[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP5003081B2 - Photosensitive siloxane composition, cured film formed therefrom, and device having cured film - Google Patents

Photosensitive siloxane composition, cured film formed therefrom, and device having cured film Download PDF

Info

Publication number
JP5003081B2
JP5003081B2 JP2006260155A JP2006260155A JP5003081B2 JP 5003081 B2 JP5003081 B2 JP 5003081B2 JP 2006260155 A JP2006260155 A JP 2006260155A JP 2006260155 A JP2006260155 A JP 2006260155A JP 5003081 B2 JP5003081 B2 JP 5003081B2
Authority
JP
Japan
Prior art keywords
group
polysiloxane
carbon atoms
compound
hydroxyl group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006260155A
Other languages
Japanese (ja)
Other versions
JP2007122029A (en
JP2007122029A5 (en
Inventor
将秀 妹尾
弘和 飯森
充史 諏訪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2006260155A priority Critical patent/JP5003081B2/en
Publication of JP2007122029A publication Critical patent/JP2007122029A/en
Publication of JP2007122029A5 publication Critical patent/JP2007122029A5/ja
Application granted granted Critical
Publication of JP5003081B2 publication Critical patent/JP5003081B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Materials For Photolithography (AREA)

Description

本発明は、液晶表示素子や有機EL表示素子などの薄膜トランジスタ(TFT)基板用平坦化膜、半導体素子の層間絶縁膜、あるいは光導波路のコアやクラッド材を形成するための感光性シロキサン組成物、それから形成された硬化膜、およびその硬化膜を有する素子に関する。   The present invention relates to a photosensitive siloxane composition for forming a planarization film for a thin film transistor (TFT) substrate such as a liquid crystal display element or an organic EL display element, an interlayer insulating film of a semiconductor element, or a core or cladding material of an optical waveguide, The present invention relates to a cured film formed therefrom and an element having the cured film.

近年、液晶ディスプレイや有機ELディスプレイなどにおいて、さらなる高精細、高解像度を実現する方法として、表示装置の開口率を上げる方法が知られている(特許文献1参照)。これは、透明な平坦化膜をTFT基板の上部に保護膜として設けることによって、データラインと画素電極をオーバーラップさせることを可能とし、従来技術に比べて開口率を上げる方法である。   In recent years, a method for increasing the aperture ratio of a display device is known as a method for realizing higher definition and higher resolution in a liquid crystal display, an organic EL display, and the like (see Patent Document 1). This is a method in which the data line and the pixel electrode can be overlapped by providing a transparent flattening film as a protective film on the TFT substrate, and the aperture ratio is increased as compared with the prior art.

このようなTFT基板用平坦化膜の材料としては、高耐熱性、高透明性、低誘電率性を併せ持つ材料が必要であり、従来はフェノール系樹脂とキノンジアジド化合物を組み合わせた材料(特許文献2参照)、あるいはアクリル系樹脂とキノンジアジド化合物を組み合わせた材料(特許文献3、4参照)がある。しかしながら、これらの材料は耐熱性が不十分であり、基板の高温処理により硬化膜は着色して透明性が低下するという問題がある。   As a material for such a flattening film for a TFT substrate, a material having both high heat resistance, high transparency, and low dielectric constant is required. Conventionally, a material in which a phenolic resin and a quinonediazide compound are combined (Patent Document 2). Reference), or a material in which an acrylic resin and a quinonediazide compound are combined (see Patent Documents 3 and 4). However, these materials have insufficient heat resistance, and there is a problem that the cured film is colored by the high temperature treatment of the substrate and the transparency is lowered.

一方、高耐熱性、高透明性、低誘電率性を併せ持つ材料としてポリシロキサンが知られている。ポリシロキサンにポジ型の感光性を付与するためにキノンジアジド化合物を組み合わせた系としては、フェノール性水酸基を末端に有するポリシロキサンとキノンジアジド化合物とを組み合わせた材料(特許文献5参照)が知られている。しかし、この材料はキノンジアジド化合物の含有量が多く、ポリシロキサン中にフェノール性水酸基が存在するため、塗布膜の白化や熱硬化膜の着色が起こりやすく、高透明性の膜を得ることはできない。また、その他の材料として、オキシラン環を有するアルコキシシランから合成されるポリシロキサンとキノンジアジド化合物とを組み合わせた材料(特許文献6参照)が知られている。しかし、この材料は高透明性の膜を得ることができるが、パターン解像度が十分ではなかった。
特開平9−152625号公報(請求項1) 特開平7−98502号公報(請求項1、2) 特開平10−153854号公報(請求項1) 特開2001−281853号公報(請求項1) 特開2003−255546号公報(請求項1) 特開平3−288857号公報(請求項2)
On the other hand, polysiloxane is known as a material having both high heat resistance, high transparency, and low dielectric constant. As a system combining a quinonediazide compound in order to impart positive photosensitivity to polysiloxane, a material combining a polysiloxane having a phenolic hydroxyl group at the terminal and a quinonediazide compound is known (see Patent Document 5). . However, since this material has a high content of quinonediazide compounds and a phenolic hydroxyl group is present in the polysiloxane, whitening of the coating film and coloring of the thermosetting film are likely to occur, and a highly transparent film cannot be obtained. As another material, a material (see Patent Document 6) in which a polysiloxane synthesized from an alkoxysilane having an oxirane ring and a quinonediazide compound is combined is known. However, this material can obtain a highly transparent film, but the pattern resolution is not sufficient.
JP-A-9-152625 (Claim 1) JP-A-7-98502 (Claims 1, 2) JP-A-10-153854 (Claim 1) JP 2001-281853 A (Claim 1) JP 2003-255546 A (Claim 1) JP-A-3-288857 (Claim 2)

本発明は、上述のような事情に基づいてなされたものであり、高耐熱性、高透明性、低誘電率性を併せ持ち、かつ良好な解像度のパターンを有する硬化膜を得ることができる感光性シロキサン組成物を提供するものである。また、本発明の別の目的は、上記の感光性シロキサン組成物から形成されたTFT基板用平坦化膜、層間絶縁膜、コアやクラッド材などの硬化膜、およびその硬化膜を有する表示素子、半導体素子、光導波路などの素子を提供する。   The present invention has been made based on the circumstances as described above, and has a high heat resistance, a high transparency, a low dielectric constant, and a photosensitivity capable of obtaining a cured film having a good resolution pattern. A siloxane composition is provided. Another object of the present invention is to provide a planarized film for a TFT substrate formed from the above photosensitive siloxane composition, an interlayer insulating film, a cured film such as a core or a clad material, and a display element having the cured film, An element such as a semiconductor element or an optical waveguide is provided.


すなわち本発明は、(a)アルコール性水酸基を含有するがフェノール性水酸基を含有しないポリシロキサン、(b)キノンジアジド化合物、(c)溶剤、(d)架橋性化合物を含有し、(d)架橋性化合物がポリシロキサン中のアルコール性水酸基と反応することで、ポリシロキサンが架橋する化合物である感光性シロキサン組成物である。

That is, the present invention comprises (a) a polysiloxane containing an alcoholic hydroxyl group but not containing a phenolic hydroxyl group , (b) a quinonediazide compound, (c) a solvent, (d) a crosslinkable compound, and (d) a crosslinkable compound. It is a photosensitive siloxane composition which is a compound in which polysiloxane crosslinks by reacting with an alcoholic hydroxyl group in polysiloxane.

本発明の感光性シロキサン組成物によれば、高耐熱性、高透明性、低誘電率性を併せ持ち、かつ良好な解像度のパターンを有する硬化膜を得ることができる。また、得られた硬化膜は、TFT基板用平坦化膜や層間絶縁膜として好適に用いることができる。   According to the photosensitive siloxane composition of the present invention, a cured film having a combination of high heat resistance, high transparency, and low dielectric constant, and having a good resolution pattern can be obtained. Further, the obtained cured film can be suitably used as a planarizing film for TFT substrate or an interlayer insulating film.


本発明の感光性シロキサン組成物は、(a)アルコール性水酸基を含有するがフェノール性水酸基を含有しないポリシロキサンを含有する。ポリシロキサンはアルカリ可溶性基であるシラノール基同士が縮合することによって合成されるので、縮合が進みポリマー分子量が高くなるにつれて、アルカリ溶解性は低下する。一方、ポリシロキサン中に親水性基であるアルコール性水酸基が存在すると、存在しないポリシロキサンと比べて、同じポリマー分子量でもアルカリ溶解性は高くなる。言い換えれば、同じアルカリ溶解性だと、アルコール性水酸基が存在するポリマーの方が、存在しないポリシロキサンよりポリマー分子量は高くなる。ポリマー分子量が高いと熱硬化時のパターンだれが起こりにくくなり、パターン解像度は向上する。さらに、本発明は(d)架橋性化合物を含有している。この架橋性化合物はポリシロキサン中のアルコール性水酸基と反応することによって、ポリシロキサンを架橋するものである。ポリシロキサンが架橋されることによって、さらなるパターン解像度の向上が可能となる。

The photosensitive siloxane composition of the present invention contains (a) a polysiloxane that contains an alcoholic hydroxyl group but does not contain a phenolic hydroxyl group . Since polysiloxane is synthesized by the condensation of silanol groups, which are alkali-soluble groups, the alkali solubility decreases as the condensation proceeds and the polymer molecular weight increases. On the other hand, when an alcoholic hydroxyl group, which is a hydrophilic group, is present in the polysiloxane, the alkali solubility becomes high even with the same polymer molecular weight as compared to the polysiloxane that does not exist. In other words, if the alkali solubility is the same, a polymer having an alcoholic hydroxyl group has a higher polymer molecular weight than a non-existing polysiloxane. When the polymer molecular weight is high, pattern distortion during heat curing hardly occurs, and the pattern resolution is improved. Furthermore, the present invention contains (d) a crosslinkable compound. This crosslinkable compound crosslinks the polysiloxane by reacting with an alcoholic hydroxyl group in the polysiloxane. By cross-linking the polysiloxane, the pattern resolution can be further improved.


本発明で用いるアルコール性水酸基を含有するがフェノール性水酸基を含有しないポリシロキサンは特に制限されないが、好ましくは一般式(1)で表されるオルガノシランの1種以上を少なくとも含むモノマーを反応させることによって合成され、得られたものが良い。

The polysiloxane containing an alcoholic hydroxyl group but not containing a phenolic hydroxyl group used in the present invention is not particularly limited, but preferably a monomer containing at least one organosilane represented by the general formula (1) is reacted. The one obtained by synthesis is good.

Figure 0005003081
Figure 0005003081


式中、Rはアルコール性水酸基、エポキシ構造、またはオキセタン構造を有する炭素数1〜15の有機基を表し、複数のRはそれぞれ同じでも異なっていてもよい。Rは水素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数6〜15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。Rは水素、炭素数1〜6のアルキル基、炭素数2〜6のアシル基、炭素数6〜15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。nは1から3の整数、mは0から2の整数を表す。ただし、n+mは1から3の整数である

In the formula, R 1 represents an organic group having 1 to 15 carbon atoms having an alcoholic hydroxyl group, an epoxy structure, or an oxetane structure, and a plurality of R 1 may be the same or different. R 2 represents any one of hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 2 may be the same or different. . R 3 represents any one of hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 3 may be the same or different. . n represents an integer of 1 to 3, and m represents an integer of 0 to 2. However, n + m is an integer of 1 to 3 .

一般式(1)で表されるオルガノシランにおいて、Rは、アルコール性水酸基、エポキシ構造、またはオキセタン構造を有する炭素数1〜15の有機基を表し、複数のRはそれぞれ同じでも異なっていてもよい。また、これらの有機基はいずれも無置換体、置換体のどちらでもよく、組成物の特性に応じて選択できる。具体例としては、ヒドロキシメチル基、2−ヒドロキシエチル基、3−ヒドロキシプロピル基などのアルコール性水酸基を有する有機基、3−グリシドキシプロピル基、2−(3,4−エポキシシクロヘキシル)エチル基などのエポキシ構造を有する有機基、〔(3−エチル−3−オキセタニル)メトキシ〕プロピル基などのオキセタン構造を有する有機基が挙げられる。 In the organosilane represented by the general formula (1), R 1 represents an organic group having 1 to 15 carbon atoms having an alcoholic hydroxyl group, an epoxy structure, or an oxetane structure, and the plurality of R 1 are the same or different. May be. These organic groups may be either unsubstituted or substituted, and can be selected according to the characteristics of the composition. Specific examples include an organic group having an alcoholic hydroxyl group such as a hydroxymethyl group, a 2-hydroxyethyl group, and a 3-hydroxypropyl group, a 3-glycidoxypropyl group, and a 2- (3,4-epoxycyclohexyl) ethyl group. And organic groups having an oxetane structure such as an [(3-ethyl-3-oxetanyl) methoxy] propyl group.

一般式(1)のRは、水素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数6〜15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。また、これらのアルキル基、アルケニル基、アリール基はいずれも無置換体、置換体のどちらでもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、n−ヘキシル基、n−デシル基、トリフルオロメチル基、3,3,3−トリフルオロプロピル基、3−アミノプロピル基、3−メルカプトプロピル基、3−イソシアネートプロピル基が挙げられる。アルケニル基の具体例としては、ビニル基、3−アクリロキシプロピル基、3−メタクリロキシプロピル基が挙げられる。アリール基の具体例としては、フェニル基、トリル基、ナフチル基が挙げられる。 R 2 in the general formula (1) is hydrogen, alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, or an aryl group having 6 to 15 carbon atoms, plural R 2 s are each It can be the same or different. These alkyl groups, alkenyl groups, and aryl groups may be either unsubstituted or substituted, and can be selected according to the characteristics of the composition. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-hexyl group, n-decyl group, trifluoromethyl group, 3, 3 , 3-trifluoropropyl group, 3-aminopropyl group, 3-mercaptopropyl group, 3-isocyanatopropyl group. Specific examples of the alkenyl group include a vinyl group, a 3-acryloxypropyl group, and a 3-methacryloxypropyl group. Specific examples of the aryl group include a phenyl group, a tolyl group, and a naphthyl group.

一般式(1)のRは水素、炭素数1〜6のアルキル基、炭素数2〜6のアシル基、炭素数6〜15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。また、これらのアルキル基、アシル基、アリール基はいずれも無置換体、置換体のどちらでもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基が挙げられる。アシル基の具体例としては、アセチル基が挙げられる。アリール基の具体例としては、フェニル基が挙げられる。 R 3 in the general formula (1) represents any one of hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 3 are the same. But it can be different. These alkyl groups, acyl groups and aryl groups may be either unsubstituted or substituted, and can be selected according to the characteristics of the composition. Specific examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. Specific examples of the acyl group include an acetyl group. Specific examples of the aryl group include a phenyl group.

一般式(1)のnは1から3の整数、mは0から2の整数を表す。ただし、n+mは1から3の整数である。n+m=1の場合は3官能性シラン、n+m=2の場合は2官能性シラン、n+m=3の場合は1官能性シランである。   In the general formula (1), n represents an integer of 1 to 3, and m represents an integer of 0 to 2. However, n + m is an integer of 1 to 3. When n + m = 1, it is a trifunctional silane, when n + m = 2, it is a bifunctional silane, and when n + m = 3, it is a monofunctional silane.

一般式(1)で表されるオルガノシランの具体例としては、ヒドロキシメチルトリメトキシシラン、ヒドロキシメチルトリエトキシシラン、2−ヒドロキシエチルトリメトキシシラン、3−ヒドロキシプロピルトリメトキシシラン、3−ヒドロキシプロピルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルトリエトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、2−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、〔(3−エチル−3−オキセタニル)メトキシ〕プロピルトリメトキシシラン、〔(3−エチル−3−オキセタニル)メトキシ〕プロピルトリエトキシシランなどの3官能性シラン、3−ヒドロキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、〔(3−エチル−3−オキセタニル)メトキシ〕プロピルメチルジメトキシシランなどの2官能性シラン、3−ヒドロキシプロピルジメチルメトキシシラン、3−グリシドキシプロピルジメチルメトキシシラン、3−グリシドキシプロピルジメチルエトキシシラン、〔(3−エチル−3−オキセタニル)メトキシ〕プロピルジメチルメトキシシランなどの1官能性シランが挙げられる。なお、これらのオルガノシランは単独で使用しても、2種以上を組み合わせて使用してもよい。これらのオルガノシランの中でも、硬化膜の耐クラック性と硬度の点から3官能性シランが好ましく用いられる。   Specific examples of the organosilane represented by the general formula (1) include hydroxymethyltrimethoxysilane, hydroxymethyltriethoxysilane, 2-hydroxyethyltrimethoxysilane, 3-hydroxypropyltrimethoxysilane, and 3-hydroxypropyltrimethoxysilane. Ethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltri Trifunctional silanes such as ethoxysilane, [(3-ethyl-3-oxetanyl) methoxy] propyltrimethoxysilane, [(3-ethyl-3-oxetanyl) methoxy] propyltriethoxysilane, 3-hydroxypropylmethyldimethoxy Bifunctional silanes such as silane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, [(3-ethyl-3-oxetanyl) methoxy] propylmethyldimethoxysilane, 3-hydroxypropyl And monofunctional silanes such as dimethylmethoxysilane, 3-glycidoxypropyldimethylmethoxysilane, 3-glycidoxypropyldimethylethoxysilane, and [(3-ethyl-3-oxetanyl) methoxy] propyldimethylmethoxysilane. These organosilanes may be used alone or in combination of two or more. Among these organosilanes, trifunctional silanes are preferably used from the viewpoint of crack resistance and hardness of the cured film.


アルコール性水酸基を有するオルガノシランを反応させることにより、アルコール性水酸基を含有するがフェノール性水酸基を含有しないポリシロキサンが合成される。また、エポキシ構造やオキセタン構造を有するオルガノシランを反応させると、反応中にエポキシ構造やオキセタン構造が加水分解によってアルコール性水酸基となり、アルコール性水酸基を含有するがフェノール性水酸基を含有しないポリシロキサンが合成される。

By reacting an organosilane having an alcoholic hydroxyl group, a polysiloxane containing an alcoholic hydroxyl group but not containing a phenolic hydroxyl group is synthesized. In addition, when an organosilane having an epoxy structure or an oxetane structure is reacted, the epoxy structure or oxetane structure is converted into an alcoholic hydroxyl group by hydrolysis during the reaction, and a polysiloxane that contains an alcoholic hydroxyl group but does not contain a phenolic hydroxyl group is synthesized. Is done.


本発明のアルコール性水酸基を含有するがフェノール性水酸基を含有しないポリシロキサンは、一般式(1)で表されるオルガノシランのみを反応させることによって合成してもよいが、一般式(2)で表されるアルコール性水酸基、エポキシ構造、オキセタン構造を含有しないオルガノシランを混合、反応させることによって合成しても良い。

The polysiloxane containing the alcoholic hydroxyl group of the present invention but not containing the phenolic hydroxyl group may be synthesized by reacting only the organosilane represented by the general formula (1). You may synthesize | combine by mixing and making the organosilane which does not contain the alcoholic hydroxyl group represented, an epoxy structure, and an oxetane structure represent.

Figure 0005003081
Figure 0005003081

式中、Rは水素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数6〜15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。Rは水素、炭素数1〜6のアルキル基、炭素数2〜6のアシル基、炭素数6〜15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。pは0から3の整数を表す。 In the formula, R 4 represents any one of hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and the plurality of R 4 are the same or different. May be. R 5 represents any one of hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 5 may be the same or different. . p represents an integer of 0 to 3.

一般式(2)で表されるオルガノシランにおいて、Rは、水素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数6〜15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。また、これらのアルキル基、アルケニル基、アリール基はいずれも無置換体、置換体のどちらでもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、t−ブチル基、n−ヘキシル基、n−デシル基、トリフルオロメチル基、3,3,3−トリフルオロプロピル基、3−アミノプロピル基、3−メルカプトプロピル基、3−イソシアネートプロピル基が挙げられる。アルケニル基の具体例としては、ビニル基、3−アクリロキシプロピル基、3−メタクリロキシプロピル基が挙げられる。アリール基の具体例としては、フェニル基、トリル基、ナフチル基が挙げられる。 In the organosilane represented by the general formula (2), R 4 represents any one of hydrogen, an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms. The plurality of R 4 may be the same or different from each other. These alkyl groups, alkenyl groups, and aryl groups may be either unsubstituted or substituted, and can be selected according to the characteristics of the composition. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, t-butyl group, n-hexyl group, n-decyl group, trifluoromethyl group, 3, 3 , 3-trifluoropropyl group, 3-aminopropyl group, 3-mercaptopropyl group, 3-isocyanatopropyl group. Specific examples of the alkenyl group include a vinyl group, a 3-acryloxypropyl group, and a 3-methacryloxypropyl group. Specific examples of the aryl group include a phenyl group, a tolyl group, and a naphthyl group.

一般式(2)のRは水素、炭素数1〜6のアルキル基、炭素数2〜6のアシル基、炭素数6〜15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。また、これらのアルキル基、アシル基、アリール基はいずれも無置換体、置換体のどちらでもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基が挙げられる。アシル基の具体例としては、アセチル基が挙げられる。アリール基の具体例としては、フェニル基が挙げられる。 R 5 in the general formula (2) represents any one of hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 5 are the same. But it can be different. These alkyl groups, acyl groups and aryl groups may be either unsubstituted or substituted, and can be selected according to the characteristics of the composition. Specific examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. Specific examples of the acyl group include an acetyl group. Specific examples of the aryl group include a phenyl group.

一般式(2)のpは0から3の整数を表す。p=0の場合は4官能性シラン、p=1の場合は3官能性シラン、p=2の場合は2官能性シラン、p=3の場合は1官能性シランである。   P in the general formula (2) represents an integer of 0 to 3. A tetrafunctional silane when p = 0, a trifunctional silane when p = 1, a bifunctional silane when p = 2, and a monofunctional silane when p = 3.

一般式(2)で表されるオルガノシランの具体例としては、テトラメトキシシラン、テトラエトキシシラン、テトラアセトキシシラン、テトラフェノキシシランなどの4官能性シラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、メチルトリn−ブトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、エチルトリn−ブトキシシラン、n−プロピルトリメトキシシラン、n−プロピルトリエトキシシラン、n−ブチルトリメトキシシラン、n−ブチルトリエトキシシラン、n−ヘキシルトリメトキシシラン、n−ヘキシルトリエトキシシラン、デシルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、トリフルオロメチルトリメトキシシラン、トリフルオロメチルトリエトキシシラン、3,3,3−トリフルオロプロピルトリメトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、3−メルカプトプロピルトリメトキシシランなどの3官能性シラン、ジメチルジメトキシシラン、ジメチルジエトキシラン、ジメチルジアセトキシシラン、ジn−ブチルジメトキシシラン、ジフェニルジメトキシシランなどの2官能性シラン、トリメチルメトキシシラン、トリn−ブチルエトキシシランなどの1官能性シランが挙げられる。なお、これらのオルガノシランは単独で使用しても、2種以上を組み合わせて使用してもよい。これらのオルガノシランの中でも、硬化膜の耐クラック性と硬度の点から3官能性シランが好ましく用いられる。   Specific examples of the organosilane represented by the general formula (2) include tetrafunctional silanes such as tetramethoxysilane, tetraethoxysilane, tetraacetoxysilane, and tetraphenoxysilane, methyltrimethoxysilane, methyltriethoxysilane, and methyl. Triisopropoxysilane, methyltri-n-butoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltriisopropoxysilane, ethyltrin-butoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, n-butyl Trimethoxysilane, n-butyltriethoxysilane, n-hexyltrimethoxysilane, n-hexyltriethoxysilane, decyltrimethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-a Liloxypropyltrimethoxysilane, 3-acryloxypropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, trifluoromethyltrimethoxysilane , Trifunctional silanes such as trifluoromethyltriethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane , Bifunctional silanes such as dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldiacetoxysilane, di-n-butyldimethoxysilane, diphenyldimethoxysilane, trimethylmeth Shishiran include monofunctional silanes, such as tri-n- butyl silane. These organosilanes may be used alone or in combination of two or more. Among these organosilanes, trifunctional silanes are preferably used from the viewpoint of crack resistance and hardness of the cured film.

一般式(1)で表されるオルガノシランと、一般式(2)で表されるオルガノシランとの混合比率に特に制限は無いが、好ましくはモル比で一般式(1)/一般式(2)=1〜50/99〜50、さらに好ましくは2〜30/98〜70である。一般式(1)で表されるオルガノシランが1モル%より少ないとパターン解像度が十分ではなく、50モル%より多いと現像時の未露光部の膜減りが大きくなり、硬化膜の膜均一性が悪くなる。   The mixing ratio of the organosilane represented by the general formula (1) and the organosilane represented by the general formula (2) is not particularly limited, but is preferably a molar ratio of the general formula (1) / general formula (2). ) = 1-50 / 99-50, more preferably 2-30 / 98-70. If the organosilane represented by the general formula (1) is less than 1 mol%, the pattern resolution is not sufficient, and if it exceeds 50 mol%, the film loss in the unexposed area during development increases, and the film uniformity of the cured film is increased. Becomes worse.


また、本発明のアルコール性水酸基を含有するがフェノール性水酸基を含有しないポリシロキサンは、一般式(1)で表されるオルガノシランと、一般式(2)で表されるオルガノシラン以外に、シリカ粒子および/または一般式(3)で表される直鎖状ポリシロキサンを混合、反応させて合成することができる。

The polysiloxane containing the alcoholic hydroxyl group of the present invention but not containing the phenolic hydroxyl group is silica other than the organosilane represented by the general formula (1) and the organosilane represented by the general formula (2). It can be synthesized by mixing and reacting particles and / or a linear polysiloxane represented by the general formula (3).

Figure 0005003081
Figure 0005003081

式中、R、R、R、Rはそれぞれ独立して水素、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数6〜15のアリール基のいずれかを表し、複数のR、Rはそれぞれ同じでも異なっていてもよい。R10、R11は、それぞれ独立して水素、炭素数1〜6のアルキル基、炭素数1〜6のアシル基、炭素数6〜15のアリール基のいずれかを表す。kは1から1000の範囲を表す。 In the formula, each of R 6 , R 7 , R 8 and R 9 is independently hydrogen, an alkyl group having 1 to 6 carbon atoms, an alkenyl group having 2 to 6 carbon atoms, or an aryl group having 6 to 15 carbon atoms. The plurality of R 6 and R 7 may be the same or different. R 10 and R 11 each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 15 carbon atoms. k represents a range of 1 to 1000.

シリカ粒子を混合、反応させることで、パターン解像度がさらに向上する。これは、ポリシロキサン中にシリカ粒子が組み込まれることで、膜のガラス転移温度が高くなり熱硬化時のパターンだれが抑えられるためと考えられる。   The pattern resolution is further improved by mixing and reacting silica particles. This is presumably because silica particles are incorporated into polysiloxane, so that the glass transition temperature of the film is increased and the pattern dripping at the time of thermosetting is suppressed.

シリカ粒子の数平均粒子径は、好ましくは2nm〜200nmであり、さらに好ましくは5nm〜70nmである。2nmより小さいとパターン解像度の向上が十分ではなく、200nmより大きいと硬化膜が光散乱し透明性が低下する。ここで、シリカ粒子の数平均粒子径は、種々のパーティクルカウンターを用いて測定することができる。   The number average particle diameter of the silica particles is preferably 2 nm to 200 nm, and more preferably 5 nm to 70 nm. If the thickness is smaller than 2 nm, the pattern resolution is not sufficiently improved. If the thickness is larger than 200 nm, the cured film is scattered and the transparency is lowered. Here, the number average particle diameter of the silica particles can be measured using various particle counters.

シリカ粒子の具体例としては、粒子径12nmでありイソプロパノールを分散剤としたIPA−ST、粒子径12nmでありメチルイソブチルケトンを分散剤としたMIBK−ST、粒子径45nmでありイソプロパノールを分散剤としたIPA−ST−L、粒子径100nmでありイソプロパノールを分散剤としたIPA−ST−ZL、粒子径15nmであり、プロピレングリコールモノメチルエーテルを分散剤としたPGM−ST(以上、商品名、日産化学工業(株)製)、粒子径12nmでありγ−ブチロラクトンを分散剤としたオスカル101、粒子径60nmでありγ−ブチロラクトンを分散剤としたオスカル105、粒子径120nmでありジアセトンアルコールを分散剤としたオスカル106(以上、商品名、触媒化成工業(株)製)、粒子径16nmでありプロピレングリコールモノメチルエーテルを分散剤としたクォートロンPL−2L−PGME、粒子径17nmでありγ−ブチロラクトンを分散剤としたクォートロンPL−2L−BL、粒子径17nmでありジアセトンアルコールを分散剤としたクォートロンPL−2L−DAA(以上、商品名、扶桑化学工業(株)製)などが挙げられる。なお、これらのシリカ粒子は単独で使用しても、2種以上を組み合わせて使用してもよい。   Specific examples of the silica particles include IPA-ST having a particle size of 12 nm and isopropanol as a dispersant, MIBK-ST having a particle size of 12 nm and methyl isobutyl ketone as a dispersant, and a particle size of 45 nm and isopropanol as a dispersant. IPA-ST-L, IPA-ST-ZL having a particle diameter of 100 nm and isopropanol as a dispersant, PGM-ST having a particle diameter of 15 nm and propylene glycol monomethyl ether as a dispersant (trade name, Nissan Chemical Co., Ltd.) Manufactured by Kogyo Co., Ltd.), Oscar 101 having a particle diameter of 12 nm and γ-butyrolactone as a dispersant, Oscar 105 having a particle diameter of 60 nm and γ-butyrolactone as a dispersant, and a particle diameter of 120 nm and diacetone alcohol as a dispersant. Oscar 106 (trade name, Catalytic Chemical Industry Co., Ltd. ) Manufactured), Quatron PL-2L-PGME having a particle size of 16 nm and propylene glycol monomethyl ether as a dispersant, Quartron PL-2L-BL having a particle size of 17 nm and γ-butyrolactone as a dispersant, and a particle size of 17 nm Examples include Quartron PL-2L-DAA (trade name, manufactured by Fuso Chemical Industry Co., Ltd.) using diacetone alcohol as a dispersant. In addition, these silica particles may be used alone or in combination of two or more.

シリカ粒子を用いる場合の混合比率は特に制限されないが、Si原子モル数でポリマー全体のSi原子モル数に対して30%以下が好ましい。シリカ粒子が30%より多いと、ポリシロキサンとキノンジアジドとの相溶性が悪くなり、硬化膜の透明性が低下する。なお、ポリマー全体のSi原子モル数に対するシリカ粒子のSi原子モル比は、29Si−NMRを用いて分析することができる。 The mixing ratio when silica particles are used is not particularly limited, but is preferably 30% or less in terms of the number of moles of Si atoms relative to the number of moles of Si atoms in the whole polymer. If the amount of silica particles is more than 30%, the compatibility between polysiloxane and quinonediazide is deteriorated, and the transparency of the cured film is lowered. In addition, the Si atom molar ratio of the silica particle with respect to the Si atom mole number of the whole polymer can be analyzed using 29 Si-NMR.

一般式(3)で表される直鎖状ポリシロキサンを混合、反応させることで、組成物の貯蔵安定性が向上する。これは、直鎖部分が橋かけ的に存在することによって、未反応シラノール基同士が近づきにくく、組成物を貯蔵している間に副反応である縮合反応が起こりにくいためと考えられる。   The storage stability of the composition is improved by mixing and reacting the linear polysiloxane represented by the general formula (3). This is presumably because the unreacted silanol groups are unlikely to approach each other due to the presence of the straight chain portion in a bridging manner, and a condensation reaction that is a side reaction is difficult to occur during storage of the composition.

一般式(3)で表される直鎖状ポリシロキサンにおいて、R、R、R、Rは、それぞれ独立して水素、炭素数1〜6のアルキル基、炭素数2〜6のアルケニル基、炭素数6〜15のアリール基のいずれかを表し、複数のR、Rはそれぞれ同じでも異なっていてもよい。また、これらのアルキル基、アルケニル基、アリール基はいずれも無置換体、置換体のどちらでもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基が挙げられる。アルケニル基の具体例としては、ビニル基、アクリロキシプロピル基、メタクリロキシプロピル基が挙げられる。アリール基の具体例としては、フェニル基、トリル基、ナフチル基が挙げられる。 In the linear polysiloxane represented by the general formula (3), R 6 , R 7 , R 8 and R 9 are each independently hydrogen, an alkyl group having 1 to 6 carbon atoms, or an alkyl group having 2 to 6 carbon atoms. It represents either an alkenyl group or an aryl group having 6 to 15 carbon atoms, and the plurality of R 6 and R 7 may be the same or different. These alkyl groups, alkenyl groups, and aryl groups may be either unsubstituted or substituted, and can be selected according to the characteristics of the composition. Specific examples of the alkyl group include a methyl group, an ethyl group, and an n-propyl group. Specific examples of the alkenyl group include a vinyl group, an acryloxypropyl group, and a methacryloxypropyl group. Specific examples of the aryl group include a phenyl group, a tolyl group, and a naphthyl group.

一般式(3)のR10、R11は、それぞれ独立して水素、炭素数1〜6のアルキル基、炭素数1〜6のアシル基、炭素数6〜15のアリール基のいずれかを表す。これらのアルキル基、アシル基、アリール基はいずれも無置換体、置換体のどちらでもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基が挙げられる。アシル基の具体例としては、アセチル基が挙げられる。アリール基の具体例としては、フェニル基が挙げられる。 R 10 and R 11 in the general formula (3) each independently represent hydrogen, an alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 15 carbon atoms. . Any of these alkyl groups, acyl groups, and aryl groups may be unsubstituted or substituted, and can be selected according to the characteristics of the composition. Specific examples of the alkyl group include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group. Specific examples of the acyl group include an acetyl group. Specific examples of the aryl group include a phenyl group.

一般式(3)のkは1から1000の範囲であり、好ましくは2〜100の範囲、さらに好ましくは3〜50の範囲である。kが1000より大きいと、塗布膜が白濁し、高透明性の膜を得ることが困難である。   In the general formula (3), k is in the range of 1 to 1000, preferably 2 to 100, and more preferably 3 to 50. When k is larger than 1000, the coating film becomes cloudy and it is difficult to obtain a highly transparent film.

一般式(3)で表される直鎖状ポリシロキサンの具体例として、1,1,3,3−テトラメチル−1,3−ジメトキシジシロキサン、1,1,3,3−テトラメチル−1,3−ジエトキシジシロキサン、1,1,3,3−テトラエチル−1,3−ジメトキシジシロキサン、1,1,3,3−テトラエチル−1,3−ジエトキシジシロキサン、下記に示すゲレスト社製シラノール末端ポリジメチルシロキサン(以下商品名を示す)“DMS−S12”(分子量400〜700)、“DMS−S15”(分子量1500〜2000)、“DMS−S21”(分子量4200)、“DMS−S27”(分子量18000)、“DMS−S31”(分子量26000)、“DMS−S32”(分子量36000)、“DMS−S33”(分子量43500)、“DMS−S35”(分子量49000)、“DMS−S38”(分子量58000)、“DMS−S42”(分子量77000)、下記に示すゲレスト社製シラノール末端ジフェニルシロキサン−ジメチルシロキサンコポリマー“PSD−0332”(分子量35000、ジフェニルシロキサンを2.5〜3.5モル%共重合している)、“PDS−1615”(分子量900〜1000、ジフェニルシロキサンを14〜18モル%共重合している)、ゲレスト社製シラノール末端ポリジフェニルシロキサン“PDS−9931”(分子量1000〜1400)が挙げられる。なお、これらの直鎖状ポリシロキサンは単独で使用しても、2種以上を組み合わせて使用してもよい。   Specific examples of the linear polysiloxane represented by the general formula (3) include 1,1,3,3-tetramethyl-1,3-dimethoxydisiloxane, 1,1,3,3-tetramethyl-1 , 3-diethoxydisiloxane, 1,1,3,3-tetraethyl-1,3-dimethoxydisiloxane, 1,1,3,3-tetraethyl-1,3-diethoxydisiloxane, Gerest Corporation shown below Silanol-terminated polydimethylsiloxanes (hereinafter referred to as trade names) “DMS-S12” (molecular weight 400-700), “DMS-S15” (molecular weight 1500-2000), “DMS-S21” (molecular weight 4200), “DMS-” "S27" (molecular weight 18000), "DMS-S31" (molecular weight 26000), "DMS-S32" (molecular weight 36000), "DMS-S33" (molecular weight 435) 0), “DMS-S35” (molecular weight 49000), “DMS-S38” (molecular weight 58000), “DMS-S42” (molecular weight 77000), the following silanol-terminated diphenylsiloxane-dimethylsiloxane copolymer “PSD-” manufactured by Gerest 0332 "(molecular weight 35000, copolymerized with diphenylsiloxane 2.5-3.5 mol%)," PDS-1615 "(molecular weight 900-1000, diphenylsiloxane copolymerized 14-18 mol%) And Silanol-terminated polydiphenylsiloxane “PDS-9931” (molecular weight 1000 to 1400) manufactured by Gerest. These linear polysiloxanes may be used alone or in combination of two or more.

一般式(3)で表される直鎖状ポリシロキサンを用いる場合の混合比率に特に制限は無いが、好ましくはSi原子モル数でポリマー全体のSi原子モル数に対して50モル%以下である。直鎖状ポリシロキサンが50モル%より多いと相分離を起こし、塗布膜が白濁して透明性が低下する。なお、ポリマー全体のSi原子モル数に対する直鎖状ポリシロキサンのSi原子モル比は、29Si−NMRを用いて分析することができる。 The mixing ratio in the case of using the linear polysiloxane represented by the general formula (3) is not particularly limited, but is preferably 50 mol% or less in terms of the number of moles of Si atoms relative to the number of moles of Si atoms in the whole polymer. . When the amount of the linear polysiloxane is more than 50 mol%, phase separation occurs, the coating film becomes cloudy and transparency is lowered. In addition, the Si atom molar ratio of the linear polysiloxane with respect to the Si atom mole number of the whole polymer can be analyzed using 29 Si-NMR.

また、本発明で用いるポリシロキサンの重量平均分子量(Mw)に特に制限は無いが、好ましくはGPCで測定されるポリスチレン換算で1000〜100000、さらに好ましくは2000〜50000である。Mwが1000より小さいと塗膜性が悪くなり、100000より大きいとパターン形成時の現像液に対する溶解性が悪くなる。   Moreover, there is no restriction | limiting in particular in the weight average molecular weight (Mw) of the polysiloxane used by this invention, Preferably it is 1000-100000 in polystyrene conversion measured by GPC, More preferably, it is 2000-50000. When Mw is less than 1000, the coating properties are deteriorated, and when it is greater than 100,000, the solubility in a developer during pattern formation is deteriorated.

本発明におけるポリシロキサンは、一般式(1)で表されるオルガノシランなどのモノマーを加水分解および部分縮合させることにより合成される。加水分解および部分縮合には一般的な方法を用いることができる。例えば、混合物に溶媒、水、必要に応じて触媒を添加し、50〜150℃で0.5〜100時間程度加熱攪拌する。なお、攪拌中、必要に応じ、蒸留によって加水分解副生物(メタノールなどのアルコール)や縮合副生物(水)の留去を行ってもよい。   The polysiloxane in the present invention is synthesized by hydrolysis and partial condensation of a monomer such as organosilane represented by the general formula (1). A general method can be used for hydrolysis and partial condensation. For example, a solvent, water, and a catalyst as required are added to the mixture, and the mixture is heated and stirred at 50 to 150 ° C. for about 0.5 to 100 hours. During stirring, if necessary, hydrolysis by-products (alcohols such as methanol) and condensation by-products (water) may be distilled off by distillation.

上記の反応溶媒としては特に制限は無いが、通常は後述する(c)溶剤と同様のものが用いられる。溶媒の添加量はオルガノシランと直鎖状ポリシロキサンの混合物100重量部に対して10〜1000重量部が好ましい。また加水分解反応に用いる水の添加量は、加水分解性基1モルに対して0.5〜2モルが好ましい。   Although there is no restriction | limiting in particular as said reaction solvent, Usually, the thing similar to (c) solvent mentioned later is used. The amount of the solvent added is preferably 10 to 1000 parts by weight with respect to 100 parts by weight of the mixture of organosilane and linear polysiloxane. The amount of water used for the hydrolysis reaction is preferably 0.5 to 2 mol with respect to 1 mol of the hydrolyzable group.

必要に応じて添加される触媒に特に制限はないが、酸触媒、塩基触媒が好ましく用いられる。酸触媒の具体例としては塩酸、硝酸、硫酸、フッ酸、リン酸、酢酸、トリフルオロ酢酸、ギ酸、多価カルボン酸あるいはその無水物、イオン交換樹脂が挙げられる。塩基触媒の具体例としては、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、トリヘプチルアミン、トリオクチルアミン、ジエチルアミン、トリエタノールアミン、ジエタノールアミン、水酸化ナトリウム、水酸化カリウム、アミノ基を有するアルコキシシランが挙げられる。触媒の添加量はオルガノシランと直鎖状ポリシロキサンの混合物100重量部に対して0.01〜10重量部が好ましい。   Although there is no restriction | limiting in particular in the catalyst added as needed, An acid catalyst and a base catalyst are used preferably. Specific examples of the acid catalyst include hydrochloric acid, nitric acid, sulfuric acid, hydrofluoric acid, phosphoric acid, acetic acid, trifluoroacetic acid, formic acid, polyvalent carboxylic acid or anhydride thereof, and ion exchange resin. Specific examples of the base catalyst include triethylamine, tripropylamine, tributylamine, tripentylamine, trihexylamine, triheptylamine, trioctylamine, diethylamine, triethanolamine, diethanolamine, sodium hydroxide, potassium hydroxide, amino And alkoxysilane having a group. The addition amount of the catalyst is preferably 0.01 to 10 parts by weight with respect to 100 parts by weight of the mixture of organosilane and linear polysiloxane.

また、組成物の貯蔵安定性の観点から、加水分解、部分縮合後のポリシロキサン溶液には触媒が含まれないことが好ましく、必要に応じて触媒の除去を行うことができる。除去方法としては特に制限は無いが、好ましくは水洗浄、および/またはイオン交換樹脂の処理が挙げられる。水洗浄とは、ポリシロキサン溶液を適当な疎水性溶剤で希釈した後、水で数回洗浄して得られた有機層をエバポレーターで濃縮する方法である。イオン交換樹脂での処理とは、ポリシロキサン溶液を適当なイオン交換樹脂に接触させる方法である。   Further, from the viewpoint of the storage stability of the composition, the polysiloxane solution after hydrolysis and partial condensation preferably contains no catalyst, and the catalyst can be removed as necessary. Although there is no restriction | limiting in particular as a removal method, Preferably water washing and / or the process of an ion exchange resin are mentioned. Water washing is a method in which an organic layer obtained by diluting a polysiloxane solution with an appropriate hydrophobic solvent and washing several times with water is concentrated by an evaporator. The treatment with an ion exchange resin is a method of bringing a polysiloxane solution into contact with an appropriate ion exchange resin.

本発明の感光性シロキサン組成物は、(b)キノンジアジド化合物を含有する。キノンジアジド化合物を含有する感光性シロキサン組成物は、露光部が現像液で除去されるポジ型を形成する。用いるキノンジアジド化合物に特に制限は無いが、好ましくはフェノール性水酸基を有する化合物にナフトキノンジアジドスルホン酸がエステル結合した化合物であり、当該化合物のフェノール性水酸基のオルト位、およびパラ位がそれぞれ独立して水素、もしくは一般式(4)で表される置換基のいずれかである化合物が用いられる。   The photosensitive siloxane composition of the present invention contains (b) a quinonediazide compound. The photosensitive siloxane composition containing a quinonediazide compound forms a positive type in which the exposed portion is removed with a developer. The quinonediazide compound to be used is not particularly limited, but is preferably a compound in which naphthoquinonediazidesulfonic acid is ester-bonded to a compound having a phenolic hydroxyl group, and the ortho-position and para-position of the phenolic hydroxyl group of the compound are independently hydrogenated. Alternatively, a compound that is any one of the substituents represented by the general formula (4) is used.

Figure 0005003081
Figure 0005003081

式中、R12、R13、R14はそれぞれ独立して炭素数1〜10のアルキル基、カルボキシル基、フェニル基、置換フェニル基のいずれかを表す。また、R12、R13、R14で環を形成してもよい。 In formula, R < 12 >, R <13> , R < 14 > represents either C1-C10 alkyl group, a carboxyl group, a phenyl group, and a substituted phenyl group each independently. R 12 , R 13 and R 14 may form a ring.

一般式(4)で表される置換基において、R12、R13、R14はそれぞれ独立して炭素数1〜10のアルキル基、カルボキシル基、フェニル基、置換フェニル基のいずれかを表す。アルキル基は無置換体、置換体のどちらでもよく、組成物の特性に応じて選択できる。アルキル基の具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基、n−ヘキシル基、シクロヘキシル基、n−ヘプチル基、n−オクチル基、トリフルオロメチル基、2−カルボキシエチル基が挙げられる。また、フェニル基に置換する置換基としては、水酸基が挙げられる。また、R12、R13、R14で環を形成してもよく、具体例としては、シクロペンタン環、シクロヘキサン環、アダマンタン環、フルオレン環が挙げられる。 In the substituent represented by the general formula (4), R 12 , R 13 , and R 14 each independently represent any of an alkyl group having 1 to 10 carbon atoms, a carboxyl group, a phenyl group, and a substituted phenyl group. The alkyl group may be either unsubstituted or substituted, and can be selected according to the characteristics of the composition. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, t-butyl group, n-hexyl group, cyclohexyl group, n-heptyl group, n- Examples include an octyl group, a trifluoromethyl group, and a 2-carboxyethyl group. Moreover, a hydroxyl group is mentioned as a substituent substituted by a phenyl group. Further, R 12 , R 13 and R 14 may form a ring, and specific examples include a cyclopentane ring, a cyclohexane ring, an adamantane ring and a fluorene ring.

フェノール性水酸基のオルト位、およびパラ位が上記以外、例えばメチル基の場合、熱硬化によって酸化分解が起こり、キノイド構造に代表される共役系化合物が形成され、硬化膜が着色して無色透明性が低下する。なお、これらのキノンジアジド化合物は、フェノール性水酸基を有する化合物と、ナフトキノンジアジドスルホン酸クロリドとの公知のエステル化反応により合成することができる。   When the ortho-position and para-position of the phenolic hydroxyl group are other than the above, for example, a methyl group, oxidative decomposition occurs due to thermal curing, a conjugated compound represented by a quinoid structure is formed, and the cured film is colored to be colorless and transparent Decreases. These quinonediazide compounds can be synthesized by a known esterification reaction between a compound having a phenolic hydroxyl group and naphthoquinonediazidesulfonic acid chloride.

フェノール性水酸基を有する化合物の具体例としては、以下の化合物が挙げられる(いずれも本州化学工業(株)製)。   Specific examples of the compound having a phenolic hydroxyl group include the following compounds (all manufactured by Honshu Chemical Industry Co., Ltd.).

Figure 0005003081
Figure 0005003081

Figure 0005003081
Figure 0005003081

ナフトキノンジアジドスルホン酸としては、4−ナフトキノンジアジドスルホン酸あるいは5−ナフトキノンジアジドスルホン酸を用いることができる。4−ナフトキノンジアジドスルホン酸エステル化合物はi線(波長365nm)領域に吸収を持つため、i線露光に適している。また、5−ナフトキノンジアジドスルホン酸エステル化合物は広範囲の波長領域に吸収が存在するため、広範囲の波長での露光に適している。露光する波長によって4−ナフトキノンジアジドスルホン酸エステル化合物、5−ナフトキノンジアジドスルホン酸エステル化合物を選択することが好ましい。4−ナフトキノンジアジドスルホン酸エステル化合物と5−ナフトキノンジアジドスルホン酸エステル化合物を混合して用いることもできる。   As naphthoquinone diazide sulfonic acid, 4-naphthoquinone diazide sulfonic acid or 5-naphthoquinone diazide sulfonic acid can be used. Since 4-naphthoquinonediazide sulfonic acid ester compound has absorption in the i-line (wavelength 365 nm) region, it is suitable for i-line exposure. Moreover, since 5-naphthoquinone diazide sulfonic acid ester compound has absorption in a wide range of wavelengths, it is suitable for exposure in a wide range of wavelengths. It is preferable to select a 4-naphthoquinone diazide sulfonic acid ester compound or a 5-naphthoquinone diazide sulfonic acid ester compound depending on the wavelength to be exposed. A 4-naphthoquinone diazide sulfonic acid ester compound and a 5-naphthoquinone diazide sulfonic acid ester compound may be mixed and used.

キノンジアジド化合物の添加量は特に制限されないが、好ましくはポリシロキサン100重量部に対して0.1〜15重量部であり、さらに好ましくは1〜10重量部である。キノンジアジド化合物の添加量が0.1重量部より少ない場合、露光部と未露光部との溶解コントラストが低すぎて、現実的な感光性を有さない。また、さらに良好な溶解コントラストを得るためには1重量部以上が好ましい。一方、キノンジアジド化合物の添加量が15重量部より多い場合、ポリシロキサンとキノンジアジド化合物との相溶性が悪くなることによる塗布膜の白化が起こったり、熱硬化時に起こるキノンジアジド化合物の分解による着色が顕著になるために、硬化膜の無色透明性が低下する。また、さらに高透明性の膜を得るためには10重量部以下が好ましい。   The addition amount of the quinonediazide compound is not particularly limited, but is preferably 0.1 to 15 parts by weight, more preferably 1 to 10 parts by weight with respect to 100 parts by weight of the polysiloxane. When the addition amount of the quinonediazide compound is less than 0.1 part by weight, the dissolution contrast between the exposed part and the unexposed part is too low, so that there is no realistic photosensitivity. In order to obtain a better dissolution contrast, the amount is preferably 1 part by weight or more. On the other hand, when the addition amount of the quinonediazide compound is more than 15 parts by weight, whitening of the coating film occurs due to poor compatibility between the polysiloxane and the quinonediazide compound, or coloring due to decomposition of the quinonediazide compound that occurs during thermal curing is remarkable. Therefore, the colorless transparency of the cured film is lowered. Further, in order to obtain a highly transparent film, the amount is preferably 10 parts by weight or less.

本発明の感光性シロキサン組成物は、(c)溶剤を含有する。溶剤に特に制限は無いが、好ましくはアルコール性水酸基を有する化合物、および/またはカルボニル基を有する環状化合物が用いられる。これらの溶剤を用いると、ポリシロキサンとキノンジアジド化合物とが均一に溶解し、組成物を塗布成膜しても膜は白化することなく、高透明性が達成できる。   The photosensitive siloxane composition of the present invention contains (c) a solvent. Although there is no restriction | limiting in particular in a solvent, Preferably the compound which has alcoholic hydroxyl group, and / or the cyclic compound which has a carbonyl group are used. When these solvents are used, the polysiloxane and the quinonediazide compound are uniformly dissolved, and even when the composition is applied, the film is not whitened and high transparency can be achieved.

上記アルコール性水酸基を有する化合物は特に制限されないが、好ましくは大気圧下の沸点が110〜250℃である化合物である。沸点が250℃より高いと膜中の残存溶剤量が多くなりキュア時の膜収縮が大きくなり、良好な平坦性が得られなくなる。一方、沸点が110℃より低いと、塗膜時の乾燥が速すぎて膜表面が荒れるなど塗膜性が悪くなる。   The compound having an alcoholic hydroxyl group is not particularly limited, but is preferably a compound having a boiling point of 110 to 250 ° C. under atmospheric pressure. When the boiling point is higher than 250 ° C., the amount of residual solvent in the film increases and film shrinkage during curing increases, and good flatness cannot be obtained. On the other hand, if the boiling point is lower than 110 ° C., the coating properties deteriorate, such as drying at the time of coating is too fast and the film surface becomes rough.

アルコール性水酸基を有する化合物の具体例としては、アセトール、3−ヒドロキシ−3−メチル−2−ブタノン、4−ヒドロキシ−3−メチル−2−ブタノン、5−ヒドロキシ−2−ペンタノン、4−ヒドロキシ−4−メチル−2−ペンタノン(ジアセトンアルコール)、乳酸エチル、乳酸ブチル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノn−プロピルエーテル、プロピレングリコールモノn−ブチルエーテル、プロピレングリコールモノt−ブチルエーテル、3−メトキシ−1−ブタノール、3−メチル−3−メトキシ−1−ブタノールが挙げられる。これらの中でも、さらにカルボニル基を有する化合物が好ましく、特にジアセトンアルコールが好ましく用いられる。なお、これらのアルコール性水酸基を有する化合物は、単独、あるいは2種以上を組み合わせて使用してもよい。   Specific examples of the compound having an alcoholic hydroxyl group include acetol, 3-hydroxy-3-methyl-2-butanone, 4-hydroxy-3-methyl-2-butanone, 5-hydroxy-2-pentanone, 4-hydroxy- 4-methyl-2-pentanone (diacetone alcohol), ethyl lactate, butyl lactate, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono n-propyl ether, propylene glycol mono n-butyl ether, propylene glycol mono t- Examples include butyl ether, 3-methoxy-1-butanol, and 3-methyl-3-methoxy-1-butanol. Among these, a compound further having a carbonyl group is preferable, and diacetone alcohol is particularly preferably used. In addition, you may use the compound which has these alcoholic hydroxyl groups individually or in combination of 2 or more types.

カルボニル基を有する環状化合物に特に制限は無いが、好ましくは大気圧下の沸点が150〜250℃である化合物である。沸点が250℃より高いと膜中の残存溶剤量が多くなりキュア時の膜収縮が大きくなり、良好な平坦性が得られなくなる。一方、沸点が150℃より低いと、塗膜時の乾燥が速すぎて膜表面が荒れるなど塗膜性が悪くなる。   Although there is no restriction | limiting in particular in the cyclic compound which has a carbonyl group, Preferably it is a compound whose boiling point under atmospheric pressure is 150-250 degreeC. When the boiling point is higher than 250 ° C., the amount of residual solvent in the film increases and film shrinkage during curing increases, and good flatness cannot be obtained. On the other hand, if the boiling point is lower than 150 ° C., the coating properties deteriorate, for example, drying at the time of coating is too fast and the film surface becomes rough.

カルボニル基を有する環状化合物の具体例としては、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン、炭酸プロピレン、N−メチルピロリドン、シクロヘキサノン、シクロヘプタノンが挙げられる。これらの中でも、特にγ−ブチロラクトンが好ましく用いられる。なお、これらのカルボニル基を有する環状化合物は、単独、あるいは2種以上を組み合わせて使用してもよい。   Specific examples of the cyclic compound having a carbonyl group include γ-butyrolactone, γ-valerolactone, δ-valerolactone, propylene carbonate, N-methylpyrrolidone, cyclohexanone, and cycloheptanone. Among these, γ-butyrolactone is particularly preferably used. In addition, you may use the cyclic compound which has these carbonyl groups individually or in combination of 2 or more types.

上述のアルコール性水酸基を有する化合物とカルボニル基を有する環状化合物は、単独でも、あるいは各々混合して用いても良い。混合して用いる場合、その重量比率に特に制限は無いが、好ましくはアルコール性水酸基を有する化合物/カルボニル基を有する環状化合物=99〜50/1〜50、さらに好ましくは97〜60/3〜40である。アルコール性水酸基を有する化合物が99重量%より多い(カルボニル基を有する環状化合物が1重量%より少ない)と、シロキサンポリマーとキノンジアジド化合物との相溶性が悪く、硬化膜が白化して透明性が低下する。また、アルコール性水酸基を有する化合物が50重量%より少ない(カルボニル基を有する環状化合物が50重量%より多い)と、シロキサンポリマー中の未反応シラノール基の縮合反応が起こり易くなり、貯蔵安定性が悪くなる。   The compound having an alcoholic hydroxyl group and the cyclic compound having a carbonyl group may be used singly or in combination. When mixed and used, the weight ratio is not particularly limited, but is preferably a compound having an alcoholic hydroxyl group / a cyclic compound having a carbonyl group = 99 to 50/1 to 50, more preferably 97 to 60/3 to 40. It is. When the compound having an alcoholic hydroxyl group is more than 99% by weight (the cyclic compound having a carbonyl group is less than 1% by weight), the compatibility between the siloxane polymer and the quinonediazide compound is poor, and the cured film is whitened and the transparency is lowered. To do. Further, if the amount of the compound having an alcoholic hydroxyl group is less than 50% by weight (the amount of the cyclic compound having a carbonyl group is more than 50% by weight), the condensation reaction of unreacted silanol groups in the siloxane polymer is likely to occur, and the storage stability is improved. Deteriorate.

また、本発明の感光性シロキサン組成物は、本発明の効果を損なわない限り、その他の溶剤を含有してもよい。その他の溶剤としては、酢酸エチル、酢酸n−プロピル、酢酸イソプロピル、酢酸n−ブチル、酢酸イソブチル、プロピレングリコールモノメチルエーテルアセテート、3−メトキシ−1−ブチルアセテート、3−メチル−3−メトキシ−1−ブチルアセテートなどのエステル類、メチルイソブチルケトン、ジイソプロピルケトン、ジイソブチルケトン、アセチルアセトンなどのケトン類、ジエチルエーテル、ジイソプロピルエーテル、ジn−ブチルエーテル、ジフェニルエーテルなどのエーテル類が挙げられる。   Moreover, unless the effect of this invention is impaired, the photosensitive siloxane composition of this invention may contain another solvent. Other solvents include ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, propylene glycol monomethyl ether acetate, 3-methoxy-1-butyl acetate, 3-methyl-3-methoxy-1- Examples thereof include esters such as butyl acetate, ketones such as methyl isobutyl ketone, diisopropyl ketone, diisobutyl ketone and acetylacetone, and ethers such as diethyl ether, diisopropyl ether, di n-butyl ether and diphenyl ether.

溶剤の添加量に特に制限は無いが、好ましくはポリシロキサン100重量部に対して100〜1000重量部の範囲である。   Although there is no restriction | limiting in particular in the addition amount of a solvent, Preferably it is the range of 100-1000 weight part with respect to 100 weight part of polysiloxane.

本発明の感光性シロキサン組成物は、(d)架橋性化合物を含有しており、この架橋性化合物はポリシロキサン中のアルコール性水酸基と反応することで、ポリシロキサンを架橋するものである。ポリマーが架橋されることによって、さらなるパターン解像度の向上が可能となる。   The photosensitive siloxane composition of the present invention contains (d) a crosslinkable compound. This crosslinkable compound reacts with an alcoholic hydroxyl group in the polysiloxane to crosslink the polysiloxane. By cross-linking the polymer, the pattern resolution can be further improved.

架橋性化合物はポリシロキサン中のアルコール性水酸基と反応することで、ポリシロキサンを架橋するものであれば特に制限されないが、好ましくはカルボキシル基、酸無水物構造、エポキシ構造、オキセタン構造の群から選択される構造を2個以上有する化合物が挙げられる。上記構造の組合せは特に限定されないが、選択される構造は同じものであることが好ましい。   The crosslinkable compound is not particularly limited as long as it crosslinks the polysiloxane by reacting with the alcoholic hydroxyl group in the polysiloxane, but preferably selected from the group of carboxyl group, acid anhydride structure, epoxy structure, and oxetane structure. And compounds having two or more of the above structures. The combination of the above structures is not particularly limited, but the selected structures are preferably the same.

具体例としては、アジピン酸、テレフタル酸、イソフタル酸、ジフェニルエーテルジカルボン酸、ナフタレンジカルボン酸、アジピン酸、ピロメリット酸、ベンゾフェノンテトラカルボン酸、ビフェニルテトラカルボン酸、ジフェニルエーテルテトラカルボン酸、ブタンテトラカルボン酸、シクロペンタンテトラカルボン酸などのカルボキシル基含有化合物、ピロメリット酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,3,3’,4’−ビフェニルテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルエーテルテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物、1,2,5,6−ナフタレンテトラカルボン酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、1,4,5,8−ナフタレンテトラカルボン酸二無水物、2,3,5,6−ピリジンテトラカルボン酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、3,3’,4,4’−ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’−テトラフェニルシランテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)ヘキサフルオロプロパン二無水物等の芳香族系テトラカルボン酸二酸無水物などの酸無水物構造含有化合物、エポライト40E、エポライト100E、エポライト200E、エポライト400E、エポライト70P、エポライト200P、エポライト400P、エポライト1500NP、エポライト80MF、エポライト4000、エポライト3002(以上、商品名、共栄社化学工業(株)製)、デナコールEX−212L、デナコールEX−214L、デナコールEX−216L、デナコールEX−850L、デナコールEX−321L(以上、商品名、ナガセケムテックス(株)製)、GAN、GOT、EPPN502H、NC3000、NC6000(以上、商品名、日本化薬(株)製)、エピコート828、エピコート1002、エピコート1750、エピコート1007、YX8100−BH30、E1256、E4250、E4275(以上、商品名、ジャパンエポキシ(株)製)、エピクロンEXA−9583、HP4032、エピクロンN695、HP7200(以上、商品名、大日本インキ化学工業(株)製)、テピックS、テピックG、テピックP(以上、商品名、日産化学工業(株)製)、エポトートYH−434L(商品名、東都化成(株)製)などのエポキシ構造含有化合物、OXT−121、OXT−221、OX−SQ−H、OX−SC、PNOX−1009、RSOX(以上、商品名、東亜合成(株)製)、エタナコールOXBP、エタナコールOXTP(以上、商品名、宇部興産(株)製)などのオキセタン構造含有化合物が挙げられる。なお、これらの架橋性化合物は、単独で使用しても、2種以上を組み合わせて使用してもよい。   Specific examples include adipic acid, terephthalic acid, isophthalic acid, diphenyl ether dicarboxylic acid, naphthalene dicarboxylic acid, adipic acid, pyromellitic acid, benzophenone tetracarboxylic acid, biphenyl tetracarboxylic acid, diphenyl ether tetracarboxylic acid, butane tetracarboxylic acid, cyclohexane Carboxyl group-containing compounds such as pentanetetracarboxylic acid, pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic acid Dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenonetetracarboxylic dianhydride, 3,3 ′, 4,4′- Biphenyl ether tetracarboxylic dianhydride, 3,3 ′, 4,4′-diphenyl Sulfonetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalene Tetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, 3,4,9,10-perylenetetracarboxylic Acid dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 3,3 ′, 4,4′-tetraphenylsilanetetracarboxylic dianhydride, 2,2-bis ( 3,4-dicarboxyphenyl) hexanofluoropropane dianhydride and other aromatic tetracarboxylic dianhydrides and other acid anhydride structure-containing compounds, Epolite 40E, Epolite 100E, Epora 200E, Epolite 400E, Epolite 70P, Epolite 200P, Epolite 400P, Epolite 1500NP, Epolite 80MF, Epolite 4000, Epolite 3002 (trade name, manufactured by Kyoeisha Chemical Industry Co., Ltd.), Denacol EX-212L, Denacol EX-214L , Denacol EX-216L, Denacol EX-850L, Denacol EX-321L (above, trade name, manufactured by Nagase ChemteX Corporation), GAN, GOT, EPPN502H, NC3000, NC6000 (above, trade name, Nippon Kayaku Co., Ltd.) )), Epicoat 828, Epicoat 1002, Epicoat 1750, Epicoat 1007, YX8100-BH30, E1256, E4250, E4275 (above, trade name, manufactured by Japan Epoxy Co., Ltd.), D Piclone EXA-9583, HP4032, Epicron N695, HP7200 (above, trade name, manufactured by Dainippon Ink & Chemicals, Inc.), Tepic S, Tepic G, Tepic P (above, trade name, manufactured by Nissan Chemical Industries, Ltd.) , Epototo YH-434L (trade name, manufactured by Toto Kasei Co., Ltd.) and other epoxy structure-containing compounds, OXT-121, OXT-221, OX-SQ-H, OX-SC, PNOX-1009, RSOX (above, products Name, manufactured by Toa Gosei Co., Ltd.), etanacol OXBP, etanacol OXTP (trade name, manufactured by Ube Industries, Ltd.), and the like. These crosslinkable compounds may be used alone or in combination of two or more.

また、架橋性化合物にはカルボキシル基を有する(メタ)アクリルモノマーも好ましいものとして挙げられる。この化合物を用いる場合は、熱ラジカル発生剤も使用する。カルボキシル基を有する(メタ)アクリルモノマーのカルボキシル基がポリシロキサン中のアルコール性水酸基と反応することで、ポリシロキサンが(メタ)アクリロイル基を有する。さらに、熱ラジカル発生剤から発生するラジカルにより、ポリシロキサン中の(メタ)アクリロイル基が反応することで、ポリシロキサン同士が架橋されるものである。   Moreover, the (meth) acryl monomer which has a carboxyl group is also mentioned as a preferable thing in a crosslinkable compound. When this compound is used, a thermal radical generator is also used. The polysiloxane has a (meth) acryloyl group by the reaction of the carboxyl group of the (meth) acrylic monomer having a carboxyl group with an alcoholic hydroxyl group in the polysiloxane. Furthermore, polysiloxane is bridge | crosslinked by the (meth) acryloyl group in polysiloxane reacting with the radical generate | occur | produced from a thermal radical generator.

カルボキシル基を有する(メタ)アクリルモノマーにおいて、カルボキシル基は貯蔵安定性の観点から1個のものが好ましい。カルボキシル基を2個以上有する(メタ)アクリルモノマーや、前述のカルボキシル基、酸無水物構造、エポキシ構造、オキセタン構造の群から選択される構造を2個以上有する化合物を用いると、室温放置中に徐々に架橋が進行し、感度などの特性に悪影響を及ぼすことがある。これに対して、カルボキシル基を1個有する(メタ)アクリルモノマーを用いた場合、仮に室温放置中に(メタ)アクリルモノマーのカルボキシル基とポリシロキサン中のアルコール性水酸基の反応が進行しても、ポリシロキサン同士の架橋は熱ラジカル発生剤から発生するラジカルによって進行するものなので、比較的安定な熱ラジカル発生剤を用いることで、架橋も進行せず、感度などの特性も変化することなくパターン形成が可能である。   In the (meth) acryl monomer having a carboxyl group, one carboxyl group is preferable from the viewpoint of storage stability. When a (meth) acrylic monomer having two or more carboxyl groups or a compound having two or more structures selected from the group of the carboxyl group, acid anhydride structure, epoxy structure, and oxetane structure described above is used during standing at room temperature. Cross-linking gradually proceeds and may adversely affect characteristics such as sensitivity. On the other hand, when a (meth) acrylic monomer having one carboxyl group is used, even if the reaction between the carboxyl group of the (meth) acrylic monomer and the alcoholic hydroxyl group in the polysiloxane proceeds during standing at room temperature, Since cross-linking between polysiloxanes proceeds by radicals generated from a thermal radical generator, the use of a relatively stable thermal radical generator prevents cross-linking and pattern formation without changing sensitivity and other characteristics. Is possible.

カルボキシル基を有する(メタ)アクリルモノマーに特に制限は無いが、具体例としては、アクリル酸、メタクリル酸、イタコン酸、マレイン酸、2−アクリロイロキシエチルコハク酸(共栄社化学(株)、HOA−MS)2−アクリロイロキシエチルヘキサヒドロフタル酸(共栄社化学(株)、HOA−HH)、2−アクリロイロキシエチル−2−ヒドロキシエチルフタル酸(共栄社化学(株)、HOA−MPE)などが挙げられる。   Although there is no restriction | limiting in particular in the (meth) acryl monomer which has a carboxyl group, As a specific example, acrylic acid, methacrylic acid, itaconic acid, maleic acid, 2-acryloyloxyethyl succinic acid (Kyoeisha Chemical Co., Ltd., HOA-) MS) 2-acryloyloxyethyl hexahydrophthalic acid (Kyoeisha Chemical Co., Ltd., HOA-HH), 2-acryloyloxyethyl-2-hydroxyethylphthalic acid (Kyoeisha Chemical Co., Ltd., HOA-MPE) and the like. Can be mentioned.

熱ラジカル発生剤は、熱によりラジカルを発生する化合物であれば特に制限されず、その具体例としては、1,1−ジ(t−ブチルペルオキシ)シクロヘキサン、2,2−ジ−(4,4−ジ(t−ブチルペルオキシ)シクロヘキシル)プロパン、t−ヘキシルペルオキシイソプロピルモノカーボネート、t−ブチルペルオキシマレイン酸、t−ブチルペルオキシ−3,5,5−トリメチルヘキサノエート、t−ブチルペルオキシラウレート、t−ブチルペルオキシイソプロピルモノカーボネート、t−ヘキシルペルオキシベンゾエート、2,5−ジメチル−2,5−ジ−(ベンゾイルペルオキシ)ヘキサン、t−ブチルペルオキシアセテート、2,2−ジ(t−ブチルペルオキシ)ブタン、t−ブチルペルオキシベンゾエート、n−ブチル−4,4−ジ(t−ブチルペルオキシ)バレレート、ジ(2−t−ペルオキシイソプロピル)ベンゼン、ジクミルペルオキシド、ジ−t−ヘキシルペルオキシド、2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)ヘキサン、t−ブチルクミルペルオキシド、ジ−t−ブチルペルオキシド、p−メンタンヒドロペルオキシド、2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)ヘキシン−3−ジイソプロピルベンゼンヒドロペルオキシド、1,1,3,3−テトラメチルブチルヒドロペルオキシド、クメンヒドロペルオキシドなどが挙げられる。   The thermal radical generator is not particularly limited as long as it is a compound that generates radicals by heat. Specific examples thereof include 1,1-di (t-butylperoxy) cyclohexane, 2,2-di- (4,4 -Di (t-butylperoxy) cyclohexyl) propane, t-hexylperoxyisopropyl monocarbonate, t-butylperoxymaleic acid, t-butylperoxy-3,5,5-trimethylhexanoate, t-butylperoxylaurate, t-butylperoxyisopropyl monocarbonate, t-hexylperoxybenzoate, 2,5-dimethyl-2,5-di- (benzoylperoxy) hexane, t-butylperoxyacetate, 2,2-di (t-butylperoxy) butane , T-butylperoxybenzoate, n-butyl- , 4-di (t-butylperoxy) valerate, di (2-t-peroxyisopropyl) benzene, dicumyl peroxide, di-t-hexyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) ) Hexane, t-butylcumyl peroxide, di-t-butyl peroxide, p-menthane hydroperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3-diisopropylbenzene hydroperoxide, 1 1,3,3-tetramethylbutyl hydroperoxide, cumene hydroperoxide and the like.

上述のカルボキシル基を有する(メタ)アクリルモノマーと熱ラジカル発生剤に加えて、(メタ)アクリロイル基を有するモノマー、(メタ)アクリロイル基を2個以上有する多官能モノマーを添加してもよい。これらの(メタ)アクリルモノマーを添加することで、ポリシロキサン中の(メタ)アクリロイル基がラジカルにより反応する際に、(メタ)アクリルモノマーがスペーサーとして働き、ポリシロキサン同士の反応が促進される。   In addition to the above-mentioned (meth) acrylic monomer having a carboxyl group and a thermal radical generator, a monomer having a (meth) acryloyl group and a polyfunctional monomer having two or more (meth) acryloyl groups may be added. By adding these (meth) acrylic monomers, when the (meth) acryloyl group in the polysiloxane reacts with radicals, the (meth) acrylic monomer acts as a spacer, and the reaction between the polysiloxanes is promoted.

(メタ)アクリロイル基を有するモノマーの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t−ブチル(メタ)アクリレート、2−ヒドロキシブチル(メタ)アクリレート、n−ヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、イソボルニル(メタ)アクリレートなどが挙げられる。   Specific examples of the monomer having a (meth) acryloyl group include methyl (meth) acrylate, ethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, isopropyl (meth) acrylate, n-butyl (meth) acrylate, and isobutyl. (Meth) acrylate, t-butyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, n-hexyl (meth) acrylate, cyclohexyl (meth) acrylate, isooctyl (meth) acrylate, isobornyl (meth) acrylate, etc. It is done.

(メタ)アクリロイル基を2個以上有する多官能モノマーの具体例としては、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリメタクリレート、1,3−ブタンジオールジアクリレート、1,3−ブタンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、1,4−ブタンジオールジアクリレート、1,4−ブタンジオールジメタクリレート、1,6−ヘキサンジオールジアクリレート、1,6−ヘキサンジオールジメタクリレート、1,9−ノナンジオールジメタクリレート、1,10−デカンジオールジメタクリレート、ジメチロール−トリシクロデカンジアクリレート、ジメチロールトリシクロデカンジメタクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールヘキサメタクリレート、1,3−ジアクリロイルオキシ−2−ヒドロキシプロパン、1,3−ジメタクリロイルオキシ−2−ヒドロキシプロパン、エチレンオキシド変性ビスフェノールAジアクリレート、エチレンオキシド変性ビスフェノールAジメタクリレートなどが挙げられる。   Specific examples of the polyfunctional monomer having two or more (meth) acryloyl groups include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, and tetraethylene glycol dimethacrylate. , Trimethylolpropane diacrylate, trimethylolpropane triacrylate, trimethylolpropane dimethacrylate, trimethylolpropane trimethacrylate, 1,3-butanediol diacrylate, 1,3-butanediol dimethacrylate, neopentyl glycol diacrylate, 1 , 4-butanediol diacrylate, 1,4-butanediol dimethacrylate, 1,6- Xanthdiol diacrylate, 1,6-hexanediol dimethacrylate, 1,9-nonanediol dimethacrylate, 1,10-decanediol dimethacrylate, dimethylol-tricyclodecane diacrylate, dimethyloltricyclodecane dimethacrylate, pentaerythritol Triacrylate, pentaerythritol tetraacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol hexaacrylate, dipentaerythritol hexamethacrylate, 1,3-diacryloyloxy-2-hydroxypropane, 1,3-dimethacryloyloxy 2-hydroxypropane, ethylene oxide-modified bisphenol A diacrylate, ethylene Such Sid modified bisphenol A dimethacrylate.

架橋性化合物の添加量は特に制限されないが、好ましくはポリシロキサン100重量部に対して0.1〜10重量部の範囲である。架橋性化合物の添加量が0.1重量部より少ないと、ポリシロキサンの架橋が不十分でパターン解像度向上の効果が少ない。一方、熱架橋性化合物の添加量が10重量部より多い場合、硬化膜の無色透明性が低下したり、組成物の貯蔵安定性が低下する。   The addition amount of the crosslinkable compound is not particularly limited, but is preferably in the range of 0.1 to 10 parts by weight with respect to 100 parts by weight of the polysiloxane. When the addition amount of the crosslinkable compound is less than 0.1 parts by weight, the polysiloxane is not sufficiently crosslinked and the effect of improving the pattern resolution is small. On the other hand, when the addition amount of the heat crosslinkable compound is more than 10 parts by weight, the colorless transparency of the cured film is lowered or the storage stability of the composition is lowered.

熱ラジカル発生剤を用いる場合、その添加量は特に制限されないが、好ましくはポリシロキサン100重量部に対して0.1〜8重量部である。熱ラジカル発生剤の添加量が0.1重量部より少ないと、発生するラジカルの量が十分ではないためにポリシロキサンの架橋が不十分でパターン解像度向上の効果が少ない。一方、8重量部より多いと、プリベーク時にわずかに発生するラジカルにより架橋が促進され、パターンが形成できなかったり、架橋が必要以上に促進されるために硬化膜にクラックが発生することがある。   When the thermal radical generator is used, the addition amount is not particularly limited, but is preferably 0.1 to 8 parts by weight with respect to 100 parts by weight of the polysiloxane. When the amount of the thermal radical generator added is less than 0.1 parts by weight, the amount of radicals generated is not sufficient, and thus the crosslinking of the polysiloxane is insufficient and the effect of improving the pattern resolution is small. On the other hand, when the amount is more than 8 parts by weight, crosslinking is promoted by radicals slightly generated during pre-baking, and a pattern cannot be formed or the crosslinking is promoted more than necessary, so that cracks may occur in the cured film.

また、本発明の感光性シロキサン組成物は必要に応じて、酸発生剤などの架橋促進剤、増感剤、溶解促進剤、溶解抑止剤、界面活性剤、安定剤、消泡剤などの添加剤を含有することもできる。   Moreover, the photosensitive siloxane composition of the present invention is optionally added with a crosslinking accelerator such as an acid generator, a sensitizer, a dissolution accelerator, a dissolution inhibitor, a surfactant, a stabilizer, and an antifoaming agent. An agent can also be contained.

本発明の感光性シロキサン組成物を用いた硬化膜の形成方法について説明する。本発明の感光性シロキサン組成物をスピンナー、ディッピング、スリットなどの公知の方法によって下地基板上に塗布し、ホットプレート、オーブンなどの加熱装置でプリベークする。プリベークは、50〜150℃の範囲で30秒〜30分間行い、プリベーク後の膜厚は、0.1〜15μmとするのが好ましい。   A method for forming a cured film using the photosensitive siloxane composition of the present invention will be described. The photosensitive siloxane composition of the present invention is applied onto a base substrate by a known method such as spinner, dipping, or slit, and prebaked with a heating device such as a hot plate or oven. Pre-baking is performed in the range of 50 to 150 ° C. for 30 seconds to 30 minutes, and the film thickness after pre-baking is preferably 0.1 to 15 μm.

プリベーク後、ステッパー、ミラープロジェクションマスクアライナー(MPA)、パラレルライトマスクアライナー(PLA)などの紫外可視露光機を用い、10〜4000J/m程度(波長365nm露光量換算)を所望のマスクを介して露光する。 After pre-baking, using a UV-visible exposure machine such as a stepper, mirror projection mask aligner (MPA), parallel light mask aligner (PLA), etc., about 10 to 4000 J / m 2 (wavelength 365 nm exposure conversion) through the desired mask Exposure.

露光後、現像により露光部が溶解し、ポジ型のパターンを得ることができる。現像方法としては、シャワー、ディッピング、パドルなどの方法で現像液に5秒〜10分間浸漬することが好ましい。現像液としては、公知のアルカリ現像液を用いることができる。具体的例としてはアルカリ金属の水酸化物、炭酸塩、リン酸塩、ケイ酸塩、ホウ酸塩などの無機アルカリ、2−ジエチルアミノエタノール、モノエタノールアミン、ジエタノールアミン等のアミン類、水酸化テトラメチルアンモニウム、コリン等の4級アンモニウム塩を1種あるいは2種以上含む水溶液等が挙げられる。   After exposure, the exposed portion is dissolved by development, and a positive pattern can be obtained. As a developing method, it is preferable to immerse in a developer for 5 seconds to 10 minutes by a method such as showering, dipping or paddle. As the developer, a known alkali developer can be used. Specific examples include alkali metal hydroxides, carbonates, phosphates, silicates, borates, and other inorganic alkalis, amines such as 2-diethylaminoethanol, monoethanolamine, diethanolamine, and tetramethyl hydroxide. Examples include aqueous solutions containing one or more quaternary ammonium salts such as ammonium and choline.

現像後、水でリンスすることが好ましい。また、必要であればホットプレート、オーブンなどの加熱装置で50〜150℃の範囲で乾燥ベークを行うこともできる。   It is preferable to rinse with water after development. Moreover, if necessary, dry baking can also be performed at 50-150 degreeC with heating apparatuses, such as a hotplate and oven.

その後、ブリーチング露光を行うことが好ましい。ブリーチング露光を行うことによって、膜中に残存する未反応のキノンジアジド化合物が光分解して、膜の光透明性がさらに向上する。ブリーチング露光の方法としては、PLAなどの紫外可視露光機を用い、100〜20000J/m程度(波長365nm露光量換算)を全面に露光する。 Thereafter, it is preferable to perform bleaching exposure. By performing bleaching exposure, the unreacted quinonediazide compound remaining in the film is photodegraded, and the light transparency of the film is further improved. As a method for bleaching exposure, an entire surface is exposed to about 100 to 20000 J / m 2 (wavelength 365 nm exposure amount conversion) using an ultraviolet-visible exposure machine such as PLA.

ブリーチング露光した膜を、必要であればホットプレート、オーブンなどの加熱装置で50〜150℃の範囲でソフトベークを行った後、ホットプレート、オーブンなどの加熱装置で150〜450℃の範囲で1時間程度キュアすることで、表示素子におけるTFT用平坦化膜、半導体素子における層間絶縁膜、あるいは光導波路におけるコアやクラッド材といった硬化膜が形成される。   The film subjected to bleaching exposure is soft-baked in a range of 50 to 150 ° C. with a heating device such as a hot plate or oven if necessary, and then in a range of 150 to 450 ° C. with a heating device such as a hot plate or oven. By curing for about 1 hour, a flattened film for TFT in the display element, an interlayer insulating film in the semiconductor element, or a cured film such as a core or cladding material in the optical waveguide is formed.

本発明における素子は、上述のような高耐熱性、高透明性、低誘電率性でかつ、パターン解像度の良い硬化膜を有する表示素子、半導体素子、あるいは光導波路材を指し、特に、TFT用平坦化膜として有する液晶、ならびに有機EL表示素子に有効に用いられる。   The element in the present invention refers to a display element, a semiconductor element, or an optical waveguide material having a cured film having high heat resistance, high transparency, low dielectric constant and good pattern resolution as described above. It is effectively used for a liquid crystal having a planarizing film and an organic EL display element.

以下、実施例を挙げて、本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されない。なお、得られたポリマーの重量平均分子量(Mw)は、GPCを用いてポリスチレン換算で求めたものである。   EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated further more concretely, this invention is not limited to these Examples. In addition, the weight average molecular weight (Mw) of the obtained polymer is calculated | required in polystyrene conversion using GPC.

合成例1 ポリシロキサン溶液(a)の合成
500mLの三口フラスコにメチルトリメトキシシランを54.48g(0.4mol)、フェニルトリメトキシシランを79.32g(0.4mol)、ヒドロキシメチルトリエトキシシラン50%エタノール溶液を77.72g(0.2mol)、ジアセトンアルコール(以下、DAAという)を118.32g仕込み、室温で攪拌しながら水54gにリン酸0.345g(仕込みモノマーに対して0.2重量%)を溶かしたリン酸水溶液を10分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した(内温は100〜110℃)。反応中に副生成物であるメタノール、エタノール、水が合計165g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が33重量%、溶剤組成がDAA/γ−ブチロラクトン(以下、GBLという)(80/20)となるようにDAAとGBLを加えてポリシロキサン溶液(a)を得た。なお、得られたポリマーの重量平均分子量(Mw)は6000であった。
Synthesis Example 1 Synthesis of Polysiloxane Solution (a) In a 500 mL three-necked flask, 54.48 g (0.4 mol) of methyltrimethoxysilane, 79.32 g (0.4 mol) of phenyltrimethoxysilane, and hydroxymethyltriethoxysilane 50 77.72 g (0.2 mol) of a% ethanol solution and 118.32 g of diacetone alcohol (hereinafter referred to as DAA) were charged, and 0.345 g of phosphoric acid (0.2 to the charged monomer) was added to 54 g of water while stirring at room temperature. An aqueous solution of phosphoric acid in which a weight percent was dissolved was added over 10 minutes. Thereafter, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 115 ° C. over 30 minutes. One hour after the start of temperature increase, the internal temperature of the solution reached 100 ° C., and was then heated and stirred for 2 hours (the internal temperature was 100 to 110 ° C.). During the reaction, a total of 165 g of methanol, ethanol and water as by-products were distilled out. DAA and GBL were added to the obtained polysiloxane DAA solution so that the polymer concentration was 33% by weight and the solvent composition was DAA / γ-butyrolactone (hereinafter referred to as GBL) (80/20). a) was obtained. In addition, the weight average molecular weight (Mw) of the obtained polymer was 6000.

合成例2 ポリシロキサン溶液(b)の合成
500mLの三口フラスコにメチルトリメトキシシランを54.48g(0.4mol)、フェニルトリメトキシシランを99.15g(0.5mol)、3−グリシドキシプロピルトリメトキシシランを23.63g(0.1mol)、DAAを121.11g仕込み、室温で攪拌しながら水55.8gにリン酸0.355g(仕込みモノマーに対して0.2重量%)を溶かしたリン酸水溶液を10分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した(内温は100〜110℃)。反応中に副生成物であるメタノール、水が合計120g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が33重量%、溶剤組成がDAA/GBL(80/20)となるようにDAAとGBLを加えてポリシロキサン溶液(b)を得た。なお、得られたポリマーの重量平均分子量(Mw)は10000であった。
Synthesis Example 2 Synthesis of Polysiloxane Solution (b) In a 500 mL three-necked flask, 54.48 g (0.4 mol) of methyltrimethoxysilane, 99.15 g (0.5 mol) of phenyltrimethoxysilane, 3-glycidoxypropyl Trimethoxysilane (23.63 g, 0.1 mol) and DAA (121.11 g) were charged, and 0.355 g of phosphoric acid (0.2 wt% with respect to the charged monomer) was dissolved in 55.8 g of water while stirring at room temperature. An aqueous phosphoric acid solution was added over 10 minutes. Thereafter, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 115 ° C. over 30 minutes. One hour after the start of temperature increase, the internal temperature of the solution reached 100 ° C., and was then heated and stirred for 2 hours (the internal temperature was 100 to 110 ° C.). During the reaction, a total of 120 g of methanol and water as by-products were distilled out. DAA and GBL were added to the obtained polysiloxane DAA solution so that the polymer concentration was 33% by weight and the solvent composition was DAA / GBL (80/20) to obtain a polysiloxane solution (b). In addition, the weight average molecular weight (Mw) of the obtained polymer was 10,000.

合成例3 ポリシロキサン溶液(c)の合成
500mLの三口フラスコにメチルトリメトキシシランを61.29g(0.45mol)、フェニルトリメトキシシランを79.32g(0.4mol)、下記構造のOXT−610(商品名、東亜合成(株)製)を48g(0.15mol)、DAAを131.53g仕込み、室温で攪拌しながら水56.7gにリン酸0.377g(仕込みモノマーに対して0.2重量%)を溶かしたリン酸水溶液を10分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した(内温は100〜110℃)。反応中に副生成物であるメタノール、エタノール、水が合計125g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が33重量%、溶剤組成がDAA/GBL(80/20)となるようにDAAとGBLを加えてポリシロキサン溶液(c)を得た。なお、得られたポリマーの重量平均分子量(Mw)は9000であった。
Synthesis Example 3 Synthesis of Polysiloxane Solution (c) 61.29 g (0.45 mol) of methyltrimethoxysilane, 79.32 g (0.4 mol) of phenyltrimethoxysilane, and OXT-610 having the following structure in a 500 mL three-necked flask (Trade name, manufactured by Toa Gosei Co., Ltd.) 48 g (0.15 mol) and 131.53 g of DAA were charged. While stirring at room temperature, 0.377 g of phosphoric acid (0.27% of charged monomer) was added to 56.7 g of water. An aqueous solution of phosphoric acid in which a weight percent was dissolved was added over 10 minutes. Thereafter, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 115 ° C. over 30 minutes. One hour after the start of temperature increase, the internal temperature of the solution reached 100 ° C., and was then heated and stirred for 2 hours (the internal temperature was 100 to 110 ° C.). During the reaction, a total of 125 g of methanol, ethanol and water as by-products were distilled out. DAA and GBL were added to the obtained polysiloxane DAA solution so that the polymer concentration was 33 wt% and the solvent composition was DAA / GBL (80/20) to obtain a polysiloxane solution (c). In addition, the weight average molecular weight (Mw) of the obtained polymer was 9000.

Figure 0005003081
Figure 0005003081

合成例4 ポリシロキサン溶液(d)の合成
500mLの三口フラスコにメチルトリメトキシシランを54.48g(0.4mol)、フェニルトリメトキシシランを99.15g(0.5mol)、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランを12.32g(0.05mol)、シリカ粒子であるPL−2L−DAA(商品名、扶桑化学工業(株)製)を12.02g(シラン原子モル数で0.05mol)、DAAを107.4g仕込み、室温で攪拌しながら水52.2gにリン酸0.338g(仕込みモノマーに対して0.2重量%)を溶かしたリン酸水溶液を10分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した(内温は100〜110℃)。反応中に副生成物であるメタノール、水が合計115g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が33重量%、溶剤組成がDAA/GBL(80/20)となるようにDAAとGBLを加えてポリシロキサン溶液(d)を得た。なお、得られたポリマーの重量平均分子量(Mw)は6000であった。
Synthesis Example 4 Synthesis of Polysiloxane Solution (d) In a 500 mL three-necked flask, 54.48 g (0.4 mol) of methyltrimethoxysilane, 99.15 g (0.5 mol) of phenyltrimethoxysilane, 2- (3,4) -Epoxycyclohexyl) 12.32 g (0.05 mol) of ethyltrimethoxysilane, and 12.02 g of silica particles PL-2L-DAA (trade name, manufactured by Fuso Chemical Industry Co., Ltd.) (0 in terms of moles of silane atoms) .05 mol), 107.4 g of DAA were charged, and an aqueous phosphoric acid solution in which 0.338 g of phosphoric acid (0.2 wt% with respect to the charged monomer) was dissolved in 52.2 g of water was added over 10 minutes while stirring at room temperature. did. Thereafter, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 115 ° C. over 30 minutes. One hour after the start of temperature increase, the internal temperature of the solution reached 100 ° C., and was then heated and stirred for 2 hours (the internal temperature was 100 to 110 ° C.). During the reaction, a total of 115 g of methanol and water as by-products were distilled out. DAA and GBL were added to the obtained polysiloxane DAA solution so that the polymer concentration was 33 wt% and the solvent composition was DAA / GBL (80/20) to obtain a polysiloxane solution (d). In addition, the weight average molecular weight (Mw) of the obtained polymer was 6000.

合成例5 ポリシロキサン溶液(e)の合成
500mLの三口フラスコにメチルトリメトキシシランを61.29g(0.45mol)、フェニルトリメトキシシランを79.32g(0.4mol)、OXT−610を32g(0.1mol)、直鎖状ポリシロキサンである“DMS−S12”(ゲレスト社製)3.71g(シラン原子モル数で0.05mol)、DAAを122.86g仕込み、室温で攪拌しながら水53.1gにリン酸0.353g(仕込みモノマーに対して0.2重量%)を溶かしたリン酸水溶液を10分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて30分攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した(内温は100〜110℃)。反応中に副生成物であるメタノール、エタノール、水115gが留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が33重量%、溶剤組成がDAA/GBL(80/20)となるようにDAAとGBLを加えてポリシロキサン溶液(e)を得た。なお、得られたポリマーの重量平均分子量(Mw)は6500であった。
Synthesis Example 5 Synthesis of Polysiloxane Solution (e) In a 500 mL three-necked flask, 61.29 g (0.45 mol) of methyltrimethoxysilane, 79.32 g (0.4 mol) of phenyltrimethoxysilane, and 32 g of OXT-610 ( 0.1 mol), 3.71 g of linear polysiloxane “DMS-S12” (manufactured by Gelest Co., Ltd.) (0.05 mol in terms of moles of silane atoms), 122.86 g of DAA, and water 53 with stirring at room temperature The phosphoric acid aqueous solution which dissolved 0.353g (0.2 weight% with respect to the preparation monomer) of phosphoric acid in 0.1g was added over 10 minutes. Thereafter, the flask was immersed in an oil bath at 70 ° C. and stirred for 30 minutes, and then the temperature of the oil bath was raised to 115 ° C. over 30 minutes. One hour after the start of temperature increase, the internal temperature of the solution reached 100 ° C., and was then heated and stirred for 2 hours (the internal temperature was 100 to 110 ° C.). During the reaction, 115 g of methanol, ethanol and water as by-products were distilled out. DAA and GBL were added to the obtained polysiloxane DAA solution so that the polymer concentration was 33% by weight and the solvent composition was DAA / GBL (80/20) to obtain a polysiloxane solution (e). In addition, the weight average molecular weight (Mw) of the obtained polymer was 6500.

合成例6 ポリシロキサン溶液(f)の合成
500mLの三口フラスコにメチルトリメトキシシランを51.76g(0.38mol)、フェニルトリメトキシシランを99.15g(0.5mol)、2−(3,4−エポキシシクロヘキシル)エチルトリメトキシシランを12.32g(0.05mol)、シリカ粒子であるPL−2L−DAA(商品名、扶桑化学工業(株)製)を12.02g(シラン原子モル数で0.05mol)、直鎖状ポリシロキサンである“DMS−S12”(ゲレスト社製)1.48g(シラン原子モル数で0.02mol)DAAを106.17g仕込み、室温で攪拌しながら水52.2gにリン酸0.335g(仕込みモノマーに対して0.2重量%)を溶かしたリン酸水溶液を10分かけて添加した。その後、フラスコを70℃のオイルバスに浸けて1時間攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した(内温は100〜110℃)。反応中に副生成物であるメタノール、水が合計115g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が33重量%、溶剤組成がDAA/GBL(80/20)となるようにDAAとGBLを加えてポリシロキサン溶液(f)を得た。なお、得られたポリマーの重量平均分子量(Mw)は8000であった。
Synthesis Example 6 Synthesis of Polysiloxane Solution (f) In a 500 mL three-necked flask, 51.76 g (0.38 mol) of methyltrimethoxysilane, 99.15 g (0.5 mol) of phenyltrimethoxysilane, 2- (3,4 -Epoxycyclohexyl) 12.32 g (0.05 mol) of ethyltrimethoxysilane, and 12.02 g of silica particles PL-2L-DAA (trade name, manufactured by Fuso Chemical Industry Co., Ltd.) (0 in terms of moles of silane atoms) .05 mol), 1.48 g (0.02 mol in terms of moles of silane atoms) of straight chain polysiloxane “DMS-S12” (manufactured by Gerest) 106.17 g of DAA, and 52.2 g of water while stirring at room temperature A phosphoric acid aqueous solution in which 0.335 g of phosphoric acid (0.2 wt% with respect to the charged monomer) was dissolved was added over 10 minutes. Thereafter, the flask was immersed in an oil bath at 70 ° C. and stirred for 1 hour, and then the temperature of the oil bath was raised to 115 ° C. over 30 minutes. One hour after the start of temperature increase, the internal temperature of the solution reached 100 ° C., and was then heated and stirred for 2 hours (the internal temperature was 100 to 110 ° C.). During the reaction, a total of 115 g of methanol and water as by-products were distilled out. DAA and GBL were added to the obtained polysiloxane DAA solution so that the polymer concentration was 33 wt% and the solvent composition was DAA / GBL (80/20) to obtain a polysiloxane solution (f). In addition, the weight average molecular weight (Mw) of the obtained polymer was 8000.

合成例7 ポリシロキサン溶液(g)の合成
500mLの三口フラスコにメチルトリメトキシシランを88.53g(0.65mol)、フェニルトリメトキシシランを69.41g(0.35mol)、DAAを138.87g仕込み、室温で攪拌しながら水54gにリン酸0.158g(仕込みモノマーに対して0.1重量%)を溶かしたリン酸水溶液を30分かけて添加した。その後、フラスコを40℃のオイルバスに浸けて30分攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2時間加熱攪拌した(内温は100〜110℃)。反応中に副生成物であるメタノール、水が合計120g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が33重量%、溶剤組成がDAA/GBL(80/20)となるようにDAAとGBLを加えてポリシロキサン溶液(g)を得た。なお、得られたポリマーの重量平均分子量(Mw)は3700であった。
Synthesis Example 7 Synthesis of polysiloxane solution (g) A 500 mL three-necked flask was charged with 88.53 g (0.65 mol) of methyltrimethoxysilane, 69.41 g (0.35 mol) of phenyltrimethoxysilane, and 138.87 g of DAA. While stirring at room temperature, a phosphoric acid aqueous solution in which 0.158 g of phosphoric acid (0.1 wt% with respect to the charged monomer) was dissolved in 54 g of water was added over 30 minutes. Thereafter, the flask was immersed in a 40 ° C. oil bath and stirred for 30 minutes, and then the oil bath was heated to 115 ° C. over 30 minutes. One hour after the start of temperature increase, the internal temperature of the solution reached 100 ° C., and was then heated and stirred for 2 hours (the internal temperature was 100 to 110 ° C.). During the reaction, a total of 120 g of methanol and water as by-products were distilled out. DAA and GBL were added to the obtained polysiloxane DAA solution so that the polymer concentration was 33 wt% and the solvent composition was DAA / GBL (80/20) to obtain a polysiloxane solution (g). In addition, the weight average molecular weight (Mw) of the obtained polymer was 3700.

合成例8 ポリシロキサン溶液(h)の合成
500mLの三口フラスコにメチルトリメトキシシランを81.72g(0.6mol)、フェニルトリメトキシシランを59.49g(0.3mol)、4−ヒドロキシ−5−(p−ヒドロキシフェニルカルボニルオキシ)ペンチルトリメトキシシランを34.44g(0.1mol)、DAAを160.51g仕込み、室温で攪拌しながら水54gにリン酸0.176g(仕込みモノマーに対して0.1重量%)を溶かしたリン酸水溶液を30分かけて添加した。その後、フラスコを40℃のオイルバスに浸けて30分攪拌した後、オイルバスを30分かけて115℃まで昇温した。昇温開始1時間後に溶液の内温が100℃に到達し、そこから2.5時間加熱攪拌した(内温は100〜110℃)。反応中に副生成物であるメタノール、水が合計120g留出した。得られたポリシロキサンのDAA溶液に、ポリマー濃度が33重量%、溶剤組成がDAA/GBL(80/20)となるようにDAAとGBLを加えてポリシロキサン溶液(h)を得た。なお、得られたポリマーの重量平均分子量(Mw)は7000であった。また、4−ヒドロキシ−5−(p−ヒドロキシフェニルカルボニルオキシ)ペンチルトリメトキシシランは下記構造のフェノール性水酸基含有オルガノシランである。
Synthesis Example 8 Synthesis of Polysiloxane Solution (h) In a 500 mL three-necked flask, 81.72 g (0.6 mol) of methyltrimethoxysilane, 59.49 g (0.3 mol) of phenyltrimethoxysilane, 4-hydroxy-5- 34.44 g (0.1 mol) of (p-hydroxyphenylcarbonyloxy) pentyltrimethoxysilane and 160.51 g of DAA were charged, and 0.176 g of phosphoric acid was added to 54 g of water while stirring at room temperature (0. An aqueous solution of phosphoric acid in which 1% by weight) was dissolved was added over 30 minutes. Thereafter, the flask was immersed in a 40 ° C. oil bath and stirred for 30 minutes, and then the oil bath was heated to 115 ° C. over 30 minutes. One hour after the start of temperature increase, the internal temperature of the solution reached 100 ° C., and was then heated and stirred for 2.5 hours (internal temperature was 100 to 110 ° C.). During the reaction, a total of 120 g of methanol and water as by-products were distilled out. DAA and GBL were added to the obtained polysiloxane DAA solution so that the polymer concentration was 33% by weight and the solvent composition was DAA / GBL (80/20) to obtain a polysiloxane solution (h). In addition, the weight average molecular weight (Mw) of the obtained polymer was 7000. 4-hydroxy-5- (p-hydroxyphenylcarbonyloxy) pentyltrimethoxysilane is a phenolic hydroxyl group-containing organosilane having the following structure.

Figure 0005003081
Figure 0005003081

合成例9 アクリルポリマー溶液(i)の合成
500mLの三口フラスコに2,2’−アゾビス(2,4−ジメチルバレロニトリル)を5g、ジエチレングリコールエチルメチルエーテル(EDM)を200g仕込んだ。引き続きスチレンを25g、メタクリル酸を20g、メタクリル酸グリシジルを45g、トリシクロ[5.2.1.02,6]デカン−8−イルメタクリレートを10g仕込み、室温でしばらく攪拌した後、フラスコ内を窒素置換した。その後、フラスコを70℃のオイルバスに浸けて、5時間加熱攪拌した。得られたアクリルポリマーのEDM溶液に、ポリマー濃度が30重量%、溶剤組成がEDM(100)となるようにEDMを加えてアクリルポリマー溶液(i)を得た。なお、得られたポリマーの重量平均分子量(Mw)は15000であった。
Synthesis Example 9 Synthesis of Acrylic Polymer Solution (i) A 500 mL three-neck flask was charged with 5 g of 2,2′-azobis (2,4-dimethylvaleronitrile) and 200 g of diethylene glycol ethyl methyl ether (EDM). Subsequently, 25 g of styrene, 20 g of methacrylic acid, 45 g of glycidyl methacrylate, and 10 g of tricyclo [5.2.1.0 2,6 ] decan-8-yl methacrylate were added and stirred for a while at room temperature. Replaced. Thereafter, the flask was immersed in an oil bath at 70 ° C. and stirred with heating for 5 hours. To the resulting EDM solution of acrylic polymer, EDM was added so that the polymer concentration was 30 wt% and the solvent composition was EDM (100) to obtain an acrylic polymer solution (i). In addition, the weight average molecular weight (Mw) of the obtained polymer was 15000.

合成例10 キノンジアジド化合物(a)の合成
乾燥窒素気流下、TrisP−PA(商品名、本州化学工業(株)製)21.23g(0.05mol)と5−ナフトキノンジアジドスルホニル酸クロリド37.62g(0.14mol)を1,4−ジオキサン450gに溶解させ、室温にした。ここに、1,4−ジオキサン50gと混合させたトリエチルアミン15.58g(0.154mol)を系内が35℃以上にならないように滴下した。滴下後30℃で2時間攪拌した。トリエチルアミン塩を濾過し、濾液を水に投入させた。その後、析出した沈殿を濾過で集めた。この沈殿を真空乾燥機で乾燥させ、下記構造のキノンジアジド化合物(a)を得た。
Synthesis Example 10 Synthesis of quinonediazide compound (a) Under a dry nitrogen stream, 21.23 g (0.05 mol) of TrisP-PA (trade name, manufactured by Honshu Chemical Industry Co., Ltd.) and 37.62 g of 5-naphthoquinonediazidesulfonyl acid chloride ( 0.14 mol) was dissolved in 450 g of 1,4-dioxane and brought to room temperature. Here, 15.58 g (0.154 mol) of triethylamine mixed with 50 g of 1,4-dioxane was added dropwise so that the temperature inside the system would not be 35 ° C. or higher. It stirred at 30 degreeC after dripping for 2 hours. The triethylamine salt was filtered and the filtrate was poured into water. Thereafter, the deposited precipitate was collected by filtration. This precipitate was dried with a vacuum dryer to obtain a quinonediazide compound (a) having the following structure.

Figure 0005003081
Figure 0005003081

合成例11 キノンジアジド化合物(b)の合成
乾燥窒素気流下、TrisP−PA21.23g(0.05mol)と5−ナフトキノンジアジドスルホニル酸クロリド26.87g(0.1mol)を1,4−ジオキサン450gに溶解させ、室温にした。ここに、1,4−ジオキサン50gと混合させたトリエチルアミン11.13g(0.11mol)を系内が35℃以上にならないように滴下した。滴下後30℃で2時間攪拌した。トリエチルアミン塩を濾過し、濾液を水に投入させた。その後、析出した沈殿を濾過で集めた。この沈殿を真空乾燥機で乾燥させ、下記構造のキノンジアジド化合物(b)を得た。
Synthesis Example 11 Synthesis of quinonediazide compound (b) Under a nitrogen stream, 21.23 g (0.05 mol) of TrisP-PA and 26.87 g (0.1 mol) of 5-naphthoquinonediazidesulfonyl acid chloride were dissolved in 450 g of 1,4-dioxane. And brought to room temperature. Here, 11.13 g (0.11 mol) of triethylamine mixed with 50 g of 1,4-dioxane was added dropwise so that the temperature in the system would not be 35 ° C. or higher. It stirred at 30 degreeC after dripping for 2 hours. The triethylamine salt was filtered and the filtrate was poured into water. Thereafter, the deposited precipitate was collected by filtration. This precipitate was dried with a vacuum dryer to obtain a quinonediazide compound (b) having the following structure.

Figure 0005003081
Figure 0005003081

実施例1
合成例1で得られたポリシロキサン溶液(a)30g、合成例10で得られたキノンジアジド化合物(a)0.8g、架橋性化合物としてテレフタル酸0.2gを黄色灯下で混合、攪拌して均一溶液とした後、0.2μmのフィルターで濾過して組成物1を得た。
Example 1
30 g of the polysiloxane solution (a) obtained in Synthesis Example 1, 0.8 g of the quinonediazide compound (a) obtained in Synthesis Example 10, and 0.2 g of terephthalic acid as a crosslinkable compound were mixed and stirred under a yellow light. After preparing a uniform solution, it was filtered through a 0.2 μm filter to obtain Composition 1.

組成物1をテンパックスガラス板(旭テクノガラス板(株)製)、およびシリコンウェハにスピンコーター(ミカサ(株)製1H−360S)を用いて任意の回転数でスピンコートした後、ホットプレート(大日本スクリーン製造(株)製SCW−636)を用いて100℃で2分間プリベークし、膜厚4μm(組成物13は3μm)の膜を作製した。作製した膜をパラレルライトマスクアライナー(以下PLAという)(キャノン(株)製PLA−501F)を用いて、超高圧水銀灯を感度測定用のグレースケールマスクを介して露光した後、自動現像装置(滝沢産業(株)製AD−2000)を用いて2.38wt%水酸化テトラメチルアンモニウム水溶液であるELM−D(三菱ガス化学(株)製)で80秒間シャワー現像し、次いで水で30秒間リンスした。その後、ブリーチング露光として、PLA(キャノン(株)製PLA−501F)を用いて、膜全面に超高圧水銀灯を6000J/m(波長365nm露光量換算)露光した。その後、ホットプレートを用いて90℃で2分間ソフトベークし、次いでオーブン(タバイエスペック社製IHPS−222)を用いて空気中220℃で1時間キュアして硬化膜を作製した。 The composition 1 was spin-coated at an arbitrary number of revolutions using a spin coater (1H-360S manufactured by Mikasa Co., Ltd.) on a Tempax glass plate (Asahi Techno Glass plate Co., Ltd.) and a silicon wafer, and then hot plate (SCW-636 manufactured by Dainippon Screen Mfg. Co., Ltd.) was used for pre-baking at 100 ° C. for 2 minutes to prepare a film having a film thickness of 4 μm (composition 13 is 3 μm). The produced film was exposed to an ultra-high pressure mercury lamp through a gray scale mask for sensitivity measurement using a parallel light mask aligner (hereinafter referred to as PLA) (PLA-501F manufactured by Canon Inc.), and then an automatic developing device (Takizawa). The product was developed with ELM-D (Mitsubishi Gas Chemical Co., Ltd.), a 2.38 wt% tetramethylammonium hydroxide aqueous solution, for 80 seconds using an industrial AD-2000), and then rinsed with water for 30 seconds. . Thereafter, as bleaching exposure, PLA (PLA-501F manufactured by Canon Inc.) was used to expose the entire surface of the film with an ultrahigh pressure mercury lamp at 6000 J / m 2 (wavelength 365 nm exposure conversion). After that, soft baking was performed at 90 ° C. for 2 minutes using a hot plate, and then cured in air at 220 ° C. for 1 hour using an oven (IHPS-222 manufactured by Tabai Espec) to prepare a cured film.

感光特性、および硬化膜特性の評価結果を表2に示す。なお、表中の評価は以下の方法で行った。なお、下記の(1)、(2)、(3)、(4)の評価はシリコンウェハ基板を、(6)の評価はテンパックスガラス板を用いて行った。   Table 2 shows the evaluation results of the photosensitive characteristics and the cured film characteristics. The evaluation in the table was performed by the following method. The following evaluations (1), (2), (3), and (4) were performed using a silicon wafer substrate, and (6) was performed using a Tempax glass plate.

(1)膜厚測定
大日本スクリーン製造(株)製ラムダエースSTM−602を用いて、屈折率1.50で測定を行った。
(1) Measurement of film thickness Using a Lambda Ace STM-602 manufactured by Dainippon Screen Mfg. Co., Ltd., the film thickness was measured at a refractive index of 1.50.

(2)残膜率の算出
残膜率は以下の式に従って算出した。
残膜率(%)=現像後の未露光部膜厚÷プリベーク後の膜厚×100 。
(2) Calculation of remaining film rate The remaining film rate was calculated according to the following formula.
Residual film ratio (%) = unexposed film thickness after development / film thickness after pre-baking × 100.

(3)感度の算出
露光、現像後、10μmのライン・アンド・スペースパターンを1対1の幅に形成する露光量(以下、これを最適露光量という)を感度とした。
(3) Calculation of sensitivity The exposure amount (hereinafter referred to as the optimum exposure amount) for forming a 10 μm line-and-space pattern in a one-to-one width after exposure and development was defined as sensitivity.

(4)解像度の算出
最適露光量における現像後の最小パターン寸法を現像後解像度、キュア後の最小パターン寸法をキュア後解像度とした。
(4) Calculation of resolution The minimum pattern size after development at the optimum exposure amount was taken as post-development resolution, and the minimum pattern size after cure was taken as post-cure resolution.

(5)重量減少率
組成物をアルミセルに約100mg入れ、熱重量測定装置TGA−50((株)島津製作所製)を用い、窒素雰囲気中、昇温速度10℃/分で300℃まで加熱し、そのまま1時間加熱硬化させ、その後昇温速度10℃/分で400℃までで昇温した時の、重量減少率を測定した。300℃に到達したときの重量を測定し、さらに400℃に到達した時の重量を測定し、300℃時の重量との差を求め、減少した重量分を重量減少率として求めた。
(5) Weight reduction rate About 100 mg of the composition was put in an aluminum cell, and heated to 300 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere using a thermogravimetric apparatus TGA-50 (manufactured by Shimadzu Corporation). Then, it was cured by heating for 1 hour, and then the weight reduction rate was measured when the temperature was raised to 400 ° C. at a temperature rising rate of 10 ° C./min. The weight when reaching 300 ° C. was measured, the weight when reaching 400 ° C. was measured, the difference from the weight at 300 ° C. was determined, and the reduced weight was determined as the weight reduction rate.

(6)光透過率の測定
MultiSpec−1500((株)島津製作所)を用いて、まずテンパックスガラス板のみを測定し、その紫外可視吸収スペクトルをリファレンスとした。次に各キュア膜をテンパックスガラスに形成し、これをサンプルとし、サンプルを用いてシングルビームで測定し、3μmあたりの波長400nmでの光透過率を求め、リファレンスとの差異を硬化膜の透過率とした。
(6) Measurement of light transmittance First, only the Tempax glass plate was measured using MultiSpec-1500 (Shimadzu Corporation), and the ultraviolet-visible absorption spectrum was used as a reference. Next, each cured film is formed on Tempax glass, and this is used as a sample. Using the sample, measurement is performed with a single beam, light transmittance at a wavelength of 400 nm per 3 μm is obtained, and the difference from the reference is transmitted through the cured film. Rate.

(7)誘電率の測定
アルミ基板に、組成物を塗布、プリベーク、露光、キュア処理し、薄膜を形成した。その後この薄膜上部にアルミ電極を形成し、1kHzにおける静電容量をアジレント・テクノロジー社製のLCRメーター4284Aを用いて測定し、下記式により誘電率(ε)を求めた。なお現像処理はしていない。
ε=C・d/ε・S
但し、Cは静電容量、dは試料膜厚、εは真空中の誘電率、Sは上部電極面積である。
(7) Measurement of dielectric constant A thin film was formed by coating, pre-baking, exposing and curing the composition on an aluminum substrate. Thereafter, an aluminum electrode was formed on the upper part of the thin film, and the capacitance at 1 kHz was measured using an LCR meter 4284A manufactured by Agilent Technologies, and the dielectric constant (ε) was determined by the following formula. The development process is not performed.
ε = C · d / ε 0 · S
Where C is the capacitance, d is the sample film thickness, ε 0 is the dielectric constant in vacuum, and S is the upper electrode area.

実施例2〜8、比較例1〜5
表1に記載の組成のとおりに、組成物1と同様にして組成物2〜13を作製した。なお、架橋性化合物として用いたエピコート828(商品名、ジャパンエポキシレジン(株)製)、OX−SC(商品名、東亜合成(株)製)は下記に示した構造の化合物である。また、熱ラジカル発生剤として用いたパークミルD(商品名、日本油脂(株)製)はジクミルペルオキシド、多官能アクリルモノマーとして用いたDCP−A(商品名、共栄社化学(株)製)はジメチロールトリシクロデカンジアクリレートである。
Examples 2-8, Comparative Examples 1-5
According to the composition described in Table 1, compositions 2 to 13 were prepared in the same manner as composition 1. In addition, Epicoat 828 (trade name, manufactured by Japan Epoxy Resin Co., Ltd.) and OX-SC (trade name, manufactured by Toa Gosei Co., Ltd.) used as the crosslinkable compounds are compounds having the structures shown below. Park mill D (trade name, manufactured by Nippon Oil & Fats Co., Ltd.) used as a thermal radical generator is dicumyl peroxide, DCP-A (trade name, manufactured by Kyoeisha Chemical Co., Ltd.) used as a polyfunctional acrylic monomer is di Methylol tricyclodecanediacrylate.

Figure 0005003081
Figure 0005003081

Figure 0005003081
Figure 0005003081

組成物2〜13を用い、それぞれ実施例1と同様にして硬化膜を作製した。ただし、組成物13を用いた比較例5の現像は、0.3wt%水酸化テトラメチルアンモニウム水溶液(ELM−Dを水で希釈したもの)で80秒間シャワー現像して行った。   A cured film was prepared in the same manner as in Example 1 using Compositions 2 to 13, respectively. However, the development of Comparative Example 5 using the composition 13 was performed by shower development for 80 seconds with a 0.3 wt% tetramethylammonium hydroxide aqueous solution (ELM-D diluted with water).

なお、組成物7、8を用いた場合、室温(23℃)に10日間放置しても、放置を開始した日と感度、解像度が変わること無くパターン形成が可能であった。   When the compositions 7 and 8 were used, even if the composition was allowed to stand at room temperature (23 ° C.) for 10 days, it was possible to form a pattern without changing the sensitivity, the resolution, and the day when the standing was started.

Figure 0005003081
Figure 0005003081

Claims (6)

(a)アルコール性水酸基を含有するがフェノール性水酸基を含有しないポリシロキサン、(b)キノンジアジド化合物、(c)溶剤、(d)架橋性化合物を含有し、(d)架橋性化合物がポリシロキサン中のアルコール性水酸基と反応することで、ポリシロキサンが架橋する化合物である感光性シロキサン組成物。 (A) a polysiloxane containing an alcoholic hydroxyl group but not containing a phenolic hydroxyl group, (b) a quinonediazide compound, (c) a solvent, (d) a crosslinkable compound, and (d) a crosslinkable compound in the polysiloxane The photosensitive siloxane composition which is a compound which polysiloxane bridge | crosslinks by reacting with alcoholic hydroxyl group. (a)アルコール性水酸基を含有するがフェノール性水酸基を含有しないポリシロキサンが、一般式(1)で表されるオルガノシランの1種以上を少なくとも含むモノマーを反応させることによって合成されるポリシロキサンである請求項1記載の感光性シロキサン組成物。
Figure 0005003081
(式中、Rはアルコール性水酸基、エポキシ構造、またはオキセタン構造を有する炭素数1〜15の有機基を表し、複数のRはそれぞれ同じでも異なっていてもよい。Rは水素、炭素数1〜10のアルキル基、炭素数2〜10のアルケニル基、炭素数6〜15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。Rは水素、炭素数1〜6のアルキル基、炭素数2〜6のアシル基、炭素数6〜15のアリール基のいずれかを表し、複数のRはそれぞれ同じでも異なっていてもよい。nは1から3の整数、mは0から2の整数を表す。ただし、n+mは1から3の整数である。)
(A) A polysiloxane which contains an alcoholic hydroxyl group but does not contain a phenolic hydroxyl group is a polysiloxane synthesized by reacting a monomer containing at least one organosilane represented by the general formula (1). The photosensitive siloxane composition according to claim 1.
Figure 0005003081
(In the formula, R 1 represents an alcoholic hydroxyl group, an epoxy structure, or an organic group having 1 to 15 carbon atoms having an oxetane structure, and a plurality of R 1 may be the same or different. R 2 represents hydrogen or carbon. It represents any one of an alkyl group having 1 to 10 carbon atoms, an alkenyl group having 2 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 2 may be the same or different, and R 3 is hydrogen, It represents any one of an alkyl group having 1 to 6 carbon atoms, an acyl group having 2 to 6 carbon atoms, and an aryl group having 6 to 15 carbon atoms, and a plurality of R 3 may be the same or different. (An integer of 3 and m represents an integer of 0 to 2. However, n + m is an integer of 1 to 3. )
(d)架橋性化合物が、カルボキシル基、酸無水物構造、エポキシ構造、オキセタン構造の群から選択される構造を2個以上有する化合物である請求項1または2記載の感光性シロキサン組成物。 (D) The photosensitive siloxane composition according to claim 1 or 2, wherein the crosslinkable compound is a compound having two or more structures selected from the group consisting of a carboxyl group, an acid anhydride structure, an epoxy structure, and an oxetane structure. (d)架橋性化合物が、カルボキシル基を有する(メタ)アクリルモノマーであり、さらに熱ラジカル発生剤を含む請求項1または2記載の感光性シロキサン組成物。 The photosensitive siloxane composition according to claim 1 or 2, wherein (d) the crosslinkable compound is a (meth) acrylic monomer having a carboxyl group, and further contains a thermal radical generator. 請求項1〜4のいずれか記載の感光性シロキサン組成物から形成された硬化膜。 The cured film formed from the photosensitive siloxane composition in any one of Claims 1-4. 請求項5記載の硬化膜を具備する素子。 An element comprising the cured film according to claim 5.
JP2006260155A 2005-09-28 2006-09-26 Photosensitive siloxane composition, cured film formed therefrom, and device having cured film Active JP5003081B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006260155A JP5003081B2 (en) 2005-09-28 2006-09-26 Photosensitive siloxane composition, cured film formed therefrom, and device having cured film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005281322 2005-09-28
JP2005281322 2005-09-28
JP2006260155A JP5003081B2 (en) 2005-09-28 2006-09-26 Photosensitive siloxane composition, cured film formed therefrom, and device having cured film

Publications (3)

Publication Number Publication Date
JP2007122029A JP2007122029A (en) 2007-05-17
JP2007122029A5 JP2007122029A5 (en) 2009-11-12
JP5003081B2 true JP5003081B2 (en) 2012-08-15

Family

ID=38145872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006260155A Active JP5003081B2 (en) 2005-09-28 2006-09-26 Photosensitive siloxane composition, cured film formed therefrom, and device having cured film

Country Status (1)

Country Link
JP (1) JP5003081B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4766268B2 (en) * 2007-03-01 2011-09-07 Jsr株式会社 Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP5003375B2 (en) * 2007-09-20 2012-08-15 Jsr株式会社 Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
JP5105555B2 (en) 2007-11-13 2012-12-26 株式会社Adeka Positive photosensitive composition, positive permanent resist, and method for producing positive permanent resist
JP5240459B2 (en) * 2008-02-19 2013-07-17 Jsr株式会社 Radiation-sensitive resin composition, interlayer insulating film, microlens and method for forming them
WO2011040248A1 (en) * 2009-09-29 2011-04-07 東レ株式会社 Positive photosensitive resin composition, cured film obtained using same, and optical device
JP5659561B2 (en) * 2010-06-02 2015-01-28 東レ株式会社 Photosensitive siloxane composition, cured film formed therefrom, and device having cured film
JP2012255925A (en) * 2011-06-09 2012-12-27 Hitachi Chem Co Ltd Photosensitive resin composition, and photosensitive element and permanent resist using the same
DE102011080888A1 (en) * 2011-08-12 2013-02-14 Technische Universität München Process for the preparation of poly (hydroxymethyl) -functional siloxanes and silica gels
US9431619B2 (en) 2013-09-27 2016-08-30 Samsung Electronics Co., Ltd. Composition for insulator, insulator, and thin film transistor
JP6271272B2 (en) * 2014-01-31 2018-01-31 昭和電工株式会社 Radiation-sensitive composition and method for producing radiation lithography structure
KR101520793B1 (en) * 2014-08-28 2015-05-18 엘티씨 (주) High heat-resistant polysilsesquioxane-based photosensitive resin composition
US10522771B2 (en) 2014-12-01 2019-12-31 Samsung Electronics Co., Ltd. Composition, electronic device, and thin film transistor
JP6455160B2 (en) * 2015-01-14 2019-01-23 Jsr株式会社 Radiation-sensitive composition for forming cured film, cured film, display element and method for forming cured film
TWI566036B (en) * 2015-03-31 2017-01-11 奇美實業股份有限公司 Photosensitive polysiloxane composition, protecting film, and element having the protecting film
KR102407114B1 (en) 2015-05-29 2022-06-08 삼성전자주식회사 Insulating ink and insulator and thin film transistor and electronic device
KR102380151B1 (en) 2015-08-31 2022-03-28 삼성전자주식회사 Thin film transistor, and electronic device including same
KR102464890B1 (en) 2017-10-18 2022-11-07 삼성전자주식회사 Fused polycyclic heteroaromatic compound and organic thin film and electronic device
KR102711500B1 (en) 2018-11-26 2024-09-26 삼성전자주식회사 Compound and organic thin film and thin film transistor and electronic device
KR102684640B1 (en) 2018-12-03 2024-07-11 삼성전자주식회사 Organic thin film and organic thin film transistor and electronic device
JP7119997B2 (en) * 2018-12-28 2022-08-17 信越化学工業株式会社 Photosensitive resin composition, laminate, and pattern forming method
JP6639724B1 (en) * 2019-03-15 2020-02-05 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH Positive photosensitive polysiloxane composition
JP7221578B2 (en) * 2020-01-24 2023-02-14 信越化学工業株式会社 Photosensitive resin composition, photosensitive resin film, photosensitive dry film, and pattern forming method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288857A (en) * 1990-04-06 1991-12-19 Nippon Telegr & Teleph Corp <Ntt> Resist material and photosensitive resin composition
JPH0551458A (en) * 1991-08-23 1993-03-02 Fujitsu Ltd Organosilicon polymer and method for producing semiconductor device using the same polymer
JP4373082B2 (en) * 2001-12-28 2009-11-25 富士通株式会社 Alkali-soluble siloxane polymer, positive resist composition, resist pattern and method for producing the same, and electronic circuit device and method for producing the same
JP4110401B2 (en) * 2003-06-13 2008-07-02 信越化学工業株式会社 Photosensitive silicone resin composition, cured product thereof and method for forming negative fine pattern
JP4168443B2 (en) * 2003-07-30 2008-10-22 Jsr株式会社 Radiation-sensitive resin composition, interlayer insulating film and microlens, and production method thereof
KR101209049B1 (en) * 2004-12-24 2012-12-07 스미또모 가가꾸 가부시끼가이샤 Photosensitive resin and thin film panel comprising pattern made of the photosensitive resin and method for manufacturing the thin film panel

Also Published As

Publication number Publication date
JP2007122029A (en) 2007-05-17

Similar Documents

Publication Publication Date Title
JP5003081B2 (en) Photosensitive siloxane composition, cured film formed therefrom, and device having cured film
JP5099140B2 (en) Photosensitive composition, cured film formed therefrom, and device having cured film
JP4670693B2 (en) Photosensitive siloxane composition, cured film formed therefrom, and device having cured film
JP4853228B2 (en) Photosensitive siloxane composition, cured film formed therefrom, element having cured film, and pattern forming method
JP5034901B2 (en) Photosensitive siloxane composition, cured film formed therefrom, and device having cured film
CN104345567B (en) photosensitive polysiloxane composition and application thereof
JP4784283B2 (en) Positive photosensitive siloxane composition, cured film formed therefrom, and device having cured film
JP5696665B2 (en) Photosensitive siloxane composition, cured film formed therefrom, and device having cured film
JP2007193318A (en) Photosensitive siloxane composition, cured film formed of the same and element having cured film
JP2008020898A (en) Photosensitive siloxane composition, cured film formed from the same and element having cured film
JP2008208342A (en) Resin composition, cured film and color filter with cured film
JP5444704B2 (en) Photosensitive composition, cured film formed therefrom, and device having cured film
JP2009042422A (en) Photosensitive siloxane composition, cured film formed therefrom, and element having cured film
JP5659561B2 (en) Photosensitive siloxane composition, cured film formed therefrom, and device having cured film
JP4967687B2 (en) Photosensitive siloxane composition, cured film formed therefrom, and device having cured film
JP4910646B2 (en) Photosensitive siloxane composition and method for producing the same, cured film formed from photosensitive siloxane composition, and element having cured film
JP2009169343A (en) Photosensitive composition, cured film formed thereof, and element having cured film
JP2007226214A (en) Photosensitive siloxane composition, cured film formed of the same and element having cured film
US20130310497A1 (en) Photo-curing polysiloxane composition and applications thereof
JP4687315B2 (en) Photosensitive resin composition, cured film formed therefrom, and element having cured film
JP2010032977A (en) Positive photosensitive composition, cured film formed of the same, and device with cured film
JP5343649B2 (en) Photosensitive composition, cured film formed therefrom, and device having cured film
CN104423170B (en) Photosensitive polysiloxane composition, protective film and assembly with protective film
JP5169027B2 (en) Photosensitive siloxane composition, cured film formed therefrom, and device having cured film
JP5540632B2 (en) Photosensitive composition, cured film formed therefrom, and device having cured film

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090925

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090925

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5003081

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3