due to the heat inside the pack. . As a result, the internal temperature of the battery rises to near the melting point of the separator, and the separator is gradually clogged, so that charging and discharging cannot be performed with a large current. Therefore, there is a need for a lithium ion secondary battery that avoids the above problems and can maintain good characteristics even after repeated charging and discharging.

本発明は、前記事情に鑑みてなされたものであり、その目的は、初回充放電時の不可逆容量が小さく、充放電サイクル特性が良好で、高温での安全性に優れたリチウムイオン二次電池を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is a lithium ion secondary battery having a small irreversible capacity at the time of initial charge / discharge, good charge / discharge cycle characteristics, and excellent safety at high temperatures. Is to provide.

前記目的を達成し得た本発明のリチウムイオン二次電池は、正極、負極、セパレータおよび非水電解液を有しており、前記負極は、水に対する濡れ性が固液面接触角(θ)で0〜50°である黒鉛と、前記黒鉛の表面を被覆する天然多糖類またはその誘導体とを有する負極材料を含有しており、前記セパレータが、融点が120〜140℃の樹脂を含む多孔質層(I)と、耐熱温度が150℃以上のフィラーを主体として含む多孔質層(II)とを有する積層体からなることを特徴とするものである。   The lithium ion secondary battery of the present invention that has achieved the above object has a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte. The negative electrode has a solid-liquid surface contact angle (θ) with respect to water. A negative electrode material having graphite having a melting point of 0 to 50 ° and a natural polysaccharide or a derivative thereof covering the surface of the graphite, wherein the separator contains a resin having a melting point of 120 to 140 ° C. It is characterized by comprising a laminate having a layer (I) and a porous layer (II) mainly comprising a filler having a heat resistant temperature of 150 ° C. or higher.

本発明によれば、初回充放電時の不可逆容量が小さく、充放電サイクル特性が良好で、高温での安全性に優れたリチウムイオン二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the irreversible capacity | capacitance at the time of first charge / discharge is small, charging / discharging cycling characteristics are favorable, and the lithium ion secondary battery excellent in safety | security at high temperature can be provided.

本発明のリチウムイオン二次電池に係る負極に用いる負極材料は、黒鉛と、その表面を被覆する天然多糖類またはその誘導体とを有している。   The negative electrode material used for the negative electrode according to the lithium ion secondary battery of the present invention has graphite and a natural polysaccharide or a derivative thereof covering the surface thereof.

すなわち、前記負極材料では、母材となる黒鉛の表面に、天然多糖類またはその誘導体によって被覆層が形成されており、これにより、本発明の電池において、初回充放電時の不可逆容量を小さくすることができる。   That is, in the negative electrode material, a coating layer is formed on the surface of graphite as a base material with natural polysaccharides or derivatives thereof, thereby reducing the irreversible capacity at the time of initial charge / discharge in the battery of the present invention. be able to.

しかも、前記負極材料は、母材となる黒鉛に、水に対する濡れ性が、固液面接触角(θ)で0〜50°のものを使用するため、母材となる黒鉛の表面と、これを被覆する天然多糖類またはその誘導体との密着性が良好で、例えば、電池の充放電時において、黒鉛の表面に形成された天然多糖類またはその誘導体による被覆層の剥離や亀裂などが生じ難い。そのため、本発明のリチウムイオン二次電池では、充放電を繰り返しても、それに伴う新たな不可逆容量の発生が抑えられ、天然多糖類またはその誘導体による被覆層の効果が持続することから、充放電サイクル特性も良好なものとなる。   In addition, since the negative electrode material uses graphite having a wettability to water of 0 to 50 ° in terms of solid-liquid surface contact angle (θ), the surface of the graphite serving as the base material, Adhesion with natural polysaccharides or derivatives thereof covering the surface is good. For example, during charging / discharging of a battery, peeling or cracking of the coating layer due to natural polysaccharides or derivatives thereof formed on the surface of graphite is difficult to occur. . Therefore, in the lithium ion secondary battery of the present invention, even if charging / discharging is repeated, generation of a new irreversible capacity associated therewith is suppressed, and the effect of the coating layer by the natural polysaccharide or its derivative is sustained. The cycle characteristics are also good.

黒鉛における前記の濡れ性は、JIS R 3257−6の規定に準拠した静滴法により、水の接触角を測定することで求められる。具体的には、例えば、アルバック理工社製の「WET−1200」を用いて、25℃の大気雰囲気中で測定する手法が挙げられる。   The said wettability in graphite is calculated | required by measuring the contact angle of water by the sessile drop method based on prescription | regulation of JISR3257-6. Specifically, for example, there is a method of measuring in an air atmosphere at 25 ° C. using “WET-1200” manufactured by ULVAC-RIKO.

前記負極材料において、母材となる黒鉛は、2500℃以上の熱処理(黒鉛化処理)を施した炭素材料であれば特に制限はなく、例えば、鱗片状または鱗状の天然黒鉛;鱗片状、鱗状または球状の人造黒鉛;繊維状または円筒状の黒鉛化炭素;が挙げられる。また、前記黒鉛の表面を低結晶性の炭素材で被覆させた炭素材料であってもよい。これらは1種を単独で用いてもよく、2種以上を併用してもよい。   In the negative electrode material, graphite as a base material is not particularly limited as long as it is a carbon material subjected to heat treatment (graphitization treatment) at 2500 ° C. or higher. For example, scaly or scaly natural graphite; scaly, scaly or Spherical artificial graphite; fibrous or cylindrical graphitized carbon. Moreover, the carbon material which coat | covered the surface of the said graphite with the low crystalline carbon material may be sufficient. These may be used alone or in combination of two or more.

なお、前記負極材料に使用する黒鉛には、その濡れ性を前記好適値に調整するために、各種の表面処理を施しても構わない。特に酸素やフッ素を用いて処理した場合には、黒鉛表面の極性が高くなり、濡れ性が向上する効果が期待できる。具体的な黒鉛の表面処理方法としては、例えば、炭酸ガスや水蒸気雰囲気下で500〜1200℃に加熱するガス処理;硝酸などの酸性水溶液中で処理する酸化処理;各種フッ化物で処理するフッ素処理;などが挙げられる。   In addition, the graphite used for the negative electrode material may be subjected to various surface treatments in order to adjust the wettability to the preferable value. In particular, when the treatment is performed using oxygen or fluorine, the effect of improving the wettability by increasing the polarity of the graphite surface can be expected. Specific graphite surface treatment methods include, for example, gas treatment heated to 500 to 1200 ° C. in a carbon dioxide or water vapor atmosphere; oxidation treatment in an acidic aqueous solution such as nitric acid; fluorine treatment treated with various fluorides And so on.

前記負極材料において、黒鉛の被覆には、天然多糖類またはその誘導体を使用する。前記負極材料を製造するには、例えば、黒鉛を被覆するための材料を水に溶解させた溶液(スラリーなど)に黒鉛を分散させるなどして浸漬し、その後黒鉛を取り出して乾燥する方法や、前記溶液を黒鉛に吹き付け、乾燥する方法などが採用できる。このとき、黒鉛を被覆するための材料を溶解させた溶液の粘度が低いと、黒鉛表面に付着させた溶液が乾燥前に垂れるなどして、黒鉛表面を良好に被覆できない虞がある。よって、黒鉛を被覆するための材料を溶解させた溶液は、ある程度粘度が高いことが望ましいが、そのために、溶液に溶解させる材料の量を多くすると、黒鉛表面に薄い被覆層を形成できなくなり、例えば、電池の負荷特性を低下させる虞がある。しかし、天然多糖類またはその誘導体であれば、比較的少ない溶解量で粘度の高い溶液を調製できるため、黒鉛表面の被覆層を薄く形成することが容易であり、被覆層の形成による電池の負荷特性の低下を抑制できる。   In the negative electrode material, natural polysaccharides or derivatives thereof are used for coating graphite. In order to produce the negative electrode material, for example, a method of dispersing the graphite in a solution (slurry or the like) in which the material for coating the graphite is dissolved in water and immersing it, and then taking out the graphite and drying it, A method of spraying the solution onto graphite and drying it may be employed. At this time, if the viscosity of the solution in which the material for coating graphite is dissolved is low, the solution adhered to the graphite surface may drip before drying, and thus the graphite surface may not be coated well. Therefore, it is desirable that the solution in which the material for coating the graphite is dissolved has a certain degree of viscosity. However, if the amount of the material dissolved in the solution is increased, a thin coating layer cannot be formed on the graphite surface. For example, the load characteristics of the battery may be reduced. However, since natural polysaccharides or their derivatives can be used to prepare highly viscous solutions with a relatively small amount of solution, it is easy to form a thin coating layer on the graphite surface. The deterioration of characteristics can be suppressed.

天然多糖類またはその誘導体としては、例えば、キサンタンガム、ウェランガム、ジェランガム、グアーガム、カラギーナン、デキストリン、アルファー化でんぷんなどのでんぷん類などの天然多糖類;セルロース誘導体(カルボキシメチルセルロース、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロースなど)などの天然多糖類の誘導体;が好ましい。前記負極材料を製造するにあたり、黒鉛の被覆に使用する天然多糖類またはその誘導体の溶液の溶媒には、環境保護などの観点から水を使用することが好ましいが、前記例示の天然多糖類またはその誘導体は、水溶性があり、かつ少量を水に溶解するだけで溶液の粘度を比較的高くすることができる。なかでも、前記の天然多糖類は、水への増粘効果がより高く、より少量で粘度の高い溶液を調製できることから、特に好ましい。なお、天然多糖類またはその誘導体には、前記例示のものを1種単独で用いてもよく、2種以上を併用してもよい。   Natural polysaccharides or derivatives thereof include, for example, natural polysaccharides such as xanthan gum, welan gum, gellan gum, guar gum, carrageenan, dextrin, pregelatinized starch, etc .; cellulose derivatives (carboxymethylcellulose, hydroxyethylcellulose, hydroxypropylcellulose, etc.) Derivatives of natural polysaccharides such as In producing the negative electrode material, it is preferable to use water as a solvent for the solution of the natural polysaccharide or derivative thereof used for coating graphite, from the viewpoint of environmental protection, etc. The derivative is water-soluble, and the viscosity of the solution can be made relatively high only by dissolving a small amount in water. Especially, the said natural polysaccharide is especially preferable from the fact that the thickening effect to water is higher, and a highly viscous solution can be prepared with a smaller amount. In addition, as a natural polysaccharide or its derivative (s), the thing of the said illustration may be used individually by 1 type, and 2 or more types may be used together.

負極材料において、天然多糖類または誘導体の黒鉛表面における被覆厚みは、その被覆による効果をより良好に確保する観点から、1nm以上であることが好ましく、3nm以上であることがより好ましい。ただし、黒鉛表面における天然多糖類またはその誘導体の被覆厚みが大きすぎると、これを用いた電池において、天然多糖類またはその誘導体を用いたことによる負荷特性の低下抑制効果が小さくなる虞がある。よって、天然多糖類または誘導体の黒鉛表面における被覆厚みは、20nm以下であることが好ましく、10nm以下であることがより好ましい。   In the negative electrode material, the coating thickness of the natural polysaccharide or derivative on the graphite surface is preferably 1 nm or more, and more preferably 3 nm or more, from the viewpoint of better ensuring the effect of the coating. However, if the coating thickness of the natural polysaccharide or its derivative on the graphite surface is too large, the effect of suppressing the reduction in load characteristics due to the use of the natural polysaccharide or its derivative may be reduced in a battery using this. Therefore, the coating thickness of the natural polysaccharide or derivative on the graphite surface is preferably 20 nm or less, and more preferably 10 nm or less.

前記負極材料は、例えば、天然多糖類またはその誘導体を溶媒に溶解させた溶液(スラリーなど)を調製し、この溶液に母材となる黒鉛を浸漬し、その後に溶液から黒鉛を取り出して乾燥する方法や、前記溶液を黒鉛に吹き付けて乾燥するなどの方法により製造することができる。なお、天然多糖類またはその誘導体を溶解させる溶媒としては、前記の通り、水が好ましい。   The negative electrode material is prepared, for example, by preparing a solution (slurry or the like) in which a natural polysaccharide or a derivative thereof is dissolved in a solvent, immersing graphite as a base material in this solution, and then removing the graphite from the solution and drying it. It can be produced by a method or a method of spraying the solution onto graphite and drying. In addition, as above-mentioned, as a solvent which dissolves natural polysaccharide or its derivative (s), water is preferable.

天然多糖類またはその誘導体を溶媒に溶解させた溶液は、25℃における表面張力が4〜40mN/mであることが好ましい。このような溶液を使用することで、母材である黒鉛と、その表面を被覆する天然多糖類またはその誘導体との密着性が、より良好となり、天然多糖類またはその誘導体による前記の効果の持続性がより向上する。また、黒鉛表面の被覆層の厚みを、前記好適値に調整することが容易となる。なお、ここでいう「天然多糖類またはその誘導体の25℃における表面張力」は、市販の装置(例えば、協和界面科学社製「CBVP−Z」)を使用して、Wilhelmy法によって測定される値である。   The solution obtained by dissolving the natural polysaccharide or its derivative in a solvent preferably has a surface tension at 25 ° C. of 4 to 40 mN / m. By using such a solution, the adhesion between graphite as a base material and the natural polysaccharide or derivative thereof covering the surface becomes better, and the above-mentioned effect by the natural polysaccharide or derivative thereof is sustained. More improved. Moreover, it becomes easy to adjust the thickness of the coating layer on the graphite surface to the above-mentioned preferable value. The “surface tension of a natural polysaccharide or its derivative at 25 ° C.” here is a value measured by a Wilhelmy method using a commercially available device (for example, “CBVP-Z” manufactured by Kyowa Interface Science Co., Ltd.). It is.

また、前記の天然多糖類またはその誘導体を溶媒に溶解させた溶液は、25℃における粘度(振動式粘度計を用いて測定される粘度)が、5〜50mPa・sであることが好ましく、このような粘度の溶液を使用することで、黒鉛表面の被覆層の厚みを、前記好適値に調整することが容易となる。   The solution of the natural polysaccharide or derivative thereof dissolved in a solvent preferably has a viscosity at 25 ° C. (viscosity measured using a vibration viscometer) of 5 to 50 mPa · s. By using a solution having such a viscosity, it becomes easy to adjust the thickness of the coating layer on the graphite surface to the preferred value.

前記溶液の粘度は、溶解させる天然多糖類またはその誘導体の濃度を調節することで調整できるが、ポリエーテルやウレタン変性ポリエーテルなどの市販の粘度調整剤(例えばサンノプコ社製「SNシックナーシリーズ」など)を適量添加して調整してもよい。   The viscosity of the solution can be adjusted by adjusting the concentration of the natural polysaccharide or its derivative to be dissolved, but commercially available viscosity modifiers such as polyether and urethane-modified polyether (for example, “SN thickener series” manufactured by San Nopco) ) May be added to adjust.

また、天然多糖類またはその誘導体を溶媒に溶解させた溶液において、特に溶媒に水を使用する場合には、黒鉛との濡れ性を改善するなどの目的で界面活性剤などの添加剤を添加することができる。このような添加剤としては、例えば、各種アルコールやアセトンなどの有機溶剤、変性シリコーンや変性ポリエーテルなどの市販の表面調整剤(例えば、サンノプコ社製の「SNウエットシリーズ」、「SNクリーンアクトシリーズ」、「SNデフォーマーシリーズ」など)が挙げられる。前記溶液において、前記例示の添加剤は、例えば、0.01〜5質量%程度の濃度となるように添加することが好ましく、これにより、天然多糖類またはその誘導体を水に溶解させた溶液の表面張力を、前記好適値に調整することができる。   Additives such as surfactants are added for the purpose of improving the wettability with graphite in a solution in which natural polysaccharides or derivatives thereof are dissolved in a solvent, particularly when water is used as the solvent. be able to. Examples of such additives include commercially available surface conditioners such as organic solvents such as various alcohols and acetone, modified silicones and modified polyethers (for example, “SN wet series” and “SN clean act series manufactured by San Nopco). And “SN deformer series”). In the solution, the exemplified additive is preferably added so as to have a concentration of, for example, about 0.01 to 5% by mass, and thereby, a solution of a natural polysaccharide or a derivative thereof dissolved in water. The surface tension can be adjusted to the preferred value.

本発明の電池に係る負極には、例えば、前記負極材料やバインダなどを含有する負極合剤層を、集電体の片面または両面に形成したものが使用できる。なお、前記負極では、前記負極材料に係る黒鉛が負極活物質として作用する。   As the negative electrode according to the battery of the present invention, for example, a negative electrode mixture layer containing the negative electrode material, a binder or the like formed on one side or both sides of a current collector can be used. In the negative electrode, graphite as the negative electrode material acts as a negative electrode active material.

なお、負極活物質には、前記負極材料とともに他の負極活物質を併用することもできる。前記他の負極活物質としては、例えば、表面を多糖類またはその誘導体で被覆していない黒鉛や、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、リチウムを吸蔵、放出可能な炭素系材料などが挙げられる。   In addition, another negative electrode active material can also be used together with the said negative electrode material for a negative electrode active material. Examples of the other negative electrode active materials include graphite whose surface is not coated with a polysaccharide or a derivative thereof, pyrolytic carbons, cokes, glassy carbons, a fired body of an organic polymer compound, mesocarbon micro Examples thereof include carbon-based materials capable of occluding and releasing lithium, such as beads (MCMB) and carbon fibers.

ただし、前記負極材料とともに他の負極活物質を併用する場合には、前記負極材料の使用による効果を良好に確保する観点から、前記負極材料と他の負極活物質との総量中における前記負極材料の量を、70質量%以上とすることが好ましく、80質量%以上とすることがより好ましい。   However, when another negative electrode active material is used in combination with the negative electrode material, the negative electrode material in the total amount of the negative electrode material and the other negative electrode active material from the viewpoint of favorably ensuring the effect of the use of the negative electrode material Is preferably 70% by mass or more, and more preferably 80% by mass or more.

負極は、例えば、前記負極材料や、その他の負極活物質、バインダおよび必要に応じて使用される導電助剤などを含む負極合剤を溶剤に分散させたスラリー状やペースト状の負極合剤含有組成物を、集電体の片面または両面に塗布し、乾燥した後、必要に応じてプレス処理を施して負極合剤層の厚みを調整する工程を経て作製できる。なお、本発明に係る負極は、前記以外の方法により作製してもよい。   The negative electrode contains, for example, a negative electrode mixture in the form of a slurry or paste in which a negative electrode mixture containing the negative electrode material, other negative electrode active materials, a binder, and a conductive auxiliary agent used as necessary is dispersed in a solvent. After the composition is applied to one or both sides of the current collector and dried, the composition can be produced through a step of adjusting the thickness of the negative electrode mixture layer by applying a press treatment as necessary. In addition, you may produce the negative electrode which concerns on this invention by methods other than the above.

負極のバインダとしては、例えば、ポリフッ化ビニリデン(PVDF)などのフッ素樹脂や、セルロースエーテル化合物、ゴム系バインダなどが挙げられるが、これらに限定されるものではない。セルロースエーテル化合物の具体例としては、例えば、カルボキシメチルセルロース(CMC)、カルボキシエチルセルロース、ヒドロキシエチルセルロース、それらのリチウム塩、ナトリウム塩、カリウム塩などのアルカリ金属塩、アンモニウム塩などが挙げられる。ゴム系バインダの具体例としては、例えば、スチレン・ブタジエン共重合体ゴム(SBR)などのスチレン・共役ジエン共重合体;ニトリル・ブタジエン共重合体ゴム(NBR)などのニトリル・共役ジエン共重合体ゴム;ポリオルガノシロキサンなどのシリコーンゴム;アクリル酸アルキルエステルの重合体;アクリル酸アルキルエステルと、エチレン性不飽和カルボン酸および/またはその他のエチレン性不飽和単量体との共重合により得られるアクリルゴム;ビニリデンフルオライド共重合体ゴムなどのフッ素ゴムなどが挙げられる。   Examples of the negative electrode binder include, but are not limited to, a fluororesin such as polyvinylidene fluoride (PVDF), a cellulose ether compound, and a rubber binder. Specific examples of the cellulose ether compound include carboxymethyl cellulose (CMC), carboxyethyl cellulose, hydroxyethyl cellulose, alkali metal salts such as lithium salts, sodium salts, and potassium salts, ammonium salts, and the like. Specific examples of rubber binders include, for example, styrene / conjugated diene copolymers such as styrene / butadiene copolymer rubber (SBR); nitrile / conjugated diene copolymers such as nitrile / butadiene copolymer rubber (NBR). Rubber; Silicone rubber such as polyorganosiloxane; Polymer of alkyl acrylate ester; Acrylic obtained by copolymerization of alkyl acrylate ester with ethylenically unsaturated carboxylic acid and / or other ethylenically unsaturated monomers Rubber; Fluororubber such as vinylidene fluoride copolymer rubber.

また、負極の導電助剤としては、アセチレンブラックなどの各種カーボンブラックやカーボンナノチューブなどが挙げられる。   Examples of the conductive assistant for the negative electrode include various carbon blacks such as acetylene black and carbon nanotubes.

負極合剤層の厚みは、例えば、集電体の片面あたり10〜100μmであることが好ましい。また、負極合剤層の組成としては、負極活物質の量(前記負極材料のみを使用する場合には、その量。他の負極活物質を併用する場合には、前記負極材料と他の負極活物質との総量。)が60〜95質量%であることが好ましく、バインダの量が1〜15質量%であることが好ましい。また、導電助剤を使用する場合には、負極合剤層における導電助剤の量が0.5〜5質量%であることが好ましい。   The thickness of the negative electrode mixture layer is preferably 10 to 100 μm per one surface of the current collector, for example. In addition, the composition of the negative electrode mixture layer is the amount of the negative electrode active material (in the case where only the negative electrode material is used, the amount thereof. When other negative electrode active materials are used in combination, the negative electrode material and the other negative electrode The total amount with the active material) is preferably 60 to 95% by mass, and the amount of the binder is preferably 1 to 15% by mass. Moreover, when using a conductive support agent, it is preferable that the quantity of the conductive support agent in a negative mix layer is 0.5-5 mass%.

負極の集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、下限は5μmであることが望ましい。   As the current collector for the negative electrode, a foil made of copper or nickel, a punching metal, a net, an expanded metal, or the like can be used, but a copper foil is usually used. In the negative electrode current collector, when the thickness of the entire negative electrode is reduced in order to obtain a battery having a high energy density, the upper limit of the thickness is preferably 30 μm, and the lower limit is preferably 5 μm.

負極側のリード部は、通常、負極作製時に、集電体の一部に負極合剤層を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、リード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体に銅製の箔などを後から接続することによって設けてもよい。   The lead portion on the negative electrode side is usually provided by leaving the exposed portion of the current collector without forming the negative electrode mixture layer on a part of the current collector and forming the lead portion at the time of preparing the negative electrode. However, the lead portion is not necessarily integrated with the current collector from the beginning, and may be provided by connecting a copper foil or the like to the current collector later.

次に、本発明のリチウムイオン二次電池に使用するセパレータについて説明する。一般に、リチウムイオン二次電池に使用されているポリオレフィン製の単一の多孔質フィルムは、ある程度の耐熱性を持たせながら、135℃付近でシャットダウンを生じるように、シャットダウン温度付近に融点を持つ樹脂が用いられている。しかし、前記フィルムの持つ大きなひずみのため、使用条件によっては、シャットダウンにまで至らないものの、電池の発熱によりフィルムの収縮や目詰まりを生じやすくなり、短絡や特性低下を招く場合がある。また、耐熱性を考慮して樹脂の融点を高くすると、シャットダウンを生じにくくなり、安全性の点で問題を生じる虞がある。   Next, the separator used for the lithium ion secondary battery of this invention is demonstrated. In general, a single porous film made of polyolefin used in lithium ion secondary batteries is a resin having a melting point near the shutdown temperature so that shutdown occurs at around 135 ° C. while maintaining a certain degree of heat resistance. Is used. However, due to the large strain of the film, depending on the use conditions, the film does not reach shutdown, but the battery heat generation tends to cause shrinkage or clogging of the film, resulting in a short circuit or deterioration of characteristics. Further, if the melting point of the resin is increased in consideration of heat resistance, it is difficult to cause a shutdown, which may cause a problem in terms of safety.

一方、本発明でセパレータとして用いる積層体では、シャットダウンを生じる融点が120℃以上140℃以下の樹脂を含有する多孔質層(I)のほかに、耐熱温度が150℃以上のフィラーを主体として含む多孔質層(II)を有しているので、例えば電動工具などのように電池の内部温度が上昇しやすい用途に用いられる場合であっても、セパレータの熱収縮が抑制され、目詰まりを生じにくく、セパレータの特性が安定して維持される。このため、前述した負極材料や、後述する正極材料(正極活物質)の持つ特性を効果的に発揮させることができ、大電流での充放電による特性劣化が少なく、比較的高温の環境下においても信頼性の高い電池とすることができる。なお、前記セパレータは、多孔質層(I)と多孔質層(II)とを有する積層体であれば、よく、その積層構成については特に制限はないが、例えば、多孔質層(I)と多孔質層(II)との二層からなる積層体や、多孔質層(I)の両面に多孔質層(II)を配置した三層以上の積層体などが前記の目的に適しており、より好適に用いられる。   On the other hand, the laminate used as a separator in the present invention mainly contains a filler having a heat resistant temperature of 150 ° C. or higher in addition to the porous layer (I) containing a resin having a melting point of 120 ° C. or higher and 140 ° C. or lower. Since it has a porous layer (II), even when it is used in applications where the internal temperature of the battery is likely to rise, such as a power tool, the thermal contraction of the separator is suppressed and clogging occurs. It is difficult to maintain the characteristics of the separator stably. For this reason, the characteristic which the negative electrode material mentioned above and the positive electrode material (positive electrode active material) mentioned later have can be exhibited effectively, there is little characteristic deterioration by charging / discharging by a large current, and it is in a comparatively high temperature environment. Can be a highly reliable battery. The separator is not particularly limited as long as it is a laminate having a porous layer (I) and a porous layer (II). A laminate composed of two layers with the porous layer (II), a laminate of three or more layers in which the porous layer (II) is disposed on both sides of the porous layer (I), and the like are suitable for the above purpose. More preferably used.

本明細書でいうセパレータの各層に含有される樹脂の融点は、日本工業規格(JIS)K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度を意味している。   The melting point of the resin contained in each layer of the separator referred to in this specification means the melting temperature measured using a differential scanning calorimeter (DSC) in accordance with the provisions of Japanese Industrial Standard (JIS) K7121. Yes.

多孔質層(I)を構成する樹脂は、融点が120〜140℃の樹脂であるが、具体的には、例えば、ポリエチレン(PE)、ポリブテン、エチレン−プロピレン共重合体などのポリオレフィンなどが挙げられ、密度が0.94g/cm以上0.97g/cm以下の高密度ポリエチレンが特に好ましい。また、多孔質層(I)は、前記例示の樹脂で形成された多孔質フィルム(リチウムイオン二次電池のセパレータに汎用されている所謂微多孔膜)が好ましく使用される。 The resin constituting the porous layer (I) is a resin having a melting point of 120 to 140 ° C., and specific examples include polyolefins such as polyethylene (PE), polybutene, and ethylene-propylene copolymer. High density polyethylene having a density of 0.94 g / cm 3 or more and 0.97 g / cm 3 or less is particularly preferable. For the porous layer (I), a porous film (a so-called microporous film widely used for a separator of a lithium ion secondary battery) formed of the above exemplified resin is preferably used.

セパレータの耐熱性を高めるための多孔質層(II)はフィラーを主体として含むものであるが、かかるフィラーは、耐熱温度が150℃以上、すなわち少なくとも150℃において軟化などの変形が見られない耐熱性を有する無機または樹脂粒子であり、電気絶縁性を有しており、電池の作動電圧範囲において酸化還元されにくい電気化学的に安定な粒子であれば無機粒子でも有機粒子でもよいが、分散などの点から微粒子であることが好ましく、安定性(特に耐酸化性)などの点から無機微粒子がより好ましく用いられる。   The porous layer (II) for enhancing the heat resistance of the separator contains a filler as a main component, but such a filler has a heat resistance of 150 ° C. or higher, that is, heat resistance that does not cause deformation such as softening at least at 150 ° C. Inorganic or resin particles that have electrical insulation properties and are electrochemically stable particles that are resistant to oxidation / reduction in the battery operating voltage range may be inorganic particles or organic particles. From the viewpoints of stability (particularly oxidation resistance), inorganic fine particles are more preferably used.

無機微粒子としては、酸化鉄、SiO、Al、TiO、BaTiO、ZrOなどの無機酸化物;窒化アルミニウム、窒化ケイ素などの無機窒化物;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結合性化合物;シリコーン、ダイヤモンドなどの共有結合性化合物;モンモリロナイトなどの粘土;などが挙げられる。ここで、前記無機酸化物は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来物質またはこれらの人造物などであってもよい。前記無機粒子の中でも、Al、SiOおよびベーマイトが特に好ましく用いられる。 Examples of the inorganic fine particles include inorganic oxides such as iron oxide, SiO 2 , Al 2 O 3 , TiO 2 , BaTiO 3 , and ZrO 2 ; inorganic nitrides such as aluminum nitride and silicon nitride; calcium fluoride, barium fluoride, and sulfuric acid Examples thereof include poorly soluble ion binding compounds such as barium; covalent bonding compounds such as silicone and diamond; clays such as montmorillonite. Here, the inorganic oxide may be boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, mica, or other mineral resource-derived substances or artificial products thereof. Among the inorganic particles, Al 2 O 3 , SiO 2 and boehmite are particularly preferably used.

また、有機粒子(有機粉末)としては、架橋ポリメタクリル酸メチル、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン−ジビニルベンゼン共重合体架橋物、ポリイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン−ホルムアルデヒド縮合物などの各種架橋高分子粒子や、ポリスルフォン、ポリアクリロニトリル、ポリアラミド、ポリアセタール、熱可塑性ポリイミドなどの耐熱性高分子粒子などが例示できる。また、これらの有機粒子を構成する有機樹脂(高分子)は、前記例示の材料の混合物、変性体、誘導体、共重合体(ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体)、架橋体(前記の耐熱性高分子の場合)であってもよい。   Organic particles (organic powder) include crosslinked polymethyl methacrylate, crosslinked polystyrene, crosslinked polydivinylbenzene, crosslinked styrene-divinylbenzene copolymer, polyimide, melamine resin, phenol resin, benzoguanamine-formaldehyde condensate, etc. Examples thereof include various crosslinked polymer particles and heat-resistant polymer particles such as polysulfone, polyacrylonitrile, polyaramid, polyacetal, and thermoplastic polyimide. The organic resin (polymer) constituting these organic particles is a mixture, modified body, derivative, or copolymer (random copolymer, alternating copolymer, block copolymer, graft copolymer) of the materials exemplified above. Polymer) or a crosslinked product (in the case of the above-mentioned heat-resistant polymer).

耐熱温度が150℃以上のフィラーの形状としては、例えば、球状に近い形状であってもよく、板状であってもよいが、短絡防止の点からは、板状粒子であることが好ましい。板状粒子の代表的なものとしては、板状のAlや板状のベーマイトなどが挙げられる。また、一次粒子が凝集した二次粒子構造のものを用いることもできる。二次粒子構造の粒子を用いることで、粒子同士の密着をある程度防止することができ、粒子同士の空隙を適度に保つことが可能である。これにより、イオンの透過する経路を確保でき、高いイオン透過性を維持し、大電流での充放電により適した構成とすることができる。 The shape of the filler having a heat resistant temperature of 150 ° C. or higher may be, for example, a nearly spherical shape or a plate shape, but is preferably a plate-like particle from the viewpoint of preventing a short circuit. Typical examples of the plate-like particles include plate-like Al 2 O 3 and plate-like boehmite. Moreover, the thing of the secondary particle structure which the primary particle aggregated can also be used. By using particles having a secondary particle structure, adhesion between particles can be prevented to some extent, and voids between particles can be appropriately maintained. Thereby, the path | route which ion permeate | transmits can be ensured, high ion permeability can be maintained, and it can be set as the structure more suitable for charging / discharging by a large current.

耐熱温度が150℃以上のフィラーの粒径は、平均粒径で、好ましくは0.01μm以上、より好ましくは0.1μm以上であって、好ましくは15μm以下、より好ましくは5μm以下である。なお、本明細書でいうフィラーの平均粒径は、例えば、レーザー散乱粒度分布計(例えば、堀場製作所社製「LA−920」)を用い、フィラーを溶解しない媒体(例えば水)に、フィラーを分散させて測定される体積基準の積算分率50%における粒子直径(D50%)である。 The particle size of the filler having a heat resistant temperature of 150 ° C. or higher is an average particle size, and is preferably 0.01 μm or more, more preferably 0.1 μm or more, preferably 15 μm or less, more preferably 5 μm or less. In addition, the average particle diameter of the filler as used in this specification is, for example, using a laser scattering particle size distribution meter (for example, “LA-920” manufactured by Horiba, Ltd.), and filling the filler into a medium that does not dissolve the filler (for example, water). It is a particle diameter (D 50% ) at a volume-based integrated fraction of 50% measured by dispersing.

多孔質層(II)は、耐熱温度が150℃以上のフィラーを、バインダなどによって相互に結着することにより形成できる。多孔質層(II)における耐熱温度が150℃以上のフィラーの割合は、フィラーが主体として含まれるように、多孔質層(II)の構成成分の全体積中(空孔部分を除く全体積中)、50体積%以上となるようにすればよい。また、バインダなどによる結着性を良好にするために、多孔質層(II)における耐熱温度が150℃以上のフィラーの割合は、多孔質層(II)の構成成分の全体積中、99体積%以下とすることが好ましい。   The porous layer (II) can be formed by binding fillers having a heat resistant temperature of 150 ° C. or higher with a binder or the like. The proportion of filler with a heat resistant temperature of 150 ° C or higher in the porous layer (II) is in the total volume of the constituent components of the porous layer (II) so that the filler is mainly contained (in the total volume excluding the pores) ), 50 volume% or more. Further, in order to improve the binding property by a binder or the like, the ratio of the filler having a heat resistant temperature of 150 ° C. or higher in the porous layer (II) is 99 volume in the total volume of the constituent components of the porous layer (II). % Or less is preferable.

多孔質層(II)に使用し得るバインダとしては、エチレン−酢酸ビニル共重合体、エチレン−アクリル酸共重合体、フッ素系ゴム、スチレン−ブタジエンゴムなどの柔軟性の高い樹脂のほか、カルボキシメチルセルロース、ヒドロキシエチルセルロース、ポリビニルアルコール、ポリビニルブチラール、ポリビニルピロリドン、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などが用いられる。特に、150℃以上の温度においても優れた結着性を維持し、多孔質層(II)の形状を保つことのできる耐熱性のバインダが好ましく用いられる。   Binders that can be used for the porous layer (II) include ethylene-vinyl acetate copolymer, ethylene-acrylic acid copolymer, fluorine-based rubber, styrene-butadiene rubber and other highly flexible resins, as well as carboxymethyl cellulose. Hydroxyethyl cellulose, polyvinyl alcohol, polyvinyl butyral, polyvinyl pyrrolidone, cross-linked acrylic resin, polyurethane, epoxy resin and the like are used. In particular, a heat-resistant binder capable of maintaining excellent binding properties even at a temperature of 150 ° C. or higher and maintaining the shape of the porous layer (II) is preferably used.

多孔質層(II)は、例えば、耐熱温度が150℃以上のフィラーおよびバインダなどを、溶媒に分散させて形成したスラリーを、多孔質層(I)の表面に塗布し、乾燥するなどの方法によって形成することができる。   The porous layer (II) is, for example, a method in which a slurry formed by dispersing a filler, a binder or the like having a heat resistant temperature of 150 ° C. or higher in a solvent is applied to the surface of the porous layer (I) and dried. Can be formed.

本発明の電池に係るセパレータにおいて、多孔質層(II)の厚み[セパレータが多孔質層(II)を複数有する場合には、それらの合計厚み]は、セパレータの熱収縮抑制の観点から、1μm以上であることが好ましく、3μm以上であることがより好ましく、また、セパレータ全体の厚みの増大を抑える観点から、15μm以下であることが好ましく、10μm以下であることがより好ましい。   In the separator according to the battery of the present invention, the thickness of the porous layer (II) [when the separator has a plurality of porous layers (II), the total thickness thereof] is 1 μm from the viewpoint of suppressing thermal shrinkage of the separator. Preferably, the thickness is 3 μm or more, and from the viewpoint of suppressing an increase in the thickness of the entire separator, it is preferably 15 μm or less, and more preferably 10 μm or less.

更に、本発明の電池に係るセパレータにおいて、多孔質層(I)の厚み[セパレータが多孔質層(I)を複数有する場合には、それらの合計厚み]は、シャットダウン特性をより良好に確保する観点から、3μm以上であることが好ましく、5μm以上であることがより好ましく、また、セパレータ全体の厚みの増大を抑える観点から、20μm以下であることが好ましく、15μm以下であることがより好ましい。   Furthermore, in the separator according to the battery of the present invention, the thickness of the porous layer (I) [when the separator has a plurality of porous layers (I), the total thickness thereof] ensures better shutdown characteristics. From the viewpoint, it is preferably 3 μm or more, more preferably 5 μm or more, and from the viewpoint of suppressing an increase in the thickness of the entire separator, it is preferably 20 μm or less, and more preferably 15 μm or less.

本発明のリチウムイオン二次電池は、前記の負極および前記のセパレータを備えていればよく、その他の構成および構造については特に制限はなく、従来から知られているリチウムイオン二次電池で採用されている各種構成および構造を適用することができる。   The lithium ion secondary battery of the present invention only needs to include the above-described negative electrode and the above-described separator, and there is no particular limitation on the other configuration and structure, and it is adopted in conventionally known lithium-ion secondary batteries. Various configurations and structures can be applied.

本発明の電池に係る正極は、従来から知られているリチウムイオン二次電池に用いられている正極、すなわち、Liイオンを吸蔵放出可能な活物質を含有する正極であれば特に制限はない。例えば、活物質として、Li1+xMO(−0.1<x<0.1、M:Co、Ni、Mn、Al、Mgなど。なお、元素MはLi以外の他の金属元素で10原子%まで置換されていてもよい。)で表される層状構造のリチウム含有遷移金属酸化物、LiMnやその元素の一部を他元素で置換したスピネル構造のリチウムマンガン酸化物、LiMPO(M:Co、Ni、Mn、Feなど)で表されるオリビン型化合物などを用いることが可能である。前記層状構造のリチウム含有遷移金属酸化物の具体例としては、LiCoOやLiNi1−xCox−yAl(0.1≦x≦0.3、0.01≦y≦0.2)などのほか、少なくともCo、NiおよびMnを含む酸化物(LiMn1/3Ni1/3Co1/3、LiMn5/12Ni5/12Co1/6、LiNi3/5Mn1/5Co1/5など)などを例示することができる。特に、Niを40%以上含む活物質の場合には、電池が高容量となるので好ましく、また、O(酸素原子)はフッ素、イオウ原子で1原子%まで置換されていてもよい。 The positive electrode according to the battery of the present invention is not particularly limited as long as it is a positive electrode used in a conventionally known lithium ion secondary battery, that is, a positive electrode containing an active material capable of occluding and releasing Li ions. For example, as the active material, Li 1 + x MO 2 (−0.1 <x <0.1, M: Co, Ni, Mn, Al, Mg, etc. Note that the element M is a metal element other than Li and is 10 atoms. A lithium-containing transition metal oxide having a layered structure represented by the following formula: LiMn 2 O 4 and a lithium manganese oxide having a spinel structure in which a part of the element is substituted with another element, LiMPO 4 An olivine type compound represented by (M: Co, Ni, Mn, Fe, etc.) can be used. Specific examples of the lithium-containing transition metal oxide having a layered structure include LiCoO 2 and LiNi 1-x Co xy Al y O 2 (0.1 ≦ x ≦ 0.3, 0.01 ≦ y ≦ 0. 2) and other oxides containing at least Co, Ni and Mn (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5/12 Ni 5/12 Co 1/6 O 2 , LiNi 3 / 5 Mn 1/5 Co 1/5 O 2 etc.). In particular, an active material containing 40% or more of Ni is preferable because the battery has a high capacity, and O (oxygen atom) may be substituted with 1 atom% of fluorine or sulfur atom.

特に、下記一般式(1)で表されるリチウムニッケル酸化物を正極活物質に使用することが好ましい。
LiNi(1−x) (1)
なお、前記一般式(1)中、MはAl、Mn、Co、Cr、Mg、Fe、ZrおよびTiよりなる群から選択される少なくとも1種の金属元素である。また、xは、前記金属元素Mの化学量論数であり、0≦x<1で選択される。すなわち、前記リチウムニッケル酸化物は、xが0のときはニッケル酸リチウム(LiNiO)であり、xが0を超える場合には、Niの一部を金属元素Mで置換した複合酸化物である。
In particular, it is preferable to use lithium nickel oxide represented by the following general formula (1) as the positive electrode active material.
LiNi (1-x) M x O 2 (1)
In the general formula (1), M is at least one metal element selected from the group consisting of Al, Mn, Co, Cr, Mg, Fe, Zr and Ti. X is the stoichiometric number of the metal element M, and is selected as 0 ≦ x <1. That is, the lithium nickel oxide is lithium nickelate (LiNiO 2 ) when x is 0, and is a composite oxide in which a part of Ni is substituted with the metal element M when x exceeds 0. .

なお、前記一般式(1)で表されるリチウムニッケル酸化物のうち、LiNiOは、高容量である一方で、初期の充電特性に難があり、利用率が低くなるという欠点を抱えており、また、熱的安定性にも難があるが、Niの一部を前記金属元素Mで置換することで、熱的安定性を高め得るなど、容量を高く維持しつつ、LiNiOの抱える欠点を解消することができる。 In addition, among the lithium nickel oxides represented by the general formula (1), LiNiO 2 has a high capacity, but has a drawback that initial charging characteristics are difficult and the utilization rate is low. In addition, although the thermal stability is also difficult, the disadvantage of LiNiO 2 is maintained while maintaining a high capacity, such as by replacing a part of Ni with the metal element M to increase the thermal stability. Can be eliminated.

このようなリチウムニッケル酸化物の具体例としては、例えば、金属元素MがCoであり、xが0.2であるニッケル−コバルト酸リチウム(LiNi0.8Co0.2)などが挙げられる。また、金属元素Mは2種以上であってもよく、例えば、LiNi0.8Co0.1Ti0.1などが例示できる。 Specific examples of such lithium nickel oxide include nickel-lithium cobaltate (LiNi 0.8 Co 0.2 O 2 ) in which the metal element M is Co and x is 0.2. It is done. In addition, the metal element M may be two or more, and examples thereof include LiNi 0.8 Co 0.1 Ti 0.1 O 2 .

前記一般式(1)で表されるリチウムニッケル酸化物を正極活物質に使用する場合、全正極活物質中における前記一般式(1)で表されるリチウムニッケル酸化物の含有量は、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、100質量%であることが更に好ましい。ここでいう正極活物質は、正極材料としてLiイオンの可逆的な挿入および脱離反応に直接寄与する部材のことであり、後述するバインダや導電助剤などは含まれない。正極に使用する全正極活物質中における前記一般式(1)で表されるリチウムニッケル酸化物の含有量を前記のようにすることで、電池の高容量化がより良好に達成できる。   When the lithium nickel oxide represented by the general formula (1) is used as the positive electrode active material, the content of the lithium nickel oxide represented by the general formula (1) in the total positive electrode active material is 70 masses. % Or more, preferably 80% by mass or more, and more preferably 100% by mass. The positive electrode active material here is a member that directly contributes to the reversible insertion and desorption reaction of Li ions as the positive electrode material, and does not include a binder and a conductive auxiliary agent described later. By making the content of the lithium nickel oxide represented by the general formula (1) in all the positive electrode active materials used for the positive electrode as described above, it is possible to achieve better battery capacity.

なお、本発明の電池で使用する正極活物質の大きさは、耐熱温度が150℃以上のフィラーと同じ方法で測定される平均粒径(D50%)で、0.1μm以上であることが好ましく、1μm以上であることがより好ましく、また、30μm以下であることが好ましく、15μm以下であることがより好ましい。 In addition, the size of the positive electrode active material used in the battery of the present invention is an average particle diameter (D 50% ) measured by the same method as a filler having a heat resistant temperature of 150 ° C. or higher, and is 0.1 μm or more. Preferably, it is 1 μm or more, more preferably 30 μm or less, and more preferably 15 μm or less.

正極は、前述した負極の作製方法と同様に、前記の正極活物質、バインダおよび導電助剤を含む正極合剤を溶剤に分散させたスラリー状やペースト状の正極合剤含有組成物を、集電体の片面または両面に塗布し、乾燥した後、必要に応じてプレス処理を施して正極合剤層の厚みを調整する工程を経て作製できる。なお、本発明に係る正極は、前記以外の方法により作製してもよい。   In the same way as the above-described method for preparing a negative electrode, a positive electrode is prepared by collecting a slurry-like or paste-like positive electrode mixture-containing composition in which a positive electrode mixture containing the positive electrode active material, a binder, and a conductive additive is dispersed in a solvent. After applying to one side or both sides of the electric body and drying, it can be produced through a step of adjusting the thickness of the positive electrode mixture layer by performing a press treatment as necessary. In addition, you may produce the positive electrode which concerns on this invention by methods other than the above.

正極のバインダには、負極用のバインダやセパレータ用のバインダとして先に例示した各種材料を用いることができる。なかでも、PVDFは安価で電気化学的にも安定であり、また、N−メチル−2−ピロリドン(NMP)などのように、正極合剤含有組成物用の溶媒として好適な有機溶剤に可溶であり、均一な正極合剤含有組成物の調製を容易にすることから、好ましく使用される。   As the positive electrode binder, various materials exemplified above as a negative electrode binder or a separator binder can be used. Among them, PVDF is inexpensive and electrochemically stable, and is soluble in an organic solvent suitable as a solvent for a positive electrode mixture-containing composition such as N-methyl-2-pyrrolidone (NMP). It is preferably used because it facilitates the preparation of a uniform positive electrode mixture-containing composition.

なお、PVDFはアルカリの下では脱フッ素化をしやすく、例えば正極合剤含有組成物の溶媒に好適なNMPに溶解させると、NMP中の微量のアルカリ成分と反応してオレフィン化する傾向がある。更に、正極活物質として使用される前記一般式(1)で表されるリチウムニッケル酸化物などのリチウム含有複合酸化物の一部は、一般に強アルカリ性を示すものであり、これをPVDFのNMP溶液に混ぜると、PVDFの脱フッ素化が更に進行して、正極合剤含有組成物がゲル化する虞がある。   Note that PVDF is easily defluorinated under alkali. For example, when dissolved in NMP suitable for the solvent of the positive electrode mixture-containing composition, PVDF tends to react with a small amount of alkali component in NMP and olefinate. . Furthermore, some of the lithium-containing composite oxides such as lithium nickel oxide represented by the general formula (1) used as the positive electrode active material generally exhibit strong alkalinity, and this is an NMP solution of PVDF. When mixed, the PVDF defluorination further proceeds and the positive electrode mixture-containing composition may be gelled.

よって、前記一般式(1)で表されるリチウムニッケル酸化物などのリチウム含有複合酸化物を正極活物質とし、PVDFを正極用のバインダとして用いる場合には、例えば、あらかじめ蒸留精製などによりアルカリ成分を除去したNMPを溶媒として正極合剤含有組成物を調製することが好ましく、精製後のNMPを10質量%の水溶液とした場合に、そのpHが5〜7であることが特に好ましい。   Therefore, when a lithium-containing composite oxide such as lithium nickel oxide represented by the general formula (1) is used as a positive electrode active material and PVDF is used as a binder for a positive electrode, for example, an alkali component is previously obtained by distillation purification or the like. It is preferable to prepare a positive electrode mixture-containing composition using NMP from which NMP is removed as a solvent, and when the purified NMP is a 10% by mass aqueous solution, the pH is particularly preferably 5 to 7.

正極に係る導電助剤としては、前記負極の場合と同様に、天然または人造の黒鉛や、カーボンブラック、炭素繊維、カーボンナノチューブなどの炭素材料が好適に用いられる。   As the conductive aid for the positive electrode, as in the case of the negative electrode, natural or artificial graphite, carbon materials such as carbon black, carbon fiber, and carbon nanotube are preferably used.

正極合剤層の厚みは、例えば、集電体の片面あたり10〜100μmであることが好ましい。また、正極合剤層の組成としては、正極活物質の量が60〜95質量%であることが好ましく、バインダの量が1〜15質量%であることが好ましく、導電助剤の量が3〜20質量%であることが好ましい。   The thickness of the positive electrode mixture layer is preferably, for example, 10 to 100 μm per one side of the current collector. Moreover, as a composition of a positive mix layer, it is preferable that the quantity of a positive electrode active material is 60-95 mass%, it is preferable that the quantity of a binder is 1-15 mass%, and the quantity of a conductive support agent is 3. It is preferable that it is -20 mass%.

正極の集電体としては、アルミニウムなどの金属の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、厚みが10〜30μmのアルミニウム箔が好適に用いられる。   As the current collector of the positive electrode, a metal foil such as aluminum, a punching metal, a net, an expanded metal, or the like can be used. Usually, an aluminum foil having a thickness of 10 to 30 μm is preferably used.

正極側のリード部は、通常、正極作製時に、集電体の一部に正極合剤層を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、リード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体にアルミニウム製の箔などを後から接続することによって設けてもよい。   The lead portion on the positive electrode side is normally provided by leaving the exposed portion of the current collector without forming the positive electrode mixture layer on a part of the current collector and forming the lead portion at the time of producing the positive electrode. However, the lead portion is not necessarily integrated with the current collector from the beginning, and may be provided by connecting an aluminum foil or the like to the current collector later.

前記の負極および正極は、前記セパレータを介して積層した積層電極体や、更にこれを巻回した巻回電極体の形態で用いることができる。   The negative electrode and the positive electrode can be used in the form of a laminated electrode body laminated via the separator or a wound electrode body obtained by winding the laminated electrode body.

本発明の電池に係る非水電解液には、リチウム塩を有機溶媒に溶解した溶液が用いられる。リチウム塩としては、溶媒中で解離してLiイオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に制限はない。例えば、LiClO、LiPF、LiBF、LiAsF 、LiSbF などの無機リチウム塩;LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO[ここでRfはフルオロアルキル基]などの有機リチウム塩;などを用いることができる。 As the nonaqueous electrolytic solution according to the battery of the present invention, a solution in which a lithium salt is dissolved in an organic solvent is used. The lithium salt is not particularly limited as long as it dissociates in a solvent to form Li + ions and does not cause a side reaction such as decomposition in a voltage range used as a battery. For example, inorganic lithium salts such as LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 ; LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ≧ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group]; it can.

前記リチウム塩の非水電解液中の濃度としては、0.5〜1.5mol/lとすることが好ましく、0.9〜1.25mol/lとすることがより好ましい。   The concentration of the lithium salt in the non-aqueous electrolyte is preferably 0.5 to 1.5 mol / l, and more preferably 0.9 to 1.25 mol / l.

非水電解液に用いる有機溶媒としては、前記のリチウム塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル;γ−ブチロラクトンといった環状エステル;ジメトキシエタン、ジエチルエーテル、1,3−ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2−メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルといったニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類;などが挙げられ、これらを1種単独で用いてもよいし、2種以上を併用しても構わない。   The organic solvent used for the non-aqueous electrolyte is not particularly limited as long as it dissolves the lithium salt and does not cause a side reaction such as decomposition in a voltage range used as a battery. For example, cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate and vinylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate; chain esters such as methyl propionate; Cyclic esters such as butyrolactone; chain ethers such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme; cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran; acetonitrile, propionitrile, methoxypro Nitriles such as pionitrile; sulfites such as ethylene glycol sulfite; and the like. May be used in, it may be used in combination of two or more thereof.

なお、より良好な特性の電池とするためには、前記環状カーボネートと鎖状カーボネートの混合溶媒を使用することが好ましく、これにより、高いイオン導電率が得られるなど、各溶媒の持つ特長を良好に引き出すことができる。   In addition, in order to obtain a battery with better characteristics, it is preferable to use a mixed solvent of the above-mentioned cyclic carbonate and chain carbonate, and this provides good characteristics of each solvent such as high ionic conductivity. Can be pulled out.

負極活物質として黒鉛を用いる場合は、PCとの反応性の問題があり、環状カーボネートとしては、通常、ECが使用されることが多い。しかし、本発明の電池では、負極活物質として使用する黒鉛は、その表面を天然多糖類またはその誘導体で被覆しているため、耐PC性が良好であることから、PCを溶媒に含む非水電解液を使用しても、それによる問題の発生を抑えることができる。例えば、非水電解液溶媒において、常温で固体であるECの少なくとも一部をPCで代替することにより、非水電解液の低粘度化が可能となり、より高いイオン伝導率を示す非水電解液とすることができ、これを用いることで、負荷特性により優れたリチウムイオン二次電池とすることができる。また、非水電解液を電池の外装体内に注液する際のノズルの目詰まりを抑制するなど、電池製造工程上のメリットもある。   When graphite is used as the negative electrode active material, there is a problem of reactivity with PC, and EC is often used as the cyclic carbonate. However, in the battery of the present invention, the graphite used as the negative electrode active material has a good PC resistance because its surface is coated with a natural polysaccharide or a derivative thereof. Even if an electrolytic solution is used, the occurrence of problems due to this can be suppressed. For example, in a non-aqueous electrolyte solvent, by replacing at least a part of EC that is solid at room temperature with PC, the non-aqueous electrolyte can be reduced in viscosity and non-aqueous electrolyte exhibiting higher ionic conductivity. By using this, a lithium ion secondary battery having better load characteristics can be obtained. In addition, there is a merit in the battery manufacturing process, such as suppressing clogging of the nozzle when the nonaqueous electrolyte is injected into the battery outer body.

また、これらの非水電解液に安全性や充放電サイクル性、高温貯蔵性といった特性を向上させる目的で、ビニレンカーボネート類、1,3−プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t−ブチルベンゼン、無水酸、硫黄化エステル、ビニルエチレンカーボネートおよびこれらの誘導体などを添加剤として適宜加えることもできる。添加量は使用する前記添加剤や使用目的などでそれぞれ異なり、例えば0.1〜5質量%の範囲で選択される。これらの添加剤は1種を単独で用いてもよく、2種以上を併用しても構わない。   In addition, vinylene carbonates, 1,3-propane sultone, diphenyl disulfide, cyclohexylbenzene, biphenyl, and fluorobenzene are used for the purpose of improving safety, charge / discharge cycleability, and high-temperature storage properties of these non-aqueous electrolytes. , T-butylbenzene, acid anhydride, sulfurated ester, vinyl ethylene carbonate, and derivatives thereof can also be appropriately added as additives. The addition amount varies depending on the additive used and the purpose of use, and is selected in the range of, for example, 0.1 to 5% by mass. These additives may be used individually by 1 type, and may use 2 or more types together.

また、前記の有機溶媒の代わりに、エチル−メチルイミダゾリウムトリフルオロメチルスルホニウムイミド、へプチル−トリメチルアンモニウムトリフルオロメチルスルホニウムイミド、ピリジニウムトリフルオロメチルスルホニウムイミド、グアジニウムトリフルオロメチルスルホニウムイミドといった常温溶融塩を用いることもできる。   Also, instead of the organic solvent, melting at room temperature such as ethyl-methylimidazolium trifluoromethylsulfonium imide, heptyl-trimethylammonium trifluoromethylsulfonium imide, pyridinium trifluoromethylsulfonium imide, guanidinium trifluoromethylsulfonium imide A salt can also be used.

更に、前記の非水電解液を含有してゲル化するような高分子材料を添加して、有機電解液をゲル状にして電池に用いてもよい。有機電解液をゲル状とするための高分子材料としては、PVDF、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体(PVDF−HFP)、ポリアクリロニトリル、ポリエチレンオキシド、ポリプロピレンオキシド、エチレンオキシド−プロピレンオキシド共重合体、主鎖または側鎖にエチレンオキシド鎖を有する架橋ポリマー、架橋したポリ(メタ)アクリル酸エステルなど、公知のゲル状電解質形成可能なホストポリマーが挙げられる。   Furthermore, a polymer material that contains the non-aqueous electrolyte and gels may be added to make the organic electrolyte into a gel and used for the battery. Polymeric materials for gelling organic electrolytes include PVDF, vinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), polyacrylonitrile, polyethylene oxide, polypropylene oxide, ethylene oxide-propylene oxide copolymer And a known host polymer capable of forming a gel electrolyte, such as a crosslinked polymer having an ethylene oxide chain in the main chain or side chain, and a crosslinked poly (meth) acrylate.

本発明のリチウムイオン二次電池は、前述の負極、セパレータおよび正極を積層した積層電極体、またはこれらを巻回した巻回電極体を、スチール缶やアルミニウム缶などを外装缶として使用した筒形缶(角筒形や円筒形など)、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージなどに装填し、これに前記非水電解液を注入して製造することができる。   The lithium ion secondary battery of the present invention is a cylindrical electrode body using a laminated electrode body in which the above-described negative electrode, separator and positive electrode are laminated, or a wound electrode body in which these are wound, using a steel can or an aluminum can as an outer can. It can be manufactured by filling a can (such as a rectangular tube or cylinder), a soft package having a metal-deposited laminate film as an outer package, and injecting the non-aqueous electrolyte therein.

なお、電池内においては、前記セパレータの多孔質層(II)を正極に対面させることが好ましい。非水電解液中に、例えばベンゼン環にアルキル基が結合した化合物(シクロヘキシルベンゼンなど)を添加すると、リチウムイオン二次電池が過充電状態となった場合には、非水電解液中の前記化合物が重合してセパレータの孔内に導電路を形成し、これによりソフトショートを生じるため、電池の温度上昇が抑えられる効果を示す。しかし過充電時には、正極によってセパレータが酸化されやすく、これによりセパレータが劣化すると、前記のソフトショートを安定に起こさせることができず、過充電時の安全性が良好に確保できない虞がある。しかし、耐熱温度が150℃以上のフィラーを主体として含み、耐酸化性がより良好な多孔質層(II)を正極に面するようにセパレータを配置することで、過充電時におけるセパレータの酸化劣化を抑制できるため、前記のソフトショートをより安定に生じさせることができる。   In the battery, it is preferable that the porous layer (II) of the separator face the positive electrode. When, for example, a compound in which an alkyl group is bonded to a benzene ring (cyclohexylbenzene or the like) is added to the non-aqueous electrolyte, the lithium ion secondary battery is overcharged. Is polymerized to form a conductive path in the pores of the separator, thereby causing a soft short, and thus an effect of suppressing an increase in battery temperature is exhibited. However, at the time of overcharging, the separator is easily oxidized by the positive electrode. If the separator is deteriorated by this, the soft short cannot be caused stably, and the safety at the time of overcharging may not be satisfactorily secured. However, by placing the separator so that the porous layer (II), which has a heat resistance temperature of 150 ° C or higher as the main component and has better oxidation resistance, faces the positive electrode, the oxidative degradation of the separator during overcharge Therefore, the soft short can be generated more stably.

更に、前記セパレータの多孔質層(I)を負極に対面するように配置することがより好ましい。詳細な理由は不明であるが、多孔質層(I)が少なくとも負極に面するようにセパレータを配置した場合には、正極側に配置した場合よりも、シャットダウンを生じた場合に、多孔質層(I)から溶融した樹脂が、電極合剤層に吸収される割合が少なくなり、溶融した樹脂がセパレータの孔を閉塞するのに、より有効に利用されるため、シャットダウンによる効果がより良好となる。   Furthermore, the porous layer (I) of the separator is more preferably disposed so as to face the negative electrode. Although the detailed reason is unknown, when the separator is disposed so that the porous layer (I) faces at least the negative electrode, the porous layer is more likely to be shut down than when disposed on the positive electrode side. Since the melted resin from (I) is less effectively absorbed by the electrode mixture layer, and the melted resin is used more effectively to close the pores of the separator, the effect of shutdown is better. Become.

本発明のリチウムイオン二次電池は、従来から知られているリチウムイオン二次電池と同様の用途に適用することができる。   The lithium ion secondary battery of the present invention can be applied to the same applications as conventionally known lithium ion secondary batteries.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples do not limit the present invention.

<負極材料Aの作製>
平均粒径D50%が16μm、d002が0.3360nm、比表面積が3.4m/gである黒鉛を賦活炉に入れ、炭酸ガス気流下で、1000℃で4時間表面処理を行った(以下、この表面処理後の黒鉛を「黒鉛A」という)。表面処理後の黒鉛Aについて、前記の方法によって水に対する濡れ性[固液面接触角(θ)]を求めた。
<Preparation of negative electrode material A>
Graphite having an average particle diameter D 50% of 16 μm, d 002 of 0.3360 nm, and a specific surface area of 3.4 m 2 / g was placed in an activation furnace, and surface treatment was performed at 1000 ° C. for 4 hours in a carbon dioxide gas stream. (Hereinafter, this surface-treated graphite is referred to as “graphite A”). For the graphite A after the surface treatment, the wettability [solid-liquid surface contact angle (θ)] with respect to water was determined by the above-described method.

天然多糖類であるキサンタンガム:100gを50Lの水に溶解し、更に疎水性シリカの水系張力調整剤を適量加えて、25℃における表面張力が表1に示す値の溶液を調製し、この溶液に黒鉛A:5kgを投入した後、溶液から取り出し、乾燥して、前記黒鉛の表面がキサンタンガムで被覆された負極材料Aを作製した。この負極材料Aにおけるキサンタンガムの被覆厚みを透過型電子顕微鏡(TEM)により測定した。   Xanthan gum, which is a natural polysaccharide: 100 g is dissolved in 50 L of water, and an appropriate amount of a hydrophobic silica aqueous tension adjuster is added to prepare a solution having a surface tension at 25 ° C. as shown in Table 1. After adding 5 kg of graphite A, it was taken out from the solution and dried to prepare a negative electrode material A in which the surface of the graphite was coated with xanthan gum. The coating thickness of xanthan gum in this negative electrode material A was measured with a transmission electron microscope (TEM).

<負極材料Bの作製>
負極材料Aの作製に使用したものと同じ黒鉛(表面処理を施す前の黒鉛)について、炭酸ガス気流下で、1000℃で3時間表面処理を行った(以下、この表面処理後の黒鉛を「黒鉛B」という)。表面処理後の黒鉛Bについて、前記の方法によって水に対する濡れ性[固液面接触角(θ)]を求めた。
<Preparation of negative electrode material B>
The same graphite (graphite before surface treatment) as that used for the production of the negative electrode material A was subjected to surface treatment at 1000 ° C. for 3 hours under a carbon dioxide gas stream (hereinafter, the graphite after the surface treatment is referred to as “ Called graphite B). About the graphite B after surface treatment, the wettability [solid-liquid surface contact angle ((theta))] with respect to water was calculated | required by the said method.

天然多糖類であるキサンタンガム:70gを50Lの水に溶解し、更に疎水性シリカの水系張力調整剤を適量加えて、25℃における表面張力が表1に示す値の溶液を調製し、この溶液に黒鉛B:5kgを投入した後、溶液から取り出し、乾燥して、前記黒鉛の表面がキサンタンガムで被覆された負極材料Bを作製した。この負極材料Bにおけるキサンタンガムの被覆厚みを透過型電子顕微鏡(TEM)により測定した。   Xanthan gum, which is a natural polysaccharide: 70 g is dissolved in 50 L of water, and an appropriate amount of a hydrophobic silica aqueous tension adjuster is added to prepare a solution having a surface tension at 25 ° C. as shown in Table 1. After introducing 5 kg of graphite B, it was taken out from the solution and dried to prepare a negative electrode material B in which the surface of the graphite was coated with xanthan gum. The coating thickness of xanthan gum in this negative electrode material B was measured with a transmission electron microscope (TEM).

<負極材料Cの作製>
負極材料Aの作製に使用したものと同じ黒鉛(表面処理を施す前の黒鉛)について、炭酸ガス気流下で、1000℃で2時間表面処理を行った(以下、この表面処理後の黒鉛を「黒鉛C」という)。表面処理後の黒鉛Cについて、前記の方法によって水に対する濡れ性[固液面接触角(θ)]を求めた。
<Preparation of negative electrode material C>
The same graphite (graphite before surface treatment) as that used for the preparation of the negative electrode material A was subjected to surface treatment at 1000 ° C. for 2 hours under a carbon dioxide gas stream (hereinafter, the surface treated graphite is referred to as “ Called graphite C). For the graphite C after the surface treatment, the wettability [solid-liquid surface contact angle (θ)] with respect to water was determined by the above-described method.

天然多糖類であるキサンタンガム:150gを50Lの水に溶解し、更に疎水性シリカの水系張力調整剤を適量加えて、25℃における表面張力が表1に示す値の溶液を調製し、この溶液に黒鉛C:5kgを投入した後、溶液から取り出し、乾燥して、前記黒鉛の表面がキサンタンガムで被覆された負極材料Cを作製した。この負極材料Cにおけるキサンタンガムの被覆厚みを透過型電子顕微鏡(TEM)により測定した。   Xanthan gum which is a natural polysaccharide: 150 g is dissolved in 50 L of water, and an appropriate amount of a hydrophobic silica aqueous tension adjuster is added to prepare a solution having a surface tension at 25 ° C. as shown in Table 1. After adding 5 kg of graphite C, it was taken out from the solution and dried to prepare a negative electrode material C in which the surface of the graphite was coated with xanthan gum. The coating thickness of xanthan gum in this negative electrode material C was measured with a transmission electron microscope (TEM).

<負極材料Dの作製>
負極材料Aの作製に使用したものと同じ黒鉛(表面処理を施す前の黒鉛)について、炭酸ガス気流下で、1000℃で1時間表面処理を行った(以下、この表面処理後の黒鉛を「黒鉛D」という)。表面処理後の黒鉛Dについて、前記の方法によって水に対する濡れ性[固液面接触角(θ)]を求めた。
<Preparation of negative electrode material D>
The same graphite (graphite before surface treatment) as that used for the preparation of the negative electrode material A was subjected to surface treatment at 1000 ° C. for 1 hour in a carbon dioxide gas stream (hereinafter, the graphite after the surface treatment is referred to as “ Called graphite D). For the graphite D after the surface treatment, the wettability [solid-liquid surface contact angle (θ)] with respect to water was determined by the above-described method.

天然多糖類であるキサンタンガム:180gを50Lの水に溶解し、更に疎水性シリカの水系張力調整剤を適量加えて、25℃における表面張力が表1に示す値の溶液を調製し、この溶液に黒鉛D:5kgを投入した後、溶液から取り出し、乾燥して、前記黒鉛の表面がキサンタンガムで被覆された負極材料Dを作製した。この負極材料Dにおけるキサンタンガムの被覆厚みを透過型電子顕微鏡(TEM)により測定した。   Xanthan gum which is a natural polysaccharide: 180 g of water is dissolved in 50 L of water, and an appropriate amount of a hydrophobic silica aqueous tension adjuster is added to prepare a solution having a surface tension at 25 ° C. as shown in Table 1. After adding 5 kg of graphite D, the graphite D was taken out from the solution and dried to prepare a negative electrode material D in which the surface of the graphite was coated with xanthan gum. The coating thickness of xanthan gum in this negative electrode material D was measured with a transmission electron microscope (TEM).

<負極材料E>
負極材料Aの作製に使用したものと同じ黒鉛(表面処理を施す前の黒鉛)を、炭酸ガスによる表面処理およびキサンタンガムによる被覆処理を行わずに、負極材料Eとして用いた。
<Negative electrode material E>
The same graphite (graphite before surface treatment) as that used for preparation of the negative electrode material A was used as the negative electrode material E without performing the surface treatment with carbon dioxide gas and the coating treatment with xanthan gum.

前記の負極材料A〜Eについて、単極評価セルによる充放電試験を行った。   The negative electrode materials A to E were subjected to a charge / discharge test using a single electrode evaluation cell.

<単極評価セル用負極の作製>
前記の負極材料:90質量部と、バインダであるPVDF:10質量部とを混合した負極合剤を、0.1質量部のシュウ酸をあらかじめ溶解したNMPに分散させて負極合剤含有スラリーを調製した。このスラリーを、銅箔からなる厚みが10μmの集電体の片面に塗布し、乾燥した後、カレンダー処理を行って全厚が70μmになるように負極合剤層の厚みを調整して、負極材料A〜Eのいずれかを含有する単極評価セル用負極を作製した。
<Preparation of negative electrode for single electrode evaluation cell>
The negative electrode material: 90 parts by mass and PVDF as a binder: 10 parts by mass of a negative electrode mixture mixed with NMP in which 0.1 part by mass of oxalic acid was dissolved in advance to prepare a negative electrode mixture-containing slurry Prepared. The slurry was applied to one side of a current collector made of copper foil with a thickness of 10 μm, dried, and then subjected to a calendar treatment to adjust the thickness of the negative electrode mixture layer so that the total thickness became 70 μm. A negative electrode for a single electrode evaluation cell containing any of materials A to E was produced.

<単極評価セルの作製>
前記の各単極評価セル用負極を用いて単極評価セルを作製した。単極評価セルは、前記負極(負極合剤層塗布面を2×2cm角に切り出したもの)を作用極とし、対極および参照極にLi金属箔を、非水電解液に、EC、PCおよびメチルエチルカーボネートを3:2:5の割合(体積比)で混合した混合液にLiPFを1.2mol/Lの濃度で溶解させた溶液を用い、セパレータにポリエチレン製の微多孔性フィルム(厚さ12μm)を用いて構成した。
<Production of single electrode evaluation cell>
A single electrode evaluation cell was fabricated using the negative electrode for each single electrode evaluation cell. The single electrode evaluation cell has the negative electrode (the negative electrode mixture layer coated surface cut into a 2 × 2 cm square) as a working electrode, a Li metal foil as a counter electrode and a reference electrode, EC, PC, and non-aqueous electrolyte. A solution obtained by dissolving LiPF 6 at a concentration of 1.2 mol / L in a mixed solution in which methyl ethyl carbonate was mixed at a ratio (volume ratio) of 3: 2: 5 was used, and a polyethylene microporous film (thickness) was used as a separator. 12 μm).

<単極評価セルによる充放電試験>
各単極評価セルについて、参照極に対して0.03Vの電位になるまで4mAの定電流充電を行い、更に全充電時間が3時間となるまで0.03Vでの定電圧充電をした。充電後の単極評価セルを、4mAの定電流で2.5Vの電圧となるまで放電をして、初期の充電容量と放電容量を測定し、充放電効率(100×放電容量÷充電容量、単位%)を算出した。
<Charge / discharge test using single electrode evaluation cell>
Each single electrode evaluation cell was charged with a constant current of 4 mA until the potential of the reference electrode was 0.03 V, and further charged with a constant voltage of 0.03 V until the total charging time was 3 hours. After charging, the single-electrode evaluation cell was discharged to a voltage of 2.5 V at a constant current of 4 mA, and the initial charge capacity and discharge capacity were measured. Charge / discharge efficiency (100 × discharge capacity ÷ charge capacity, Unit%) was calculated.

負極材料A〜Eに使用した黒鉛の濡れ性(固液面接触角)、キサンタンガムを水に溶解させた溶液(キサンタンガム水溶液)の特性(25℃の表面張力および粘度)、黒鉛表面のキサンタンガムの被覆厚み、および単極評価セルにより求めた初期充放電効率を表1に示す。   Graphite wettability (solid-liquid contact angle) used for the negative electrode materials A to E, characteristics of xanthan gum dissolved in water (xanthan gum aqueous solution) (surface tension and viscosity at 25 ° C.), coating of xanthan gum on the graphite surface Table 1 shows the initial charge / discharge efficiency obtained by the thickness and the monopolar evaluation cell.

Figure 0005398559
Figure 0005398559

表1から明らかなように、特定の、水に対する濡れ性を有する黒鉛の表面を、天然多糖類で被覆して構成した負極材料A〜Dは、天然多糖類で被覆していない負極材料Eに比べて、初期充放電効率が高く、初回充放電時の不可逆容量が低減されている。   As is apparent from Table 1, the negative electrode materials A to D constituted by coating the surface of specific graphite having wettability with water with natural polysaccharide are the negative electrode materials E not coated with natural polysaccharide. Compared to the initial charge / discharge efficiency, the irreversible capacity during the first charge / discharge is reduced.

実施例1
<電池用負極Aの作製>
負極材料A:98質量部、CMC:1質量部およびSBR:1質量部を、水の存在下で混合して負極合剤含有スラリーを調製した。このスラリーを、銅箔からなる厚みが10μmの集電体の両面に間欠塗布し、乾燥した後、カレンダー処理を行って負極合剤層の密度が1.54g/cmになるように負極合剤層の厚みを調整した。その後、幅57mmおよび長さ1025mmなるように切断して、電池用負極Aを得た。更にこの電池用負極Aの銅箔の露出部にタブを溶接してリード部を形成した。
Example 1
<Preparation of battery negative electrode A>
Negative electrode material A: 98 parts by mass, CMC: 1 part by mass, and SBR: 1 part by mass were mixed in the presence of water to prepare a negative electrode mixture-containing slurry. This slurry is intermittently applied to both sides of a current collector made of copper foil with a thickness of 10 μm, dried, and then subjected to a calender treatment so that the negative electrode mixture layer has a density of 1.54 g / cm 3 . The thickness of the agent layer was adjusted. Then, it cut | disconnected so that it might become width 57mm and length 1025mm, and the negative electrode A for batteries was obtained. Further, a tab was welded to the exposed portion of the copper foil of the negative electrode A for a battery to form a lead portion.

<電池用正極Aの作製>
NMP(蒸留精製品、10質量%水溶液とした場合のpHは7)に、バインダであるPVDFを溶解させ、更に正極活物質である平均粒径D50%が10μmのLiNi0.8Co0.2と、導電助剤であるアセチレンブラックとを加え、均一になるように混合して正極合剤含有ペーストを調製した。なお、混合比率は正極活物質:バインダ:導電助剤=85:10:5(質量部)とした。このペーストを、集電体となる厚みが15μmのアルミニウム箔の両面に間欠塗布し、乾燥した後、カレンダー処理を行って、正極合剤層を厚みが84μmになるまで加圧成形した後、幅55mmおよび長さ886mmになるよう切断して、電池用正極Aを作製した。更にこの電池用正極Aのアルミニウム箔の露出部にタブを溶接してリード部を形成した。
<Preparation of battery positive electrode A>
PVDF as a binder is dissolved in NMP (distilled product, pH 7 when an aqueous solution of 10% by mass is 7), and a positive electrode active material having an average particle diameter D 50% of LiNi 0.8 Co 0. 2 O 2 and acetylene black, which is a conductive additive, were added and mixed uniformly to prepare a positive electrode mixture-containing paste. The mixing ratio was positive electrode active material: binder: conducting aid = 85: 10: 5 (parts by mass). This paste is intermittently applied to both sides of an aluminum foil having a thickness of 15 μm serving as a current collector, dried, calendered, and the positive electrode mixture layer is pressure-molded to a thickness of 84 μm. The battery positive electrode A was produced by cutting to 55 mm and a length of 886 mm. Further, a tab was welded to the exposed portion of the aluminum foil of the battery positive electrode A to form a lead portion.

<セパレータAの作製>
平均粒径D50%が1μmのベーマイト5kgに、イオン交換水5kgと分散剤(水系ポリカルボン酸アンモニウム塩、固形分濃度40質量%)0.5kgとを加え、内容積20L、転回数40回/分のボールミルで1時間分散処理をして分散液を調製した。調製後の分散液を120℃で真空乾燥し、走査型電子顕微鏡(SEM)で観察したところ、ベーマイトの形状は、ほぼ板状であった。
<Preparation of separator A>
To 5 kg of boehmite having an average particle diameter D50% of 1 μm, 5 kg of ion exchange water and 0.5 kg of a dispersing agent (aqueous polycarboxylic acid ammonium salt, solid content concentration 40% by mass) are added, and the internal volume is 20 L, the number of rotations is 40 times / A dispersion was prepared by dispersing for 1 hour with a ball mill for 1 minute. The prepared dispersion was vacuum dried at 120 ° C. and observed with a scanning electron microscope (SEM). As a result, the boehmite was almost plate-shaped.

前記分散液500gに、増粘剤としてキサンタンガムを0.5g、バインダとして樹脂バインダーディスパージョン(変性ポリブチルアクリレート、固形分含量45質量%)を17g加え、スリーワンモーターで3時間攪拌して均一なスラリー[多孔質層(II)形成用スラリー、固形分比率50質量%]を調製した。   To 500 g of the above dispersion, 0.5 g of xanthan gum as a thickener and 17 g of a resin binder dispersion (modified polybutyl acrylate, solid content 45% by mass) as a binder are added and stirred with a three-one motor for 3 hours to form a uniform slurry. [Slurry for forming porous layer (II), solid content ratio 50 mass%] was prepared.

電池用PE製微多孔質セパレータ[多孔質層(I):厚み16μm、空孔率40%、平均孔径0.08μm、PEの融点135℃]の片面にコロナ放電処理(放電量40W・min/m)を施し、このコロナ放電処理面に前記のスラリーをマイクログラビアコーターによって塗布し、乾燥して多孔質層(II)を形成して、セパレータAを得た。このセパレータAにおける多孔質層(II)の単位面積あたりの質量は、3.4g/mであり、多孔質層(II)の構成成分の全体積中におけるベーマイトの量は、90体積%であった。 PE microporous separator for battery [Porous layer (I): thickness 16 μm, porosity 40%, average pore diameter 0.08 μm, PE melting point 135 ° C.] on one side corona discharge treatment (discharge amount 40 W · min / m 2 ), and the slurry was applied to the corona discharge treated surface by a micro gravure coater and dried to form a porous layer (II), whereby a separator A was obtained. The mass per unit area of the porous layer (II) in the separator A is 3.4 g / m 2 , and the amount of boehmite in the total volume of the constituent components of the porous layer (II) is 90% by volume. there were.

<電池の組み立て>
電池用負極Aと電池用正極Aとを、セパレータAを介して重ね合わせ、渦巻状に巻回して巻回電極体とした。なお、巻回電極体においては、セパレータAの多孔質層(II)が電池用正極Aと対面するようにした。この巻回電極体を、直径18mm、高さ65mmの円筒缶にそれぞれ装填し、非水電解液[EC、PCおよびメチルエチルカーボネートを3:2:5の割合(体積比)で混合した溶媒に、LiPFを濃度1.2mol/lで溶解し、更にシクロヘキシルベンゼンを溶媒100質量部に対して1.0質量部の割合で添加した溶液]を注入後、封止を行ってリチウムイオン二次電池を作製した。なお、この電池は、缶の上部に内圧が上昇した場合に圧力を下げるための開裂ベントを備えている。
<Battery assembly>
The battery negative electrode A and the battery positive electrode A were overlapped via the separator A and wound into a spiral shape to obtain a wound electrode body. In the wound electrode body, the porous layer (II) of the separator A was made to face the battery positive electrode A. This wound electrode body was loaded into cylindrical cans each having a diameter of 18 mm and a height of 65 mm, and a non-aqueous electrolyte [EC, PC, and methyl ethyl carbonate were mixed in a solvent in a ratio (volume ratio) of 3: 2: 5]. , LiPF 6 was dissolved at a concentration of 1.2 mol / l, and cyclohexylbenzene was added at a ratio of 1.0 part by mass with respect to 100 parts by mass of the solvent. A battery was produced. This battery is provided with a cleavage vent for lowering the pressure when the internal pressure rises at the top of the can.

実施例2
正極活物質を、平均粒径D50%が10μmのLiCoOに変更した以外は、実施例1における電池用正極Aと同様にして電池用正極Bを作製した。そして、電池用正極Aに代えて、この電池用正極Bを用いた以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
Example 2
A battery positive electrode B was produced in the same manner as the battery positive electrode A in Example 1, except that the positive electrode active material was changed to LiCoO 2 having an average particle diameter D 50% of 10 μm. Then, a lithium ion secondary battery was produced in the same manner as in Example 1 except that this battery positive electrode B was used instead of the battery positive electrode A.

実施例3
正極活物質を、電池用正極Aに用いたものと同じLiNi0.8Co0.2:70質量%と、電池用正極Bに用いたものと同じLiCoO:30質量%との混合物に変更した以外は、実施例1における電池用正極Aと同様にして電池用正極Cを作製した。そして、電池用正極Aに代えて、この電池用正極Cを用いた以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
Example 3
A mixture of LiNi 0.8 Co 0.2 O 2 : 70% by mass, which is the same as that used for the positive electrode A for a battery, and LiCoO 2 : 30% by mass, which is the same as that used for the positive electrode B for a battery. A battery positive electrode C was produced in the same manner as the battery positive electrode A in Example 1, except that the change was changed to. Then, a lithium ion secondary battery was produced in the same manner as in Example 1 except that this battery positive electrode C was used instead of the battery positive electrode A.

実施例4
負極材料Aに代えて負極材料Bを用いた以外は、実施例1における電池用負極Aと同様にして電池用負極Bを作製した。そして、電池用負極Aに代えて、この電池用負極Bを用いた以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
Example 4
A battery negative electrode B was produced in the same manner as the battery negative electrode A in Example 1, except that the negative electrode material B was used instead of the negative electrode material A. And it replaced with the negative electrode A for batteries, and produced the lithium ion secondary battery like Example 1 except having used this negative electrode B for batteries.

実施例5
負極材料Aに代えて負極材料Cを用いた以外は、実施例1における電池用負極Aと同様にして電池用負極Cを作製した。そして、電池用負極Aに代えて、この電池用負極Cを用いた以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
Example 5
A battery negative electrode C was produced in the same manner as the battery negative electrode A in Example 1, except that the negative electrode material C was used instead of the negative electrode material A. And it replaced with the negative electrode A for batteries, and produced the lithium ion secondary battery like Example 1 except having used this negative electrode C for batteries.

実施例6
負極材料Aに代えて負極材料Dを用いた以外は、実施例1における電池用負極Aと同様にして電池用負極Dを作製した。そして、電池用負極Aに代えて、この電池用負極Dを用いた以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
Example 6
A battery negative electrode D was produced in the same manner as the battery negative electrode A in Example 1, except that the negative electrode material D was used instead of the negative electrode material A. And it replaced with the negative electrode A for batteries, and produced the lithium ion secondary battery like Example 1 except having used this negative electrode D for batteries.

実施例7
巻回電極体において、セパレータの多孔質層(I)が正極と対面するようにした以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
Example 7
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the porous layer (I) of the separator faced the positive electrode in the wound electrode body.

比較例1
負極材料Aに代えて負極材料Eを用いた以外は、実施例1における電池用負極Aと同様にして電池用負極Eを作製した。
Comparative Example 1
A battery negative electrode E was produced in the same manner as the battery negative electrode A in Example 1, except that the negative electrode material E was used instead of the negative electrode material A.

電池用負極Aに代えて前記の電池用負極Eを使用し、また、セパレータAに代えて、セパレータAの作製に使用した電池用PE製微多孔質セパレータ(セパレータB)を、多孔質層(II)を形成することなく使用した以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。   The battery negative electrode E is used instead of the battery negative electrode A, and the battery PE microporous separator (separator B) used for the production of the separator A is used instead of the separator A. A lithium ion secondary battery was produced in the same manner as in Example 1 except that II) was used without forming.

比較例2
セパレータAに代えてセパレータBを使用した以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
Comparative Example 2
A lithium ion secondary battery was produced in the same manner as in Example 1 except that the separator B was used instead of the separator A.

比較例3
電池用負極Aに代えて電池用負極Eを使用し、巻回電極体において、セパレータの多孔質層(I)が正極と対面するようにした以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
Comparative Example 3
In the same manner as in Example 1, except that the negative electrode E for the battery was used instead of the negative electrode A for the battery, and the porous layer (I) of the separator faced the positive electrode in the wound electrode body, A secondary battery was produced.

実施例1〜7および比較例1〜3のリチウムイオン二次電池の構成を表2に纏めて示す。なお、比較例1および比較例2は、セパレータに、多孔質層(II)を持たないセパレータB[すなわち、多孔質層(I)のみからなるセパレータ]を使用しているため、表2のセパレータにおける「正極と対面する層」の欄では、比較例1および比較例2については「多孔質層(I)」と記載している。   Table 2 summarizes the configurations of the lithium ion secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 3. Note that Comparative Example 1 and Comparative Example 2 use the separator B having no porous layer (II) [that is, the separator made only of the porous layer (I)] as the separator. In the column of “layer facing the positive electrode” in Comparative Example 1, Comparative Example 1 and Comparative Example 2 are described as “porous layer (I)”.

Figure 0005398559
Figure 0005398559

実施例1〜7および比較例1〜3のリチウムイオン二次電池について、下記の各評価を行った。   The following evaluation was performed about the lithium ion secondary battery of Examples 1-7 and Comparative Examples 1-3.

<初期放電容量測定>
実施例1〜7および比較例1〜3のリチウムイオン二次電池について、常温(25℃)で、0.75Aの定電流および電圧4.2Vの定電圧による定電流−定電圧充電(総充電時間:2.5時間)を行った後、1.5A(1C相当)で定電流放電(放電終止電圧:2.5V)を行い、初期放電容量を測定した。
<Initial discharge capacity measurement>
For the lithium ion secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 3, constant current-constant voltage charging (total charging) with a constant current of 0.75 A and a constant voltage of 4.2 V at room temperature (25 ° C.) (Time: 2.5 hours), followed by constant current discharge (discharge end voltage: 2.5 V) at 1.5 A (corresponding to 1 C), and the initial discharge capacity was measured.

<1Cサイクル試験>
実施例1〜7および比較例1〜3のリチウムイオン二次電池について、常温(25℃)で、1.5Aの定電流および電圧4.2Vの定電圧による定電流−定電圧充電(総充電時間:2.5時間)を行った後、1.5A(1C相当)で定電流放電(放電終止電圧:2.5V)を行った。これを1サイクルとして、前記条件で500サイクル充放電を繰り返し、これらにより得られた1サイクル目の容量(放電容量)と500サイクル目の容量(放電容量)とから、容量保持率(100×500サイクル目容量/1サイクル目容量、単位%)を算出した。
<1C cycle test>
For the lithium ion secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 3, constant current-constant voltage charging (total charging) with a constant current of 1.5 A and a constant voltage of 4.2 V at room temperature (25 ° C.) Time: 2.5 hours), and then a constant current discharge (discharge end voltage: 2.5 V) was performed at 1.5 A (corresponding to 1 C). With this as one cycle, 500 cycles of charge and discharge were repeated under the above conditions, and the capacity retention rate (100 × 500) was calculated from the capacity (discharge capacity) of the first cycle and the capacity (discharge capacity) of the 500th cycle obtained by these. Cycle capacity / cycle 1 capacity, unit%) was calculated.

<2Cサイクル試験>
実施例1〜7および比較例1〜3のリチウムイオン二次電池について、常温(25℃)で、4Aの定電流および電圧4.2Vの定電圧による定電流−定電圧充電(総充電時間:2.5時間)を行った後、3A(2C相当)で定電流放電(放電終止電圧:2.0V)を行った。これを1サイクルとして、前記条件で500サイクル充放電を繰り返し、これらにより得られた1サイクル目の容量(放電容量)と500サイクル目の容量(放電容量)とから、容量保持率(100×500サイクル目容量/1サイクル目容量、単位%)を算出した。
<2C cycle test>
For the lithium ion secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 3, constant current-constant voltage charging with a constant current of 4 A and a constant voltage of 4.2 V at room temperature (25 ° C.) (total charging time: 2.5 hours), a constant current discharge (discharge end voltage: 2.0 V) was performed at 3A (equivalent to 2C). With this as one cycle, 500 cycles of charge and discharge were repeated under the above conditions, and the capacity retention rate (100 × 500) was calculated from the capacity (discharge capacity) of the first cycle and the capacity (discharge capacity) of the 500th cycle obtained by these. Cycle capacity / cycle 1 capacity, unit%) was calculated.

<加熱試験>
実施例1〜7および比較例1〜3のリチウムイオン二次電池について、常温(25℃)で、0.75Aの定電流および電圧4.2Vの定電圧による定電流−定電圧充電(総充電時間:2.5時間)を行った後、各電池を恒温槽に入れ、30℃から150℃まで、毎分5℃の割合で昇温し、その後引き続き150℃で3時間放置し、電池の表面温度を測定した。そして、前記の電池表面温度が、160℃以上にまで上昇した電池の有無を調べた。
<Heating test>
For the lithium ion secondary batteries of Examples 1 to 7 and Comparative Examples 1 to 3, constant current-constant voltage charging (total charging) with a constant current of 0.75 A and a constant voltage of 4.2 V at room temperature (25 ° C.) Time: 2.5 hours), each battery was put in a thermostatic bath, heated from 30 ° C. to 150 ° C. at a rate of 5 ° C. per minute, and then allowed to stand at 150 ° C. for 3 hours. The surface temperature was measured. And the presence or absence of the battery whose said battery surface temperature rose to 160 degreeC or more was investigated.

<過充電試験>
実施例1〜7および比較例1〜3のリチウムイオン二次電池について、0.75Aで3.0Vまで電池を放電させた後、常温(25℃)で、上限電圧を15Vとして0.75Aの充電を行い、そのときの各電池の表面温度を測定した。そして、前記の電池表面温度が、130℃以上にまで上昇した電池の有無を調べた。
<Overcharge test>
About the lithium ion secondary battery of Examples 1-7 and Comparative Examples 1-3, after discharging a battery to 3.0V at 0.75A, normal temperature (25 degreeC) sets an upper limit voltage to 15V, and is 0.75A. Charging was performed, and the surface temperature of each battery at that time was measured. And the presence or absence of the battery whose said battery surface temperature rose to 130 degreeC or more was investigated.

前記の各評価結果を表3に示す。なお、表3に示す各データのうち、初期放電容量、1Cサイクル容量保持率、および2Cサイクル容量保持率は、いずれも10個の電池の測定結果の平均値である。また、加熱試験および過充電試験については、各10個の電池について評価を行い、加熱試験では160℃以上にまで表面温度が上昇した電池が1個でも生じた場合に「あり」とし、過充電試験では130℃以上にまで表面温度が上昇した電池が1個でも生じた場合に「あり」としている。   Each evaluation result is shown in Table 3. Of the data shown in Table 3, the initial discharge capacity, 1C cycle capacity retention rate, and 2C cycle capacity retention rate are all average values of the measurement results of 10 batteries. In addition, for the heating test and overcharge test, each of 10 batteries was evaluated. In the heating test, when there was even one battery whose surface temperature rose to 160 ° C. or higher, “Yes” was given. In the test, “Yes” is given when even one battery whose surface temperature has risen to 130 ° C. or higher occurs.

Figure 0005398559
Figure 0005398559

表3から明らかなように、水に対する濡れ性が特定値にある黒鉛の表面を、天然多糖類で被覆した負極材料を含有する負極と、多孔質層(I)および多孔質層(II)を有する積層体からなるセパレータとを使用した実施例1〜7のリチウムイオン二次電池は、初期放電容量が大きく、初回充放電時における不可逆容量が小さくなっており、かつ1Cサイクル試験および2Cサイクル試験における容量保持率が高く、充放電を繰り返しても不可逆容量の発生が抑えられていて、充放電サイクル特性が良好である。また、実施例1〜7のリチウムイオン二次電池は、加熱試験および過充電試験における異常な温度上昇も抑えられており、安全性および信頼性が良好である。しかも、実施例1〜7の電池では、2Cサイクル試験における容量保持率が高いことから、大電流での充放電特性、すなわち負荷特性も優れているといえる。更に、正極活物質に、特定組成のリチウムニッケル酸化物を使用した実施例1、3〜7の電池は、LiCoOのみを使用した実施例2の電池に比べて、初期放電容量が大きくなっている。 As is apparent from Table 3, a negative electrode containing a negative electrode material in which the surface of graphite having a specific value of water wettability is coated with a natural polysaccharide, a porous layer (I), and a porous layer (II) The lithium ion secondary batteries of Examples 1 to 7 using a separator made of a laminate having a large initial discharge capacity, a small irreversible capacity at the time of initial charge / discharge, and a 1C cycle test and a 2C cycle test Has a high capacity retention rate, and generation of irreversible capacity is suppressed even when charge and discharge are repeated, and charge and discharge cycle characteristics are good. In addition, the lithium ion secondary batteries of Examples 1 to 7 are also excellent in safety and reliability because an abnormal temperature rise in the heating test and the overcharge test is suppressed. Moreover, since the batteries of Examples 1 to 7 have a high capacity retention rate in the 2C cycle test, it can be said that the charge / discharge characteristics at a large current, that is, the load characteristics are also excellent. Further, the batteries of Examples 1 and 3 to 7 using lithium nickel oxide having a specific composition as the positive electrode active material had a larger initial discharge capacity than the battery of Example 2 using only LiCoO 2. Yes.

これに対し、表面を天然多糖類などで被覆していない黒鉛を使用した負極と、多孔質層(II)を持たないセパレータとを使用した比較例1の電池は、初期放電容量、並びに1Cサイクル試験および2Cサイクル試験での容量保持率が劣っており、加熱試験および過充電試験時に温度上昇が生じている。また、多孔質層(II)を持たないセパレータを使用した比較例2の電池は、加熱試験および過充電試験時に温度上昇が生じている。更に、表面を天然多糖類などで被覆していない黒鉛を使用した負極を用いた比較例3の電池は、初期放電容量、並びに1Cサイクル試験および2Cサイクル試験での容量保持率が劣っている。   On the other hand, the battery of Comparative Example 1 using the negative electrode using graphite whose surface is not coated with natural polysaccharide and the separator having no porous layer (II) has an initial discharge capacity and 1 C cycle. The capacity retention in the test and the 2C cycle test is inferior, and the temperature rises during the heating test and overcharge test. Moreover, the battery of the comparative example 2 using the separator which does not have a porous layer (II) has produced the temperature rise at the time of a heating test and an overcharge test. Furthermore, the battery of Comparative Example 3 using the negative electrode using graphite whose surface is not coated with natural polysaccharide or the like is inferior in initial discharge capacity and capacity retention in the 1C cycle test and 2C cycle test.

Claims (5)

正極、負極、セパレータおよび非水電解液を有するリチウムイオン二次電池であって、
前記負極は、水に対する濡れ性が固液面接触角(θ)で0〜50°である黒鉛と、前記黒鉛の表面を被覆する天然多糖類またはその誘導体とを有する負極材料を含有しており、
前記天然多糖類またはその誘導体は、キサンタンガム、ウェランガム、ジェランガム、グアーガム、カラギーナン、デキストリン、アルファー化でんぷん、カルボキシメチルセルロース、ヒドロキシエチルセルロースおよびヒドロキシプロピルセルロースよりなる群から選択される少なくとも1種であり、
前記セパレータが、融点が120〜140℃の樹脂を含む多孔質層(I)と、耐熱温度が150℃以上のフィラーを主体として含む多孔質層(II)とを有する積層体からなることを特徴とするリチウムイオン二次電池。
A lithium ion secondary battery having a positive electrode, a negative electrode, a separator and a non-aqueous electrolyte,
The negative electrode contains a negative electrode material having graphite whose wettability to water is 0 to 50 ° in terms of solid-liquid surface contact angle (θ), and a natural polysaccharide or a derivative thereof covering the surface of the graphite. ,
The natural polysaccharide or derivative thereof is at least one selected from the group consisting of xanthan gum, welan gum, gellan gum, guar gum, carrageenan, dextrin, pregelatinized starch, carboxymethylcellulose, hydroxyethylcellulose and hydroxypropylcellulose;
The separator is composed of a laminate having a porous layer (I) containing a resin having a melting point of 120 to 140 ° C. and a porous layer (II) mainly containing a filler having a heat resistant temperature of 150 ° C. or higher. Lithium ion secondary battery.
前記天然多糖類またはその誘導体がキサンタンガムである請求項1に記載のリチウムイオン二次電池。The lithium ion secondary battery according to claim 1, wherein the natural polysaccharide or a derivative thereof is xanthan gum. 負極の含有する負極材料は、黒鉛表面を被覆する天然多糖類またはその誘導体の厚みが1〜20nmである請求項1または2に記載のリチウムイオン二次電池。 The lithium ion secondary battery according to claim 1 or 2 , wherein the negative electrode material contained in the negative electrode has a thickness of 1 to 20 nm of a natural polysaccharide or a derivative thereof covering the graphite surface. セパレータの多孔質層(II)が、少なくとも正極に対面している請求項1〜3のいずれかに記載のリチウムイオン二次電池。 The lithium ion secondary battery according to any one of claims 1 to 3, wherein the porous layer (II) of the separator faces at least the positive electrode. 正極は、正極活物質として、一般式LiNi(1−x)(ただし、0≦x<1であり、Mは、Al、Mn、Co、Cr、Mg、Fe、ZrおよびTiよりなる群から選択される少なくとも1種の金属元素である)で表されるリチウムニッケル酸化物を、全正極活物質中、70質量%以上の量で含有している請求項1〜のいずれかに記載のリチウムイオン二次電池。
The positive electrode has a general formula LiNi (1-x) M x O 2 (where 0 ≦ x <1 as the positive electrode active material, where M is from Al, Mn, Co, Cr, Mg, Fe, Zr and Ti) the composed of at least one metal element selected from the group) lithium nickel oxide represented by the total positive electrode active material in any one of claims 1-4 which is contained in an amount of more than 70 wt% The lithium ion secondary battery described in 1.
JP2010010580A 2010-01-21 2010-01-21 Lithium ion secondary battery Active JP5398559B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010010580A JP5398559B2 (en) 2010-01-21 2010-01-21 Lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010010580A JP5398559B2 (en) 2010-01-21 2010-01-21 Lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2011150866A JP2011150866A (en) 2011-08-04
JP5398559B2 true JP5398559B2 (en) 2014-01-29

Family

ID=44537683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010010580A Active JP5398559B2 (en) 2010-01-21 2010-01-21 Lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5398559B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5540805B2 (en) * 2010-03-23 2014-07-02 三菱化学株式会社 Non-aqueous secondary battery carbon material, negative electrode material and non-aqueous secondary battery
JP5625487B2 (en) * 2010-05-25 2014-11-19 株式会社豊田中央研究所 Negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP2013037863A (en) * 2011-08-06 2013-02-21 Denso Corp Battery pack
JP6375949B2 (en) * 2012-10-10 2018-08-22 日本ゼオン株式会社 Method for producing positive electrode for secondary battery, method for producing secondary battery and laminate for secondary battery
JP5843116B2 (en) * 2013-10-04 2016-01-13 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
KR102108280B1 (en) 2013-11-07 2020-05-07 삼성에스디아이 주식회사 Rechargeable lithium battery
JP6745587B2 (en) * 2014-05-29 2020-08-26 株式会社半導体エネルギー研究所 Electrode manufacturing method
JP6369818B2 (en) * 2016-10-14 2018-08-08 Attaccato合同会社 Electrode using skeleton-forming agent
JP6978273B2 (en) * 2017-10-24 2021-12-08 住友化学株式会社 Water-based paint
JP6960176B2 (en) * 2018-03-12 2021-11-05 Attaccato合同会社 Skeleton forming agent, electrodes using it, and method for manufacturing electrodes
JP6678358B2 (en) * 2018-03-12 2020-04-08 Attaccato合同会社 Skeleton forming agent, electrode using the same, and method for producing electrode
JP6635616B2 (en) * 2018-10-10 2020-01-29 Attaccato合同会社 Positive electrode for non-aqueous electrolyte secondary battery and battery using the same
JP7537752B2 (en) * 2019-09-06 2024-08-21 Attaccato合同会社 Skeleton-forming agent, electrode using same, and method for manufacturing electrode
CN112467079A (en) * 2020-12-03 2021-03-09 珠海冠宇电池股份有限公司 Silicon-containing negative plate and lithium ion battery comprising same
WO2023108321A1 (en) * 2021-12-13 2023-06-22 深圳先进技术研究院 Composite modified graphite material, dual-ion battery positive electrode material, dual-ion battery negative electrode material, and dual-ion battery
CN118402128A (en) * 2021-12-24 2024-07-26 松下知识产权经营株式会社 Separator for secondary battery, method for manufacturing same, and secondary battery
CN114464800B (en) * 2021-12-31 2023-11-21 北京当升材料科技股份有限公司 Positive electrode material, preparation method and application thereof
CN116722103B (en) * 2023-08-09 2023-10-27 中创新航科技集团股份有限公司 Lithium ion battery

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07183027A (en) * 1993-12-22 1995-07-21 Sony Corp Manufacture of nonaqueous electrolyte secondary battery
JP4187076B2 (en) * 1997-07-04 2008-11-26 日立粉末冶金株式会社 Graphite powder for negative electrode of lithium ion secondary battery and method for producing the same
JP2001167755A (en) * 1999-12-07 2001-06-22 Kansai Coke & Chem Co Ltd Negative electrode material for use in non-aqueous secondary battery and method of producing the same
JP2001332263A (en) * 2000-03-16 2001-11-30 Sony Corp Secondary battery and manufacturing method for negative electrode material of carbon
JP4134504B2 (en) * 2000-10-23 2008-08-20 三菱化学株式会社 Lithium secondary battery
JP3406583B2 (en) * 2000-11-02 2003-05-12 三井鉱山株式会社 Graphite-carbon composite material for negative electrode of lithium secondary battery, method for producing the same, and lithium secondary battery
JP3849769B2 (en) * 2001-12-03 2006-11-22 日立粉末冶金株式会社 Graphite particles for negative electrode of non-aqueous secondary battery
JP2003168433A (en) * 2001-12-03 2003-06-13 Hitachi Powdered Metals Co Ltd Graphite particle for negative electrode of nonaqueous secondary battery
JP5196780B2 (en) * 2005-12-22 2013-05-15 旭化成イーマテリアルズ株式会社 Multilayer porous membrane and method for producing the same
US9166251B2 (en) * 2007-10-03 2015-10-20 Hitachi Maxell, Ltd. Battery separator and nonaqueous electrolyte battery
JP5937776B2 (en) * 2008-05-22 2016-06-22 日立マクセル株式会社 Battery separator and battery
KR101246804B1 (en) * 2009-03-13 2013-03-26 히다치 막셀 가부시키가이샤 Separator for battery and nonaqueous-electrolyte battery using same
JP2011086455A (en) * 2009-10-14 2011-04-28 Hitachi Maxell Ltd Negative electrode material for lithium secondary battery, manufacturing method therefor, and the lithium secondary battery

Also Published As

Publication number Publication date
JP2011150866A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP5398559B2 (en) Lithium ion secondary battery
JP6253411B2 (en) Lithium secondary battery
CN105576279B (en) Lithium secondary battery
JP5256660B2 (en) Non-aqueous secondary battery separator, method for producing the same, and non-aqueous electrolyte secondary battery
KR101676085B1 (en) Silicon based anode active material and lithium secondary battery comprising the same
JP2009032682A (en) Lithium-ion secondary battery
JP6152825B2 (en) Non-aqueous electrolyte secondary battery
KR102557725B1 (en) Composite anode active material, anode including the material, and lithium secondary battery including the anode
JP6184810B2 (en) Non-aqueous secondary battery
JP6484995B2 (en) Lithium ion secondary battery
JP2013134938A (en) Negative electrode for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery including the same
JP2015072805A (en) Nonaqueous secondary battery
CN113087856A (en) Gelling agents for forming gel electrolytes and methods relating thereto
JP7205717B2 (en) positive electrode
JP2016071998A (en) Lithium ion secondary battery
JP2020123465A (en) Anode and manufacturing method of anode
US9761854B2 (en) Spirally-wound electrode assembly for rechargeable lithium battery and rechargeable lithium battery including same
KR101753943B1 (en) Composition for preparing negative electrode, method for preparing the same, and lithium secondary battery comprising negative electrode prepared by using the same
JP2011086455A (en) Negative electrode material for lithium secondary battery, manufacturing method therefor, and the lithium secondary battery
JP2019175657A (en) Lithium ion secondary battery
JP2011150865A (en) Negative electrode material for lithium secondary battery, manufacturing method therefor, and the lithium secondary battery
CN108352501B (en) Negative electrode and secondary battery comprising same
JP7409132B2 (en) Nonaqueous electrolyte storage element
JP2007234348A (en) Nonaqueous secondary battery
JP6894947B2 (en) Manufacturing method of electrodes of power storage device and electrodes of power storage device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110520

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110530

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121018

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131022

R150 Certificate of patent or registration of utility model

Ref document number: 5398559

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250