JP5089032B2 - Method for controlling automatic matching unit for plasma processing apparatus - Google Patents
Method for controlling automatic matching unit for plasma processing apparatus Download PDFInfo
- Publication number
- JP5089032B2 JP5089032B2 JP2005297345A JP2005297345A JP5089032B2 JP 5089032 B2 JP5089032 B2 JP 5089032B2 JP 2005297345 A JP2005297345 A JP 2005297345A JP 2005297345 A JP2005297345 A JP 2005297345A JP 5089032 B2 JP5089032 B2 JP 5089032B2
- Authority
- JP
- Japan
- Prior art keywords
- slag
- reflectance
- control
- plasma processing
- tuner
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 28
- 239000002893 slag Substances 0.000 claims description 169
- 238000002310 reflectometry Methods 0.000 claims description 21
- 230000007423 decrease Effects 0.000 claims description 6
- 238000005259 measurement Methods 0.000 claims description 6
- 241000237858 Gastropoda Species 0.000 claims description 2
- 238000001514 detection method Methods 0.000 description 14
- 239000004020 conductor Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Images
Landscapes
- Measurement Of Resistance Or Impedance (AREA)
- Plasma Technology (AREA)
Description
本発明はプラズマ処理チャンバ(以後負荷とも称する)とマイクロ波電源間の整合を取る自動整合器の制御方法に関するものである。 The present invention relates to a method for controlling an automatic matching unit for matching between a plasma processing chamber (hereinafter also referred to as a load) and a microwave power source.
例えば特開2003−344465にあるように、従来のスラグチューナを用いたプラズマ処理装置の自動整合器の制御方法は方向性結合器で得られた進行波と反射波の検出値を元に進行波と反射波の相対振幅値(以後、反射率とも称す)と相対位相から自動整合器の入力インピーダンスを計算し、次いで図9に示す制御方法を用いて自動整合器のスラグ位置設定等から負荷のインピーダンスを計算し、整合が取れる新たなスラグ位置設定値を計算しスラグを制御する自動整合器の制御手法を用いていた。 For example, as disclosed in Japanese Patent Application Laid-Open No. 2003-344465, a conventional method for controlling an automatic matching unit of a plasma processing apparatus using a slag tuner is a traveling wave based on detected values of a traveling wave and a reflected wave obtained by a directional coupler. 9 is used to calculate the input impedance of the automatic matching device from the relative amplitude value of the reflected wave (hereinafter also referred to as reflectance) and the relative phase, and then, using the control method shown in FIG. A control method for an automatic matching device that calculates impedance and calculates a new slag position setting value that can be matched and controls the slag was used.
また、特許番号第2779479号にあるように、図10に示すようなスタブ整合器(E/Hチューナ)を用いた自動整合器では図11に示すような自動整合器の制御方法が適用されている。図10で200はE/Hチューナ、201は導波管、200aは導波管201に伝播している電磁波の電界方向に接続されたE面スタブ、200bは導波管201に伝播している電磁波の磁界方向に接続されたH面スタブである。図11に示すようにこの制御方法はマイクロ波電源と負荷との間で検出される入射電力と反射電力から反射率を求め、現在位置から2つのスタブ軸を摺動させ周囲4点のサンプリングを行い4方向の移動率テーブルを作成することで所望反射率を得るに最適な位置にスラブを駆動させ、この制御を反復制御する自動整合器の制御手法を用いていた。
従来の自動制御手法である特開2003−344465の問題点について図12を用いて説明を行う。図12は従来技術を変動する負荷に対して適用したときの自動整合器入力端におけるインピーダンスを示した図であり、中心は整合が取れた状態を示している。従来の制御方法は負荷が固定負荷ならば現在のインピーダンスとスラグの位置の情報を元に整合が取れるスラグ位置を算出してスラグを制御しているので1回の整合動作で予測値通りのインピーダンスとなり整合が取れる。しかしプラズマ処理チャンバのように負荷が変動する場合には問題があり、整合を取るべくスラグの位置を計算してスラグを移動するとスラグの移動中や移動後に負荷変動が生じ、移動後のインピーダンスは予測値から外れ整合は取れない。再び予測・移動を繰り返すがその都度の負荷変動により予測値と異なるインピーダンスになってしまい、結局、整合状態になるには何度も制御が必要であるか、最悪整合状態に至らない場合があった。 The problem of Japanese Patent Application Laid-Open No. 2003-344465, which is a conventional automatic control method, will be described with reference to FIG. FIG. 12 is a diagram showing the impedance at the input terminal of the automatic matching unit when the prior art is applied to a fluctuating load, and the center shows a state where matching is achieved. In the conventional control method, if the load is a fixed load, the slag is controlled by calculating the slag position that can be matched based on the current impedance and the information on the slag position, so the impedance as predicted by one matching operation. And consistency can be taken. However, there is a problem when the load fluctuates as in the plasma processing chamber. If the slag is moved by calculating the position of the slag to achieve matching, the load fluctuates during and after the slag movement, and the impedance after the movement is Deviations from the predicted values are not consistent. The prediction / movement is repeated again, but the impedance differs from the predicted value due to the load fluctuations each time. Eventually, control may be required many times to reach the matching state, or the worst matching state may not be reached.
また、特許番号第2779479号にある自動制御手法は、負荷の状態を観察しながら整合制御を行う点では変動する負荷に対して有効であるが、制御対象がスタブチューナのスタブであり、スラグチューナのスラグの制御にはそのまま適用不可能であるという問題点があった。その上、プラズマにはヒステリシス性があり、現在位置から周囲4点をサンプリングする際に負荷変動が生じるためサンプリング後の現在位置のインピーダンスはサンプリング前とは異なる場合がある。つまり、従来の制御では、例えば3点目のサンプル取得時にプラズマの状態が劇的に変化(プラズマが着火等)した場合は1点目と2点目の反射率はすでに再現性がなくなっており、これらの不適切なサンプリング値を用いることにより整合制御がループ状態に陥る場合があり問題点であった。 In addition, the automatic control method disclosed in Japanese Patent No. 2779479 is effective for a load that fluctuates in terms of performing matching control while observing the state of the load. However, the controlled object is a stub of a stub tuner. There is a problem that it cannot be directly applied to the control of slag. In addition, the plasma has hysteresis, and load fluctuation occurs when sampling the surrounding four points from the current position, so the impedance at the current position after sampling may be different from that before sampling. In other words, with the conventional control, for example, if the plasma state changes dramatically when the third sample is acquired (plasma ignites, etc.), the reflectance at the first and second points is no longer reproducible. However, the use of these inappropriate sampling values may cause the matching control to fall into a loop state.
また、上記従来技術において自動整合制御を開始する手段は明記されておらず、一般的には外部(例えばマイクロ波電源)からの制御信号をトリガとして自動整合制御を開始しており、例えばマイクロ波電源が異なる場合、トリガとなる制御信号が得られず自動整合制御ができない、または、別の制御信号出力器を備える必要があった。 In the above prior art, means for starting automatic alignment control is not specified, and generally automatic alignment control is started by using a control signal from the outside (for example, a microwave power source) as a trigger. When the power supplies are different, a control signal serving as a trigger cannot be obtained and automatic matching control cannot be performed, or another control signal output device needs to be provided.
上記目的を達成すべく請求項1記載のプラズマ処理装置用自動整合器の制御方法は、プラズマ処理装置のマイクロ波電源とプラズマ処理チャンバ間に設置されてスラグチューナーを備えたプラズマ処理装置用自動整合器であって、前記マイクロ波電源と前記プラズマ処理チャンバ間で検出される反射率を用い、更に前記スラグチューナー内に配置された少なくとも2つ以上のスラグを移動させて自動整合制御を実行するプラズマ処理装置用自動整合器の制御方法において、前記自動整合制御の際に、前記複数のスラグの現在位置における前記反射率を測定する測定ステップを実行し、前記反射率が所望値以下のときには、当該自動整合制御を終了し、前記反射率が所望値以下でないときには、前記複数のスラグを移動させる第1移動ステップ、その移動位置において前記測定ステップを実行して前記現在位置における前記反射率に対し一定量以上の低減があるか否かを判定する反射率改善判定ステップ、および前記反射率改善判定において改善がある場合は、現時点までに前記反射率が最良であるとして記憶している移動前の前記現在位置と当該現在位置の前記反射率を移動後の前記移動位置と当該移動位置で測定された前記反射率に更新する反射率更新ステップを、前記反射率が所望値以下となるまで繰り返す第1の制御ステップと、前記反射率改善判定ステップにおいて改善していないと判定した場合は前記複数のスラグを前記移動前の現在位置に戻して前記測定ステップを実行し、前記反射率が前記所望値以下のときには当該自動整合制御を終了し、当該所望値以下でないときには移動前の前記現在位置で測定した前記反射率との偏差を求め、当該偏差が所定量以上のときに前記反射率更新ステップを実行した後に前記第1の制御ステップに移行すると共に、前記偏差が所定量以上でないときに前記反射率更新ステップを実行することなく前記第1の制御ステップに移行する第2の制御ステップとを繰り返して実行することを特徴とする。
In order to achieve the above object, a method for controlling an automatic matching unit for a plasma processing apparatus according to
上記目的を達成すべく請求項2記載のプラズマ処理装置用自動整合器の制御方法は、請求項1記載のプラズマ処理装置用自動整合器の制御方法において、前記プラズマ処理装置用自動整合器に備えた方向性結合器から出力される進行波電力の検出値を前記プラズマ処理装置用自動整合器に備えた制御部に加えその値が一定値以上となることをトリガとして前記自動整合制御を開始することを特徴とする。
In order to achieve the above object, a method for controlling an automatic matching unit for a plasma processing apparatus according to
上記目的を達成すべく請求項3記載のプラズマ処理装置用自動整合器の制御方法は、請求項1または2記載のプラズマ処理装置用自動整合器の制御方法において、第1スラグ、第2スラグ、第3スラグおよび第4スラグが、前記少なくとも2つ以上のスラグとして、前記スラグチューナーにおける前記マイクロ波電源側の入力部側から前記プラズマ処理チャンバ側の出力部側に向けてその順序で配置され、前記第1スラグおよび前記第2スラグは、互いに連結された状態で配置されると共に、前記第3スラグおよび前記第4スラグは、互いに連結された状態で配置されて、前記第1スラグおよび前記第4スラグは、前記スラグチューナーにおける前記入力部側に設置された入力基準点と、当該スラグチューナーにおける前記出力部側に設置された原点との間で当該スラグチューナー内を移動し、
前記自動整合制御において、前記第2スラグの前記出力部側の一端から前記第3スラグの前記入力部側の一端までの距離であるスラグ間距離と、前記原点から前記スラグ間距離の中点までの距離とからなる2つの動作パラメータを使用し、前記複数のスラグを前記現在位置から前記2つの動作パラメータのいずれか一方を増加または減少させるべく移動させる4つの移動ステップを前記第1移動ステップとして実行することを特徴とする。
また、請求項4記載のプラズマ処理装置用自動整合器の制御方法は、請求項1または2記載のプラズマ処理装置用自動整合器の制御方法において、第1スラグおよび第2スラグが、前記少なくとも2つ以上のスラグとして、前記スラグチューナーにおける前記マイクロ波電源側の入力部側から前記プラズマ処理チャンバ側の出力部側に向けてその順序で配置され、前記第1スラグおよび前記第2スラグは、前記スラグチューナーにおける前記入力部側に設置された入力基準点と、当該スラグチューナーにおける前記出力部側に設置された原点との間で当該スラグチューナー内を移動し、前記自動整合制御において、前記第1スラグの前記出力部側の一端から前記第2スラグの前記入力部側の一端までの距離であるスラグ間距離と、前記原点から前記スラグ間距離の中点までの距離とからなる2つの動作パラメータを使用し、前記複数のスラグを前記現在位置から前記2つの動作パラメータのいずれか一方を増加または減少させるべく移動させる4つの移動ステップを前記第1移動ステップとして実行することを特徴とする。
In order to achieve the above object, a method for controlling an automatic matching unit for a plasma processing apparatus according to
In the automatic alignment control, the distance between the slag, which is a distance from one end of the second slag on the output part side to the one end on the input part side of the third slag, and the middle point between the origin and the distance between the slags using the two operating parameters consisting of a distance, the plurality of the first one four mobile steps Ru one is base rather moved to increase or decrease of said two operating parameters slag from the current position It is characterized by being executed as a moving step .
According to a fourth aspect of the present invention, there is provided the method for controlling an automatic matching unit for a plasma processing apparatus according to the first or second aspect, wherein the first slag and the second slag are the at least two. As the two or more slags, the slag tuner is arranged in that order from the microwave power source side input unit side to the plasma processing chamber side output unit side, the first slag and the second slag, In the automatic alignment control, the first reference point installed on the input unit side of the slag tuner and the origin set on the output unit side of the slag tuner move in the slag tuner. The distance between the slag, which is the distance from one end of the slag on the output part side to the one end of the second slag on the input part side, and the origin Four movements that use two operational parameters consisting of the distance to the midpoint of the distance between the slags and move the plurality of slags from the current position to increase or decrease one of the two operational parameters A step is executed as the first movement step.
上述の通り、請求項1記載の発明によれば、スラグを移動させて反射率に一定量以上の低減があるか判定し、なければスラグを移動前の位置に再移動し、移動前の位置における反射率を再移動の前後で比較することで、予測制御で自動整合ができない場合があった変動する負荷に対して自動整合することが可能であり、かつ、負荷がプラズマの着火などにより大幅に変動した際にも自動整合制御がループ状態に陥ることなく自動整合することが可能となる。 As described above, according to the first aspect of the invention, the slag is determined whether there is a reduction in a certain amount or more in reflectance by moving the, re move the slag to be in the position before the movement, the position before movement by comparing before and after the re-moving reflectance at, it is possible to automatically aligned to the varying loads which there may not be self-aligned with the predictive control, and significantly the load and ignition of the plasma Even if it changes, automatic alignment control can be automatically performed without falling into a loop state.
請求項2記載の発明によれば、自動整合器内部の方向性結合器から出力される進行波電力の検出値を自動整合器の制御部に加えその値が一定値以上となることをトリガとしてスラグチューナの自動整合制御を開始することにより、外部からの整合開始信号なしに自動整合制御を開始することが可能となる。 According to the second aspect of the present invention, the detected value of the traveling wave power output from the directional coupler inside the automatic matching device is added to the control unit of the automatic matching device, and the value becomes a predetermined value or more as a trigger. by starting the automatic matching control of slug tuner, it is possible to start the automatic alignment control without matching start signal from the outside.
請求項3記載の発明によれば、最大4つの移動ステップのみで自動整合を行ってゆくことが可能となる。
According to the invention described in
以下、図面を参照して、本発明を実施するための最良の形態を詳細に説明する。 The best mode for carrying out the present invention will be described below in detail with reference to the drawings.
図1はマイクロ波を使用したプラズマ処理装置の要部構成図である。図1において、1はマイクロ波電力を出力するマイクロ波電源であり、2は自動整合制御中の自動整合器(プラズマ処理装置用自動整合器)3からマイクロ波電源1方向に反射するマイクロ波電力を吸収するアイソレータであり、3は方向性結合器4とスラグチューナ5と検波部7と制御部8とを備えプラズマ処理チャンバ6(以後、負荷とも称する)とマイクロ波電源1との整合を取る自動整合器であり、4はマイクロ波電源1からスラグチューナ5の方向に進行するマイクロ波(以後、進行波とも称する)とスラグチューナ5からマイクロ波電源1の方向に反射するマイクロ波(以後、反射波とも称する)の電力を検出する方向性結合器であり、5は内部に備えた2つ以上のスラグを制御し自動整合器3内で自動整合動作を行うスラグチューナであり、6はマイクロ波電源1から自動整合器3を介して入力されたマイクロ波によって発生したプラズマによって例えば被処理体をプラズマエッチング処理するためのプラズマ処理チャンバであり、7は方向性結合器4の進行波と反射波の検出値を検波する検波部であり、8は検波部7の出力を受けてスラグチューナ5を制御する制御部である。
FIG. 1 is a configuration diagram of a main part of a plasma processing apparatus using a microwave. In FIG. 1, 1 is a microwave power source that outputs microwave power, 2 is an automatic matching device (automatic matching device for plasma processing apparatus) 3 that is performing automatic matching control, and 3 is a microwave power reflected in the direction of the
まず、マイクロ波電源1から出力されたマイクロ波電力がアイソレータ2を介して方向性結合器4に入力されると方向性結合器4は進行波の検出値を検波部7に出力し、検波部7は検出値を検波し制御部8に出力する。制御部8は進行波が一定値以上であることを判定してスラグチューナ5に整合動作の開始信号を送る。その後、方向性結合器4から出力される進行波と反射波の検出値を検波部7で検波し、制御部8は検波部7の検波値を参照して反射波を進行波で除した値である反射率が所望値以下になるべく制御を行う。この制御動作中には自動整合器3の入力端(マイクロ波電源1側の接続部)からレベルの高い反射波がマイクロ波電源1の方向に加わるためアイソレータ2を接続することでマイクロ波電源1の反射波による破壊を防止している。
First, when the microwave power output from the
図2はスラグチューナ5の断面図である。スラグチューナ5は同軸線路内部導体9と同軸線路外部導体10とフレーム11と第1スラグ16と第2スラグ17と第3スラグ18と第4スラグ19を有し、更に第1スラグ16と第2スラグ17を連結する第1連結金具20と第3スラグ18と第4スラグ19を連結する第2連結金具21とを基本構成として有する。同軸線路内部導体9と同軸線路外部導体10は伝送路の特性インピーダンスが略50Ωになるべく寸法が決定されており、第1スラグ16から第4スラグ19は伝送路の特性インピーダンスが少なくとも50Ωより小さくなるべく寸法と誘電体部材の比誘電率とが決定されている。スラグチューナ5はマイクロ波電源1側の構成が接続される入力部12と負荷6が接続される出力部13との同軸形状の入出力部を有し、その入出力部から少なくともスラグチューナ5の内部側に設置された入力基準点14と出力基準点15(原点とも称する)によりそれぞれ第1スラグ16と第4スラグ19の基準点が決定されている。スラグチューナ5の制御パラメータは第2スラグ17の出力部側の一端から第3スラグ18の入力部側の一端までの距離であるスラグ間距離(以後、距離Dとも称する)と原点15から距離Dの中点までの距離(以後、距離Sとも称する)であり、例えば不図示のステッピングモータと不図示のプーリーと不図示のワイヤの組み合わせにより第1連結金具20と第2連結金具21とを入力部12側、または出力部13側に移動させることにより距離Sと距離Dの位置を制御している。
FIG. 2 is a cross-sectional view of the
次にスラグチューナ5の使用方法を図3と図4を用いて説明する。図3はスラグチューナ5が整合した際の距離Dと負荷6の反射係数(振幅)との関係を示すグラフであり、図4はスラグチューナ5が整合した際の距離Sと負荷6の反射係数(位相)との関係を示すグラフである。
なお、図3と図4は、図2における原点15から負荷6の方向を見たインピーダンスZlに対してスラグチューナ5の入力部12側に接続されているマイクロ波電源1(出力インピーダンスは略50Ωである)を整合させた場合の一例である。また、図4に記載した電気長(δS/λ0)の定義は下記式(1)で表記される。
(δS/λ0)=S−(λg/2+λ0/4+Dmax/2)・・(1)
ここでλgは第1スラグ16から第4スラグ19の実効波長でありλ0は空間波長である。Dmaxはスラグ間距離Dの最大設定可能距離であり、略λ0/2と算出される。
Next, a method of using the
3 and 4 show the
(ΔS / λ 0) = S- (λ g / 2 +
Here, λ g is an effective wavelength of the
また、図4に記載した負荷6の反射係数の振幅Γlと負荷6の反射係数の位相量φはインピーダンスZlから式(2)、(3)、(4)を適用して式(5)、(6)のように算出した値である。
Zl/Z0=r+jx ・・・・・・・・・・・・・ (2)
u=(r2+x2−1)/((r+1)2+x2) ・・ (3)
v=2x/((r+1)2+x2) ・・・・・・・ (4)
Γl=(u2+v2)1/2 ・・・・・・・・・・ (5)
φ=tan−1(v/u) ・・・・・・・・・・ (6)
ここでZ0は特性インピーダンスであり、jは虚数単位である。
Further, the amplitude Γl of the reflection coefficient of the
Zl / Z0 = r + jx (2)
u = (r 2 + x 2 −1) / ((r + 1) 2 + x 2 ) (3)
v = 2x / ((r + 1) 2 + x 2 ) (4)
Γl = (u 2 + v 2 ) 1/2 (5)
φ = tan −1 (v / u) (6)
Here, Z0 is a characteristic impedance, and j is an imaginary unit.
また、電気長(D/λ0)を変化させたときには反射係数の位相量φに略変化はなく、同様に電気長(δS/λ0)を変化させたときには反射係数の振幅Γlに略変化はないため図による表記は省略している。 Further, when the electrical length (D / λ 0 ) is changed, the phase amount φ of the reflection coefficient is not substantially changed. Similarly, when the electrical length (δS / λ 0 ) is changed, the reflection coefficient amplitude Γl is substantially changed. Because there is no, the notation by the figure is omitted.
理解を深めるためにインピーダンスZlが100Ω+j0Ωのときを一例として図3、図4から整合が取れたときの距離Dと距離Sの算出を行う。まず、インピーダンスZl=100Ω+j0Ωを式(2)に代入して特性インピーダンスZ0=50Ωとして式(3)、(4)からuとvを算出すると、u=0.33、v=0となる。次いで式(5)、(6)から反射係数Γlと位相φを算出するとΓl=0.33、φ=0°となり、図3からD/λ0=0.47、図4からδS/λ0=0.12となり、マイクロ波電源1の発振周波数から波長λ0を求めることで距離Dと距離Sの算出に至る。
In order to deepen the understanding, the distance D and the distance S when the matching is obtained from FIGS. 3 and 4 are calculated by taking the case where the impedance Zl is 100Ω + j0Ω as an example. First, when impedance Zl = 100Ω + j0Ω is substituted into equation (2) and characteristic impedance Z0 = 50Ω and u and v are calculated from equations (3) and (4), u = 0.33 and v = 0. Next, when the reflection coefficient Γl and the phase φ are calculated from the equations (5) and (6), Γl = 0.33 and φ = 0 °, and D / λ 0 = 0.47 from FIG. 3, and δS / λ 0 from FIG. = 0.12, and the distance D and the distance S are calculated by obtaining the wavelength λ 0 from the oscillation frequency of the
ここで、図3、図4に示す各特性図を作成するためのデータは、例えば、実験的または理論的に(一例として回路シミュレータによって)予め取得することができる。 Here, the data for creating the characteristic diagrams shown in FIGS. 3 and 4 can be acquired in advance experimentally or theoretically (for example, by a circuit simulator).
図3と図4に示すとおり、スラグチューナ5の距離Sと距離Dを制御することにより負荷6に対してスラグチューナ5の整合が取れる負荷6の反射係数の振幅Γlと反射係数の位相量φを略独立して制御が可能で、距離Dを増す・距離Dを減らす・距離Sを増す・距離Sを減らすの4つの制御を行うことでベクトルが直交(または反転)している方向の調整ができ、つまり4方向の制御することで少なくとも1点以上の方向で反射率を改善することができる。
As shown in FIGS. 3 and 4, by controlling the distance S and distance D of the
図5は本発明の自動整合制御のフローチャートである。100は進行波が一定値以上か判断して自動整合動作を開始するマイクロ波ON判定であり、101はマイクロ波ONの場合、反射率が所望値以下か(例えば4%以下か)判定する第1反射率所望値判定であり、すでにこのとき反射率が所望値以下であれば整合終了ステップ107に制御ステップを移行して自動整合動作を終了させる。
FIG. 5 is a flowchart of the automatic alignment control of the present invention. 100 is a microwave ON determination that determines whether the traveling wave is a certain value or more and starts an automatic matching operation, and 101 is a microwave ON that determines whether the reflectance is less than a desired value (for example, 4% or less). If the reflectivity is already less than the desired value at this time, the control step is shifted to the
このような制御を行うことにより、方向性結合器4からの進行波の検出値を用いてスラグチューナ5にマイクロ波電力が入力されたことを検知することにより、外部からの整合開始信号なしに自動整合制御を開始することが可能である。
By performing such control, it is possible to detect the input of the microwave power to the
102は反射率所望値判定101で反射率が所望値以下でないときに移行するステップであり、例えば距離Sを一定量増加させる方向にスラグを移動させる第1移動ステップである。
103はスラグを移動させた後に次に行う制御ステップを決定するための判定ルーチンであり、103aはスラグが移動した後の反射率を測定してその反射率が所望値以下であるか判定する第2反射率所望値判定であり、所望値以下であれば整合終了ステップ107に移行する。103bは第2反射率所望値判定103aでスラグが移動した後の反射率が所望値以下でないときにその反射率がスラグ移動前の反射率に対して一定値以上改善(例えば0.4%以上の低減)しているか判定する反射率改善判定であり、改善している場合は現時点までに反射率が最良であるとして記憶している現在位置と現在位置の反射率を移動後の位置と反射率に更新して同一の移動ステップに制御ステップを戻す。
103cは反射率改善判定103bで改善していないと判定した場合に移動前の現在位置に戻る現在位置再移動ステップであり、次いで103dは現在位置再移動ステップ後に現在位置の反射率を再測定し所望値以下であるか判定する第3反射率所望値判定であり、所望値以下であれば整合終了ステップ107に移行する。103eは第3反射率所望値判定103dでスラグが現在位置に再移動したとき反射率が所望値以下でないときにその反射率とスラグ移動前の現在位置(同一設定位置)で測定した反射率との偏差を計算し、その差が所定量以上(例えば0.4%以上の増減)であるか判定する現在位置反射率偏差判定であり、103fは現在位置反射率偏差判定103eで偏差が所定量以上のときに現在記憶している現在位置の反射率を再移動したときの反射率に更新する反射率更新ステップであり、更新後、判定ルーチン103を終了して次の移動ステップに移行する。現在位置反射率偏差判定103eで偏差が所定量以上でなかった場合はそのまま次の移動ステップに移行する。
Reference numeral 103c denotes a current position re-moving step for returning to the current position before the movement when it is determined that the improvement has not been made in the reflectance improvement determination 103b. Next, 103d re-measures the reflectance at the current position after the current position re-moving step. The third reflectance desired value determination is made to determine whether the value is less than or equal to the desired value. 103e is a third reflectance desired value determination 103d, and when the slag is moved again to the current position, when the reflectance is not less than the desired value, the reflectance and the reflectance measured at the current position before the slag movement (same set position) The current position reflectance deviation determination is performed to determine whether the difference is greater than or equal to a predetermined amount (eg, increase or decrease of 0.4% or more), and 103f is a current position
現在位置反射率偏差判定103eと反射率更新ステップ103fは、負荷6がプラズマの着火や消失やゆらぎによって変動した際にプラズマのヒステリシス性により負荷6のインピーダンスに再現性がなくなることを考慮した制御ステップである。この制御ステップではスラグチューナの同一設定位置における反射率の偏差が所定値以上である場合、負荷6が大きく変動したと判定し、再現性がなくなった負荷変動前の反射率最良位置の情報をリセットし、現時点を新たな反射率最良位置とすることで自動整合の制御をループ状態に陥らせることなく、逐次変動する負荷6に対応した自動整合を可能としている。
The current position
次いで、104は第1移動ステップ102の後の判定ルーチン103で反射率が所望値以下とならなかったときに移行するステップであり、例えば距離Sを一定量減少させる方向にスラグを移動させる第2移動ステップである。第2移動ステップ104の後にも第1移動ステップ102と同様に判定ルーチン103を適用する。次いで、105は第2移動ステップ104の後の判定ルーチン103で反射率が所望値以下とならなかったときに移行するステップであり、例えば距離Dを一定量増加させる方向にスラグを移動させる第3移動ステップである。106は同様に例えば距離Dを一定量減少させる方向にスラグを移動させる第4移動ステップである。
Next, 104 is a step that moves when the reflectivity does not fall below the desired value in the
第4移動ステップ106の後の判定ルーチン103で反射率が所望値以下とならなかったときには再び第1反射率所望値判定101に戻り、更に反射率を改善すべく制御を繰り返す。
When the reflectivity does not fall below the desired value in the
このように、スラグの位置を移動するたびに逐次反射率を実測して改善する位置に移動することを反復する自動整合制御をすることで、変動する負荷に対して少ない制御回数で整合状態にすることが可能であり、1回の制御量が少ないことから負荷の変動を少なくすることが可能であり着火したプラズマを消失しづらい特徴を有する。 In this way, each time the slag position is moved, automatic alignment control that repeatedly measures and improves the reflectivity is repeated, so that the state of alignment can be achieved with a small number of times of control with respect to the changing load. Since the amount of control at one time is small, the fluctuation of the load can be reduced and the ignited plasma is difficult to disappear.
以上、本発明の実施の形態について詳細に説明してきたが、本発明はこのような実施の形態に限定されるものではない。例えば、図6は本発明の自動整合制御フローチャートの一部に第1の付加機能を加えたフローチャートであり、図6に示すようにマイクロ波ON判定100と第1反射率所望値判定101の処理の間にあらかじめ設定しておいたスラグチューナ5の距離S・距離Dとウェイト時間に従って順次スラグチューナ5を制御する処理(以後、スケジュールモードと称する)を入れてもよい。
As mentioned above, although embodiment of this invention was described in detail, this invention is not limited to such embodiment. For example, FIG. 6 is a flowchart obtained by adding the first additional function to a part of the automatic alignment control flowchart of the present invention. As shown in FIG. 6, the processing of the microwave ON
図6において108は本発明の自動整合動作を開始する前にスケジュールモードを使用することが選択されているか判定するスケジュールモードON判定であり、109はあらかじめ設定しておいた、例えば、プラズマを着火させるのに最適な整合位置であるスラグチューナ5の距離S・距離Dに設定する制御を行う第1設定位置移動ステップであり、110は第1設定位置移動ステップ109にスラグチューナ5のスラグを移動させた後に、例えば、負荷6にプラズマが発生するまで制御を待機させる第1ウェイトである。111はあらかじめ設定しておいた、例えば、プラズマ着火後の最適な整合位置であるスラグチューナ5の距離S・距離Dに設定する制御を行う第2設定位置移動ステップであり、112は第2設定位置移動ステップ111にスラグチューナ5のスラグを移動させた後に、例えば、負荷6のプラズマが安定するまで制御を待機させる第2ウェイトである。第2ウェイト112の後、第1反射率所望値判定101を実施し、反射率が所望値以下であれば整合終了ステップ107に制御ステップを移行して自動整合終了となる。
In FIG. 6,
このような制御を行うことにより、プラズマ処理チャンバ6内の構造やガス種類・ガス流量やマイクロ波電力等が毎回同一であるプラズマ処理に対して高速で安定した整合を行うことができる。
By performing such control, it is possible to perform high-speed and stable matching with plasma processing in which the structure, gas type, gas flow rate, microwave power, and the like in the
また、例えば、図7は本発明の自動整合制御フローチャートの一部に第2の付加機能を加えたフローチャートであり、図7に示すように負荷6のVSWRが非常に高く反射率が所望値以下にならない場合にスラグチューナ5の可動可能範囲全点に対して移動と測定を行いそのデータを元に最適な設定値にスラグチューナ5を制御する処理(以後、オールスキャンモードと称する)を入れてもよい。
Further, for example, FIG. 7 is a flowchart in which the second additional function is added to a part of the automatic alignment control flowchart of the present invention. As shown in FIG. 7, the VSWR of the
図7において113は第1移動ステップ102と第2移動ステップ104と第3移動ステップ105と第4移動ステップ105の各判定ルーチン103で1回以上反射率の改善があったか判定し、あれば第1反射率所望値判定101に制御ステップを移行し、なければ可動可能範囲全点移動ステップ114に制御ステップを移行するオールスキャンモードON判定である。114はスラグチューナ5の可動可能範囲全点に移動しその都度反射率を測定して反射率の改善があるか判定し、あればその反射率と反射率最良位置を更新し、なければ次の位置に移動をする制御を繰り返す可動可能範囲全点移動ステップであり、115は可動可能範囲全点移動ステップ114で得られた反射率最良位置にスラグチューナ5を設定する制御を行う最適値移動ステップであり、116は最適値移動ステップ115の制御後に移行しスラグチューナ5の制御を停止させる最適整合終了ステップである。
In FIG. 7, reference numeral 113 indicates whether or not the reflectance has been improved at least once in each
このような制御を行うことにより、負荷6のVSWRが非常に高く反射率を所望値以下にできない場合でもスラグチューナ5で設定できる最適な反射率に自動整合することができ、整合制御を収束させることができる。
By performing such control, even when the VSWR of the
また、上記発明の実施の形態では、スラグチューナ5の構成に4つのスラグを用いる場合について説明したが、少なくとも2つ以上のスラグを有するスラグチューナ5であればよい。例えば図8に示すように2つのスラグであってもよく、負荷6のVSWRが低い場合や第1スラグ16と第2スラグ17の特性インピーダンスを4つのスラグを用いる場合に対して低くすることにより上記発明の実施の形態と同様の効果を奏する。
Moreover, although the case where four slags were used for the structure of the
また、上記発明の実施の形態では、自動整合器3に方向性結合器4とスラグチューナ5と検波部7と制御部8とを備えている場合について説明したが、方向性結合器4と検波部7と制御部8は自動整合器3の外部に備えることにより上記発明の実施の形態と同様の効果を奏し、外部に備えた場合は自動整合器本体の小型化・軽量化を実施できる効果も生じる。
In the embodiment of the invention, the case where the
また、上記発明の実施の形態では、進行波の検出値を方向性結合器4から得る場合について説明したが、マイクロ波電源1とアイソレータ2間に設けた不図示の方向性結合器、または、マイクロ波電源1内部に備えた方向性結合器から進行波の検出値を得ることにより上記発明の実施の形態と同様の効果を奏する。
In the embodiment of the invention, the case where the detection value of the traveling wave is obtained from the
1 マイクロ波電源
2 アイソレータ
3 自動整合器
4 方向性結合器
5 スラグチューナ
6 プラズマ処理チャンバ(負荷)
7 検波部
8 制御部
9 同軸線路内部導体
10 同軸線路外部導体
11 フレーム
12 入力部
13 出力部
14 入力基準点
15 出力基準点(原点)
16 第1スラグ
17 第2スラグ
18 第3スラグ
19 第4スラグ
20 第1連結金具
21 第2連結金具
D スラグ間距離
S 原点からスラグ間距離の中点までの距離
δS 距離差
100 マイクロ波ON判定
101 第1反射率所望値判定
102 第1移動ステップ
103 判定ルーチン
103a 第2反射率所望値判定
103b 反射率改善判定
103c 現在位置移動再移動ステップ
103d 第3反射率所望値判定
103e 現在位置反射率偏差判定
103f 反射率更新ステップ
104 第2移動ステップ
105 第3移動ステップ
106 第4移動ステップ
107 整合終了ステップ
108 スケジュールモードON判定
109 第1設定位置移動ステップ
110 第1ウェイト
111 第2設定位置移動ステップ
112 第2ウェイト
113 オールスキャンモードON判定
114 可動可能範囲全点移動ステップ
115 最適値移動ステップ
116 最適整合終了ステップ
200 E/Hチューナ
200a E面スタブ
200b H面スタブ
201 導波管
DESCRIPTION OF
7 Detection unit 8
16
Claims (4)
前記自動整合制御の際に、前記複数のスラグの現在位置における前記反射率を測定する測定ステップを実行し、前記反射率が所望値以下のときには、当該自動整合制御を終了し、
前記反射率が所望値以下でないときには、前記複数のスラグを移動させる第1移動ステップ、その移動位置において前記測定ステップを実行して前記現在位置における前記反射率に対し一定量以上の低減があるか否かを判定する反射率改善判定ステップ、および前記反射率改善判定において改善がある場合は、現時点までに前記反射率が最良であるとして記憶している移動前の前記現在位置と当該現在位置の前記反射率を移動後の前記移動位置と当該移動位置で測定された前記反射率に更新する反射率更新ステップを、前記反射率が所望値以下となるまで繰り返す第1の制御ステップと、
前記反射率改善判定ステップにおいて改善していないと判定した場合は前記複数のスラグを前記移動前の現在位置に戻して前記測定ステップを実行し、前記反射率が前記所望値以下のときには当該自動整合制御を終了し、当該所望値以下でないときには移動前の前記現在位置で測定した前記反射率との偏差を求め、当該偏差が所定量以上のときに前記反射率更新ステップを実行した後に前記第1の制御ステップに移行すると共に、前記偏差が所定量以上でないときに前記反射率更新ステップを実行することなく前記第1の制御ステップに移行する第2の制御ステップとを繰り返して実行することを特徴とするプラズマ処理装置用自動整合器の制御方法。 An automatic matching unit for a plasma processing apparatus, which is installed between a microwave power source of a plasma processing apparatus and a plasma processing chamber and includes a slag tuner , using a reflectance detected between the microwave power source and the plasma processing chamber In addition, in the control method of the automatic aligner for the plasma processing apparatus for performing automatic alignment control by moving at least two or more slags arranged in the slag tuner ,
During the automatic alignment control, perform the measurement step of measuring the reflectance at the current positions of the plurality of slag, when the reflectivity is less than desired values, terminates the automatic matching control,
Wherein when the reflectance is not less than the desired value, the first moving step Before moving the plurality of slag, reduction of more than a certain amount against the reflectance executing the measurement step to have you to its moving position at the current position reflectivity improved determination step to determine whether there is, and the case where there is improvement in the reflectivity improved determination, the current position and the previous moving said reflectance to date is stored as the best A first control step of repeating the reflectance update step of updating the reflectance at the current position to the moved position after the movement and the reflectance measured at the moved position until the reflectance falls below a desired value; ,
If it is determined in the reflectivity improvement determination step that there is no improvement, the plurality of slags are returned to the current position before the movement and the measurement step is executed. When the reflectivity is less than the desired value, the automatic alignment is performed. When the control is finished and the difference is not equal to or less than the desired value, a deviation from the reflectance measured at the current position before the movement is obtained. And the second control step of shifting to the first control step without repeating the reflectance update step when the deviation is not greater than or equal to a predetermined amount. A method for controlling an automatic matching unit for a plasma processing apparatus.
前記第1スラグおよび前記第2スラグは、互いに連結された状態で配置されると共に、前記第3スラグおよび前記第4スラグは、互いに連結された状態で配置されて、
前記第1スラグおよび前記第4スラグは、前記スラグチューナーにおける前記入力部側に設置された入力基準点と、当該スラグチューナーにおける前記出力部側に設置された原点との間で当該スラグチューナー内を移動し、
前記自動整合制御において、前記第2スラグの前記出力部側の一端から前記第3スラグの前記入力部側の一端までの距離であるスラグ間距離と、前記原点から前記スラグ間距離の中点までの距離とからなる2つの動作パラメータを使用し、前記複数のスラグを前記現在位置から前記2つの動作パラメータのいずれか一方を増加または減少させるべく移動させる4つの移動ステップを前記第1移動ステップとして実行することを特徴とする請求項1または2記載のプラズマ処理装置用自動整合器の制御方法。 The first slag, the second slag, the third slag, and the fourth slag are provided as the at least two or more slags from the input side on the microwave power source side to the output side on the plasma processing chamber side in the slag tuner. Placed in that order
The first slag and the second slag are arranged in a state of being connected to each other, and the third slag and the fourth slag are arranged in a state of being connected to each other,
The first slag and the fourth slag pass through the slag tuner between an input reference point installed on the input unit side of the slag tuner and an origin installed on the output unit side of the slag tuner. Move and
In the automatic alignment control, the distance between the slag, which is a distance from one end of the second slag on the output part side to the one end on the input part side of the third slag, and the middle point between the origin and the distance between the slags using the two operating parameters consisting of a distance, the plurality of the first one four mobile steps Ru one is base rather moved to increase or decrease of said two operating parameters slag from the current position the method of claim 1 or 2, wherein the plasma processing apparatus for the automatic matching box and executes the moving step.
前記第1スラグおよび前記第2スラグは、前記スラグチューナーにおける前記入力部側に設置された入力基準点と、当該スラグチューナーにおける前記出力部側に設置された原点との間で当該スラグチューナー内を移動し、The first slag and the second slag pass through the slag tuner between an input reference point installed on the input unit side of the slag tuner and an origin set on the output unit side of the slag tuner. Move and
前記自動整合制御において、前記第1スラグの前記出力部側の一端から前記第2スラグの前記入力部側の一端までの距離であるスラグ間距離と、前記原点から前記スラグ間距離の中点までの距離とからなる2つの動作パラメータを使用し、前記複数のスラグを前記現在位置から前記2つの動作パラメータのいずれか一方を増加または減少させるべく移動させる4つの移動ステップを前記第1移動ステップとして実行することを特徴とする請求項1または2記載のプラズマ処理装置用自動整合器の制御方法。In the automatic alignment control, a distance between slag, which is a distance from one end on the output part side of the first slag to one end on the input part side of the second slag, and a middle point between the origin and the distance between the slags. The four movement steps of moving the plurality of slugs from the current position to increase or decrease one of the two operation parameters are used as the first movement step. 3. The method of controlling an automatic matching unit for a plasma processing apparatus according to claim 1, wherein the control method is executed.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005297345A JP5089032B2 (en) | 2005-10-12 | 2005-10-12 | Method for controlling automatic matching unit for plasma processing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005297345A JP5089032B2 (en) | 2005-10-12 | 2005-10-12 | Method for controlling automatic matching unit for plasma processing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007109457A JP2007109457A (en) | 2007-04-26 |
JP5089032B2 true JP5089032B2 (en) | 2012-12-05 |
Family
ID=38035178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005297345A Active JP5089032B2 (en) | 2005-10-12 | 2005-10-12 | Method for controlling automatic matching unit for plasma processing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5089032B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102308684B1 (en) * | 2020-10-16 | 2021-10-05 | (주)에이에스엔지니어링 | A device for matching the impedance of the plasma apparatus and the method thereof |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5376816B2 (en) * | 2008-03-14 | 2013-12-25 | 東京エレクトロン株式会社 | Microwave introduction mechanism, microwave plasma source, and microwave plasma processing apparatus |
JP5502070B2 (en) | 2009-03-27 | 2014-05-28 | 東京エレクトロン株式会社 | Tuner and microwave plasma source |
JP4891384B2 (en) * | 2009-12-10 | 2012-03-07 | 株式会社新川 | Plasma generator |
JP5710209B2 (en) | 2010-01-18 | 2015-04-30 | 東京エレクトロン株式会社 | Electromagnetic power feeding mechanism and microwave introduction mechanism |
WO2012032942A1 (en) | 2010-09-09 | 2012-03-15 | 東京エレクトロン株式会社 | Microwave introduction mechanism, microwave plasma source and microwave plasma treatment device |
JP5188615B2 (en) * | 2011-10-05 | 2013-04-24 | 株式会社新川 | Plasma generator, plasma ignition device, gas chamber, and method for cleaning semiconductor circuit surface |
JP2016177997A (en) | 2015-03-20 | 2016-10-06 | 東京エレクトロン株式会社 | Tuner, microwave plasma source, and impedance matching method |
JP6482390B2 (en) | 2015-06-05 | 2019-03-13 | 東京エレクトロン株式会社 | Power combiner and microwave introduction mechanism |
CN110311646A (en) * | 2019-06-28 | 2019-10-08 | 高斯贝尔数码科技股份有限公司 | A kind of adaptive matching method and system of microwave power source and reaction chamber |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2779479B2 (en) * | 1993-11-29 | 1998-07-23 | 株式会社ニッシン | Automatic tuning method and apparatus for microwave circuit for plasma generation |
JPH11225007A (en) * | 1998-02-06 | 1999-08-17 | Nisshin:Kk | Automatic load matching device of coaxial-rectangular waveguide type and matching method |
JP3899288B2 (en) * | 2002-05-30 | 2007-03-28 | 長野日本無線株式会社 | Coaxial impedance matcher |
JP4067876B2 (en) * | 2002-05-31 | 2008-03-26 | 長野日本無線株式会社 | Phase difference detection method, impedance detection method, measurement device, and coaxial impedance matching device |
JP3822857B2 (en) * | 2002-10-29 | 2006-09-20 | 長野日本無線株式会社 | Plasma generation method, plasma apparatus, and semiconductor manufacturing apparatus |
JP2006122193A (en) * | 2004-10-27 | 2006-05-18 | Ito Choutanpa Kk | Ultrashort wave therapy apparatus |
JP4739793B2 (en) * | 2005-03-31 | 2011-08-03 | 株式会社ダイヘン | High frequency power supply |
-
2005
- 2005-10-12 JP JP2005297345A patent/JP5089032B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102308684B1 (en) * | 2020-10-16 | 2021-10-05 | (주)에이에스엔지니어링 | A device for matching the impedance of the plasma apparatus and the method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2007109457A (en) | 2007-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5089032B2 (en) | Method for controlling automatic matching unit for plasma processing apparatus | |
US8901470B2 (en) | Microwave heating apparatus | |
US20080158927A1 (en) | High frequency device | |
EP0616385A1 (en) | High-gain, waveguide-fed antenna having controllable higher order mode phasing | |
US20130192760A1 (en) | Microwave emitting device and surface wave plasma processing apparatus | |
EP1755193A1 (en) | Stub printed dipole antenna (SPDA) having wide-band and multi-band characteristics and method of designing the same | |
JP2008181846A5 (en) | ||
WO2007102591A1 (en) | Waveguide forming apparatus, dielectric line forming apparatus, pin structure and high frequency circuit | |
JP2008181846A (en) | High frequency device | |
US9704693B2 (en) | Power combiner and microwave introduction mechanism | |
WO2006049002A1 (en) | Dielectric antenna system | |
US20160268101A1 (en) | Microwave automatic matcher and plasma processing apparatus | |
CN111965578B (en) | Effective dielectric constant near-zero microwave excitation atomic magnetic resonance method and device | |
JP2779479B2 (en) | Automatic tuning method and apparatus for microwave circuit for plasma generation | |
EP2025038B1 (en) | Continuously tunable delay line | |
JPH1041737A (en) | Dual mode horn antenna | |
JPH11205002A (en) | Phase shifter | |
JP3822857B2 (en) | Plasma generation method, plasma apparatus, and semiconductor manufacturing apparatus | |
KR20170009588A (en) | Horn antenna apparatus | |
KR100852377B1 (en) | Nrd guide mode suppressor | |
Koenen et al. | A self-aligning cylindrical sliding short plunger for millimeter-wave rectangular waveguides and its application in a reflection-type phase shifter | |
JP5215037B2 (en) | Shield member abnormality detection method and shield member abnormality detection device | |
KR20190116016A (en) | Microwave heating system having improved frequency scanning and heating algorithm | |
JP6470515B2 (en) | Plasma processing apparatus and plasma processing method | |
EP3240366A1 (en) | Microwave heating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080617 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110816 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20111012 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20111012 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20120904 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20120911 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150921 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5089032 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |