JP4845017B2 - High strength high crystalline tetrafluoroethylene resin compression molding - Google Patents
High strength high crystalline tetrafluoroethylene resin compression molding Download PDFInfo
- Publication number
- JP4845017B2 JP4845017B2 JP2006144933A JP2006144933A JP4845017B2 JP 4845017 B2 JP4845017 B2 JP 4845017B2 JP 2006144933 A JP2006144933 A JP 2006144933A JP 2006144933 A JP2006144933 A JP 2006144933A JP 4845017 B2 JP4845017 B2 JP 4845017B2
- Authority
- JP
- Japan
- Prior art keywords
- tetrafluoroethylene resin
- compression
- molding
- ionizing radiation
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
Abstract
Description
本発明は、成形用に用いられる四フッ化エチレン樹脂(PTFE)粉末に予め電離放射線を照射し、これを室温で圧縮成形したのち焼結するフリーベーキング法による手法を用いることによって得られる実用強度を保持し、かつ、高い結晶化度と高い延伸性を有する四フッ化エチレン樹脂の圧縮成形体に関する。 The present invention is a practical strength obtained by using a technique based on a free baking method in which a tetrafluoroethylene resin (PTFE) powder used for molding is preliminarily irradiated with ionizing radiation, compression-molded at room temperature, and then sintered. It is related with the compression molding body of the tetrafluoroethylene resin which hold | maintains and has a high crystallinity and a high drawability.
四フッ化エチレン樹脂は、その分子鎖を形成する炭素とフッ素の結合エネルギーが大きく、非常に緻密で安定であるため、元来、結晶化度が高く、さらに融点(327℃)以上の温度でもほとんど溶融流動性がないため、通常のプラスチックのように射出成形、押出し成形等ができない耐熱、耐薬品性等に優れた高分子として知られている。一般に、成形用の四フッ化エチレン樹脂粉末の結晶化度は93%〜98%であるが、この粉末を用いて成形した焼成品の結晶化度は、通常50〜60%である。一方、かくして成形された四フッ化エチレン樹脂の耐放射線性は極めて低く、電離放射線の照射を受けることで分子鎖が切断されて、強度や伸びの機械特性は急激に低下することから、放射線による代表的な崩壊型の樹脂であることが知られている。したがって、成形した四フッ化エチレン樹脂に電離放射線を照射したあとで、再び融点以上の温度まで加熱、溶融したのち徐冷することにより、切断された分子鎖が再配列して結晶化が進むため、さらに結晶化度が増大することは推測の域であり、また、すでに公知である。この場合、結晶化度の増大は機械特性において伸びの増大をもたらすが、強度はさらに低下するために実用強度を損ない、例えば、延伸四フッ化エチレン樹脂多孔質膜の製造加工技術にこの高い延伸性を利用しようとすれば、引張り破断強度が低いために、技術的な困難を伴うことは避けられない。一方、本発明者らによって、成形用の四フッ化エチレン樹脂粉末に一定線量の電離放射線を照射し、これを成形することによって得られる四フッ化エチレン樹脂は驚異的に機械特性の低下が抑制され、引裂き強度や伸びの増大など、むしろ優れた材料特性を発現することが見出されており、放射線照射が必ずしも崩壊に結びつかない言わば改質手段として提案されている(特許文献1,2及び3)。 Tetrafluoroethylene resin has a large bond energy between carbon and fluorine forming its molecular chain, and is extremely dense and stable, so it originally has a high degree of crystallinity, and even at a temperature higher than the melting point (327 ° C). Since it has almost no melt fluidity, it is known as a polymer excellent in heat resistance and chemical resistance that cannot be injection-molded or extruded as in ordinary plastics. In general, the crystallinity of the tetrafluoroethylene resin powder for molding is 93% to 98%, but the crystallinity of the fired product formed using this powder is usually 50 to 60%. On the other hand, the radiation resistance of the tetrafluoroethylene resin thus molded is extremely low, the molecular chain is cut by receiving ionizing radiation, and the mechanical properties of strength and elongation are drastically reduced. It is known to be a typical decay type resin. Therefore, after irradiating the molded tetrafluoroethylene resin with ionizing radiation, it is heated again to a temperature above the melting point, melted, and then slowly cooled, so that the broken molecular chains are rearranged and crystallization proceeds. Further, it is speculated that the degree of crystallinity further increases, and is already known. In this case, the increase in crystallinity leads to an increase in elongation in mechanical properties, but the strength is further reduced, so that the practical strength is impaired. For example, this high stretching is applied to the manufacturing and processing technology of a stretched tetrafluoroethylene resin porous membrane. If it is going to utilize the property, it is inevitable that technical difficulties are involved because the tensile strength at break is low. On the other hand, the tetrafluoroethylene resin obtained by irradiating a certain dose of ionizing radiation to the molding tetrafluoroethylene resin powder by the present inventors and surprisingly suppressing the deterioration of mechanical properties Rather, it has been found that rather excellent material properties such as an increase in tear strength and elongation have been developed, and it has been proposed as a modification means that radiation irradiation does not necessarily lead to collapse (Patent Documents 1 and 2 and 3).
しかしながら、これらの文献は基本的に溶融加圧下による成形であり、急冷した四フッ化エチレン樹脂の場合に限定される。すなわち、産業界で最も汎用される成形技術となっている室温で圧縮成形した当該四フッ化エチレン樹脂粉末のフリーベーキング法による室温での圧縮成形性と、緩慢な熱処理工程による結晶性を吟味した材料特性については、これを言及するに至っていない。したがって、これまでに圧縮工程と熱処理工程を経た明白な裏付けがなく、電離放射線を照射した四フッ化エチレン樹脂粉末の応用範囲を狭めているのが実情である。
本発明は、予め電離放射線を照射した四フッ化エチレン樹脂粉末を室温で圧縮成形したのち焼成する工業的な汎用技術により、実用強度を保持し、高い結晶化度と高い延伸性ならびに引裂き強度、さらには、ガス透過度、圧縮クリープ、線膨張率などを著しく改善した四フッ化エチレン樹脂の成形品を提供することにより、本発明が広く産業技術として普及することを目的とする。 The present invention is a general industrial technology for firing after compression molding the tetrafluoroethylene resin powder previously irradiated with ionizing radiation at room temperature, maintaining practical strength, high crystallinity, high stretchability and tear strength, Furthermore, it is an object of the present invention to widely spread as an industrial technique by providing a molded article of ethylene tetrafluoride resin that has remarkably improved gas permeability, compression creep, linear expansion coefficient, and the like.
本発明者らは、かねてから四フッ化エチレン樹脂の成形用粉末に電離放射線を照射し、四フッ化エチレン樹脂の融点である327℃以上の温度においてこれを溶融状態で圧縮成形した際のさまざまな照射効果を検討してきた。しかしながら、これを室温で圧縮成形したのち圧力を開放し、引き続き焼成することによって得られる照射の効果については、当該樹脂が結晶性であることから焼成条件との関係がつかめず未知であった。そこで発明者らは鋭意検討を重ねることにより、四フッ化エチレン樹脂の圧縮、焼成、および電離放射線の照射条件との相互の関係をつかみ、明らかな付加価値が係る成形体に数多く生まれることを見出し、本発明に到達した。 The inventors of the present invention have long been irradiated with ionizing radiation to a powder for forming a tetrafluoroethylene resin, and variously produced by compression molding in a molten state at a temperature of 327 ° C. or higher, which is the melting point of the tetrafluoroethylene resin. We have studied the irradiation effect. However, the effect of irradiation obtained by compression-molding this at room temperature, then releasing the pressure, and subsequent firing is unknown because the resin is crystalline, so the relationship with the firing conditions cannot be determined. Therefore, the inventors have intensively studied to find out the mutual relationship between compression and firing of tetrafluoroethylene resin and the irradiation conditions of ionizing radiation, and found that there are many obvious added values for the molded product. The present invention has been reached.
すなわち、本発明は、
(1)予め電離放射線を照射した四フッ化エチレン樹脂成形用粉末を用いることにより、成形した樹脂の結晶融解熱量が27J/gから40J/gの範囲にあるとともに、その引張り破断強度の保持率が電離放射線を照射しない成形用粉末を用いたときの1/2以上である高い延伸性を持つ、フリーベーキング法による四フッ化エチレン樹脂圧縮成形体、
(2)四フッ化エチレン樹脂の成形用粉末に照射する電離放射線の吸収線量が0.5kGy〜3kGyである上記(1)のフリーベーキング法による四フッ化エチレン樹脂圧縮成形体、
(3)フィラーとしてカーボン、カーボングラファイト、ガラス、エコノールなどの繊維状物質もしくは粉体と混合して成る四フッ化エチレン樹脂成形用粉末である上記(1)のフリーベーキング法による四フッ化エチレン樹脂圧縮成形体、
(4)成形した樹脂の気体透過度、線膨張率、圧縮クリープなどが低く抑えられ、物性が改善された上記(1)のフリーベーキング法による四フッ化エチレン樹脂圧縮成形体、
(5)上記(1)記載の四フッ化エチレン樹脂圧縮成形体を用いて得られる機械加工による切削加工品、
(6)上記(1)記載の四フッ化エチレン樹脂圧縮成形体から機械加工により切削したテープあるいはシートを用いて延伸加工した四フッ化エチレン樹脂の多孔質体、
を提供するものである。
That is, the present invention
(1) By using a powder for molding tetrafluoroethylene resin that has been pre-irradiated with ionizing radiation, the heat of crystal melting of the molded resin is in the range of 27 J / g to 40 J / g, and the tensile rupture strength retention rate A tetrafluoroethylene resin compression-molded body by a free baking method, which has a high stretchability that is 1/2 or more when using a molding powder that does not irradiate ionizing radiation,
(2) A tetrafluoroethylene resin compression molded article by the free baking method of (1) above, wherein the absorbed dose of ionizing radiation applied to the powder of tetrafluoroethylene resin molding is 0.5 kGy to 3 kGy,
(3) Tetrafluoroethylene resin produced by the free baking method of (1) above, which is a powder for molding tetrafluoroethylene resin mixed with fibrous materials such as carbon, carbon graphite, glass, and econol or powder as filler. Compression molded body,
(4) The tetrafluoroethylene resin compression-molded body by the free baking method of the above (1), in which the gas permeability, linear expansion coefficient, compression creep, etc. of the molded resin are kept low and the physical properties are improved,
(5) A machined product obtained by machining using the tetrafluoroethylene resin compression molded article according to (1) above,
(6) A porous body of tetrafluoroethylene resin stretched using a tape or sheet cut by machining from the tetrafluoroethylene resin compression-molded body described in (1) above,
Is to provide.
本発明においては、四フッ化エチレン樹脂成形用粉末への電離放射線の照射吸収線量を0.5kGy〜3kGyに限定し、それを圧縮成形後に焼成し、その焼成後の樹脂の結晶融解熱量が高い結晶性を示す27J/g〜40J/gの範囲に調整することにより、成形品の実用強度を保持し、高い結晶化度と高い延伸性ならびに引裂き強度、さらには、ガス透過度、圧縮クリープ、線膨張率などを著しく改善した四フッ化エチレン樹脂の成形品を得ることができる。 In the present invention, the irradiation absorbed dose of ionizing radiation to the tetrafluoroethylene resin molding powder is limited to 0.5 kGy to 3 kGy, which is fired after compression molding, and the crystal has a high heat of crystal melting of the resin after firing. By adjusting it to the range of 27 J / g to 40 J / g, which shows the properties, it maintains the practical strength of the molded product, high crystallinity, high stretchability and tear strength, gas permeability, compression creep, wire It is possible to obtain a molded product of a tetrafluoroethylene resin with significantly improved expansion coefficient and the like.
本発明における四フッ化エチレン樹脂(PTFE)の圧縮成形には、通常、圧縮凝集性に優れているモールディングパウダーが用いられる。また、モールディングパウダーは、成形品の耐摩耗性を高めるためにフィラーとしてカーボン、カーボングラファイト、ガラス、エコノールなどの繊維状物質、もしくは粉末を混合したものであっても良い。このモールディングパウダーに対しては、あらかじめ室温、大気中で電離放射線の照射を行い、その吸収線量が0.5kGy〜3kGy(キログレイ)の範囲にあるものが用いられる。ここで、電離放射線とは、γ線、電子線、X線、中性子線,および高エネルギーイオンなどを指し、これらを単独で用いてもよく、二種以上を組み合わせて用いてもよい。 In the compression molding of the tetrafluoroethylene resin (PTFE) in the present invention, a molding powder having an excellent compression aggregation property is usually used. In addition, the molding powder may be a mixture of a fibrous substance such as carbon, carbon graphite, glass, and econol, or powder as a filler in order to improve the wear resistance of the molded product. This molding powder is preliminarily irradiated with ionizing radiation at room temperature and in the atmosphere, and the absorbed dose is in the range of 0.5 kGy to 3 kGy (kilo gray). Here, ionizing radiation refers to γ-rays, electron beams, X-rays, neutron beams, and high-energy ions, and these may be used alone or in combination of two or more.
本発明において、圧縮成形するときの保持圧ならびに保持時間は、従来技術を特に改める必要はなく、30MPa〜40MPaで10分〜15分間の予備成形で何ら焼成後の物性に与える影響はないが、所定の保持圧まで上昇するに必要な時間は、ここで言う保持時間の1/3程度をかけて、できるだけリニアな昇圧を行うことが推奨される。 In the present invention, the holding pressure and holding time at the time of compression molding do not need to modify the prior art in particular, and there is no effect on the physical properties after firing in the preforming at 30 MPa to 40 MPa for 10 minutes to 15 minutes, It is recommended that the time required to increase to a predetermined holding pressure is about 1/3 of the holding time referred to here and that the pressure is increased as linearly as possible.
予備成形体をフリーベーキングするときの温度は低い方が好ましく、また時間は短い方が好ましい。換言すれば、高い温度で長時間の焼成を行うと、引張破断強度が低下する傾向があるため、長時間の焼成が必要であればできるだけ低い焼成温度を選択し、350℃で少なくとも4時間以上であることが好ましい。例えば、直径50mm、高さ70mmの圧縮成形ロッドの焼成条件は、350℃〜380℃の中から選ばれ、焼成時間は350℃で4時間以上、360℃で2時間以上、380℃で1時間以上必要とされる。また、焼成時間を長く取ることにより、さらに結晶性を高めることができる。この際、所定の焼成温度に上昇するまでの時間、ならびに所定の焼成温度から室温まで降下させるときの速度は、毎時間当り70℃〜80℃が好ましく、とりわけ急速な温度降下は、成形体の内部にクラックを生じるなどの不都合が生じ易い。 The temperature when free-baking the preform is preferably low, and the time is preferably short. In other words, if fired for a long time at a high temperature, the tensile strength at break tends to decrease. Therefore, if firing for a long time is necessary, a firing temperature as low as possible is selected and at 350 ° C. for at least 4 hours or more. It is preferable that For example, the firing conditions for compression molded rods with a diameter of 50 mm and a height of 70 mm are selected from 350 ° C. to 380 ° C., and the firing time is 350 ° C. for 4 hours or longer, 360 ° C. for 2 hours or longer, and 380 ° C. for 1 hour. More than needed. Moreover, crystallinity can be further improved by taking a long baking time. At this time, the time required for the temperature to rise to a predetermined firing temperature, and the rate at which the temperature is lowered from the predetermined firing temperature to room temperature is preferably 70 ° C. to 80 ° C. per hour. Inconveniences such as internal cracks are likely to occur.
かくして成形、焼成した本発明における四フッ化エチレン樹脂の実用強度とは、その切削テープについて測定した引張破断強度が、照射していないモールディングパウダーを用いて成形したとき(線量が0のとき)の50%以上を保持していることを言う。すなわち、本発明において実用強度が得られるモールディングパウダーの吸収線量は3kGy以下であり、常法による未照射のモールディングパウダーを用いて成形した切削シートに電離放射線を照射して、その引張破断強度が50%以下になる常識的な吸収線量(0.8〜0.9kGy)に比べると、約3倍高い吸収線量であることも本発明の特長のひとつである。 The practical strength of the tetrafluoroethylene resin in the present invention thus molded and baked is that when the tensile fracture strength measured with respect to the cutting tape is molded using non-irradiated molding powder (when the dose is 0). Say that you hold over 50%. That is, the absorbed dose of the molding powder with which practical strength can be obtained in the present invention is 3 kGy or less. A cutting sheet formed by using an unirradiated molding powder by a conventional method is irradiated with ionizing radiation, and its tensile breaking strength is 50 It is one of the features of the present invention that the absorbed dose is about three times higher than the common-sense absorbed dose (0.8 to 0.9 kGy) that is less than or equal to%.
高い延伸性とは、照射していないモールディングパウダーを圧縮成形したのち焼成したロッドの切削テープに対して、電離放射線を照射してから再びアニーリングを施こすことで、通常1.5kGy以下の線量において回復する図1に示すところの室温における伸び率を基準とし、未照射時の150〜175%の範囲にあることを言う。この場合、アニーリングによる引張破断強度の回復は認められず、強度保持率は0.5kGy以上の線量で未照射時の50%以下に低下するのが常識である。本発明において、あらかじめモールディングパウダーに照射して得られる高い延伸性は、実用強度が得られる3kGy以下の線量であればこれを達成できるが、強度保持率の高い1kGy〜2kGyの範囲内が特に推奨される。 High stretchability is recovered at a dose of 1.5 kGy or less, usually by compressing the non-irradiated molding powder and then subjecting the fired rod cutting tape to ionizing radiation and then annealing again. 1 is based on the elongation at room temperature as shown in FIG. 1 and is in the range of 150 to 175% when not irradiated. In this case, recovery of the tensile rupture strength due to annealing is not recognized, and it is common knowledge that the strength retention rate is reduced to 50% or less when not irradiated at a dose of 0.5 kGy or more. In the present invention, the high stretchability obtained by irradiating the molding powder in advance can achieve this at a dose of 3 kGy or less, which gives practical strength, but it is particularly recommended that the strength retention is in the range of 1 kGy to 2 kGy. Is done.
本発明によれば、図1に示すような高い延伸性を得るための手段として、照射してからアニーリングを施す必要はなく、実用強度を保持しながら高い延伸性を持つ四フッ化エチレン樹脂の成形体をつくることができる。本発明の高い延伸性は、すなわち高い結晶性に起因し、当該四フッ化エチレン樹脂の結晶融解熱量が示差走査熱量計による分析によれば、モールディングパウダーの吸収線量が2kGyのとき、未照射時の約1.85倍に相当する37J/gであることによる。この値は、前述した常法により成形したシートに対して照射したのち、これを更にアニーリング処理することによって、伸びが約700%まで増大する吸収線量、換言すれば、0.5kGy照射したのちアニーリングした時の融解熱量である37J/gに等しいことによる。 According to the present invention, as a means for obtaining high stretchability as shown in FIG. 1, it is not necessary to perform annealing after irradiation, and the tetrafluoroethylene resin having high stretchability while maintaining practical strength. A molded body can be made. The high stretchability of the present invention is due to the high crystallinity, that is, according to the analysis by the differential scanning calorimeter of the crystal melting heat amount of the tetrafluoroethylene resin, when the absorbed dose of the molding powder is 2 kGy, when not irradiated This is because it is 37 J / g, which is equivalent to about 1.85 times the above. This value is obtained by irradiating the sheet formed by the above-mentioned conventional method, and then annealing the sheet, further increasing the absorbed dose to increase to about 700%, in other words, annealing after 0.5 kGy irradiation. It is because it is equal to 37 J / g which is the heat of fusion at the time.
かくして製造される四フッ化エチレン樹脂は、高い破断応力ならびに降伏点強度と高い延伸性を有することはもとより、ガス透過度、線膨張率、および圧縮クリープなどを小さく抑えることができるなどの特長がある。さらには、熱収縮することがないため、薄い切削テープを用いて微小孔径化した延伸多孔質膜を製造するに際しても、照射やアニーリングなど複雑な工程を省いて直ちに延伸工程へ導くことができることから、未照射の四フッ化エチレン樹脂成形用粉末からは得られない高度な付加価値と実用性を備えている。 The tetrafluoroethylene resin thus produced has not only high breaking stress, yield strength and high stretchability, but also features such as low gas permeability, linear expansion coefficient, and compressive creep. is there. Furthermore, since there is no heat shrinkage, even when manufacturing a stretched porous membrane with a small pore size using a thin cutting tape, it is possible to immediately lead to the stretching step by omitting complicated steps such as irradiation and annealing. It has high added value and practicality that cannot be obtained from unirradiated powders for molding tetrafluoroethylene resin.
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。 EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these Examples.
実施例1
旭硝子フロロポリマーズ(株)製モールディングパウダー(G350)に対して、Co-60を照射線源とする1kGy/hのγ線を室温、大気中で0.5時間、1時間、1.5時間、および2時間照射した試料をそれぞれ用意した。照射しないものを含め、それぞれの試料から直径50mm、高さ70mmの圧縮成形ロッドを調製した。このとき、圧縮成形は5分間かけて30MPaまでリニアに加圧したのち、30MPaで10分間保持した。さらに、金型から取り出した圧縮成形ロッドは、焼成を行うためオーブンに移し、80℃/hの速度で温度を上げ、360℃で4時間保持したのち−100℃/hで室温まで冷却した。かくして調製した圧縮成形ロッドにクラックなどの欠陥はなかった。当該圧縮成形ロッドを切削機にかけ、それぞれを厚さ0.5mmの切削シートとして調製した。さらに、この切削シートから、切削方向と圧縮方向に向きを合わせたダンベル状の引張試験片を打ち抜き、インストロン4302型引張試験機により引張速度200mm/minで、それぞれの破断強度と破断伸びを測定した。なお、破断伸びは標線間隔を追尾し、真の値を求めた。その結果は表1-1(切削方向の引張強度特性)、および表1-2(圧縮方向の引張強度特性)に示すように、未照射時に対する破断強度の保持率は各線量で大きく、また、破断伸びは線量の増大に伴って著しく増大していた。
Example 1
Asahi Glass Fluoropolymers Co., Ltd. molding powder (G350) is irradiated with 1 kGy / h γ-rays at room temperature in the atmosphere for 0.5 hours, 1 hour, 1.5 hours, and 2 hours. Each sample was prepared. A compression molded rod having a diameter of 50 mm and a height of 70 mm was prepared from each sample including those not irradiated. At this time, the compression molding was linearly pressurized to 30 MPa over 5 minutes and then held at 30 MPa for 10 minutes. Further, the compression-molded rod taken out from the mold was transferred to an oven for firing, the temperature was increased at a rate of 80 ° C./h, held at 360 ° C. for 4 hours, and then cooled to room temperature at −100 ° C./h. The compression molded rod thus prepared was free from defects such as cracks. The compression molded rods were applied to a cutting machine, and each was prepared as a cutting sheet having a thickness of 0.5 mm. Further, a dumbbell-shaped tensile test piece with the cutting direction and the compression direction aligned is punched from this cutting sheet, and the respective breaking strength and breaking elongation are measured at a tensile speed of 200 mm / min with an Instron 4302 type tensile testing machine. did. The elongation at break was determined by tracking the distance between the marked lines and determining the true value. The results are shown in Table 1-1 (Tensile strength characteristics in the cutting direction) and Table 1-2 (Tensile strength characteristics in the compression direction). The elongation at break increased significantly with increasing dose.
比較例1
あらかじめモールディングパウダーに電離放射線を照射してから成形する本発明のメリットを明らかにするため、常法により成形した四フッ化エチレン樹脂のシートに対して同等の電離放射線を照射した場合の線量と機械特性の変化を比較した。すなわち、表1に示した未照射のモールディングパウダーを用いて、実施例1同様に調製した切削シート試料に対し、実施例1に同じ条件でγ線を照射した。これらの照射試料は、各線量で実施例1同様に切削方向の引張破断強度と破断伸びを測定した。その結果は、表2に示すように、破断強度の照射による低下が激しく、1kGy以下の線量で半減した。一方、破断伸びは0.5kGyまで僅かに増大するものの、0.5kGyを超えると単純に低下した。これらの結果は、四フッ化エチレン樹脂(PTFE)の放射線による劣化が極めて速く、照射による材料特性の改善策を否定しているものであり、実施例1の本発明による照射効果が優れた材料特性の改善策となって現れていることは明白である。
Comparative Example 1
In order to clarify the merits of the present invention in which molding powder is preliminarily irradiated with ionizing radiation, the dose and machine when the same ionizing radiation is irradiated to a sheet of tetrafluoroethylene resin molded by a conventional method The change of characteristics was compared. That is, using the unirradiated molding powder shown in Table 1, a cutting sheet sample prepared in the same manner as in Example 1 was irradiated with γ rays under the same conditions as in Example 1. For these irradiated samples, the tensile breaking strength and breaking elongation in the cutting direction were measured in the same manner as in Example 1 at each dose. As a result, as shown in Table 2, the breaking strength was drastically decreased by irradiation, and was halved at a dose of 1 kGy or less. On the other hand, the elongation at break increased slightly to 0.5 kGy, but it simply decreased when it exceeded 0.5 kGy. These results show that the deterioration of tetrafluoroethylene resin (PTFE) due to radiation is extremely fast, and denies measures for improving the material properties by irradiation. It is clear that it appears as a measure to improve the characteristics.
比較例2
本発明によるフリーベーキング法による圧縮成形では、照射した粉末を室温で圧縮成形したのち時間をかけて焼成するため、この熱履歴が再結晶化を促進する。そこで、常法により成形した四フッ化エチレン樹脂シートに電離放射線を照射した場合の照射後の条件として、熱履歴を与えた後の機械特性を測定した。比較例1同様、未照射のモールディングパウダーを用いて調製した切削シートに各線量のγ線を照射した。照射した各シートは、アニーリングによる破断伸びの変化量を調べるためオーブンに入れ80℃/hで360℃まで加熱し、360℃で2時間保持したのち、−100℃/hの速度で室温まで冷却した。これらの試料は、各線量で実施例1同様に破断強度と破断伸びを測定したところ、破断伸びは図1のごとく増大したが、破断強度は各線量で増大することはなく同等もしくは、さらに低下していた。
Comparative Example 2
In the compression molding by the free baking method according to the present invention, since the irradiated powder is compression molded at room temperature and fired over time, this thermal history promotes recrystallization. Therefore, as a condition after irradiation when ionizing radiation was irradiated to a tetrafluoroethylene resin sheet formed by a conventional method, mechanical characteristics after giving a thermal history were measured. As in Comparative Example 1, each dose of γ-rays was irradiated onto a cutting sheet prepared using unirradiated molding powder. Each irradiated sheet was placed in an oven to check the change in elongation at break due to annealing, heated to 360 ° C at 80 ° C / h, held at 360 ° C for 2 hours, and then cooled to room temperature at a rate of -100 ° C / h. did. For these samples, the breaking strength and breaking elongation were measured at each dose in the same manner as in Example 1. The breaking elongation increased as shown in FIG. 1, but the breaking strength did not increase at each dose and was equal or further decreased. Was.
図1において、曲線1は、常法により圧縮成形した四フッ化エチレン樹脂のシートに対して電離放射線を照射したときの線量と破断伸びの関係を示し、曲線2は、照射後さらに360℃で2時間アニーリングした後の線量と破断伸びの関係を示す。 In FIG. 1, curve 1 shows the relationship between the dose and elongation at break when ionizing radiation is applied to a sheet of tetrafluoroethylene resin compression-molded by a conventional method, and curve 2 shows a further 360 ° C. after irradiation. The relationship between the dose after annealing for 2 hours and the elongation at break is shown.
実施例2
実施例1同様に調製した切削シートについて、示差走査熱量計(DSC)により10℃/分の昇温速度で結晶の融解熱量として吸熱量(J/g)を測定したところ、あらかじめ電離放射線を照射したモールディングパウダーを用いた場合、表3に示すように、未照射のモールディングパウダーを用いて調製した切削シート試料より各線量で結晶の融解熱量は大きくなり、明らかに結晶性が高くなっていることを示した。
Example 2
The cutting sheet prepared in the same manner as in Example 1 was measured with a differential scanning calorimeter (DSC) at a rate of temperature increase of 10 ° C./min. When the molded powder is used, as shown in Table 3, the amount of heat of fusion of the crystal is greater at each dose than the cutting sheet sample prepared using unirradiated molding powder, and the crystallinity is clearly higher. showed that.
実施例3
実施例1同様に2kGy照射したモールディングパウダーを用いて圧縮成形した切削シートの引裂き強度(Trouser shear strength)を測定したところ、厚さ1mm当りの切削方向に向けた引裂き応力は90.4N、および圧縮方向に向けた引裂き応力は94.4Nであった。同様に測定した未照射のモールディングパウダーを用いて圧縮成形した切削シートの引裂き応力は、それぞれ27.6Nおよび25.3Nであった。この結果から、あらかじめモールディングパウダーを照射しておくことによって、引裂き強度は切削方向で約3.3倍、および圧縮方向で約3.7倍大きくなり、裂け目を開いても容易に裂けない特長があることがわかった。
Example 3
As in Example 1, the tear strength of a cutting sheet compression molded using a molding powder irradiated with 2 kGy was measured, and the tearing stress toward the cutting direction per 1 mm thickness was 90.4 N, and the compression direction The tearing stress toward 94.4N was 94.4N. Similarly, the tear stresses of the cutting sheets compression-molded using the unirradiated molding powder were 27.6 N and 25.3 N, respectively. From this result, it is clear that the tear strength is increased by about 3.3 times in the cutting direction and about 3.7 times in the compression direction by irradiation with molding powder in advance, and it has the feature that it does not tear easily even if a tear is opened. It was.
実施例4
ダイキン工業株式会社製のモールディングパウダー(ニューポリフロンPTFE、M-139)を用いて、実施例1同様に、あらかじめ1kGyの電離放射線を照射して圧縮成形したフリーベーキング法による切削シート(厚さ0.5mm)の切削方向の機械特性と、同様に未照射のモールディングパウダーを用いて調製した切削シートの機械特性を測定して両者を比較した。その結果は表4に示す通り、微量の変性処理をした新しいタイプの四フッ化エチレン樹脂(PTFE)においても、電離放射線の照射により引張強度は僅かに低下するものの、実用的には降伏点強度が高くなるほか、引張弾性率、破断伸び、引裂き強さも顕著に増大し、優れた照射効果を発揮した。
Example 4
Using a molding powder (New Polyflon PTFE, M-139) manufactured by Daikin Industries, Ltd., in the same manner as in Example 1, a cutting sheet (thickness 0.5) that was compression-molded by irradiation with 1 kGy ionizing radiation in advance. mm) and the mechanical characteristics of a cutting sheet prepared using unirradiated molding powder were measured and compared. As a result, as shown in Table 4, even with a new type of tetrafluoroethylene resin (PTFE) that has been subjected to a small amount of modification treatment, although the tensile strength is slightly reduced by irradiation with ionizing radiation, the yield point strength is practical. In addition, the tensile modulus, elongation at break, and tear strength increased significantly, and an excellent irradiation effect was exhibited.
実施例5
あらかじめ1kGy照射したモールディングパウダー(G350)を用い、焼成時間を2時間としたほかは実施例1と同様に成形した切削シート(厚さ0.5mm)、および、あらかじめ1kGy照射したモールディングパウダー(M-139)を用い、実施例1同様に成形した切削シート(厚さ0.5mm)の23℃における乾燥窒素および酸素に対するガス透過性を差圧法(JIS K7126準拠、差圧1気圧)により測定し、モールディングパウダーの未照射と照射改質の場合を表5に比較した。その結果、ガス透過性は照射改質により明らかに改善されることが証明された。
Example 5
A cutting sheet (thickness 0.5 mm) formed in the same manner as in Example 1 except that the molding powder (G350) previously irradiated with 1 kGy was used and the firing time was 2 hours, and the molding powder (M-139) previously irradiated with 1 kGy ), The gas permeability to dry nitrogen and oxygen at 23 ° C. of a cutting sheet (thickness 0.5 mm) formed in the same manner as in Example 1 was measured by the differential pressure method (JIS K7126 compliant, differential pressure 1 atm.) Table 5 compares the cases of non-irradiation and irradiation modification. As a result, it was proved that gas permeability was obviously improved by irradiation modification.
実施例6
カーボングラファイトおよび、ガラス短繊維入りのモールディングパウダーを用いて成形したそれぞれの切削シートについて、実施例5同様のガス透過性試験を実施した。なお、カーボングラファイトの場合、成形圧力は40MPa、焼成時間は2時間、ガラス短繊維の場合は焼成時間を2時間としたほか実施例1同様の成形条件とした。また、照射改質に要したモールディングパウダーの線量は、カーボングラファイトの場合0.8kGy、およびガラス短繊維の場合0.5kGyとした。表6に示すように、もともとガス透過度の高いこれらのフィラー入りモールディングパウダーは、照射改質によるガス透過度の抑制効果が特に大きく、カーボングラファイトの場合は約1/2に、またガラス短繊維の場合は窒素ガスに対する効果が大きく1/4強まで低下した。
Example 6
The same gas permeability test as in Example 5 was performed on each cutting sheet formed using molding powder containing carbon graphite and short glass fibers. In the case of carbon graphite, the molding pressure was 40 MPa, the firing time was 2 hours, and in the case of short glass fibers, the firing time was 2 hours, and the molding conditions were the same as in Example 1. The dose of the molding powder required for irradiation modification was 0.8 kGy for carbon graphite and 0.5 kGy for short glass fibers. As shown in Table 6, these filler-containing molding powders, which have high gas permeability, have a particularly large effect of suppressing gas permeability by irradiation modification. In the case of, the effect on nitrogen gas was large, and it decreased to a little over 1/4.
実施例7
あらかじめ1.6kGy照射したモールディングパウダー(G350)を用い、実施例1同様に成形した圧縮成形ロッドから、機械加工により直径20φ、高さ50mmの検体を作り、試験応力7MPaで100℃の圧縮クリープを測定したところ、同じ未照射のモールディングパウダーを用いた成形体が2.4%であったのに対し、1.6kGy照射したモールディングパウダーを用いた成形体は1.8%であった。すなわち、照射改質したモールディングパウダーを用いた四フッ化エチレン樹脂は、変形しにくい特長があり、耐クリープ性に優れていることがわかった。
Example 7
Using a molding powder (G350) irradiated with 1.6 kGy in advance, a specimen with a diameter of 20φ and a height of 50 mm was made by machining from a compression-molded rod molded in the same way as in Example 1, and the compression creep at 100 ° C was measured at a test stress of 7 MPa. As a result, the molded body using the same unirradiated molding powder was 2.4%, whereas the molded body using the molding powder irradiated with 1.6 kGy was 1.8%. That is, it has been found that the tetrafluoroethylene resin using the molding powder modified by irradiation has a feature that it is difficult to be deformed and has excellent creep resistance.
本発明においては、電離放射線を照射した四フッ化エチレン樹脂粉末を圧縮成形することにより、実用強度を保持し、高い結晶化度と高い延伸性ならびに引裂き強度、さらには、ガス透過度、圧縮クリープ、線膨張率などを著しく改善した四フッ化エチレン樹脂の成形品を提供する。 In the present invention, by compressing and molding the tetrafluoroethylene resin powder irradiated with ionizing radiation, practical strength is maintained, high crystallinity, high stretchability and tear strength, gas permeability, compression creep The present invention provides a molded product of a tetrafluoroethylene resin with significantly improved linear expansion coefficient.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006144933A JP4845017B2 (en) | 2006-05-25 | 2006-05-25 | High strength high crystalline tetrafluoroethylene resin compression molding |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006144933A JP4845017B2 (en) | 2006-05-25 | 2006-05-25 | High strength high crystalline tetrafluoroethylene resin compression molding |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007314645A JP2007314645A (en) | 2007-12-06 |
JP4845017B2 true JP4845017B2 (en) | 2011-12-28 |
Family
ID=38848800
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006144933A Expired - Fee Related JP4845017B2 (en) | 2006-05-25 | 2006-05-25 | High strength high crystalline tetrafluoroethylene resin compression molding |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4845017B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6994141B2 (en) | 2017-12-21 | 2022-01-14 | 幸和金属株式会社 | Wall body used with propane cylinder |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9266984B2 (en) | 2008-09-30 | 2016-02-23 | Raytech Corporation | Polytetrafluoroethylene resins that can be processed by shaping, shaped products thereof, and processes for producing the resins and shaped products |
JP5700949B2 (en) | 2009-04-14 | 2015-04-15 | 日東電工株式会社 | Manufacturing method of electret material |
CN103003056B (en) * | 2010-07-16 | 2015-06-17 | 积水化学工业株式会社 | Polymer article and method for producing polymer article |
WO2013094051A1 (en) * | 2011-12-22 | 2013-06-27 | NiKKiFron株式会社 | Ptfe having high-function characteristics as sensitivity expression material and method of fabricating same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3672429B2 (en) * | 1997-03-17 | 2005-07-20 | 日立電線株式会社 | Modified fluororesin powder |
JP4174569B2 (en) * | 2002-10-30 | 2008-11-05 | 独立行政法人 日本原子力研究開発機構 | Radiation-modified tetrafluoroethylene resin powder and method for producing molded article thereof |
-
2006
- 2006-05-25 JP JP2006144933A patent/JP4845017B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6994141B2 (en) | 2017-12-21 | 2022-01-14 | 幸和金属株式会社 | Wall body used with propane cylinder |
Also Published As
Publication number | Publication date |
---|---|
JP2007314645A (en) | 2007-12-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4845017B2 (en) | High strength high crystalline tetrafluoroethylene resin compression molding | |
KR101234983B1 (en) | Expanded tetrafluoroethylene resin molded article, and composite member, filter, impact deformation absorber and sealing material utilizing it | |
JP5860521B2 (en) | Polytetrafluoroethylene resin that can be molded, applied products, and manufacturing method thereof | |
EP3348610B1 (en) | Method for manufacturing polytetrafluoroethylene molded body, and polytetrafluoroethylene molded body | |
JP2005514496A (en) | High modulus cross-linked polyethylene with reduced residual free radicals prepared at temperatures below the melt | |
JPH06116423A (en) | Modified polytetrafluoroethylene and production thereof | |
JP2009504898A (en) | Abrasion-resistant highly cross-linked polyethylene manufactured below the melting temperature | |
EP1458538B1 (en) | Process for fabricating polypropylene sheet | |
US4915885A (en) | Process of making a blend of PET and PBT | |
US3642976A (en) | Solid phase hydrostatic extrusion of a filled thermoplastic billet to produce orientation | |
JPH026832A (en) | Porous hollow fiber of polytetrafluoroethylene and production thereof | |
WO2018221688A1 (en) | Polytetrafluoroethylene porous film | |
CN113956528B (en) | High-crosslinking ultrahigh molecular weight polyethylene and preparation method and application thereof | |
EP3348601B1 (en) | Polytetrafluoroethylene molded body, and manufacturing method therefor | |
RU2734608C2 (en) | Method of producing block articles from polytetrafluoroethylene and based composites | |
EP0172750A2 (en) | Porous structures | |
JP4639373B2 (en) | Radiation-modified polytetrafluoroethylene and method for producing the same | |
JP4174569B2 (en) | Radiation-modified tetrafluoroethylene resin powder and method for producing molded article thereof | |
JPH11116623A (en) | Modified fluororesin and molded form | |
JP2017101231A (en) | Polytetrafluoroethylene porous film | |
RU2748692C1 (en) | Method for manufacture of product from polymer material based on f-4 pn brand polytetrafluoroethylene characterized by increased strength and reduced flow deformation | |
US9586370B2 (en) | Method for making ultra high molecular weight polyethylene | |
JPS61146522A (en) | Preparation of porous body made of polytetrafluoroethylene resin | |
Goto et al. | The effects of annealing on deformation and fracture behavior of injection molded PLA | |
EP3919259A1 (en) | Heat-shrinkable tube having tearable properties |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090108 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090108 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110602 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110606 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20110715 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20110715 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110804 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110906 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20110912 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111005 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141021 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |