[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4831408B2 - Method for producing plate-like electrolytic copper - Google Patents

Method for producing plate-like electrolytic copper Download PDF

Info

Publication number
JP4831408B2
JP4831408B2 JP2006007107A JP2006007107A JP4831408B2 JP 4831408 B2 JP4831408 B2 JP 4831408B2 JP 2006007107 A JP2006007107 A JP 2006007107A JP 2006007107 A JP2006007107 A JP 2006007107A JP 4831408 B2 JP4831408 B2 JP 4831408B2
Authority
JP
Japan
Prior art keywords
copper
cathode
halogen
electrodeposited
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006007107A
Other languages
Japanese (ja)
Other versions
JP2007186769A (en
Inventor
弘雄 土屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2006007107A priority Critical patent/JP4831408B2/en
Publication of JP2007186769A publication Critical patent/JP2007186769A/en
Application granted granted Critical
Publication of JP4831408B2 publication Critical patent/JP4831408B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Electrolytic Production Of Metals (AREA)

Description

本発明は、電解採取による金属銅の製造に関するものであり、より詳しく述べるならばハロゲン系溶液から緻密な組織を有する板状の電気銅を製造する方法に関する。   The present invention relates to the production of metallic copper by electrowinning, and more specifically, relates to a method for producing plate-like electrolytic copper having a dense structure from a halogen-based solution.

電解採取法は、金属銅の製造方法として広く実用化されている。現在使われている方法は、例えばSX-EW法に代表されるように、主に酸化鉱を対象として硫酸を使って原料銅鉱石から銅を浸出し溶媒抽出などの各種浄液工程を経て精製・濃縮した銅電解液から金属銅を製造するものであり、対象とする液は硫酸系の溶液である。これに対して、塩化浴などのハロゲン系の液を用いて銅を浸出した液から銅を電解採取する技術が検討されてきた。(特許第2857930号:特許文献1) The electrolytic collection method has been widely put into practical use as a method for producing metallic copper. The method currently used is, for example, SX-EW method, and mainly refined through various liquid purification processes such as leaching copper from raw copper ore using sulfuric acid and solvent extraction, mainly for oxide ore. -Metal copper is manufactured from the concentrated copper electrolyte, and the target liquid is a sulfuric acid-based solution. On the other hand, a technique for electrolytically collecting copper from a solution obtained by leaching copper using a halogen-based solution such as a chloride bath has been studied. (Patent No. 2857930: Patent Document 1)

ハロゲン系溶液を用いる場合の長所としては、
(1)アノード酸化で生じた単体塩素や臭素またはその化合物の強い酸化性を利用して反応性の低い硫化鉱等も浸出できること、
(2)高濃度のハロゲン塩類を含む液中で銅が、一価の状態で安定に溶存するため一価銅イオンとして電解することで硫酸浴での二価電解に比べ半分の電気量で金属銅が製造できること、
(3)イオンの伝導性・交換電流密度が高く、高電流密度でも大幅には電流効率が低下しないため生産性が高いこと、
などが挙げられる。
Advantages of using halogen-based solutions include:
(1) The ability to leach low-reactivity sulfide ore by utilizing the strong oxidizability of simple chlorine, bromine or its compounds produced by anodic oxidation;
(2) Since copper dissolves stably in a monovalent state in a solution containing a high concentration of halogen salts, electrolysis as monovalent copper ions results in half the amount of electricity compared to divalent electrolysis in a sulfuric acid bath. That copper can be manufactured,
(3) Ion conductivity / exchange current density is high, and even at high current densities, current efficiency does not drop significantly, so productivity is high.
Etc.

しかし、ハロゲン系溶液からの電解採取では、電着する金属銅がデンドライト状の粉末ないしは凝集粗粒となる。このため、硫酸浴におけるSX-EWの電着銅が、板状の電着カソードのまま取り出し販売できるのに対し、ハロゲン系溶液からの電解採取では、電槽からの銅の取り出し・洗浄・製品鋳造などのハンドリングに手間がかかる。また、洗浄を重ねても銅粉末は酸化しやすいため、製品の品位低下の要因となっていた。 However, in electrowinning from a halogen-based solution, the electrodeposited metal copper becomes dendritic powder or aggregated coarse particles. For this reason, the electrodeposited copper of SX-EW in a sulfuric acid bath can be taken out and sold as a plate-like electrodeposited cathode, whereas in the case of electrolytic extraction from a halogen-based solution, the copper is taken out from the battery case, washed, and product It takes time for handling such as casting. In addition, the copper powder easily oxidizes even after repeated cleaning, which has been a cause of product quality degradation.

こうした問題を解決するため、塩化浴の一価銅電解についても平滑な電着物を得る条件が実験的に検討されてきた。
塩化浴などのハロゲン系溶液では、硫酸浴に比べてデンドライト状の電着をする傾向が強く、ニカワなどの硫酸浴で平滑化に効果のある添加剤では、長時間にわたって緻密で平滑な電着銅を製造する実用的な条件は知られていなかった。
発明者は、この課題の解決のため検討した結果、ポリエチレングリコールがハロゲン化浴において優れた平滑化効果を有する添加剤であることを見出し、これを利用した板状電気銅の製造方法を発明した。(特許文献2)
特許第2857930号 特願2005-147122号
In order to solve these problems, conditions for obtaining a smooth electrodeposit have been studied experimentally for monovalent copper electrolysis in a chloride bath.
Halogen-based solutions such as chloride baths tend to have dendritic electrodeposition compared to sulfuric acid baths. Additives that are effective in smoothing in sulfuric acid baths such as glue can be used for dense and smooth electrodeposition over long periods The practical conditions for producing copper were not known.
As a result of investigation for solving this problem, the inventor found that polyethylene glycol is an additive having an excellent smoothing effect in a halogenated bath, and invented a method for producing plate-like electrolytic copper using the same. . (Patent Document 2)
Patent No. 2857930 Japanese Patent Application No. 2005-147122

しかし、前記の発明は電解液に添加剤を加えるため、電解工程単独で操業を考えた場合には問題ないものの、浸出工程と組み合わせ銅濃度の低下したアノライトを鉱石からの銅浸出に繰り返し利用する場合には、有機添加剤がたとえ微量であっても浸出工程において反応妨害要因となることが懸念されること、特に長期的な挙動を考えた場合の安定した操業を保証する点では問題があった。 However, since the above-mentioned invention adds an additive to the electrolytic solution, there is no problem when the operation is considered in the electrolysis process alone, but the anolyte having a reduced copper concentration combined with the leaching process is repeatedly used for copper leaching from the ore. In some cases, there is a concern that even a trace amount of organic additive may interfere with the reaction in the leaching process, particularly in terms of ensuring stable operation when considering long-term behavior. It was.

本発明は、ハロゲン系溶液からの銅電解採取において、一価電解による電力節減の利点を生かす一方、電槽からの取り出しや製品洗浄などのハンドリング性に優れた緻密な板状の電気銅を、添加剤を利用せずに製造可能とする技術を提案するものである。 The present invention takes advantage of power saving by monovalent electrolysis in copper electrowinning from a halogen-based solution, while on the other hand, a dense plate-like electrolytic copper excellent in handling properties such as removal from a battery case and product washing, The present invention proposes a technique that enables production without using an additive.

一般に溶液からの金属電着においては、液を撹拌してカソードへのイオン供給を促すことで拡散限界電流密度を上げ、緻密な組織を有する金属層を形成できることが知られている。
発明者は、ハロゲン系溶液からの銅電着において、カソード近傍の液を高速で流すことでデンドライト成長を抑制し電着銅の組織を緻密化できることを見出し、この知見を活用する技術として本発明に至った。
すなわち本発明は、
(1)ハロゲン系銅電解液からの銅を回収する方法における銅電解採取工程において、前記ハロゲン系電解液をカソード表面に対し1m/秒以上、6m/秒以下の速度で流し、カソード電流密度300A/m2以上3000A/m2以下で電解し、緻密な板状の電気銅を製造する板状電気銅の製造方法。
(2)上記(1)において、前記ハロゲン系銅電解液が、支持塩として3mol/L以上のアルカリ金属の塩化物及びまたは臭化物及びまたはその混合物を含む液に、銅の塩化物及びまたは臭化物を溶解した溶液である板状電気銅の製造方法。
(3)上記(1)或いは上記(2)のいずれかの方法において、カソード母板に電着した銅をカソードごとに電解槽から取り出し、電着銅を剥離して回収する板状電気銅の製造方法。
である。
In general, in metal electrodeposition from a solution, it is known that the diffusion limit current density can be increased by stirring the liquid and promoting the supply of ions to the cathode, thereby forming a metal layer having a dense structure.
The inventors have found that, in copper electrodeposition from a halogen-based solution, the dendritic growth can be suppressed and the electrodeposited copper structure can be densified by flowing the liquid in the vicinity of the cathode at a high speed. It came to.
That is, the present invention
(1) In the copper electrowinning step in the method of recovering copper from the halogen-based copper electrolyte, the halogen-based electrolyte is passed through the cathode surface at a rate of 1 m / second to 6 m / second, and a cathode current density of 300 A A method for producing a plate-like electrolytic copper that produces a dense plate-like electrolytic copper by electrolysis at / m 2 or more and 3000 A / m 2 or less.
(2) In the above (1), a copper chloride and / or bromide is added to a solution containing 3 mol / L or more of an alkali metal chloride and / or bromide and / or a mixture thereof as a supporting salt. A method for producing plate-like electrolytic copper which is a dissolved solution.
(3) In the method of either (1) or (2) above, the copper electrodeposited on the cathode base plate is taken out from the electrolytic cell for each cathode, and the electrodeposited copper is separated and recovered. Production method.
It is.

本発明によれば、
(1)ハロゲン系溶液から緻密な組織を有し、母板に密着した電着銅を製造できるため、電解槽からの製品取り出しが容易である。
(2)電着物の洗浄性に優れ、表面汚染・酸化の問題が少なく、硫酸浴で得られる電気銅に準じた高品位な製品が得られる。
などの効果が得られる。
According to the present invention,
(1) Since it is possible to produce electrodeposited copper having a dense structure from a halogen-based solution and in close contact with the mother board, it is easy to take out the product from the electrolytic cell.
(2) The electrodeposit has excellent detergency, has few problems of surface contamination and oxidation, and can provide a high-quality product similar to electrolytic copper obtained in a sulfuric acid bath.
Effects such as can be obtained.

本発明においては、カソード近傍のハロゲン系銅電解液を、例えばポンプを用いて流しながら電解を行う。
本発明の実施方法の一例を図1に示す。
処理対象とするハロゲン系電解液は、塩基性塩や一価銅ハロゲン化物の沈殿生成を防ぐため、pH=1〜3の酸性条件の銅浸出液中でかつ一価銅がハロゲン錯イオンとして安定に溶解するよう、塩化ナトリウムなどのハロゲン化アルカリを支持塩として高濃度に溶解した液を用いる。
銅錯イオンが安定で十分に高い溶解度を持つためには、支持塩は少なくとも3mol/L以上、好ましくは4mol/L以上で飽和溶解度未満の濃度とする。
In the present invention, electrolysis is carried out while flowing the halogen-based copper electrolyte near the cathode using, for example, a pump.
An example of the implementation method of the present invention is shown in FIG.
In order to prevent precipitation of basic salts and monovalent copper halides, the halogen-based electrolyte to be treated is stable in copper leachate under acidic conditions of pH = 1 to 3 and monovalent copper is stable as a complex halogen ion. In order to dissolve, a solution in which an alkali halide such as sodium chloride is dissolved in a high concentration as a supporting salt is used.
In order for the copper complex ions to be stable and have a sufficiently high solubility, the supporting salt is at least 3 mol / L or more, preferably 4 mol / L or more and less than the saturation solubility.

一価銅溶液の電解装置は、アノードとカソードを対向させ、その間に液を流す構造となっていれば良いが、実用的にはアノード室とカソード室とを濾布で隔離した装置を用いた隔膜電解法を用いる。
カソード室ではカソードと隔膜との間の液を、ポンプにより高速で流し、カソード表面への銅イオン供給を促進する。
カソード室内の電解液は循環してタンクに戻る。カソードに電着した銅の分だけ液の銅濃度が低下するので、浸出工程で製造した銅濃度の高い浸出液を循環系に補給する。
カソード室内の液の一部は隔膜を透過してアノード室に流入する。アノード室では残りの一価銅の二価銅への酸化およびハロゲンの酸化反応により液の浸出能力を復帰させた後、アノード室から排出して浸出工程に繰り返し利用する。カソード室循環系の給液量とアノード室からの液排出量をつりあわせて全体の液量のバランスを取る。
The electrolytic device for the monovalent copper solution only needs to have a structure in which the anode and the cathode face each other and the liquid flows between them. In practice, a device in which the anode chamber and the cathode chamber are separated by a filter cloth is used. A diaphragm electrolysis method is used.
In the cathode chamber, the liquid between the cathode and the diaphragm is flowed at a high speed by a pump to promote the supply of copper ions to the cathode surface.
The electrolyte in the cathode chamber circulates back to the tank. Since the copper concentration of the liquid is reduced by the amount of copper electrodeposited on the cathode, the high concentration copper leachate produced in the leaching process is replenished to the circulation system.
Part of the liquid in the cathode chamber passes through the diaphragm and flows into the anode chamber. In the anode chamber, the leaching ability of the liquid is restored by oxidation of the remaining monovalent copper to divalent copper and oxidation reaction of halogen, and then the liquid is discharged from the anode chamber and repeatedly used in the leaching process. The total liquid volume is balanced by balancing the supply volume of the cathode chamber circulation system and the discharge volume of the liquid from the anode chamber.

カソードには耐食性を考慮してチタンを用いる。カソード近傍の液の流動条件は流路内における液の平均線速度とこれに応じた流路内でのレイノルズ数(Re)により定められる。イオン供給促進のためには乱流条件(Re>2300)が前提となるが、電着状態に影響するカソード近傍での拡散要因には液線速度がより強く影響する。
線速度が小さいと撹拌効果による緻密電気銅電着の効果はほとんど得られない。実用的な生産性がある電流密度、例えば300〜1000A/m2でカソード母板に密着した緻密な銅を電着させるには、少なくとも1m/秒の線速度を要する。
線速度を大きくするほど、カソードに密着した緻密な電気銅が得られる電流密度の上限が大きくなるので生産性が向上する。一方、線速度が大きくなるほど液の流量が増加し液循環のためのポンプの必要能力が大きくなるので、設備投資・運転動力コストの点で速度の上限が制約される。また、流速が大きいと液の送り圧増加、流路内での圧損発生のため隔膜を利用してカソード室とアノード室の液を隔離し混合を防ぐことが困難となる。液線速度は、実用上は5〜6m/秒が上限となる。
Titanium is used for the cathode in consideration of corrosion resistance. The flow condition of the liquid in the vicinity of the cathode is determined by the average linear velocity of the liquid in the flow path and the Reynolds number (Re) in the flow path corresponding to this. In order to promote ion supply, turbulent flow conditions (Re> 2300) are presupposed, but the liquid linear velocity has a stronger influence on the diffusion factor in the vicinity of the cathode, which affects the electrodeposition state.
If the linear velocity is low, the effect of dense electrolytic copper electrodeposition due to the stirring effect is hardly obtained. In order to electrodeposit dense copper closely adhered to the cathode base plate at a current density with practical productivity, for example, 300 to 1000 A / m 2 , a linear velocity of at least 1 m / second is required.
As the linear velocity is increased, the upper limit of the current density at which dense electrolytic copper in close contact with the cathode is obtained increases, so that productivity is improved. On the other hand, as the linear velocity increases, the liquid flow rate increases and the required capacity of the pump for circulating the liquid increases. Therefore, the upper limit of the speed is restricted in terms of capital investment and operating power cost. Also, if the flow rate is high, the liquid feed pressure increases and pressure loss occurs in the flow path, making it difficult to isolate the liquid in the cathode chamber and the anode chamber using a diaphragm and prevent mixing. The upper limit of the liquid linear velocity is practically 5 to 6 m / sec.

密着・緻密電着可能な電流密度の上限は、線速度2.5m/秒では2000A/m2、線速度6m/秒では3000A/m2であった。
カソード電流密度は、電解液の線速度とともに、電着銅の厚さ(ないしは電着時間)にも制約される。チタンカソードには最初緻密な組織の銅が電着するが、電着が進むとともに成長方向に優先して配向した柱状組織となるとともに表面の凹凸が増加し、最後に表面からランダムにデンドライト状の突起が成長し始める。
特に電流密度の高い条件では、一度突起が成長すると液の流れが乱され突起成長が激しくなりアノードとの間でショートを起こしやすい。このため液速度を十分に上げた条件でも電流密度を上げて長時間にわたり安定して厚い板状銅を電着させることは困難である。
この場合でも最初に電着した緻密な銅の層と下地のチタンカソードとの密着性がよいため、電着銅はカソード母板とともに電槽から容易に取り出すことができる。
したがって電着銅のハンドリング性改善を目的とする場合、電着銅の表面にある程度凹凸があっても前述の突起成長を抑制できる条件においては、銅を母板につけたまま扱うことで、電槽からの取り出し、洗浄作業を容易に行うことができる。洗浄の後、電着銅を母板から剥離して回収する。回収した電着銅は、鋳造して外販製品の形とすることができる。
The upper limit of the current density at which adhesion / dense electrodeposition is possible was 2000 A / m 2 at a linear velocity of 2.5 m / sec and 3000 A / m 2 at a linear velocity of 6 m / sec.
The cathode current density is limited by the thickness (or electrodeposition time) of the electrodeposited copper as well as the linear velocity of the electrolyte. The titanium cathode is electrodeposited with a dense structure of copper at first, but as electrodeposition progresses, it becomes a columnar structure oriented with priority over the growth direction and surface irregularities increase. The protrusion begins to grow.
In particular, under conditions where the current density is high, once the protrusions grow, the flow of the liquid is disturbed and the protrusion growth becomes violent and a short circuit with the anode tends to occur. For this reason, it is difficult to increase the current density and stably deposit thick plate-like copper over a long period of time even under conditions where the liquid speed is sufficiently increased.
Even in this case, since the adhesion between the dense copper layer electrodeposited first and the underlying titanium cathode is good, the electrodeposited copper can be easily taken out of the battery case together with the cathode base plate.
Therefore, in order to improve the handleability of electrodeposited copper, if the surface of the electrodeposited copper has some irregularities, it is possible to suppress the growth of the protrusions described above. Can be easily removed and cleaned. After washing, the electrodeposited copper is peeled off from the mother board and collected. The recovered electrodeposited copper can be cast into a form for external sales.

以上に述べたように、本発明により、ハロゲン系銅電解液から、一価電解による電力節減の利点を生かしながら、緻密で洗浄の容易な、粉体に比べてハンドリング性に優れた板状の電着銅を製造できる。 As described above, according to the present invention, from the halogen-based copper electrolyte, while taking advantage of power saving by monovalent electrolysis, it is a plate-like material that is dense and easy to clean and has excellent handling properties compared to powder. Electrodeposited copper can be manufactured.

(実施例1)
本発明における、液流速と緻密・密着するカソード電流密度の関係を調べた装置の構造を図2に示す。この装置では、隔膜は使わず、アノードには銅板を用いて銅を溶解させ、カソードと接触する液の組成変化を防いだ。この試験では銅濃度維持のための液補給は省いた。
表1に組成を示した、ハロゲン系銅電解液(ハロゲン化アルカリの濃度5mol/L、液調製後に金属銅片を加えて空気を絶って60℃で加熱撹拌して液中の二価銅をあらかじめ還元した後、pH=1に調節)を、断面が 幅10mm×5mm、または幅20mm×10mmの長方形となった流路に流しながら電気を流しチタン板カソード(有効面寸法10または20×100mm)上に銅を電着させた。
Example 1
FIG. 2 shows the structure of an apparatus for investigating the relationship between the liquid flow rate and the dense and tight cathode current density in the present invention. In this device, no diaphragm was used, and copper was dissolved in the anode using a copper plate to prevent the composition change of the liquid in contact with the cathode. In this test, liquid replenishment for maintaining the copper concentration was omitted.
Table 1 shows the composition of the halogen-based copper electrolyte (concentration of alkali halide 5 mol / L, and after preparing the solution, add metal copper pieces, turn off the air, heat and stir at 60 ° C to remove the divalent copper in the solution. After reducing in advance, the pH is adjusted to 1) and electricity is passed through a rectangular channel with a cross section of 10mm x 5mm or 20mm x 10mm in width, and a titanium plate cathode (effective surface size 10 or 20 x 100mm) ) Copper was electrodeposited on top.

流速0.5〜6m/秒でカソライトを流しながら電流密度や通電時間を変えて電解した。得られた電着銅の外観の一例を図3に示す。電着銅はいずれもチタンカソードに密着して板状に析出した。電着銅はいずれももろく、曲げると容易に破断する他、カソードから剥がす場合にも割れやすいが、緻密かつ凹凸の少ない電着をする長時間通電が可能な条件では、一枚の板として剥離可能であった。
電流密度が高くなると表面の凹凸が増加しコブや突起が成長しやすくなる。流速が大きいほどコブが成長し始める電流密度は増加する。流速2.5m/秒では2000A/m2で凹凸が目立ち始める。流速6m/秒では凹凸成長は抑制されるが3000A/m2を超えるとコブや突起が多発する。逆に流速が0.5m/秒まで低下すると1000
A/m2でも部分的な突起成長を抑えるのは困難となった。実用上は、電着銅にある程度凹凸が生じても、電着銅自体はカソード母板に密着しているのでカソードとともに取り出し洗浄を行ううえでは支障はないが、突起成長しやすい条件では装置内でのショート発生のため電解はできなくなる。
実施例1における電着状態と電解条件の関係を図4に示す。
(実施例2)
Electrolysis was performed by changing the current density and energization time while flowing catholyte at a flow rate of 0.5-6 m / sec. An example of the appearance of the obtained electrodeposited copper is shown in FIG. All of the electrodeposited copper was deposited in a plate shape in close contact with the titanium cathode. Electrodeposited copper is fragile and easily breaks when bent. It is also easily broken when peeled off from the cathode. It was possible.
As the current density increases, the surface irregularities increase, and bumps and protrusions tend to grow. The higher the flow rate, the higher the current density at which the bumps begin to grow. At a flow rate of 2.5 m / sec, irregularities start to appear at 2000 A / m 2 . Concavity and convexity growth is suppressed at a flow rate of 6 m / sec, but bumps and protrusions occur frequently when it exceeds 3000 A / m 2 . Conversely, when the flow velocity drops to 0.5 m / second, 1000
Even at A / m 2 , it became difficult to suppress partial protrusion growth. In practice, even if some irregularities occur in the electrodeposited copper, the electrodeposited copper itself is in close contact with the cathode base plate, so there is no problem in removing it with the cathode and cleaning it. Electrolysis is not possible due to the occurrence of a short circuit.
The relationship between the electrodeposition state and the electrolysis conditions in Example 1 is shown in FIG.
(Example 2)

実施例1と同様にしてカソライト流速を2.7m/秒として電解して、緻密かつ平滑な電着の可能な、電流密度1000A/m2で電解したところ、図5に示すように、通電時間が長くなると共に次第に表面の凹凸が大きくなり、コブ状の突起が成長した。こうしたこぶが成長するとこの部分に電流が集中して突起が成長しショートを起こしやすいため通電時間が制約される。
(比較例)
As in Example 1, electrolysis was performed at a catholyte flow rate of 2.7 m / sec, and electrolysis was performed at a current density of 1000 A / m 2 capable of dense and smooth electrodeposition. As shown in FIG. As the length increased, the surface irregularities gradually increased, and bump-shaped protrusions grew. When such a hump grows, current concentrates on this part, and a protrusion grows and a short circuit is likely to occur, so that the energization time is limited.
(Comparative example)

前記の実施例1および2と同一組成の液を用い、図6に示した構造の耐酸濾布の隔膜をつけた電解槽に入れ57〜60℃で保温した。この電解槽のカソード室にチタン板カソード(有効面100mm角)を、アノード室に不溶性アノード(チタン板にイリジウム化合物を焼付け塗布したもの、有効面100mm角)を入れた。
カソード側の液はポンプなどによる強制流動はさせずに、カソード室に銅濃度75g/Lの液を補給しながら槽内の液混合を促すためにカソード下側からアルゴンガスを吹き込んで常時撹拌しながら1.5A(電流密度150A/m2)の電流を流し24時間の電解採取を行った。
電流密度が低いにも関わらず、電着銅は図7に示すように全面に突起状の凹凸が生じた。電着銅の洗浄性は悪く、カソード母板への密着性も弱くカソード引上げ時に容易に砕け剥がれ落ちるため、電解槽からの取り出し作業性は劣っていた。
A solution having the same composition as in Examples 1 and 2 was placed in an electrolytic cell with an acid-resistant filter cloth having the structure shown in FIG. 6 and kept at 57-60 ° C. A titanium plate cathode (effective surface 100 mm square) was placed in the cathode chamber of this electrolytic cell, and an insoluble anode (iridium compound baked and applied on a titanium plate, effective surface 100 mm square) was placed in the anode chamber.
The liquid on the cathode side is not forced to flow by a pump or the like, and argon gas is blown from the lower side of the cathode and constantly stirred to replenish the liquid in the tank while supplying a liquid with a copper concentration of 75 g / L to the cathode chamber. The current was 1.5 A (current density 150 A / m 2 ) and 24 hours electrolysis was performed.
Despite the low current density, the electrodeposited copper had protrusions and depressions on the entire surface as shown in FIG. Since the electrodeposited copper was poorly washed and poorly adhered to the cathode base plate, it was easily crushed and peeled off when the cathode was pulled up.

本発明の銅電解採取方法Copper electrowinning method of the present invention 実施例における銅電解採取方法Example of copper electrowinning in Examples 実施例1における銅電着状態(実施例における銅電着状態(液線速度0.5-6m/秒))Copper electrodeposition state in Example 1 (Copper electrodeposition state in Example (liquid linear velocity 0.5-6 m / sec)) 実施例1における銅電着状態と電解条件の関係Relationship between copper electrodeposition state and electrolysis conditions in Example 1 実施例2における通電時間に伴う銅電着状態の変化Change in copper electrodeposition state with energization time in Example 2 比較例における銅電解採取方法Copper electrowinning method in comparative examples 比較例における液静止状態での銅電着状態 (比較例における液静止条件での銅電着状態 (150A/m2×24h))Copper electrodeposition state in liquid quiescent state in comparative example (copper electrodeposition state in liquid quiescent condition in comparative example (150A / m 2 × 24h))

Claims (3)

ハロゲン系銅電解液からの銅を回収する方法における銅電解採取工程において、
前記ハロゲン系電解液をカソード表面に対し1m/秒以上、6m/秒以下の速度で流し、カソード電流密度300A/m2以上3000A/m2以下で電解し、緻密な板状の電気銅を製造することを特徴とする板状電気銅の製造方法。
In the copper electrowinning process in the method of recovering copper from the halogen-based copper electrolyte,
The halogen-based electrolyte is passed through the cathode surface at a speed of 1 m / sec to 6 m / sec and electrolyzed at a cathode current density of 300 A / m 2 to 3000 A / m 2 to produce a dense plate-shaped electrolytic copper. A method for producing plate-like electrolytic copper, comprising:
請求項1において、前記ハロゲン系銅電解液が、支持塩として3mol/L以上のアルカリ金属の塩化物及びまたは臭化物及びまたはその混合物を含む液に、銅の塩化物及びまたは臭化物を溶解した溶液であることを特徴とする板状電気銅の製造方法。 2. The solution according to claim 1, wherein the halogen-based copper electrolyte is a solution in which copper chloride and / or bromide is dissolved in a solution containing 3 mol / L or more of an alkali metal chloride and / or bromide as a supporting salt and / or a mixture thereof. A method for producing plate-shaped electrolytic copper, which is characterized by the following. 請求項1或いは請求項2のいずれかの方法において、カソード母板に電着した銅をカソードごとに電解槽から取り出し、電着銅を剥離して回収することを特徴とする板状電気銅の製造方法。


3. The method according to claim 1, wherein the copper electrodeposited on the cathode base plate is taken out from the electrolytic cell for each cathode, and the electrodeposited copper is peeled off and collected. Production method.


JP2006007107A 2006-01-16 2006-01-16 Method for producing plate-like electrolytic copper Expired - Fee Related JP4831408B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006007107A JP4831408B2 (en) 2006-01-16 2006-01-16 Method for producing plate-like electrolytic copper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006007107A JP4831408B2 (en) 2006-01-16 2006-01-16 Method for producing plate-like electrolytic copper

Publications (2)

Publication Number Publication Date
JP2007186769A JP2007186769A (en) 2007-07-26
JP4831408B2 true JP4831408B2 (en) 2011-12-07

Family

ID=38342133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006007107A Expired - Fee Related JP4831408B2 (en) 2006-01-16 2006-01-16 Method for producing plate-like electrolytic copper

Country Status (1)

Country Link
JP (1) JP4831408B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2505852B (en) * 2011-07-08 2017-06-14 Inst Of Chemical Tech An electrochemical cell and a process for the electrolysis of cuprous chlorde to produce copper

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164456A (en) * 1978-06-15 1979-08-14 Dart Industries Inc. Electrolytic process
JPS56119776A (en) * 1981-02-10 1981-09-19 Kagaku Gijutsu Shinkoukai Method and apparatus for removing copper from copper chloride etching solution and regenerating said solution by electrolysis
DE69419970T2 (en) * 1993-05-28 1999-12-02 Enthone-Omi, Inc. Method and device for electroplating

Also Published As

Publication number Publication date
JP2007186769A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
USRE30005E (en) Method for the electrolytic recovery of metal employing improved electrolyte convection
JP7398395B2 (en) Improvements in copper electrorefining
CN109485023B (en) Method for recovering tellurium from copper-tellurium-containing waste liquid
JP4831408B2 (en) Method for producing plate-like electrolytic copper
CA2016031A1 (en) Process for electroplating metals
JP2008266766A (en) Method for producing sheet-form electrolytic copper from halide solution
JP2006316328A (en) Method for manufacturing two-layer flexible copper-clad laminate
CA2592199C (en) Method for producing sheet-form electrolytic copper from halide solution
CA1136084A (en) Electrolytic metal deposition with addition of particulate metal sulphate
KR102611287B1 (en) Method for producing sulfuric acid solution, and electrolytic cell used in this production method
TWI790277B (en) Manufacturing method of electrode and manufacturing method of regenerative electrode
JP2003096585A (en) Method of producing cobalt sulfate solution
RU2469111C1 (en) Method of producing copper powder from copper-containing ammoniate wastes
KR100545664B1 (en) Method for electro copperplating substrates
JP2007063585A (en) MOLTEN SALT ELECTROLYSIS METHOD, ELECTROLYTIC CELL, AND METHOD FOR PRODUCING Ti BY USING THE SAME
JP7211143B2 (en) Method for producing sulfuric acid solution
JP2943484B2 (en) Method and apparatus for hot-dip plating of aluminum
JP5344278B2 (en) Indium metal production method and apparatus
RU2337182C2 (en) Method for electrochemical copper recovery in hydrochloride solution
JP2006097128A (en) Method for producing sheet-form electrolytic copper
JP2006274293A (en) Method for producing sheet-form electrolytic copper
JP2570076B2 (en) Manufacturing method of high purity nickel
JP7334095B2 (en) Tin electrowinning method
RU2790423C2 (en) Copper electrorefining improvement
JPS6363637B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080908

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100910

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101014

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110907

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees