JP4878481B2 - Method for measuring sound transmission characteristics of plate - Google Patents
Method for measuring sound transmission characteristics of plate Download PDFInfo
- Publication number
- JP4878481B2 JP4878481B2 JP2006046830A JP2006046830A JP4878481B2 JP 4878481 B2 JP4878481 B2 JP 4878481B2 JP 2006046830 A JP2006046830 A JP 2006046830A JP 2006046830 A JP2006046830 A JP 2006046830A JP 4878481 B2 JP4878481 B2 JP 4878481B2
- Authority
- JP
- Japan
- Prior art keywords
- sound
- plate
- laminated glass
- measuring
- transmission characteristics
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
Description
本発明は、板状体の音響透過特性の測定方法に関する。 The present invention relates to a method for measuring sound transmission characteristics of a plate-like body.
従来、板状体の空気音遮断性能(遮音性能)を示す音響透過特性を正確に測定するための測定方法として、日本工業規格のJIS A1416:2000「実験室における建築部材の空気音遮断性能の測定方法」(非特許文献1)等が知られている。 Conventionally, as a measurement method for accurately measuring the sound transmission characteristics indicating the air sound insulation performance (sound insulation performance) of a plate-like body, Japanese Industrial Standards JIS A1416: 2000 “Air sound insulation performance of building members in a laboratory” “Measuring method” (Non-Patent Document 1) and the like are known.
前記JIS規格による測定方法においては、音源室と受音室とが試料取り付け用開口部を介して隣接された試験室が必要であり、この試験室は、試料面を通して伝搬する以外の側路伝搬による音の寄与ができるだけ小さくなるような構造とする必要がある。音響透過損失を測定するために用いるタイプ1試験室の各室の容積は、100m3とし、150m3以上とすることが望ましく、両室の容積が10%以上異なっていることが望ましい。また、試料開口の面積は、おおよそ10m2とし、短辺の寸法が2.3m以上で長方形とすることが望ましい。試料開口の面積が、10m2以下の場合は、試料取り付け用開口部に設置した開口部調整壁に試料を取り付ける。そして、前記音源室に音源部を、前記受音室に受音部を配置し、前記音源部から発信された音波(発信音波)に対し、前記試料を透過し、前記受音部にて受信された音波(受信音波)を、1/3オクターブバンドフィルタ処理により
周波数分析することによって、前記試料の音響透過特性が測定され、音響透過損失が求められる。
前述したJIS A1416:2000(以下、JIS規格とする)による測定方法においては、異なった大きさの試料を測定する場合、各試料の大きさ毎に試料取り付け用開口部を製作する必要がある。また、試料を取り替える際に、試料を固定するためのパテを取り除き、試料を取り替え、パテで固定するという手間の掛かる作業が必要である。
従って、この測定方法は、窓ガラスや建材等の建築部材の空気音遮断性能を正確に測定するには適しているが、同一あるいは多品種製品の音響透過特性が目的の範囲内にあることを確かめるために、全量あるいは抜き取りで測定するには、設備が大掛かりとなり時間と費用が掛かるため適していない。
In the measurement method according to JIS A1416: 2000 (hereinafter referred to as JIS standard), when a sample with a different size is measured, it is necessary to manufacture a sample mounting opening for each sample size. Further, when changing the sample, it is necessary to remove the putty for fixing the sample, replace the sample, and fix it with the putty.
Therefore, this measurement method is suitable for accurately measuring the air sound blocking performance of building components such as window glass and building materials, but the sound transmission characteristics of the same or various products are within the intended range. In order to confirm, it is not suitable to measure the whole amount or sampling because it takes a lot of equipment and time and cost.
しかし、前述したJIS規格で定められている設備を用いることなく、試料の音響透過特性を測定する場合、音源部からの発信音波が試料を回り込むため、受音部は試料を透過する音波の他に試料を回り込む音波も受信してしまうという問題がある。 However, when measuring the sound transmission characteristics of a sample without using the equipment defined in the above-mentioned JIS standard, since the sound wave transmitted from the sound source unit wraps around the sample, the sound receiving unit uses the sound wave transmitted through the sample. There is also a problem that the sound wave that goes around the sample is also received.
本発明は、このような従来の問題点に着目してなされたもので、その目的は、前述したJIS規格で定められたような大掛かりな設備を用いることなく試料の音響透過特性を測定できるようにすることである。 The present invention has been made paying attention to such a conventional problem, and its purpose is to be able to measure the sound transmission characteristics of a sample without using a large-scale facility as defined in the above-mentioned JIS standard. Is to do.
本発明者は、前述の目的を達成するために、試行錯誤しながら検討した結果、大掛かりな設備を用いることなく音響透過特性を測定できることをつきとめた。
請求項1記載の板状体の音響透過特性の測定方法は、
板状体の第1主平面側に配置された音源部からの発信音波を前記板状体を透過させ、透過した音波を前記板状体の他方の第2主平面側に配置された受音部で受信し、その受信音波を分析することにより前記板状体の音響透過特性を測定する方法であって、
前記受音部を、開口部を有する防音材で被覆し、前記防音材の前記開口部を、前記第2主平面に接触させて配置したことを特徴とする。
The inventor of the present invention has studied through trial and error in order to achieve the above-mentioned object, and as a result, has found that the sound transmission characteristics can be measured without using a large-scale facility.
The method for measuring the sound transmission characteristics of the plate-like body according to
Transmitted sound waves from the sound source unit disposed on the first main plane side of the plate-like body are transmitted through the plate-like body, and the transmitted sound waves are received on the other second main plane side of the plate-like body. A sound transmission characteristic of the plate-like body by analyzing the received sound wave,
The sound receiving portion is covered with a soundproof material having an opening, and the opening of the soundproof material is disposed in contact with the second main plane.
請求項2では、前記板状体は、
2枚のガラス板と、これらのガラス板に挟まれる遮音性能を有する中間膜とからなる遮音性合わせガラスと、
この遮音性合わせガラスのガラス板と同じ大きさで同じ形状の2枚のガラス板と、これらの2枚のガラス板の間に挟まれ前記遮音性中間膜と同じ大きさで同じ形状の一般的な中間膜とからなる通常合わせガラスと、からなり
前記音波を発信する工程での前記発信音波における所定の中心周波数は、前記板状体がコインシデンス効果を示す周波数とし、
前記受信音波を測定する工程の後に、
前記受信音波を測定する工程での測定に基づいて、前記遮音性合わせガラスと前記通常合わせガラスとを判別する工程を加えたことを特徴とする。
In
A sound insulating laminated glass composed of two glass plates and an intermediate film having a sound insulating performance sandwiched between these glass plates;
Two glass plates having the same size and the same shape as the glass plate of the sound insulating laminated glass, and a general intermediate having the same size and the same shape as the sound insulating interlayer sandwiched between the two glass plates. A normal laminated glass consisting of a film,
The predetermined center frequency in the transmitted sound wave in the step of transmitting the sound wave is a frequency at which the plate-like body exhibits a coincidence effect ,
After the step of measuring the received sound wave,
A step of discriminating between the sound insulating laminated glass and the normal laminated glass is added based on the measurement in the step of measuring the received sound wave .
本発明によれば、前述したJIS規格で定められたような大掛かりな設備を用いることなく音響透過特性を測定することができる。そして、同一製品の音響透過特性が目的の範囲内にあることを確かめるために、全量あるいは抜き取りで測定することができる。また、製造現場のように、周りに騒音がある環境でも音響透過特性を測定することができる。 According to the present invention, sound transmission characteristics can be measured without using a large-scale facility as defined by the JIS standard described above. Then, in order to confirm that the sound transmission characteristics of the same product are within the target range, it can be measured in whole quantity or sampling. In addition, the sound transmission characteristics can be measured even in an environment where there is noise around, such as a manufacturing site.
請求項1記載の板状体の音響透過特性の測定方法によれば、発信音波が板状体を回り込んだ音波および発信音波とは別の音波(意図していない音波ということで騒音という)は、防音材により遮断されるので、前記板状体を透過した音波のみを前記受音部にて測定することが可能となる。
According to the method for measuring the sound transmission characteristics of the plate-like body according to
請求項2記載の板状体の音響透過特性の測定方法によれば、前記発信音波における所定の中心周波数を、前記板状体がコインシデンス効果を示す周波数としたので、前記板状体の音響透過特性の特徴的な部分に着目した効率的な測定を行うことが可能となる。
According to the method for measuring sound transmission characteristics of a plate-like body according to
次に、本発明の実施の形態について説明する。ただし、本発明はこれらに限定されるものではない。
[音響透過特性の測定装置]
図1に、本発明における音響透過特性の測定方法を用いた測定装置の概略図を示す。図1において、被測定物である板状体1は、一方向に湾曲した板状体としたが、二方向に湾曲した板状体、水平な板状体、厚みにむらがある板状体、比較的厚みのある板状体等も測定可能である。
板状体1は、搬送装置を構成するローラ群(搬送ローラ)2上に配置される。搬送ローラ2により形成される搬送面は、通常、略水平に調整されている。
Next, an embodiment of the present invention will be described. However, the present invention is not limited to these.
[Measurement device for sound transmission characteristics]
FIG. 1 shows a schematic diagram of a measuring apparatus using the method for measuring sound transmission characteristics according to the present invention. In FIG. 1, the plate-
The plate-
音源部10は、信号発生器11とスピーカ12により構成されており、2つの物はケーブルにより接続されている。信号発生器11は、任意の位置に設置され、スピーカ12は、板状体1の第1主面1a側(搬送面の下側)に、搬送面に垂直な軸に対して、角度θで配置される。図1において、スピーカ12の設置方向は、搬送方向(矢印A)としたが、これに限定されることはなく、スピーカ12と板状体1との間に障害物が存在しない方向および位置とすることができる。ここで、角度θの範囲は、0〜90°、つまり全方位とすることができる。角度θの範囲は、40〜90°が好ましい。
The
受音部20は、分析器21とマイクロホン22により構成されており、2つの物はケーブルにより接続されている。分析器21は、任意の位置に設置される。マイクロホン22は、板状体1の第2主面1b側(搬送面の上側)に、搬送面に略垂直に配置される。マイクロホン22は、防音材30により、周囲を覆われている。防音材30は、内部のマイクロホン22を示すために透視図で示している。マイクロホン22のセンサ部がある先端部と第2主面1bとの間には隙間31が形成され、マイクロホン22が直接第2主面1bに接触しないようになっている。防音材30に覆われたマイクロホン22は、昇降機構(図示せず)により、矢印Bの方向および逆方向に移動可能である。
The
図2に、マイクロホン22の形状に合わせて成形加工された防音材30の縦断面図の例を示す。防音材30の内部には、マイクロホン22の形状に略一致する空洞32がある。図2(a)に示す防音材30の板状体1に接触する部分の断面形状は、略平らに形成されている。このように形成することにより、平面的な形状の板状体に対して良好に密着させることができる。図2(b)、(c)に示す防音材30の板状体に接触する部分の断面形状は、凸状に形成さている。このように形成することにより、平面的な形状のみならず曲面的な形状の板状体に対しても良好に密着させることができる。
防音材30に用いる素材は、遮音性能を有するものであれば特に限定されない。また、防音材30には、スポンジ状の構造を持つ素材、板状体に接触する部分以外の表面に多数の毛を有する素材およびそれらの複合素材を好適に用いることができる。スポンジ状の構造を持つ素材は防音効果に優れており、また弾性変形可能なので、板状体1の第2主面1bに密着させることができる。表面に多数の毛を有する素材は表面に衝突する風による音を軽減する効果がある。
防音材30は、前述したようにマイクロホン22の形状に合わせて成形加工してもよいし、スポンジ状の構造を持つ素材を帯状にし、マイクロホン22に巻き付けることにより形成してもよい。
防音材30の横断面の外形は、横断面の各方向において防音性能が発揮可能な厚みを有していればよく、略円形や略四角形等の形状が好適に用いられる。
In FIG. 2, the example of the longitudinal cross-sectional view of the
The material used for the
The soundproofing
The outer shape of the cross section of the soundproofing
[音響透過特性の測定手順]
以下に音響透過特性の測定手順を示す。
まず、発信音波の強度を、被測定物である板状体1が存在しない状態で、マイクロホン22の受信音波のレベルが、所定の中心周波数で所定レベルとなるように調整する。複数の中心周波数で測定する場合には、中心周波数毎に行う。この調整は、複数の板状体を連続して測定する場合には、毎回行う必要はなく、例えば、最初の測定の前に一度行い、その後は、定期的に行えばよい。
次に、防音材30に覆われたマイクロホン22を、矢印Bの逆方向に安全な待機位置まで退避させる。
次に、板状体1を、矢印A方向に搬送ローラ2により搬入し、測定装置の所定位置で停止させる。
次に、防音材30に覆われたマイクロホン22を、矢印Bの方向に移動させ、防音材30の先端を第2主面1bに接触させる。
次に、スピーカ12から、所定の中心周波数を有する音波を発生させ、板状体1を透過した音波をマイクロホン22で受信する。受信音波は、接続ケーブルにより分析器21へ送られて、1/3オクターブバンドフィルタ処理を行うことによって、板状体1の音響透過特性が周波数毎の透過音圧レベルとして測定される。
必要に応じて、複数の中心周波数毎に測定を繰り返す。
[Measurement procedure of sound transmission characteristics]
The procedure for measuring sound transmission characteristics is shown below.
First, the intensity of the transmitted sound wave is adjusted so that the level of the received sound wave of the
Next, the
Next, the plate-
Next, the
Next, a sound wave having a predetermined center frequency is generated from the
If necessary, repeat the measurement for each of the multiple center frequencies.
本発明の音響透過特性の測定方法により、自動車用の合わせガラスの音響透過特性を測定した。合わせガラスは、一般的な中間膜を用いた自動車用の合わせガラス(以下、通常合わせガラスとする)ものと、遮音性能を有する中間膜を用いた自動車用の合わせガラス(以下、遮音性合わせガラスとする)を製造した。
比較のため同じ合わせガラスの空気音遮断性能を、前述したJIS規格に記載の測定方法により測定した。
そして、本発明の音響透過特性の測定方法を、通常合わせガラスと遮音性合わせガラスの判別に用いる例を示した。
[実施例1]
The sound transmission characteristics of laminated glass for automobiles were measured by the method for measuring sound transmission characteristics of the present invention. Laminated glass includes laminated glass for automobiles using a general interlayer film (hereinafter referred to as “normally laminated glass”) and laminated glass for automobiles using an interlayer film having sound insulation performance (hereinafter referred to as “sound insulating laminated glass”). And manufactured).
For comparison, the air sound blocking performance of the same laminated glass was measured by the measuring method described in the JIS standard.
And the example which uses the measuring method of the sound transmission characteristic of this invention for discrimination | determination of a normal laminated glass and a sound-insulating laminated glass was shown.
[Example 1]
まず、一般的な製造方法により、通常合わせガラスを製造した。合わせガラスを構成する2枚のガラス板の厚さは、それぞれ2mmであり、中間膜には、厚さ 0.76mmのPVBフィルム(積水化学工業社製、エスレックフィルム)を用いた。
次に、スピーカ12の設置の角度θが、60°となるように調整した。
次に、前述した音響透過特性の測定手順に従って、通常合わせガラスの周波数毎の透過音圧レベルを測定した。このとき、スピーカ12からの発信音波の中心周波数は、厚さ 4mmの単板ガラス板がコインシデンス効果を示す周波数に近い3.15kHzとした。そして、この中心周波数を有する発信音波の強度を、板状体1が存在しない状態で、マイクロホン22の受信音波のレベルが、90dBとなるように調整した。
First, the laminated glass was normally manufactured with the general manufacturing method. The two glass plates constituting the laminated glass each had a thickness of 2 mm, and a 0.76 mm thick PVB film (manufactured by Sekisui Chemical Co., Ltd., ESREC film) was used as the intermediate film.
Next, the installation angle θ of the
Next, the transmitted sound pressure level for each frequency of the normal laminated glass was measured according to the procedure for measuring the sound transmission characteristics described above. At this time, the center frequency of the transmitted sound wave from the
表1に、50〜10000Hzの範囲で分析した通常合わせガラスの透過音圧レベルの値を示した。表1には、後述する実施例2の測定結果と2つの実施例の透過音圧レベル差も併せて示した。 Table 1 shows the value of the transmitted sound pressure level of the normal laminated glass analyzed in the range of 50 to 10000 Hz. Table 1 also shows the measurement results of Example 2 described later and the transmitted sound pressure level difference between the two examples.
図3に、表1に示した透過音圧レベルと透過音圧レベル差のグラフを示した。横軸の周波数は対数表示とした。透過音圧レベルが小さいほど、被測定物の遮音性能が優れている。
表1と図3より、通常合わせガラスの透過音圧レベルは、50〜800Hzの周波数帯で、77.8〜35.0dBまで、急激に変化しており、1000〜10000Hzの周波数帯で、36.3〜17.7dBまで、なだらかに変化していることが分かる。
[比較例1]
FIG. 3 is a graph showing the difference between the transmitted sound pressure level and the transmitted sound pressure level shown in Table 1. The frequency on the horizontal axis is logarithmic. The smaller the transmitted sound pressure level, the better the sound insulation performance of the object to be measured.
From Table 1 and FIG. 3, the transmitted sound pressure level of the laminated glass usually changes rapidly from 77.8 to 35.0 dB in the frequency band of 50 to 800 Hz, and 36 in the frequency band of 1000 to 10000 Hz. It turns out that it is changing gently from .3 to 17.7 dB.
[Comparative Example 1]
JIS規格に規定されている測定方法に従って、実施例1で製造した通常合わせガラスの音響透過損失を測定した。表2に、50〜10000Hzの範囲で分析した通常合わせガラスの音響透過損失を示した。表2には、後述する比較例2の音響透過損失と2つの比較例の音響透過損失差も併せて示した。 According to the measuring method prescribed | regulated to JIS specification, the sound transmission loss of the normal laminated glass manufactured in Example 1 was measured. Table 2 shows the sound transmission loss of the normal laminated glass analyzed in the range of 50 to 10000 Hz. Table 2 also shows the sound transmission loss of Comparative Example 2 described later and the sound transmission loss difference of the two comparative examples.
図4に、表2に示した音響透過損失と音響透過損失差のグラフを示した。横軸の周波数は対数表示とした。音響透過損失が大きいほど、被測定物の遮音性能が優れている。
表2と図4より、通常合わせガラスの音響透過損失は、50〜1000Hzの周波数帯で、10.2〜35.0dBまで、急激に変化しており、1250〜10000Hzの周波数帯で、35.8〜49.4dBまでなだらかに変化していることが分かる。なお、約1kHz以下の分布は、質量側に従っていると思われる。
この通常合わせガラスには、2枚のガラス板の合計厚さに等しい厚さ 4mmの単板ガラス板がコインシデンス効果を示す周波数に近い3.15kHz付近に、音響透過損失が小さくなる周波数帯が存在していることが分かる。
[実施例2]
FIG. 4 shows a graph of the sound transmission loss and the difference in sound transmission loss shown in Table 2. The frequency on the horizontal axis is logarithmic. The greater the sound transmission loss, the better the sound insulation performance of the object to be measured.
From Table 2 and FIG. 4, the sound transmission loss of the normal laminated glass changes rapidly from 10.2 to 35.0 dB in the frequency band of 50 to 1000 Hz, and in the frequency band of 1250 to 10,000 Hz, 35. It turns out that it is changing smoothly from 8 to 49.4 dB. The distribution below about 1 kHz seems to follow the mass side.
This normal laminated glass has a frequency band in which sound transmission loss is reduced in the vicinity of 3.15 kHz, which is close to the frequency at which a single glass plate having a thickness of 4 mm equal to the total thickness of the two glass plates exhibits a coincidence effect. I understand that
[Example 2]
まず、中間膜に、厚さ 0.76mmのPVBフィルム(積水化学工業社製、エスレックアコースティックフィルム)を用いた以外は、実施例1と同様にして、遮音性合わせガラスを製造した。
次に、前述した音響透過特性の測定手順に従って、実施例1と同様の条件で、遮音性合わせガラスの周波数毎の透過音圧レベルを測定した。
表1に、50〜10000Hzの範囲で分析した遮音性合わせガラスの透過音圧レベルを示し、図3に、その透過音圧レベルのグラフを示した。
表1と図3より、遮音性合わせガラスの透過音圧レベルは、50〜630Hzの周波数帯で、79.8〜33.5dBまで、急激に変化しており、800〜10000Hzの周波数帯で、34.6〜17.7dBまで、なだらかに変化していることが分かる。
[比較例2]
First, a sound-insulating laminated glass was produced in the same manner as in Example 1 except that a 0.76 mm-thick PVB film (Sekisui Chemical Co., Ltd., ESREC acoustic film) was used as the intermediate film.
Next, the transmitted sound pressure level for each frequency of the sound insulating laminated glass was measured under the same conditions as in Example 1 in accordance with the procedure for measuring the sound transmission characteristics described above.
Table 1 shows the transmitted sound pressure level of the sound insulating laminated glass analyzed in the range of 50 to 10000 Hz, and FIG. 3 shows a graph of the transmitted sound pressure level.
From Table 1 and FIG. 3, the transmitted sound pressure level of the sound insulating laminated glass is abruptly changing from 79.8 to 33.5 dB in the frequency band of 50 to 630 Hz, and in the frequency band of 800 to 10,000 Hz. It turns out that it is changing gently from 34.6 to 17.7 dB.
[Comparative Example 2]
JIS規格に規定されている測定方法に従って、実施例2で製造した遮音性合わせガラスの音響透過損失を測定した。
表2に、50〜10000Hzの範囲で分析した音響透過損失を示し、図4に、その音響透過損失のグラフを示す。
表2と図4より、遮音性合わせガラスの音響透過損失は、50〜1000Hzの周波数帯で、14.5〜35.5dBまで、急激に変化しており、1250〜10000Hzの周波数帯で、36.3〜47.6dBまで、なだらかに変化していることが分かる。なお、比較例1と同様に、約1kHz以下の分布は、質量側にしたがっていると思われる。
この遮音性能を有する中間膜を用いた自動車用の合わせガラスには、前述した3.15kHz付近ではなく6.3kHz付近に音響透過損失が小さくなる周波数帯が存在することが分かる。
The sound transmission loss of the sound insulating laminated glass manufactured in Example 2 was measured according to the measurement method defined in the JIS standard.
Table 2 shows the sound transmission loss analyzed in the range of 50 to 10000 Hz, and FIG. 4 shows a graph of the sound transmission loss.
From Table 2 and FIG. 4, the sound transmission loss of the sound insulating laminated glass changes rapidly from 14.5 to 35.5 dB in the frequency band of 50 to 1000 Hz, and is 36 in the frequency band of 1250 to 10000 Hz. It turns out that it is changing gently from 3 to 47.6 dB. As in Comparative Example 1, the distribution of about 1 kHz or less seems to follow the mass side.
It can be seen that the laminated glass for automobiles using the interlayer film having the sound insulation performance has a frequency band in which sound transmission loss is reduced in the vicinity of 6.3 kHz, not in the vicinity of 3.15 kHz described above.
(測定方法の比較)
図4に示したJIS規格に規定されている正確な測定方法による測定結果のグラフから、1000〜10000Hzの周波数帯において、通常合わせガラスと遮音性合わせガラスの音響透過損失に差があることが分かる。そして、2枚の厚さ 2mmのガラス板と厚さ 0.76mmの中間膜との組み合わせにより製造された合わせガラスのコインシデンス効果を示す周波数(3.15kHz付近)が含まれる1000〜5000Hzの周波数帯において、遮音性合わせガラスの音響透過損出が大きいことが分かる。つまり、この遮音性合わせガラスは、人が敏感に感じる5kHz以下の周波数帯で、通常合わせガラスよりも遮音性能に優れていることが分かる。
(Comparison of measurement methods)
From the graph of the measurement results obtained by the accurate measurement method stipulated in the JIS standard shown in FIG. 4, it can be seen that there is a difference in sound transmission loss between the normal laminated glass and the sound insulating laminated glass in the frequency band of 1000 to 10000 Hz. . And a frequency band of 1000 to 5000 Hz including a frequency (around 3.15 kHz) showing a coincidence effect of a laminated glass manufactured by combining two glass plates having a thickness of 2 mm and an interlayer film having a thickness of 0.76 mm. It can be seen that the sound transmission loss of the sound insulating laminated glass is large. In other words, it can be seen that this sound insulating laminated glass is superior in sound insulating performance to normal laminated glass in a frequency band of 5 kHz or less that humans are sensitive to.
図3と図4を比較すると、本発明による音響透過特性の測定方法とJIS規格に規定されている正確な測定方法とでは、測定結果の傾向が完全に一致していないことが分かる。しかし、本発明による音響透過特性の測定方法においても、前記1000〜5000Hzの周波数帯で、遮音性合わせガラスが通常合わせガラスよりも遮音性能に優れていることが分かる。
つまり、被測定物である板状体が特徴的な分布を有する周波数帯に着目すれば、本発明による音響透過特性の測定方法を用いることにより、JIS規格に規定されている正確な測定方法を用いずとも板状体の音響透過性能を判断することができる。
下記に、本発明の音響透過特性の測定方法を通常合わせガラスと遮音性合わせガラスとの判別に用いた実施例を示す。
[実施例3]
Comparing FIG. 3 and FIG. 4, it can be seen that the tendency of the measurement results does not completely match between the sound transmission characteristic measurement method according to the present invention and the accurate measurement method defined in the JIS standard. However, also in the method for measuring sound transmission characteristics according to the present invention, it can be seen that the sound insulating laminated glass is superior in sound insulating performance to the normal laminated glass in the frequency band of 1000 to 5000 Hz.
In other words, when focusing on the frequency band in which the plate-like object to be measured has a characteristic distribution, the accurate measurement method defined in the JIS standard can be obtained by using the sound transmission characteristic measurement method according to the present invention. The sound transmission performance of the plate-like body can be determined without using it.
Below, the Example which used the measuring method of the sound transmission characteristic of this invention for discrimination with normal laminated glass and sound-insulating laminated glass is shown.
[Example 3]
実施例1および実施例2の結果から、周波数 3.15kHzにおける通常合わせガラスと遮音性合わせガラスとの透過音圧レベルは、それぞれ、36.6dBと26.1dBであったので、これらの中間値 31.35dBを参考に、31dBを閾値とした。
同じ大きさと形状を有する通常合わせガラスと遮音性合わせガラスとをそれぞれ100枚ずつ用意した。各合わせガラスには識別マークを付けた。図1に示した測定装置を用いて前述した音響透過特性の測定手順に従い2種類の合わせガラスの音響透過特性を測定した。周波数 3.15kHzにおける透過音圧レベルが、前記閾値 31dB以下の場合、その合わせガラスを遮音性合わせガラスと判定し、それ以外を通常合わせガラスと判定し、別々のガラス台車に振り分けた。
それぞれの台車の合わせガラスに付けられている前記識別マークを確認したところ、通常合わせガラスと遮音性合わせガラスとが誤判定されることなく正しく振り分けられていることが確認できた。
従って、生産ラインの検査工程において、遮音性能の有無が判定できることが分かった。また、遮音性合わせガラスの遮音性能が基準を満たしているかの検査を行うことも可能であることが分かった。
From the results of Example 1 and Example 2, the transmitted sound pressure levels of the normal laminated glass and the sound insulating laminated glass at a frequency of 3.15 kHz were 36.6 dB and 26.1 dB, respectively. 31 dB was set as a threshold with reference to 31.35 dB.
100 sheets of normal laminated glass and sound insulating laminated glass having the same size and shape were prepared. Each laminated glass was given an identification mark. The sound transmission characteristics of two types of laminated glass were measured using the measurement apparatus shown in FIG. When the transmitted sound pressure level at a frequency of 3.15 kHz was equal to or less than the
When the identification mark attached to the laminated glass of each carriage was confirmed, it was confirmed that the normal laminated glass and the sound insulating laminated glass were correctly distributed without being erroneously determined.
Therefore, it was found that the presence or absence of sound insulation performance can be determined in the production line inspection process. It was also found that it is possible to inspect whether the sound insulation performance of the sound insulation laminated glass satisfies the standard.
1 板状体
1a 板状体の第1主平面
1b 板状体の第2主平面
2 搬送ローラ
10 音源部
11 信号発生器
12 スピーカ
20 受音部
21 解析器
22 マイクロホン
30 防音材
31 隙間
32 空洞
DESCRIPTION OF
Claims (2)
防音材に覆われた受音部を待機位置まで退避させる工程と、
前記板状体を搬送装置により搬入する工程と、
搬入した板状体を所定位置で停止させる工程と、
前記防音材を、前記板状体に向かって移動させ、前記防音材の先端を前記板状体に接触させる工程と、
前記板状体の第1主平面側に配置された音源部から音波を発信する工程と、
発信音波を前記板状体を透過させ、透過した音波を前記板状体の他方の第2主平面側に配置された受音部で受信し、その受信音波を測定する工程と、からなることを特徴とする板状体の音響透過特性の測定方法。 A method for measuring sound transmission characteristics of a plate- like body,
A step of retracting the sound receiving portion covered with the soundproofing material to a standby position;
A step of carrying in the plate-like body by a conveying device;
A step of stopping the loaded plate-like body at a predetermined position;
Moving the soundproof material toward the plate-shaped body, and bringing the tip of the soundproof material into contact with the plate-shaped body;
Transmitting sound waves from a sound source unit disposed on the first main plane side of the plate-like body;
And transmitting the transmitted sound wave through the plate-like body, receiving the transmitted sound wave at a sound receiving portion disposed on the other second main plane side of the plate-like body, and measuring the received sound wave. A method for measuring sound transmission characteristics of a plate-like body.
2枚のガラス板と、これらのガラス板に挟まれる遮音性能を有する中間膜とからなる遮音性合わせガラスと、
この遮音性合わせガラスのガラス板と同じ大きさで同じ形状の2枚のガラス板と、これらの2枚のガラス板の間に挟まれ前記遮音性中間膜と同じ大きさで同じ形状の一般的な中間膜とからなる通常合わせガラスと、からなり
前記音波を発信する工程での前記発信音波における所定の中心周波数は、前記板状体がコインシデンス効果を示す周波数とし、
前記受信音波を測定する工程の後に、
前記受信音波を測定する工程での測定に基づいて、前記遮音性合わせガラスと前記通常合わせガラスとを判別する工程を加えたことを特徴とする請求項1記載の板状体の音響透過特性の測定方法。 The plate-like body is
A sound insulating laminated glass composed of two glass plates and an intermediate film having a sound insulating performance sandwiched between these glass plates;
Two glass plates having the same size and the same shape as the glass plate of the sound insulating laminated glass, and a general intermediate having the same size and the same shape as the sound insulating interlayer sandwiched between the two glass plates. A normal laminated glass consisting of a film,
The predetermined center frequency in the transmitted sound wave in the step of transmitting the sound wave is a frequency at which the plate-like body exhibits a coincidence effect ,
After the step of measuring the received sound wave,
Based on the measurement in the step of measuring the reception waves, the sound transmission characteristics of claim 1, wherein the plate-like body, characterized in that the addition of steps for distinguishing between the ordinary laminated glass and the sound insulation laminated glass Measuring method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006046830A JP4878481B2 (en) | 2006-02-23 | 2006-02-23 | Method for measuring sound transmission characteristics of plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006046830A JP4878481B2 (en) | 2006-02-23 | 2006-02-23 | Method for measuring sound transmission characteristics of plate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007225436A JP2007225436A (en) | 2007-09-06 |
JP4878481B2 true JP4878481B2 (en) | 2012-02-15 |
Family
ID=38547394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006046830A Expired - Fee Related JP4878481B2 (en) | 2006-02-23 | 2006-02-23 | Method for measuring sound transmission characteristics of plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4878481B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110376288A (en) * | 2019-08-16 | 2019-10-25 | 马黎明 | A kind of novel sound insulation cover soundproof effect detection device |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012112851A (en) * | 2010-11-26 | 2012-06-14 | Toyota Central R&D Labs Inc | Ultrasonic inspection device and ultrasonic inspection method |
JP6715649B2 (en) * | 2016-03-31 | 2020-07-01 | 三井化学株式会社 | Acoustic characteristic measuring system and acoustic characteristic measuring method |
CN108918681B (en) * | 2018-06-13 | 2020-12-25 | 苏州朵唯智能科技有限公司 | Automatic detection equipment for sound insulation effect of glass |
CN113960175B (en) * | 2021-10-21 | 2024-03-01 | 格云特自动化科技(深圳)有限公司 | Material permeability detection device |
CN115127848B (en) * | 2022-08-31 | 2022-11-11 | 山东汇通工业制造有限公司 | Heat exchanger pipeline blockage detection method |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5925181B2 (en) * | 1979-06-11 | 1984-06-15 | 富士紡績株式会社 | How to detect foreign substances |
JP3770668B2 (en) * | 1996-09-17 | 2006-04-26 | 佐藤工業株式会社 | Method for detecting internal defects in structures |
JP2002326847A (en) * | 2001-03-01 | 2002-11-12 | Asahi Glass Co Ltd | Laminated glass |
JP2003328468A (en) * | 2002-05-09 | 2003-11-19 | Kajima Corp | Insulated wall structure |
JP2005124031A (en) * | 2003-10-20 | 2005-05-12 | Hajime Hatano | Sound collector |
-
2006
- 2006-02-23 JP JP2006046830A patent/JP4878481B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110376288A (en) * | 2019-08-16 | 2019-10-25 | 马黎明 | A kind of novel sound insulation cover soundproof effect detection device |
Also Published As
Publication number | Publication date |
---|---|
JP2007225436A (en) | 2007-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4878481B2 (en) | Method for measuring sound transmission characteristics of plate | |
Ho et al. | Measurements of sound transmission through panels of locally resonant materials between impedance tubes | |
CN110470486A (en) | The sound insulation property prediction technique and prediction meanss of plates of automobile component assembly with blocking piece | |
Iannace et al. | Egg cartons used as sound absorbing systems | |
Pleban et al. | Methods for testing of sound insulation properties of barriers intended for high frequency noise and ultrasonic noise protection | |
Drabek | Comparison of two internationally recognized methods for determining the sound absorption coefficient | |
Kim et al. | The Effect of an Edge on the Measured Scattering Coefficients in a Reverberation Chamber based on ISO 17497-1 | |
JP4876287B2 (en) | Measuring method of acoustic impedance and sound absorption coefficient | |
WO1999010608A1 (en) | A noise attenuation device | |
JP2002228643A (en) | Method and apparatus for measuring sound insulation performance | |
Bradley et al. | Improved sound field reverberance and diffusivity in a reverberation chamber through implementation of resonant-diffusing wall panels | |
Okubo et al. | Efficiency of edge-modified noise barriers: Intrinsic efficiency determination of practical products and prediction of the diffracted sound field | |
CN112051336A (en) | Test system and test method for distinguishing type and thickness of automobile glass | |
CN223078253U (en) | A sound insulation test chamber | |
Guidorzi et al. | On the repeatability of Reflection Index measurements on noise barriers | |
CN112797543B (en) | Wall sound insulation ventilator | |
KR102735734B1 (en) | Acoustic wave amplification structure | |
Otsuru et al. | Further improvements of the measurement method for sound absorption characteristics using the ensemble averaging technique | |
Guidorzi et al. | Reflection index measurement on noise barriers with the Adrienne method: source directivity investigation and microphone grid implementation | |
Wijntjes et al. | Benchmark for experimentation of acoustic transmission loss applied to helicopter trim panels | |
Li et al. | Determining Sound Transmission Loss of SAE J1400 Control Sample | |
Yamada et al. | Influence of reflecting plane having finite surface density on sound power level of reference sound sources calibrated in hemi free-field | |
Lin et al. | Performance of Spatial Windows in the Spatial Fourier Transform Technique for the Angle-Dependent Reflection Factor Measurement | |
Toyoda et al. | Field survey method using Origami impulse source for sound insulation measurements | |
Schwanen | In-situ testing of acoustical properties of noise barriers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD05 | Notification of revocation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7425 Effective date: 20080411 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081030 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20081030 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20091014 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110316 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110330 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110526 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111122 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111128 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141209 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |