JP5255836B2 - Method for producing ceramic porous body - Google Patents
Method for producing ceramic porous body Download PDFInfo
- Publication number
- JP5255836B2 JP5255836B2 JP2007523409A JP2007523409A JP5255836B2 JP 5255836 B2 JP5255836 B2 JP 5255836B2 JP 2007523409 A JP2007523409 A JP 2007523409A JP 2007523409 A JP2007523409 A JP 2007523409A JP 5255836 B2 JP5255836 B2 JP 5255836B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- limestone
- dolomite
- clay
- firing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
- C04B38/02—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/02—Preparing or treating the raw materials individually or as batches
- C04B33/04—Clay; Kaolin
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/02—Preparing or treating the raw materials individually or as batches
- C04B33/13—Compounding ingredients
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B33/00—Clay-wares
- C04B33/02—Preparing or treating the raw materials individually or as batches
- C04B33/13—Compounding ingredients
- C04B33/14—Colouring matters
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
- C04B35/18—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
- C04B35/195—Alkaline earth aluminosilicates, e.g. cordierite or anorthite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/16—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
- C04B35/20—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in magnesium oxide, e.g. forsterite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00793—Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3206—Magnesium oxides or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3205—Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
- C04B2235/3208—Calcium oxide or oxide-forming salts thereof, e.g. lime
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
- C04B2235/3218—Aluminium (oxy)hydroxides, e.g. boehmite, gibbsite, alumina sol
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3427—Silicates other than clay, e.g. water glass
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/34—Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/349—Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/94—Products characterised by their shape
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
- C04B2235/9615—Linear firing shrinkage
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9646—Optical properties
- C04B2235/9661—Colour
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Dispersion Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Filtering Materials (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Description
本発明は、セラミック多孔体の製造方法に関する。 The present invention relates to a method for producing a ceramic porous body.
陶磁器における素地の調合組成と焼成温度とを表1に示す(非特許文献1参照)。ここで明らかなように本焼成は1000℃以上で行われるのが通常である。その目的は焼成体の強度を重視するためであり、その結果、焼成体の組織は緻密になり、多くのガラス相と結晶相からなる傾向になっている。
しかし、1000℃以下で焼成する素焼きは意識して多孔質焼結体とされる場合が多い。その主目的は吸水性とろ過性である。すなわち、施釉工程における素焼き多孔質焼成体の毛細管吸水力で釉(スラリー)中のガラス形成成分の粒子及び溶質を主にμmの細孔に引き寄せ、本体との密着性及び釉の厚みを確保するためである。この素焼き焼成体の性質を活用した工業製品は戦前戦後に多く提案されたが、今日まで市場に残っているものの例として、ろ過器、コロイド等を多く含むゲル状のケーキの脱水用素板等のほかにヒーター用のセラミック多孔体がある。特にヒーター用のものは遠赤外線効果もあって1975年以降工業的に使用されはじめた。Table 1 shows the composition and firing temperature of the base material in the ceramic (see Non-Patent Document 1). As is apparent here, the main firing is usually performed at 1000 ° C. or higher. The purpose is to place importance on the strength of the fired body. As a result, the structure of the fired body becomes dense and tends to be composed of many glass phases and crystal phases.
However, unglazed firing at 1000 ° C. or less is often made into a porous sintered body. Its main purpose is water absorption and filterability. That is, the glass-forming component particles and solute in the cocoon (slurry) are attracted mainly to the pores of μm by the capillary water absorption force of the unglazed porous fired body in the glazing process to ensure adhesion with the main body and the thickness of the cocoon. Because. Many industrial products utilizing the properties of this unglazed fired body were proposed after the prewar period, but examples of those that remain in the market to date include gelling cake dehydration base plates that contain many filters, colloids, etc. Besides, there are ceramic porous bodies for heaters. In particular, heaters have been used industrially since 1975 due to the far-infrared effect.
また、従来の陶磁器は、カオリナイト質、ボーキサイト質及び陶石質粘土の可塑性粘土に、長石類と石英(珪石)とを加えた3成分から素地が構成されている。この素地は、可塑性が良好なために各種成形法を自在に用いることができ、複雑な成形体の作成も可能となっている(非特許文献2参照)。
一方、セラミック多孔体としては、日本で発展した多孔質の白雲陶器(ドロマイト立て陶器)、石灰−長石質陶器(石灰石立て陶器)がよく知られている。その素地組成は、表2に示すように、石灰石、白雲石、カオリナイト質粘土(木節粘土)、陶石質粘土、石英、長石類からの構成素材からなり、構成素材中の構成鉱物は、白雲石、石灰石、石英、カオリナイト鉱物、絹雲母、パイロフィライト、長石鉱物類であり、それらの工業原料の構成素材中には石英が含まれている場合が多い。In addition, a conventional ceramic is composed of a base material composed of three components obtained by adding feldspar and quartz (silica) to plastic clay of kaolinite, bauxite, and porcelain clay. Since this substrate has good plasticity, various molding methods can be freely used, and a complex molded body can be created (see Non-Patent Document 2).
On the other hand, porous white ceramics (dolomite standing pottery) and lime-feldsparous pottery (limestone standing pottery) developed in Japan are well known as ceramic porous bodies. As shown in Table 2, the base composition is composed of limestone, dolomite, kaolinite clay (kibushi clay), porcelain clay, quartz, feldspars, and the constituent minerals in the constituent materials are , Dolomite, limestone, quartz, kaolinite mineral, sericite, pyrophyllite, and feldspar minerals, and the constituent materials of these industrial raw materials often contain quartz.
このため、ドロマイト(白雲石)や石灰石立て陶器ではCaO(MgO)−SiO2−長石類の反応が1100℃前後で急激に進行し、大量の溶融体形成が生じて、焼成体の軟化歪に繋がっていた。これを防ぐためにAl2O3成分を添加することも試みられているが、多孔体を得るには不十分となっている。
また、従来のセラミック多孔体は、可燃性の有機物と無機物とを均質混合した素地を使用し、その素地の無機物の粒子間の空隙を細孔とする焼成体が一般的であるため、焼成幅が狭くなり、細孔径を自由に設計し、均一な多孔体を製造することが困難となっている。また、素地の可塑性が低いため、成形方法にも制約を受け、板状やタイル状の成形が主流となっているのが現状である。For this reason, the reaction of CaO (MgO) -SiO 2 -feldspar proceeds rapidly around 1100 ° C. in dolomite (white dolomite) and limestone standing pottery, resulting in the formation of a large amount of melt, resulting in softening distortion of the fired body It was connected. In order to prevent this, an attempt has been made to add an Al 2 O 3 component, but this is insufficient to obtain a porous body.
In addition, a conventional ceramic porous body uses a base material in which a combustible organic substance and an inorganic substance are homogeneously mixed, and a fired body in which voids between particles of the inorganic substance on the base are pores is generally used. However, it is difficult to design a pore diameter freely and produce a uniform porous body. Also, since the plasticity of the substrate is low, there are restrictions on the molding method, and at present, plate-shaped and tile-shaped molding is the mainstream.
そこで、本発明は、耐熱性を維持しつつ、ナノ〜サブマイクロメートルの範囲で任意に細孔径及び細孔容積を設計でき、成形性にも優れるセラミック多孔体の製造方法を提供することを目的としたものである。 Accordingly, the present invention has an object to provide a method for producing a ceramic porous body that can arbitrarily design a pore diameter and a pore volume in a nano to sub-micrometer range while maintaining heat resistance, and is excellent in formability. It is what.
まず、セラミック製造上の焼成中の軟化を極力抑制するには、素地の構成素材中のガラス相(溶融体)を形成しやすいアルカリ成分の多い長石類や石英の存在を極力避け、且つセラミック多孔体の細孔の源となる単分子ガスを低温で発生する構成素材を用いる必要がある。
つまり、焼成中の高温ガスにさらされる成形体の変形を小さくする為の耐熱向上策は、Al2O3成分の添加であり、セラミック多孔体製造には構成素材の加熱分解に伴いガスを発生しやすいAl(OH)3等の含Al塩類等を主構成素材として、他の構成素材については石英の混入を極力避けて、熱分解でガス発生する各種水酸化物や塩類を用いた素地調合を行うことである。First, in order to suppress the softening during firing on ceramic production as much as possible, avoid the presence of feldspar and quartz with many alkali components that easily form a glass phase (melt) in the constituent material of the base as much as possible. It is necessary to use a constituent material that generates a monomolecular gas that is a source of pores of the body at a low temperature.
In other words, the heat resistance improvement measure to reduce the deformation of the molded body exposed to the high temperature gas during firing is the addition of Al 2 O 3 component, and gas is generated in the ceramic porous body production due to thermal decomposition of the constituent materials. Easy preparation of Al (OH) 3 and other Al-containing salts as main constituent materials, and other constituent materials avoiding the incorporation of quartz as much as possible, and base preparation using various hydroxides and salts that generate gas by thermal decomposition Is to do.
そこで、請求項1に記載の発明は、分級してアルカリ成分を含む長石類及び石英を除去した可塑性粘土と、石灰石又は白雲石と、アルミナ成分と、からなる素地組成物を、各成分が全体重量100%に対して各々少なくとも10重量%以上含有するように調合し、その素地組成物を所定形状に成形して、500℃〜1400℃の範囲で焼成温度を選択して焼成することで、ナノ〜サブマイクロメートルの範囲で任意の細孔径及び細孔容積を選択可能としたことを特徴とするものである。
また、請求項2に記載の発明は、分級してアルカリ成分を含む長石類及び石英を除去した可塑性粘土と、石灰石又は白雲石と、アルミナ成分と、ハイドロタルサイトと、からなる素地組成物を、全体重量100%に対して先の可塑性粘土、石灰石又は白雲石、アルミナ成分が各々少なくとも10重量%以上、ハイドロタルサイトが5〜40重量%夫々含有するように調合し、その素地組成物を所定形状に成形して、500℃〜1400℃の範囲で焼成温度を選択して焼成することで、ナノ〜サブマイクロメートルの範囲で任意の細孔径及び細孔容積を選択可能としたことを特徴とするものである。
請求項3に記載の発明は、請求項1又は2の目的に加えて、より良質な多孔体を得るために、素地組成物に、1000分の3重量%以下のアルカリ系泥漿調整剤を添加するものである。
Accordingly, a first aspect of the present invention, the plastic clay to remove feldspar and quartz containing alkali components was classified, and limestone or dolomite, alumina component, or a Ranaru green body composition, each component By blending so as to contain at least 10% by weight or more with respect to 100% of the total weight, forming the base composition into a predetermined shape, and selecting the firing temperature in the range of 500 ° C to 1400 ° C and firing. Any pore diameter and pore volume can be selected in the range of nano to submicrometer.
The invention described in
In addition to the object of
請求項1及び2に記載の発明によれば、成形体を500〜1400℃の焼成幅で焼成条件を任意に変えて焼成することによって、ナノ〜サブマイクロメートル程度の範囲で任意に細孔径及び細孔容積を設計できる。また、アルミナ成分の添加によって焼成体の変形や歪も好適に抑制可能となる。さらに、微細組織が均質な多孔体となるので、耐熱衝撃性にも優れ、広範囲な産業分野に有用である。特に、請求項2に記載の発明では、ハイドロタルサイトの含有によって焼成温度の変化に対して比表面積が直線的に変化するため、白雲石系等に比べて細孔径及び細孔容積のコントロールが容易となる。
請求項3に記載の発明によれば、請求項1又は2の効果に加えて、微量のアルカリ系泥漿調整剤の添加により、CaO(MgO)−Al2O3−SiO2組成系の固相反応開始温度を低下させてより良質な多孔体が得られる。
According to the inventions described in
According to the invention described in claim 3, in addition to the effect of
本発明で使用する可塑性粘土は、木節粘土、蛙目粘土、カオリナイト質粘土、ボーキサイト質粘土、陶石質粘土及び各種人工粘土から1種以上が選択される。この可塑性粘土のアルカリ成分を含む長石類及び石英、必要に応じて雲母を、水簸又は工業的遠心分離機を用いて除去する。
一方、石灰及び苦土成分は、それらの水酸化物、炭酸塩、複塩類であっても良い。
そして、アルミナ成分は、多孔質Al2O3、水酸化物、炭酸基・アンモニウム基・水酸基からなる塩および複塩類から選ばれる1種以上であることが好ましい。The plastic clay used in the present invention is selected from at least one selected from Kibushi clay, Sasame clay, Kaolinite clay, bauxite clay, porcelain clay, and various artificial clays. The feldspar and quartz containing the alkali component of the plastic clay and, if necessary, mica are removed using a water tank or an industrial centrifuge.
On the other hand, lime and a bitter earth component may be those hydroxides, carbonates, and double salts.
The alumina component is preferably at least one selected from porous Al 2 O 3 , hydroxides, carbonates / ammonium groups / hydroxyl salts and double salts.
これらの各成分を夫々10重量%以上含有させて素地組成物を調合する。好ましくは、可塑性粘土を素地組成物に対して15〜70重量%、石灰石又は白雲石を素地組成物に対して15〜70重量%、アルミナ成分を素地組成物に対して15〜70重量%で夫々選択して調合する。
さらに、上記成分にハイドロタルサイトを加えて素地組成物を調合する場合は、ハイドロタルサイトを全体重量100%に対して5〜40重量%の範囲で含有させれば、細孔径及び細孔容積のコントロールに好適となる。また、アルカリ系泥漿調整剤としては水ガラス等が使用できる。
こうして調合された素地組成物を、500℃〜1400℃の範囲で焼成温度を選択して焼成することにより、ナノサイズからサブミクロンサイズ及びミクロンメーターサイズまでの任意の細孔径及び細孔容積のセラミック多孔体を得ることができる。
A base composition is prepared by containing 10% by weight or more of each of these components. Preferably, the plastic clay is 15 to 70% by weight with respect to the base composition, the limestone or dolomite is 15 to 70% by weight with respect to the base composition, and the alumina component is 15 to 70% by weight with respect to the base composition. Select and formulate each.
Further, when preparing a substrate composition by adding hydrotalcite to the above components , if the hydrotalcite is contained in the range of 5 to 40% by weight relative to the total weight of 100%, the pore diameter and pore volume It is suitable for the control. In addition, water glass or the like can be used as the alkaline slurry adjusting agent.
A ceramic having an arbitrary pore size and pore volume from nano size to sub-micron size and micrometer size is obtained by firing the prepared base composition by selecting a firing temperature in the range of 500 ° C. to 1400 ° C. A porous body can be obtained.
以下、本発明の実施例を説明する。 Examples of the present invention will be described below.
《石灰石系調合素地の焼成》
石灰石を16重量%、Al(OH)3を47重量%、カオリナイト質粘土を37重量%で素地を調合し、水ガラスを素地重量1000に対して3.0重量%で調整した泥漿鋳込み成形法でルツボ(高さ70mm×直径81.5mm)及び棒状試験体(10cm×直径2cm)を5本作成した。これを風乾燥後、電気炉内に設置して、図1に示す焼成曲線のように300℃まで加熱して1時間保持し、さらに昇温して設定温度に達した後に1時間保持後、自然放冷する形式で、600℃〜1400℃まで50℃毎に各温度で焼成した。その結果、焼成体のルツボ形状は1400℃まで十分に維持できた。<Baking of limestone compound base>
Mixing the substrate with 16% by weight of limestone, 47% by weight of Al (OH) 3 , 37% by weight of kaolinite clay, and adjusting the water glass to 3.0% by weight with respect to the substrate weight of 1000 Five crucibles (
《白雲石系調合素地の焼成》
白雲石を16重量%、Al(OH)3を47重量%、カオリナイト質粘土を37重量%で素地を調合し、水ガラスを素地重量1000に対して3.0重量%で調整した泥漿鋳込み成形法で実施例1と同様の棒状試験体に成形した。これを風乾燥後、電気炉内に設置して、実施例1と同様の形式で600℃〜1400℃まで50℃毎に各温度で焼成した。<Sintering of dolomite-based compound base>
A slurry casting with 16% by weight of dolomite, 47% by weight of Al (OH) 3 , 37% by weight of kaolinite clay, and water glass adjusted to 3.0% by weight with respect to the base weight of 1000. The same rod-shaped test body as in Example 1 was molded by the molding method. This was air-dried, placed in an electric furnace, and fired at 50 ° C. every 600 ° C. to 1400 ° C. in the same manner as in Example 1.
《ハイドロタルサイト調合素地の焼成(HT−1)》
石灰石を15重量%、Al(OH)3を37重量%、ハイドロタルサイトを10重量%、蛙目粘土を18重量%、木節粘土を20重量%で素地を調合し、水ガラスを素地重量1000に対して3.0重量%で調整した泥漿鋳込み成形法で実施例1と同様の棒状試験体に成形した。これを風乾燥後、電気炉内に設置して、実施例1と同様の形式で500℃〜1400℃まで100℃毎に各温度で焼成した。<< Baking of hydrotalcite preparation (HT-1) >>
Mix the substrate with 15% by weight of limestone, 37% by weight of Al (OH) 3 , 10% by weight of hydrotalcite, 18% by weight of clay, and 20% by weight of Kibushi clay. A rod-like test body similar to that of Example 1 was molded by a mud casting method adjusted to 3.0% by weight with respect to 1000. This was air-dried, then placed in an electric furnace and fired at 100 ° C. every 500 ° C. to 1400 ° C. in the same manner as in Example 1.
《ハイドロタルサイト調合素地の焼成(HT−2)》
石灰石を15重量%、Al(OH)3を27重量%、ハイドロタルサイトを20重量%、蛙目粘土を18重量%、木節粘土を20重量%で素地を調合し、水ガラスを素地重量1000に対して3.0重量%で調整した泥漿鋳込み成形法で実施例1と同様の棒状試験体に成形した。これを風乾燥後、電気炉内に設置して、実施例1と同様の形式で500℃〜1400℃まで100℃毎に各温度で焼成した。<< Firing of hydrotalcite preparation (HT-2) >>
Mix the substrate with 15% by weight of limestone, 27% by weight of Al (OH) 3 , 20% by weight of hydrotalcite, 18% by weight of clay, and 20% by weight of Kibushi clay. A rod-like test body similar to that of Example 1 was molded by a mud casting method adjusted to 3.0% by weight with respect to 1000. This was air-dried, then placed in an electric furnace and fired at 100 ° C. every 500 ° C. to 1400 ° C. in the same manner as in Example 1.
比較例1
木節粘土を100重量%用いて棒状試験体を成形し、乾燥後、電気炉で400℃、600℃、900℃、1000℃で夫々焼成した。
比較例2
調合された白雲陶磁器素地(カオリナイト質粘土分30%、ドロマイト30%、長石・石英40%)を成形し、乾燥後、700℃で素焼きした。得られた多孔質体は、原料基材の粒子間空隙を利用するためにμmオーダーの多孔体になる。
比較例3
Al(OH)3を90重量%以上、カオリナイト質粘土を10重量%以下で調合したアルミナ触媒担体(KHA−24、NKH3−24)が市販されている。これを900℃、1000℃で夫々焼成した。Comparative Example 1
A rod-shaped specimen was molded using 100% by weight of Kibushi clay, dried, and then fired in an electric furnace at 400 ° C., 600 ° C., 900 ° C., and 1000 ° C., respectively.
Comparative Example 2
The prepared white cloud ceramic body (
Comparative Example 3
Alumina catalyst supports (KHA-24, NKH3-24) in which Al (OH) 3 is blended at 90% by weight or more and kaolinitic clay at 10% by weight or less are commercially available. This was fired at 900 ° C. and 1000 ° C., respectively.
以下、上記実施例で得られた焼成体の評価を行った。
《収縮率及び3点曲げ強度》
上記実施例1の石灰石系素地焼成体、実施例2の白雲石系素地焼成体、および実施例3のHT−1素地焼成体についての焼成収縮の分析を行い評価した。
実施例1の石灰石系素地焼成体、実施例3のHT−1素地焼成体の3点曲げ強度の測定を行い評価した。
実施例1の石灰石系素地焼成体棒状試験体(600〜1400℃)、実施例2の白雲石系素地焼成体棒状試験体(600〜1400℃)、および実施例3のHT−1素地焼成体棒状試験体(500〜1100℃)の焼成収縮曲線を図2に示す。
また、実施例1の石灰石系素地焼成体(600〜1400℃)、実施例3のHT−1素地焼成体(500〜1100℃)の3点曲げ強度曲線を図3に示す。曲げ強度は少なくとも5MPa以上得られ、焼成温度800℃以上においては10MPa以上得られる特徴がある。また、この図2、図3より見かけ上3段階の固相反応があったと推定できる。Hereinafter, the fired bodies obtained in the above examples were evaluated.
<< Shrinkage and 3-point bending strength >>
The calcining shrinkage of the limestone-based fired body of Example 1 above, the dolomite-based fired body of Example 2, and the HT-1 green fired body of Example 3 was analyzed and evaluated.
The three-point bending strength of the limestone-based fired body of Example 1 and the HT-1 fired body of Example 3 was measured and evaluated.
Limestone-based green fired rod-shaped test body (600-1400 ° C.) of Example 1, dolomite-based green fired rod-shaped test body (600-1400 ° C.) of Example 2, and HT-1 green fired body of Example 3 FIG. 2 shows a firing shrinkage curve of the rod-shaped specimen (500 to 1100 ° C.).
3 shows the three-point bending strength curves of the limestone-based green fired body (600-1400 ° C.) of Example 1 and the HT-1 green fired body (500-1100 ° C.) of Example 3. The bending strength is at least 5 MPa or more, and is characterized in that 10 MPa or more can be obtained at a firing temperature of 800 ° C. or more. Moreover, it can be estimated from FIG. 2 and FIG.
《吸水率》
実施例1の石灰石系素地焼成体、実施例3のHT−1素地焼成体についての吸水率の測定を行い評価した。吸水率は、島津製作所社製 LIBROR ED−2000を用いて測定した。なお、測定に当っては、以下の手順で行った。
各試験体を2時間煮沸後タオルで拭って含水重量を測定し、その後各試験体を110℃で3時間乾燥させて乾燥重量を測定した。含水重量から乾燥重量を引き、乾燥重量で割り、100をかけた数値を吸水率とした。こうして得た実施例1の石灰石系素地焼成体(600〜1400℃)、実施例3のHT−1素地焼成体(500〜1100℃)の吸水率曲線を図4に示す。
この図4からも3段階の細孔容量の変化が認められる。500〜800℃の範囲では構成基礎素材が順次分解反応を起すため、発生ガスの起点の増加と発生ガスの膨張により気孔の数及び容積が増加していると推定できる。《Water absorption rate》
The water absorption rate of the limestone-based fired body of Example 1 and the HT-1 fired body of Example 3 was measured and evaluated. The water absorption was measured using LIBBROR ED-2000 manufactured by Shimadzu Corporation. The measurement was performed according to the following procedure.
Each specimen was boiled for 2 hours and then wiped with a towel to measure the moisture content, and then each specimen was dried at 110 ° C. for 3 hours to measure the dry weight. The dry weight was subtracted from the water content, divided by the dry weight, and a value obtained by multiplying by 100 was taken as the water absorption rate. FIG. 4 shows water absorption curves of the limestone-based fired body of Example 1 (600 to 1400 ° C.) and the HT-1 fired body of Example 3 (500 to 1100 ° C.) thus obtained.
FIG. 4 also shows a three-step change in pore volume. In the range of 500 to 800 ° C., the constituent basic materials sequentially undergo a decomposition reaction. Therefore, it can be estimated that the number and volume of pores are increased due to the increase of the starting point of the generated gas and the expansion of the generated gas.
なお、800−900℃での吸水率および焼成収縮率の低下傾向は、焼結反応の開始に伴う粒子間空隙の減少であり、粒子間の接点の増加は曲げ強度を増加させている。900−1200℃の範囲では焼結反応の進行に伴い、結晶粒の成長とナノ細孔の成長と合体が進行するため、見かけ上、焼成収縮率及び吸水率の減少は無いように表示されている。しかし、3点曲げ強度では1200℃付近で低下及び吸水率と焼成収縮率の増加傾向が認められることから、焼結反応の進行により細孔の合体現象の一面をこれら3つの指標で検知できる。1300−1400℃の範囲での現象は多数の結晶のうちの一部の溶融軟化が進行したためである。 In addition, the decreasing tendency of the water absorption rate and the firing shrinkage rate at 800 to 900 ° C. is a decrease in the interparticle void accompanying the start of the sintering reaction, and the increase in the contact point between the particles increases the bending strength. In the range of 900-1200 ° C, as the sintering reaction progresses, the growth of the crystal grains and the growth of the nanopores progress, so that it appears that there is no decrease in the firing shrinkage and water absorption. Yes. However, since the three-point bending strength decreases at around 1200 ° C. and increases in the water absorption rate and the firing shrinkage rate, one aspect of the pore coalescence phenomenon can be detected by the progress of the sintering reaction. The phenomenon in the range of 1300-1400 ° C. is due to the progress of melting and softening of some of the many crystals.
《X線粉末回折による同定》
実施例1の石灰石系素地焼成体、実施例3のHT−1素地焼成体のX線粉末回折による同定を行った。
実施例1の石灰石系素地焼成体及び実施例3のHT−1素地焼成体を粉砕し、粉末X線回折用試験粉とした。粉末X線回折図から求めた石灰石系素地焼成体(600〜1400℃)および、HT−1素地焼成体(500〜1400℃)の結晶相変遷をそれぞれ表3、表4に示す。<< Identification by X-ray powder diffraction >>
The limestone-based fired body of Example 1 and the HT-1 fired body of Example 3 were identified by X-ray powder diffraction.
The limestone-based fired body of Example 1 and the HT-1 fired body of Example 3 were pulverized to obtain a test powder for powder X-ray diffraction. Tables 3 and 4 show the crystal phase transitions of the limestone-based fired body (600 to 1400 ° C.) and the HT-1 fired body (500 to 1400 ° C.) determined from the powder X-ray diffraction pattern, respectively.
構成素材のCaCO3は750℃、(Mg,Ca)CO3は700℃前後で分解し、カオリナイト質粘土に微量混在したSiO2は850℃まで残存した。他の構成素材は500℃までに熱分解した。500℃以下で分解して生成した活性な多孔質Al2O3とカオリナイトの分解生成物のメタカオリナイトによる多孔質構造的骨格は形成されていると推察される。その中でもHydrotalciteはスピネル形成へ進行している。多孔質骨格へのMgO、CaOが反応してGehleniteそしてAnorthiteへと骨格表面反応で生成するのであろう。さらに、余剰のAl2O3成分は1100℃以上でα−Al2O3へ相転移をすることと思われる。この反応プロセスの結果、焼結反応は抑制されて多孔質骨格が高温1000℃以上でも維持されたのであろう。The constituent material CaCO 3 was decomposed at around 750 ° C., and (Mg, Ca) CO 3 was decomposed at around 700 ° C., and a small amount of SiO 2 mixed in kaolinitic clay remained up to 850 ° C. Other components were pyrolyzed to 500 ° C. It is presumed that a porous structural skeleton is formed by metakaolinite, which is a decomposition product of active porous Al 2 O 3 and kaolinite produced by decomposition at 500 ° C. or lower. Among them, Hydrotalcite is progressing to spinel formation. It is likely that MgO and CaO react with the porous skeleton to form Gehlenite and Anorthite by skeletal surface reaction. Furthermore, it is considered that the surplus Al 2 O 3 component undergoes a phase transition to α-Al 2 O 3 at 1100 ° C. or higher. As a result of this reaction process, the sintering reaction was suppressed and the porous skeleton was maintained even at a high temperature of 1000 ° C. or higher.
《BET比表面積の測定》
実施例1の石灰石系素地焼成体、実施例2の白雲石系素地焼成体、実施例3のHT−1素地焼成体、および実施例4のHT−2素地焼成体を粉砕後、窒素吸着法によるBET比表面積の測定を行った。
比較例1の木節粘土焼成体、比較例3のアルミナ触媒担体、実施例1の石灰石系素地焼成体、実施例2の白雲石系素地焼成体、実施例3のHT−1素地焼成体、および実施例4のHT−2素地焼成体についてBET比表面積を測定した結果を図5に示す。
このグラフより、実施例1〜4の900℃焼成体については30m2/g以上の比表面積が得られたことが示された。これにより各実施例はセラミックフィルタとして十分な細孔比表面積を持つといえる。
また、ハイドロタルサイトを調合したHT−1、HT−2は、同じくマグネシウムを含有する白雲石系と比べて、低温から高温まで比表面積のグラフが直線的に展開している。これは、白雲石系の構成素材のドロマイトが700℃前後で分解開始するのに対し、HT−1、HT−2の構成素材であるハイドロタルサイトが500℃以前で分解が開始していることに起因する。この結果HT−1、HT−2のグラフは1000℃前後でスピネルの生成が行われても直線的に変化する。これより、ハイドロタルサイトを添加すると白雲石系に比べて比表面積のコントロールがしやすい事が言える。<< Measurement of BET specific surface area >>
After pulverizing the limestone-based fired body of Example 1, the dolomite-based fired body of Example 2, the HT-1 green fired body of Example 3, and the HT-2 green fired body of Example 4, the nitrogen adsorption method The BET specific surface area was measured by
Kibushi clay fired body of Comparative Example 1, alumina catalyst carrier of Comparative Example 3, limestone-based fired body of Example 1, dolomite-based fired body of Example 2, HT-1 green fired body of Example 3, The results of measuring the BET specific surface area of the HT-2 green body of Example 4 are shown in FIG.
From this graph, it was shown that the specific surface area of 30 m < 2 > / g or more was obtained about the 900 degreeC sintered body of Examples 1-4. Accordingly, it can be said that each example has a sufficient pore specific surface area as a ceramic filter.
Further, HT-1 and HT-2 prepared by blending hydrotalcite linearly develop a specific surface area graph from a low temperature to a high temperature as compared with a dolomite system containing magnesium. This is because dolomite, a dolomite component material, starts to decompose at around 700 ° C, whereas hydrotalcite, the component material of HT-1, HT-2, starts to decompose before 500 ° C. caused by. As a result, the graphs of HT-1 and HT-2 change linearly even when spinel is generated around 1000 ° C. From this, it can be said that the addition of hydrotalcite makes it easier to control the specific surface area compared to the dolomite system.
《細孔容量と細孔径との関係》
さらに、前記データを基に実施例1の石灰石系素地焼成体、実施例2の白雲石系素地焼成体、実施例3のHT−1素地焼成体および実施例4のHT−2素地焼成体の各焼成温度における細孔容量と細孔径との関係を示した分布曲線を得た。
実施例1の石灰石系素地焼成体、実施例2の白雲石系素地焼成体、実施例3のHT−1素地焼成体、および実施例4のHT−2素地焼成体について、各焼成温度における細孔容量と細孔径分布曲線を、図6、図7、図8、図9に示す。
細孔径及び細孔容量は、島津製作所社製 トライスター300を用いて測定した。なお、測定にあたっては、粉末0.2gを12時間真空脱気したものを用いた。細孔容量及び細孔径は離脱側からBJHモデルに基づいて算出した。<Relationship between pore volume and pore diameter>
Furthermore, based on the data, the limestone-based fired body of Example 1, the dolomite-based fired body of Example 2, the HT-1 green fired body of Example 3, and the HT-2 green fired body of Example 4 A distribution curve showing the relationship between pore volume and pore diameter at each firing temperature was obtained.
For the limestone-based fired body of Example 1, the dolomite-based fired body of Example 2, the HT-1 green fired body of Example 3, and the HT-2 green fired body of Example 4, the fineness at each firing temperature. The pore volume and pore diameter distribution curves are shown in FIG. 6, FIG. 7, FIG. 8, and FIG.
The pore diameter and pore volume were measured using Tristar 300 manufactured by Shimadzu Corporation. In the measurement, 0.2 g of powder was vacuum degassed for 12 hours. The pore volume and pore diameter were calculated from the separation side based on the BJH model.
細孔形成と高温までの維持策(図6、図7、図8、図9参照)
本発明では、低温でカオリナイトとAl(OH)3の混合体の熱分解法で多孔化し、液相焼結の原因のSiO2−Na2O系のガラス相の生成を極力抑える調合で、低温から耐熱性を付与できる含アルカリ土類系の結晶を析出させて焼結進行を抑制して高温まで多孔体を維持することができる。
ナノ細孔の発生は低温熱分解物であり、分解後はカオリナイト、アルミナを中心とするAl−Si−O系に加わって耐熱性向上に寄与するアルカリ土類を含む結晶相を析出するようにした。X線回折の結果から、1000℃以下でカルシウムアルミノシリケートを含む各種結晶がAl−Si−O系の多孔質骨格付近で生成したために、細孔径分布のシャープさが900℃までは維持できたと推察される。さらに、MgO成分、Al2O3成分を添加することになるHydrotalciteは分解後、低温で耐熱性の良いスピネルが骨格細孔表面側で生成されることにより、多孔質骨格が維持されるために細孔径分布のシャープさが1100℃まで保持できたと推察できる。さらに図5の比表面積測定結果からは1300℃くらいまでは、多孔質骨格を形成している細孔は大きくなりながらも多孔質骨格は維持できていると推定した。Formation of pores and maintenance measures up to high temperature (see FIGS. 6, 7, 8, and 9)
In the present invention, the mixture is made porous by a pyrolysis method of a mixture of kaolinite and Al (OH) 3 at a low temperature, and suppresses generation of a SiO 2 —Na 2 O-based glass phase that causes liquid phase sintering as much as possible. The porous body can be maintained up to a high temperature by precipitating an alkali-containing earth-based crystal that can impart heat resistance from a low temperature to suppress the progress of sintering.
The generation of nanopores is a low-temperature pyrolyzate, and after decomposition, it is added to the Al-Si-O system centered on kaolinite and alumina to precipitate a crystalline phase containing alkaline earth that contributes to improving heat resistance. I made it. From the results of X-ray diffraction, it was inferred that the sharpness of the pore size distribution could be maintained up to 900 ° C. because various crystals containing calcium aluminosilicate were formed near the Al—Si—O porous skeleton at 1000 ° C. or less. Is done. Furthermore, since Hydrotalcite to which MgO component and Al 2 O 3 component are added is decomposed and spinel having good heat resistance at low temperature is generated on the surface side of the skeleton pores, the porous skeleton is maintained. It can be inferred that the sharpness of the pore size distribution could be maintained up to 1100 ° C. Furthermore, from the specific surface area measurement result of FIG. 5, it was estimated that the porous skeleton could be maintained while the pores forming the porous skeleton were enlarged up to about 1300 ° C.
なお、参考までに比較例1〜3における焼成体の細孔要領と細孔径との関係を図10〜12に夫々示す。
比較例1で得られた各焼成体において、nmオーダーの細孔径分布曲線は図10のようになるが、細孔容量および細孔分布曲線のシャープさもフィルタとして使用するには不充分で、焼成体の強度(5MPa以下)もフィルタとして使用するには不充分である。
比較例2のように熱分解物を多く含む基材としての白雲石を用いた素地焼成体では図11のようにnmオーダーの細孔を得ることができるが、その細孔容量は依然として不充分である。
比較例3の触媒担体は強度が不足し、圧縮強度も弱く、簡単に砕かれてしまうし、図12のように細孔分布曲線のシャープさも失われる。1000℃でα−Al2O3への相転移に伴う焼結により多孔性も失う。For reference, FIGS. 10 to 12 show the relationship between the pore procedure and the pore diameter of the fired bodies in Comparative Examples 1 to 3, respectively.
In each fired body obtained in Comparative Example 1, the pore size distribution curve on the order of nm is as shown in FIG. 10, but the sharpness of the pore volume and pore distribution curve is also insufficient for use as a filter. Body strength (5 MPa or less) is also insufficient for use as a filter.
As in Comparative Example 2, the base fired body using dolomite as a base material containing a large amount of pyrolyzate can obtain pores in the order of nm as shown in FIG. 11, but the pore capacity is still insufficient. It is.
The catalyst carrier of Comparative Example 3 has insufficient strength, low compressive strength, is easily crushed, and the sharpness of the pore distribution curve is lost as shown in FIG. Porosity is also lost by sintering accompanying the phase transition to α-Al 2 O 3 at 1000 ° C.
《耐熱衝撃試験》
実施例3のHT−1素地焼成体および実施例4のHT−2素地焼成体について耐熱衝撃試験を行った。
HT−1素地、HT−2素地をそれぞれ1200℃で焼成し、作成したルツボをガスバーナーで灼熱した後、水中へ投下したが破損はなかった。《Thermal shock test》
A thermal shock test was performed on the HT-1 green body of Example 3 and the HT-2 green body of Example 4.
The HT-1 substrate and HT-2 substrate were each fired at 1200 ° C., and the prepared crucible was heated with a gas burner and then dropped into water, but there was no damage.
《インクテスト》
実施例1で得た各温度焼成のルツボ(色調:白色)を、透明赤色インク(パイロット製商品番号:ink-350-R)に6分目まで投入し、15分観察した。以下に各温度での所見を示す。
(1)700℃焼成は、ただ表面がうっすらと湿るだけであり高台の下には湿気は転写されない。湿気はルツボの最上部に到達した。インク排除後、内壁には暗色で赤味を帯びたゲル状の物質があり、紙で拭き取ることはできた。内壁の色調は白色であった。
(2)800℃焼成は、インク投入後、湿気が現われ次第に上部へ拡大していく。10分後位に内側の液面以下の部分は見かけ上、淡黄色になった。高台の輪は一部濡れが確認できた。インク排除後、ルツボの内壁は700℃と同様の結果であるが、暗色の赤味のゲル状の染料を除去した後の、白色素地に淡黄色味を感じた。
(3)900℃焼成は投入後、湿りは表面に表われ、次第に上昇し水面下の部分から淡黄色に変化し、これも上部へ上昇する。更に14分位から少し桃色味を帯びた。高台は完全に濡れた状態となり、淡々桃色を帯びた。インク排除後、ルツボの内面は暗赤色の染料を除去できたが、その後の白色素地は淡黄色が強くなった。
(4)1200℃では、インク投入後1分位で桃色味を帯び、水面以上に上昇していく。10分位で桃色は上部に到達するが、最上部から5mm位で上昇は止まる。残りの上部は淡黄色となった。高台跡はインク色となった。インク排除後のルツボの内面と焼成素地は同一の色調の桃色であった。これらのインクテスト結果を模式的に示すと図13の様になる。<Ink Test>
Each temperature-fired crucible (color tone: white) obtained in Example 1 was put into a transparent red ink (Pilot product number: ink-350-R) up to the sixth minute and observed for 15 minutes. The findings at each temperature are shown below.
(1) The baking at 700 ° C. only moistens the surface, and moisture is not transferred under the hill. Moisture reached the top of the crucible. After the ink was removed, the inner wall had a dark, reddish gel-like substance that could be wiped off with paper. The color of the inner wall was white.
(2) In the baking at 800 ° C., after the ink is introduced, the moisture gradually expands upward as the moisture appears. About 10 minutes later, the portion below the inner liquid surface was apparently light yellow. The hills were partially wet. After the ink was removed, the inner wall of the crucible had the same result as at 700 ° C., but after removing the dark reddish gel-like dye, a light yellow color was felt on the white pigment background.
(3) After firing at 900 ° C., the wetness appears on the surface, gradually rises and changes from a portion below the water surface to light yellow, and this also rises upward. Furthermore, it became a little pinkish from about 14 minutes. The hills were completely wet and lightly pink. After ink removal, the inner surface of the crucible was able to remove the dark red dye, but the subsequent white pigment background became light yellow.
(4) At 1200 ° C., it becomes pinkish in about one minute after the ink is added and rises above the water surface. In about 10 minutes, pink reaches the top, but the rise stops at about 5 mm from the top. The remaining upper part became pale yellow. The plateau was ink-colored. After the ink was removed, the inner surface of the crucible and the firing base were pink with the same color. These ink test results are schematically shown in FIG.
所見の結果これらの実験から、特に動的な動きとして、水分が先に透過拡散し、後に水に分散した微細な淡黄色染料が続き、μmオーダーの赤色染料が細孔の中を移動することが推定される。
一方、900℃くらいまで高台跡が濡れないことから、水の透過は900℃位までは発生しない。水分子あるいは数個の水分子(クラスター)の移動は毛細管凝縮現象で、次に水に分散したsubμmの染料の微細粒子がμm細孔径へ水とともに移動上昇する毛細管現象が確認できた。As a result of these observations, it can be seen from these experiments that, as a dynamic movement, moisture permeates and diffuses first, followed by a fine pale yellow dye dispersed in water, and a red dye of μm order moves through the pores. Is estimated.
On the other hand, since the hills do not get wet up to about 900 ° C., water permeation does not occur up to about 900 ° C. The movement of water molecules or several water molecules (clusters) was a capillary condensation phenomenon, and then the capillary phenomenon in which fine particles of sub-μm dye dispersed in water moved up with the water to the μm pore diameter was confirmed.
1200℃焼成ルツボのインクテスト後の洗浄は、水中につけると長時間かかるが、桃色ルツボを水面に浮かせると12時間くらい浮遊し、内面側だけ桃色になった。3回くらいの同様の手順で洗浄できた。これは節水型の洗浄方法を見出せた。内面と外面のレベルが同じになる間は、外面側に染料粒子はでないようであった。これをフイルターとして利用すれば逆洗浄の可能性を示している。 Cleaning after a 1200 ° C firing crucible after the ink test took a long time when immersed in water, but when the pink crucible was floated on the surface of the water, it floated for about 12 hours and became pink only on the inner surface side. It was washed in the same procedure about 3 times. This found a water-saving cleaning method. While the inner and outer surface levels were the same, there seemed to be no dye particles on the outer surface side. If this is used as a filter, the possibility of backwashing is shown.
Al(OH)3、蛙目粘土、石灰石を、表5に示す001〜006の6パターンの割合で素地を調合し、泥漿鋳込み成形法で実施例1と同様の棒状試験体に成形した。これを風乾燥後、電気炉内に設置して、700℃、900℃、1100℃の各温度で焼成した。各焼成体の収縮率及び吸水率の測定結果、耐熱衝撃試験の結果を表6に示す。Al (OH) 3 , Sakaime clay, and limestone were mixed at a ratio of 6 patterns 001 to 006 shown in Table 5 and molded into a rod-like test body similar to that of Example 1 by a mud casting method. This was air-dried, placed in an electric furnace, and fired at temperatures of 700 ° C., 900 ° C., and 1100 ° C. Table 6 shows the measurement results of the shrinkage rate and water absorption rate of each fired body and the results of the thermal shock test.
表6より、収縮率では、001,002,005,006は何れも各温度で10%を下回り(特に001,005では各温度で8%以下)、吸水率では、001,002,005,006が何れも各温度で20%を超えており、多孔体として好適に利用できることが明らかである。001,003,004,006については、焼成温度によっては性能が他よりも落ちるものがあるが、調合自体は実際に採用できる範囲と言える。
このように、本発明の製造方法によれば、3成分のうちの一部が10重量%で調合される場合でも多孔体として所望の性能が得られることがわかる。From Table 6, 001, 002, 005, 006 are all less than 10% at each temperature (especially, 001, 005 is 8% or less at each temperature), and the water absorption is 001, 002, 005, 006. Is over 20% at each temperature, and it is clear that it can be suitably used as a porous body. With regard to 001,003,004,006, the performance may be lower than others depending on the firing temperature, but the formulation itself can be said to be a practical range.
As described above, according to the production method of the present invention, it is understood that desired performance can be obtained as a porous body even when a part of the three components is blended at 10% by weight.
本発明にかかるセラミックフィルタ用多孔体は、セラミックフィルタ、耐熱反応容器、耐熱衝撃性セラミックス、軽量セラミック建材、調湿建材、軽量陶器、大形軽量セラミックス(衛生陶器、燃焼用器具等)、軽量骨材、ガス反応用触媒担体、ガス拡散分離膜、ガス分離膜、逆洗浄可能なセラミックフィルタ、イオン交換用セラミック膜、微生物ろ過器、医療用ろ過器、食品加工用各種フィルタ、などの産業分野に対し、安価な製造法と多様な形状、高い強度、耐熱性、耐化学性での活用を可能とする。
The porous body for a ceramic filter according to the present invention includes a ceramic filter, a heat-resistant reaction vessel, a heat-resistant impact ceramic, a lightweight ceramic building material, a moisture-conditioning building material, a lightweight ceramic, a large lightweight ceramic (such as sanitary ware, a combustion appliance), a lightweight bone In industrial fields such as materials, catalyst carriers for gas reactions, gas diffusion separation membranes, gas separation membranes, ceramic filters that can be back-washed, ceramic membranes for ion exchange, microbial filters, medical filters, and various filters for food processing On the other hand, it is possible to use inexpensive manufacturing methods and various shapes, high strength, heat resistance, and chemical resistance.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007523409A JP5255836B2 (en) | 2005-07-06 | 2006-06-21 | Method for producing ceramic porous body |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005197540 | 2005-07-06 | ||
JP2005197540 | 2005-07-06 | ||
JP2007523409A JP5255836B2 (en) | 2005-07-06 | 2006-06-21 | Method for producing ceramic porous body |
PCT/JP2006/312417 WO2007004424A1 (en) | 2005-07-06 | 2006-06-21 | Method for producing ceramic porous article |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2007004424A1 JPWO2007004424A1 (en) | 2009-01-22 |
JP5255836B2 true JP5255836B2 (en) | 2013-08-07 |
Family
ID=37604296
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007523409A Active JP5255836B2 (en) | 2005-07-06 | 2006-06-21 | Method for producing ceramic porous body |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP5255836B2 (en) |
KR (1) | KR101281569B1 (en) |
CN (1) | CN101218190B (en) |
WO (1) | WO2007004424A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11931726B2 (en) | 2018-09-11 | 2024-03-19 | Tokyo Metropolitan University | Gold-supporting catalyst |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101458661B1 (en) * | 2007-12-28 | 2014-11-05 | 도다 고교 가부시끼가이샤 | Molded porous article, method for production thereof, catalyst carrier, and catalyst |
CN101830729B (en) * | 2010-06-21 | 2012-06-27 | 中国建筑股份有限公司 | Porous ceramic filter and preparation method thereof |
KR101546240B1 (en) * | 2012-10-30 | 2015-08-27 | (주)엘지하우시스 | Antimicrobial porous ceramic tile and method of manufacturing the same |
CN103725053A (en) * | 2013-12-12 | 2014-04-16 | 江西恒大高新技术股份有限公司 | Novel boiler-dedicated overtemperature resistant paint |
JP6360402B2 (en) * | 2014-09-26 | 2018-07-18 | 三井金属鉱業株式会社 | Method for producing porous ceramics |
US10412677B2 (en) | 2015-04-09 | 2019-09-10 | Lg Electronics Inc. | Method and device for an enhanced distributed channel access (EDCA) transmission |
US11035048B2 (en) | 2017-07-05 | 2021-06-15 | Macdermid Enthone Inc. | Cobalt filling of interconnects |
JP6408678B1 (en) * | 2017-10-25 | 2018-10-17 | 黒崎播磨株式会社 | Hot dry spray material and hot dry spray construction method |
CN110876494B (en) * | 2019-11-26 | 2021-10-01 | 深圳麦克韦尔科技有限公司 | Atomizer, ceramic atomizing core thereof and preparation method of ceramic atomizing core |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63107876A (en) * | 1986-10-24 | 1988-05-12 | 株式会社イナックス | Gas permeable porous body and manufacture |
JPH034913A (en) * | 1989-05-31 | 1991-01-10 | Fuji Kikoo Kk | Ceramic filter medium and its manufacture |
JPH0717757A (en) * | 1993-06-30 | 1995-01-20 | Takasago Ind Co Ltd | Production of sintered compact using incineration ash |
JPH09286875A (en) * | 1996-04-23 | 1997-11-04 | Chisso Corp | Expanded refractory |
JP2000327398A (en) * | 1999-05-20 | 2000-11-28 | Toagosei Co Ltd | Hardenable composition |
JP2002249372A (en) * | 2001-02-21 | 2002-09-06 | National Institute Of Advanced Industrial & Technology | Method for producing alumina-based building material having autonomous humidity control function |
WO2003093197A1 (en) * | 2002-04-28 | 2003-11-13 | Masafumi Koide | Porous ceramic and method for production thereof |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3786230B2 (en) * | 1997-06-19 | 2006-06-14 | 独立行政法人産業技術総合研究所 | Manufacturing method of alumina humidity conditioning material |
JP2001226172A (en) * | 2000-02-18 | 2001-08-21 | Mizusawa Ind Chem Ltd | Alumina-based formed body |
JP3997929B2 (en) * | 2003-02-26 | 2007-10-24 | 滋賀県 | Ceramic porous body |
JP4056921B2 (en) * | 2003-04-08 | 2008-03-05 | 株式会社Inax | Method for producing Minamata clay and Sakai clay |
-
2006
- 2006-06-21 KR KR1020087003040A patent/KR101281569B1/en active Active
- 2006-06-21 WO PCT/JP2006/312417 patent/WO2007004424A1/en active Application Filing
- 2006-06-21 CN CN2006800245144A patent/CN101218190B/en active Active
- 2006-06-21 JP JP2007523409A patent/JP5255836B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63107876A (en) * | 1986-10-24 | 1988-05-12 | 株式会社イナックス | Gas permeable porous body and manufacture |
JPH034913A (en) * | 1989-05-31 | 1991-01-10 | Fuji Kikoo Kk | Ceramic filter medium and its manufacture |
JPH0717757A (en) * | 1993-06-30 | 1995-01-20 | Takasago Ind Co Ltd | Production of sintered compact using incineration ash |
JPH09286875A (en) * | 1996-04-23 | 1997-11-04 | Chisso Corp | Expanded refractory |
JP2000327398A (en) * | 1999-05-20 | 2000-11-28 | Toagosei Co Ltd | Hardenable composition |
JP2002249372A (en) * | 2001-02-21 | 2002-09-06 | National Institute Of Advanced Industrial & Technology | Method for producing alumina-based building material having autonomous humidity control function |
WO2003093197A1 (en) * | 2002-04-28 | 2003-11-13 | Masafumi Koide | Porous ceramic and method for production thereof |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11931726B2 (en) | 2018-09-11 | 2024-03-19 | Tokyo Metropolitan University | Gold-supporting catalyst |
Also Published As
Publication number | Publication date |
---|---|
KR101281569B1 (en) | 2013-07-03 |
CN101218190B (en) | 2013-01-30 |
KR20080044237A (en) | 2008-05-20 |
JPWO2007004424A1 (en) | 2009-01-22 |
CN101218190A (en) | 2008-07-09 |
WO2007004424A1 (en) | 2007-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5255836B2 (en) | Method for producing ceramic porous body | |
Almandoz et al. | Composite ceramic membranes from natural aluminosilicates for microfiltration applications | |
CN101795996B (en) | Porous ceramic bodies and process for their preparation | |
Sglavo et al. | Bauxite ‘red mud’in the ceramic industry. Part 2: production of clay-based ceramics | |
Obada et al. | Potentials of fabricating porous ceramic bodies from kaolin for catalytic substrate applications | |
Juettner et al. | Structure of kaoline–alumina based foam ceramics for high temperature applications | |
Kim et al. | Processing and properties of glass-bonded silicon carbide membrane supports | |
Akpinar et al. | Effect of calcined colemanite additions on properties of hard porcelain body | |
Kaur et al. | Preparation of kaolin-based low-cost porous ceramic supports using different amounts of carbonates | |
Zaichuk et al. | Radio-transparent ceramic materials of spodumene-cordierite composition | |
Mukhopadhyay et al. | Microstructure and thermo mechanical properties of a talc doped stoneware composition containing illitic clay | |
US3312558A (en) | Calcium hexaluminate articles | |
JP4966596B2 (en) | Ceramic substrate and ceramic fired body | |
JP2006131489A (en) | Tile, method for producing the same and tile raw material | |
Wu et al. | Synthesis of refractory cordierite from calcined bauxite, talcum and quartz | |
Li et al. | Effect of sepiolite fibers addition on sintering behavior of sanitary bodies | |
Bhattacharyya et al. | Effect of titania on fired characteristics of triaxial porcelain | |
JP4392460B1 (en) | Calcium phosphate porous material with low residual amount of aromatic hydrocarbon | |
Terzić et al. | Effects of mechanical-activation and TiO2 addition on the behavior of two-step sintered steatite ceramics | |
KR101693077B1 (en) | Low-Thermal-Expansion Ceramic Ware | |
Mahnicka et al. | Influence of kaolin and firing temperature on the mullite formation in porous mullite-corundum materials | |
Ebadzadeh | Reaction sintering of multicomponent mixtures for producing ceramics containing zirconia | |
Rundans et al. | Development of cordierite ceramics from natural raw materials | |
Snehesh | Effect of some transition metal oxide additives on the fired properties of tri-axial ceramics | |
Mukhopadhyay et al. | Effect of synthetic mullite aggregate on clay-based sol-bonded castable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20090528 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090601 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120501 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120529 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20121030 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121217 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130422 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5255836 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160426 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |