[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4717474B2 - Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst - Google Patents

Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst Download PDF

Info

Publication number
JP4717474B2
JP4717474B2 JP2005059435A JP2005059435A JP4717474B2 JP 4717474 B2 JP4717474 B2 JP 4717474B2 JP 2005059435 A JP2005059435 A JP 2005059435A JP 2005059435 A JP2005059435 A JP 2005059435A JP 4717474 B2 JP4717474 B2 JP 4717474B2
Authority
JP
Japan
Prior art keywords
catalyst
ruthenium
oxide
hydrogen production
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005059435A
Other languages
Japanese (ja)
Other versions
JP2006239588A (en
Inventor
貴之 大崎
修 千代田
浩 宗像
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2005059435A priority Critical patent/JP4717474B2/en
Publication of JP2006239588A publication Critical patent/JP2006239588A/en
Application granted granted Critical
Publication of JP4717474B2 publication Critical patent/JP4717474B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Description

本発明は、炭化水素から水素を製造するための触媒、特に燃料電池に使用される水素製造用触媒、さらには水素製造法に関するものである。詳しくはアルカリ金属酸化物を所定量添加した担体に活性成分であるルテニウムを外表面に多く担持させた触媒、及びその触媒を用いた水素製造法に関するものである。   The present invention relates to a catalyst for producing hydrogen from a hydrocarbon, particularly a catalyst for producing hydrogen used in a fuel cell, and further relates to a method for producing hydrogen. More specifically, the present invention relates to a catalyst in which a large amount of ruthenium as an active component is supported on the outer surface of a carrier to which a predetermined amount of an alkali metal oxide is added, and a hydrogen production method using the catalyst.

従来、炭化水素からの水素製造法として、ニッケル触媒又はルテニウム触媒を用い、都市ガスやLPG、ナフサ留分を原料にする方法が多く行われてきた。
しかしながら、家庭用の小型燃料電池発電システムを想定した場合、天然ガス、LPGなどの軽質炭化水素は発熱量あたりのコストが高く、経済的観点から灯油などコストの安い重質炭化水素を原料に用いた水素製造法が望まれている。
Conventionally, as a method for producing hydrogen from hydrocarbons, many methods using a nickel catalyst or a ruthenium catalyst and using city gas, LPG, or a naphtha fraction as a raw material have been performed.
However, when assuming a small fuel cell power generation system for home use, light hydrocarbons such as natural gas and LPG have a high cost per calorific value, and low cost heavy hydrocarbons such as kerosene are used as raw materials from an economic viewpoint. A hydrogen production method that has been desired is desired.

加えて、家庭用の小型燃料電池発電システムに用いられる改質反応器は小型にする必要性があることから改質触媒床を加熱するバーナーが小型で本数が少ないので、改質触媒床に温度勾配が発生する(図2参照)。例えば、バーナーから出る炎に近い触媒床出口部では650〜850℃程度の高温であるのに対し、バーナーから出る炎から遠い触媒床入口部では400〜550℃程度の低温になる傾向が見られ、特にこの低温度域では触媒上に炭素析出を起こしやすいといった問題がある。従って、400〜550℃の温度域での炭素析出を抑制する触媒を用いた炭化水素からの水素製造法が望まれている。   In addition, since the reforming reactor used in a small-sized fuel cell power generation system for home use needs to be downsized, the number of burners for heating the reforming catalyst bed is small and the number is small. A gradient is generated (see FIG. 2). For example, the catalyst bed outlet close to the flame coming out of the burner has a high temperature of about 650 to 850 ° C., whereas the catalyst bed inlet far from the flame coming out of the burner tends to have a low temperature of about 400 to 550 ° C. Particularly in this low temperature range, there is a problem that carbon deposition is likely to occur on the catalyst. Accordingly, a method for producing hydrogen from hydrocarbons using a catalyst that suppresses carbon deposition in the temperature range of 400 to 550 ° C. is desired.

また、運転条件の一つであるH2O/Cを高くするほど触媒への炭素析出を抑制することができるが、水蒸気原単位(製品単位量あたりの水蒸気使用量)の増加を招くため、できるだけ低くすることが望ましい。
従来のニッケル触媒を用い、灯油のような重質炭化水素を原料とした水蒸気改質反応を行った場合、反応温度、H2O/Cの条件に関わらず、触媒上に激しい炭素析出が起こり、触媒床の閉塞により差圧が上昇し、反応が継続できなくなるという問題が発生する。
In addition, the higher the H 2 O / C that is one of the operating conditions, the more the carbon deposition on the catalyst can be suppressed, but the steam unit (the amount of steam used per product unit amount) increases, It is desirable to make it as low as possible.
When a steam reforming reaction is performed using a conventional nickel catalyst and a heavy hydrocarbon such as kerosene, severe carbon deposition occurs on the catalyst regardless of the reaction temperature and H 2 O / C conditions. The problem arises that the differential pressure increases due to the clogging of the catalyst bed and the reaction cannot be continued.

一方、比較的炭素析出の少ない触媒としてルテニウム系の水蒸気改質触媒がいくつか研究されている。特許文献1(特開昭57−4232号公報)にはルテニウムである活性成分にアルカリ金属、及びアルカリ土類金属を1質量%以下添加した触媒が開示されている。また、特許文献2(特開2002−126522号公報)には、ルテニウム等の触媒活性成分及び耐熱性酸化物からなる助触媒成分を含む触媒と触媒担体成分及び該触媒担体成分の酸性点を中和する成分を含む担体とを含むことを特徴とする炭化水素改質触媒が開示されている。更に、特許文献3(特開2001−276623号公報)には、炭化水素の改質活性を効率的に向上せしめる触媒として、活性成分であるルテニウムを触媒外表面から触媒中心までの1/3までの部分に全ルテニウム担持量の50%以上を担持する触媒が開示されている。
しかしながら、上記従来のルテニウム触媒には、灯油などの重質な原料を用いた水素製造条件下での高活性維持、及び炭素析出抑制効果は期待できない。
特開昭57−4232号公報 特開2002−126522号公報 特開2001−276623号公報
On the other hand, several ruthenium-based steam reforming catalysts have been studied as catalysts with relatively little carbon deposition. Patent Document 1 (Japanese Patent Application Laid-Open No. 57-4232) discloses a catalyst obtained by adding 1% by mass or less of an alkali metal and an alkaline earth metal to an active ingredient which is ruthenium. Patent Document 2 (Japanese Patent Application Laid-Open No. 2002-126522) describes a catalyst including a catalyst active component such as ruthenium and a promoter component composed of a heat-resistant oxide, a catalyst carrier component, and the acid point of the catalyst carrier component. A hydrocarbon reforming catalyst comprising a support containing a component to be summed is disclosed. Furthermore, in Patent Document 3 (Japanese Patent Laid-Open No. 2001-276623), as a catalyst for efficiently improving the reforming activity of hydrocarbons, ruthenium as an active component is reduced to 1/3 from the outer surface of the catalyst to the center of the catalyst. In this part, a catalyst supporting 50% or more of the total amount of ruthenium supported is disclosed.
However, the conventional ruthenium catalyst cannot be expected to maintain a high activity under hydrogen production conditions using heavy raw materials such as kerosene and to suppress carbon deposition.
JP-A 57-4232 JP 2002-126522 A JP 2001-276623 A

本発明の目的は、灯油などの重質炭化水素を原料とした水素製造反応を行った場合でも、炭素析出を大幅に抑制し、高活性を維持する触媒、及び該触媒を用いた水素製造法を提供することにある。   An object of the present invention is to provide a catalyst that significantly suppresses carbon deposition and maintains high activity even when a hydrogen production reaction using heavy hydrocarbons such as kerosene as a raw material, and a hydrogen production method using the catalyst. Is to provide.

本発明者は、触媒にアルカリ金属酸化物を所定量添加することにより、炭素析出を大幅に抑制できることに着目した。また、活性金属成分であるルテニウムを触媒の外表面近傍により多く担持することにより、反応に寄与しない触媒内部に担持されたルテニウムの割合を少なくし、結果として、同一担持量においても有効な活性点数を増やせることを見出した。
また、ルテニウムの金属塩を担持した後、アルカリ水溶液で処理することにより水酸化物に変換し、不溶・固定化することにより担体上に活性金属を高分散化させ、活性点数を増加させた。
即ち、本発明は、上記目的を達成するために、以下の1〜9に挙げた炭化水素からの水素製造用触媒、及び該触媒を用いた水素製造法を提供する。
1.(a)アルミナと、(b)アルカリ金属酸化物を触媒基準、酸化物換算で2.5〜10質量%とを含み、セリウム酸化物を含まない担体に、(c)ルテニウムを触媒基準、金属換算で0.5〜5質量%担持させてなることを特徴とする炭化水素からの水蒸気改質による水素製造用触媒。
2.(b)のアルカリ金属酸化物が酸化カリウムであることを特徴とする上記1記載の水素製造用触媒。
3.EPMA(エレクトロンプローブマイクロアナライザー)により、触媒断面の中心を通るように一方向にルテニウムについて線分析測定したときに、触媒外表面から触媒中心までの距離をr0とすると、触媒外表面からr0/4までの距離の間に検出されたルテニウムの特性X線(Lα線)強度が全X線強度の80%以上となることを特徴とする上記1または2記載の水素製造用触媒。
4.ルテニウム分散度が20%以上であることを特徴とする上記1〜3のいずれかに記載の水素製造用触媒。
5.球状、楕円球状、角柱状、円柱状、中空状、リング状、及び打錠状から選ばれる形状であることを特徴とする上記1〜4のいずれかに記載の水素製造用触媒。
6.(b)の酸化カリウムの出発原料が水酸化カリウムであることを特徴とする上記1〜5のいずれかに記載の水素製造用触媒。
7.(a)アルミナ又はその前駆体と、(b)アルカリ金属の酸化物及びその前駆体から選ばれる少なくとも1種とを含み、セリウム酸化物を含まない担体原料を焼成して、アルカリ金属酸化物を触媒基準、酸化物換算で2.5〜10質量%含むアルミナ複合酸化物担体を調製し、この担体に(c)ルテニウムを触媒基準、金属換算で0.5〜5質量%担持し、120℃以下の温度で、減圧下に乾燥し、次いでアルカリ処理し、その後水洗浄および乾燥することを特徴とする上記1〜6のいずれかに記載の水素製造用触媒の製造法。
8.上記1〜6のいずれかに記載の触媒の存在下に、沸点が130〜350℃の範囲にある留分が90質量%以上存在する炭化水素と水蒸気とを反応させることを特徴とする水素の製造法。
9.反応温度400〜800℃、反応圧力0〜0.5MPa−G、H2O/C(モル比)=2.5〜5.0の条件下で、反応させることを特徴とする上記8記載の水素の製造法。
The present inventor has paid attention to the fact that carbon deposition can be significantly suppressed by adding a predetermined amount of an alkali metal oxide to the catalyst. Also, by supporting more ruthenium, which is an active metal component, in the vicinity of the outer surface of the catalyst, the proportion of ruthenium supported inside the catalyst that does not contribute to the reaction is reduced, and as a result, the number of active points that are effective even at the same supported amount. We found that we can increase.
Further, after supporting a metal salt of ruthenium, it was converted into a hydroxide by treatment with an alkaline aqueous solution, and the active metal was highly dispersed on the support by insolubilization and fixation, thereby increasing the number of active points.
That is, in order to achieve the above object, the present invention provides a catalyst for producing hydrogen from the hydrocarbons listed in the following 1 to 9, and a method for producing hydrogen using the catalyst.
1. And (a) alumina, (b) a catalyst based on the alkali metal oxides, seen containing a 2.5 to 10 mass% in terms of oxide, the carrier containing no cerium oxide, the catalyst relative to (c) ruthenium, A catalyst for producing hydrogen by steam reforming from hydrocarbons, which is supported in an amount of 0.5 to 5% by mass in terms of metal.
2. 2. The catalyst for hydrogen production according to 1 above, wherein the alkali metal oxide of (b) is potassium oxide.
3. When ruthenium is linearly measured with EPMA (electron probe microanalyzer) in one direction so as to pass through the center of the catalyst cross section, if the distance from the catalyst outer surface to the catalyst center is r 0 , r 0 from the catalyst outer surface is r 0. 3. The hydrogen production catalyst according to 1 or 2 above, wherein the characteristic X-ray (Lα-ray) intensity of ruthenium detected during a distance up to / 4 is 80% or more of the total X-ray intensity.
4). 4. The hydrogen production catalyst according to any one of 1 to 3 above, wherein the ruthenium dispersity is 20% or more.
5. 5. The catalyst for hydrogen production according to any one of 1 to 4 above, which has a shape selected from a spherical shape, an elliptical spherical shape, a prismatic shape, a cylindrical shape, a hollow shape, a ring shape, and a tableting shape.
6). 6. The hydrogen production catalyst as described in any one of 1 to 5 above, wherein the starting material for potassium oxide (b) is potassium hydroxide.
7). (A) an alumina or a precursor thereof, (b) viewed contains at least one member selected from oxides and their precursors of the alkali metals, by sintering a carrier material that does not contain cerium oxide, alkali metal oxides Is prepared on the basis of catalyst, 2.5 to 10% by mass in terms of oxide, and (c) ruthenium is supported on 0.5 to 5% by mass in terms of catalyst on the basis of catalyst. 7. The method for producing a catalyst for hydrogen production according to any one of 1 to 6 above, wherein the catalyst is dried under reduced pressure at a temperature not higher than ° C., then treated with alkali, then washed with water and dried.
8). In the presence of the catalyst according to any one of 1 to 6 above, a hydrocarbon having a boiling point in the range of 130 to 350 ° C. and a hydrocarbon having a fraction of 90% by mass or more are reacted with water vapor. Manufacturing method.
9. 9. The reaction according to 8 above, wherein the reaction is performed under the conditions of a reaction temperature of 400 to 800 ° C., a reaction pressure of 0 to 0.5 MPa-G, and H 2 O / C (molar ratio) = 2.5 to 5.0. Production method of hydrogen.

本発明の水素製造用触媒及びそれを用いた水素製造法は、特に灯油などの重質炭化水素からの水素製造を行うプロセスにおいて、低温かつ低H2O/Cという触媒にとって過酷な反応条件下においても高い炭素析出抑制能力を発揮し、高活性を維持しつつ水素を製造することができる。 The hydrogen production catalyst of the present invention and the hydrogen production method using the same are used in the process of producing hydrogen from heavy hydrocarbons such as kerosene, under severe reaction conditions for low temperature and low H 2 O / C catalysts. Can exhibit high carbon deposition inhibiting ability and can produce hydrogen while maintaining high activity.

本発明の水素製造用触媒は、(a)無機佐酸化物又はその前駆体と、(b)アルカリ金属の酸化物及びその前駆体から選ばれる少なくとも1種(以下、単に「アルカリ金属又はその前駆体」と称する)とを含む担体原料を、600〜950℃で焼成してアルミナ複合酸化物担体を調製し、この担体に(c)ルテニウムを触媒基準、金属換算で0.5〜5質量%担持させ、乾燥後、アルカリ水溶液で不溶・固定化した後、120℃以下で乾燥して得られるものである。本触媒は、反応前に400〜950℃で還元処理して使用するのが望ましい。   The hydrogen production catalyst of the present invention comprises at least one selected from (a) an inorganic oxide or a precursor thereof and (b) an alkali metal oxide and a precursor thereof (hereinafter simply referred to as “alkali metal or a precursor thereof”). The carrier raw material containing the carrier is referred to as “a body” and calcined at 600 to 950 ° C. to prepare an alumina composite oxide carrier, and (c) ruthenium based on the catalyst, 0.5 to 5% by mass in terms of metal. After being supported, dried, insoluble and fixed with an alkaline aqueous solution, the product is obtained by drying at 120 ° C. or lower. The catalyst is desirably used after reduction at 400 to 950 ° C. before the reaction.

(a)無機酸化物としては、多孔質のものが好ましく、例えばアルミナ、シリカ、シリカーアルミナ、チタニア、マンガン、ジルコニア、酸化亜鉛等を挙げることができる。これらは単独で用いてもよく、二種類以上を組み合わせても用いても良い。この中で好ましくはアルミナもしくはその前駆体から構成される酸化物である。また通常のアルミナの他、水酸化アルミニウム、硝酸アルミニウム等のように、600〜950℃での焼成によりアルミナを生成するアルミニウム化合物が用いる事も可能である。但し、α−アルミナ等の比表面積が極端に小さいものは、使用を避けることが望ましく、アルミナを用いる場合は、その比表面積は、120m2/g以上であることが好ましい。 (A) As an inorganic oxide, a porous thing is preferable, for example, an alumina, a silica, a silica-alumina, a titania, manganese, a zirconia, a zinc oxide etc. can be mentioned. These may be used alone or in combination of two or more. Among these, an oxide composed of alumina or a precursor thereof is preferable. In addition to ordinary alumina, an aluminum compound that forms alumina by firing at 600 to 950 ° C., such as aluminum hydroxide and aluminum nitrate, can also be used. However, it is desirable to avoid use of α-alumina or the like having an extremely small specific surface area. When alumina is used, the specific surface area is preferably 120 m 2 / g or more.

(b)アルカリ金属酸化物又はこの前駆体を用いる目的は、本発明の触媒に耐炭素析出性の付与、水蒸気活性化能力の付与、又はルテニウムを触媒外表面に選択的に担持するためにある。すなわち、本発明の触媒活性成分であるルテニウムは、水蒸気改質反応時の炭素析出抑制能力に比較的優れているが、400〜550℃の低温条件で灯油などの重質炭化水素の水蒸気改質反応を行った場合においては炭素析出を抑制することができない。
アルカリ金属酸化物としては、Li、Na、K、Rb、Cs、Frの酸化物を挙げることができるが、特に、Na、Kの酸化物が好ましく、Kの酸化物が最も好ましい。これらのアルカリ金属の酸化物は、いずれか1種を単独で用いてもよく、また2種以上を組み合わせて用いてもよい。アルカリ金属の酸化物の前駆体としては、アルカリ金属を含有する化合物であれば限定されないが、アルカリ金属塩が好ましく、例えば硝酸塩、炭酸塩又は炭酸化物が好ましい。特に、Kの前駆体に関しては水酸化物、重炭酸物、炭酸化物が好ましく、水酸化物が最も好ましい。また、アルカリ金属の担体への添加方法としては、混練法、含浸法などを挙げることができるがこれに限定されるものではない。
(B) The purpose of using the alkali metal oxide or this precursor is to provide the catalyst of the present invention with carbon precipitation resistance, to provide steam activation ability, or to selectively support ruthenium on the outer surface of the catalyst. . That is, ruthenium, which is a catalytically active component of the present invention, is relatively excellent in the ability to suppress carbon deposition during the steam reforming reaction, but steam reforming of heavy hydrocarbons such as kerosene at low temperatures of 400 to 550 ° C. When the reaction is performed, carbon deposition cannot be suppressed.
Examples of the alkali metal oxide include Li, Na, K, Rb, Cs, and Fr oxides. Particularly, Na and K oxides are preferable, and K oxides are most preferable. Any one of these alkali metal oxides may be used alone, or two or more thereof may be used in combination. The precursor of the alkali metal oxide is not limited as long as it is a compound containing an alkali metal, but is preferably an alkali metal salt, for example, nitrate, carbonate or carbonate. In particular, with respect to the precursor of K, hydroxides, bicarbonates, and carbonates are preferable, and hydroxides are most preferable. Examples of the method for adding the alkali metal to the carrier include, but are not limited to, a kneading method and an impregnation method.

上記の(a)成分及び(b)成分の配合割合は、次の通りである。
(b)成分は、酸化物として、触媒基準で、2.5〜10質量%、好ましくは2.5〜7質量%である。(b)成分が上記範囲内にあれば、本発明の触媒に耐炭素析出性を付与することができ、本発明の触媒の性能を長期間に渡って安定に保つことができ、又、担体上に活性成分であるルテニウムを高分散させることが可能となる。
残部は全て(a)成分でよいし、他の成分を含有してもよい。
The blending ratio of the components (a) and (b) is as follows.
(B) A component is 2.5-10 mass% as a oxide on a catalyst basis, Preferably it is 2.5-7 mass%. If the component (b) is within the above range, the catalyst of the present invention can be imparted with carbon precipitation resistance, and the performance of the catalyst of the present invention can be kept stable over a long period of time. It becomes possible to highly disperse ruthenium which is an active ingredient on the top.
All the remainders may be the component (a) or may contain other components.

担体の形状は、球状、楕円球状、角柱状、円柱状、中空状、打錠状等の種々の粒状体の他、任意の形状でよく、特に限定されないが、一般の水蒸気改質反応に用いられている円柱状、球状の粒状体が好ましく、球状が特に好ましい。また、担体の大きさは特に限定されないが、円柱、球状の場合、通常その直径が2〜6mm、好ましくは2〜4mmであることが好ましい。
このような成型物、すなわち担体原料を、酸性雰囲気、例えば空気中で、600〜950℃に加熱焼成することによって、多孔質のアルミナ−アルカリ金属酸化物の複合酸化物担体を調製することができる。焼成時間は特に限定されないが、通常、1〜20時間である。
The shape of the carrier may be any shape other than various granular materials such as spherical, elliptical, prismatic, cylindrical, hollow, tableting, etc., and is not particularly limited, but is used for a general steam reforming reaction. The columnar and spherical particles are preferable, and the spherical shape is particularly preferable. The size of the carrier is not particularly limited, but in the case of a cylinder or a sphere, the diameter is usually 2 to 6 mm, preferably 2 to 4 mm.
A porous oxide-alkali metal oxide composite oxide support can be prepared by heating and firing such a molded product, that is, a support material, in an acidic atmosphere, for example, air, at 600 to 950 ° C. . Although baking time is not specifically limited, Usually, it is 1 to 20 hours.

このようにして調製されるアルミナ−アルカリ金属酸化物の複合酸化物担体は、比表面積100m2/g以上である。また、この担体の細孔容積は、0.2〜0.7ml/g、好ましくは0.25〜0.6ml/gである。 The composite oxide support of alumina-alkali metal oxide thus prepared has a specific surface area of 100 m 2 / g or more. The pore volume of this carrier is 0.2 to 0.7 ml / g, preferably 0.25 to 0.6 ml / g.

そして、上記の担体に(c)ルテニウムを担持させて本発明の水素製造用触媒となる。以下に、本発明の触媒製造法を具体的に説明するが、本発明の製造法はこれに限定されるものではない。
本発明では、以上のアルミナ−アルカリ金属酸化物の複合酸化物担体にルテニウムを担持させるに先立ち、担体の飽和吸水量を求める。すなわち、予め担体を秤量し、これに水をビュレットにて滴下して担体内部まで充分に水を吸収させ、飽和吸水量を測定する。次いで、この飽和吸水量と等量のイオン交換水又は蒸留水に所定量の三塩化ルテニウム水和物を溶解させ、この水溶液を担体に含浸、吸収させる。このときの三塩化ルテニウム水溶液の温度は、三塩化ルテニウムの加水分解を避けるために、50℃未満、特に室温が好ましい。含浸時間は特に限定されないが、0.1〜1時間が好ましい。0.1時間より短くした場合は、含浸液が触媒全体に行き渡らず、不均一となる場合がある。一方、1時間より長くした場合には、ルテニウムが触媒内部まで浸透し、その結果、内部に担持されたルテニウムが有効な活性点として働かない場合もある。含浸時間がこの範囲にあれば、含浸液が触媒全体に均一に行き渡り、かつ外表面上に多くのルテニウムが担持される。次いで、これを120℃以下の低温で乾燥させる。120℃以上で乾燥させた場合、酸化ルテニウムを生成し、後の還元工程で還元しにくくなる場合がある。120℃以下であれば、酸化ルテニウムが生成することなく、後の還元工程が容易に進む。また、乾燥方法は特に限定されないが、迅速に乾燥できる減圧乾燥が特に好ましい。減圧乾燥は乾燥時間を短縮できるだけでなく、活性成分であるルテニウムと担体表面との相互作用が弱い場合、触媒外表面から乾燥されるにつれて毛管現象により触媒内部の液が触媒外表面の蒸発界面に移動してくるため、より外表面に活性成分であるルテニウムを担持することが可能となる。
And (c) ruthenium is carry | supported by said support | carrier, and it becomes a catalyst for hydrogen production of this invention. The catalyst production method of the present invention will be specifically described below, but the production method of the present invention is not limited to this.
In the present invention, prior to loading ruthenium on the above-mentioned alumina-alkali metal oxide composite oxide carrier, the saturated water absorption amount of the carrier is determined. That is, the support is weighed in advance, and water is dropped into the burette to fully absorb the water into the support, and the saturated water absorption is measured. Next, a predetermined amount of ruthenium trichloride hydrate is dissolved in an amount of ion-exchanged water or distilled water equivalent to the saturated water absorption amount, and the aqueous solution is impregnated and absorbed. The temperature of the ruthenium trichloride aqueous solution at this time is preferably less than 50 ° C., particularly room temperature, in order to avoid hydrolysis of ruthenium trichloride. The impregnation time is not particularly limited, but is preferably 0.1 to 1 hour. If the time is shorter than 0.1 hour, the impregnating solution may not be distributed over the entire catalyst, resulting in non-uniformity. On the other hand, when the time is longer than 1 hour, ruthenium penetrates into the inside of the catalyst, and as a result, the ruthenium supported inside may not work as an effective active site. If the impregnation time is within this range, the impregnation liquid is spread uniformly over the entire catalyst, and a large amount of ruthenium is supported on the outer surface. Next, this is dried at a low temperature of 120 ° C. or lower. When it is dried at 120 ° C. or higher, ruthenium oxide may be generated and may be difficult to reduce in a subsequent reduction step. If it is 120 degrees C or less, a subsequent reduction | restoration process will advance easily, without producing | generating ruthenium oxide. Moreover, the drying method is not particularly limited, but vacuum drying that can be quickly dried is particularly preferable. Drying under reduced pressure not only shortens the drying time, but when the interaction between ruthenium, which is an active ingredient, and the support surface is weak, the liquid inside the catalyst moves to the evaporation interface on the outer surface of the catalyst due to capillary action as it is dried from the outer surface of the catalyst Since it moves, it becomes possible to carry | support ruthenium which is an active component on an outer surface more.

続いて、担体に担持させた三塩化ルテニウム量に対し、モル換算で3倍以上のアルカリ水溶液中にルテニウムを担持した担体を浸し、化学式1に示す例のように、三塩化ルテニウムを水酸化ルテニウムに変換して、ルテニウムを担体上に不溶・固定化させる。このような不溶・固定化処理により、三塩化ルテニウムの塩素は、塩化アンモニウムの形になるため、この後の洗浄工程において、脱塩素を効率的に行うことができる。
化学式1:RuCl3+3NH4OH→Ru(OH)3+3NH4Cl
なお、担体上にルテニウムを担持させるには、上記の三塩化ルテニウム水和物に限らず、三塩化ルテニウム無水物、ルテニウム酸カリウム等のルテニウム酸塩、硝酸ルテニウム等のルテニウム塩等の水溶液を用いることもできる。
また、ルテニウムの不溶・固定化に用いるアルカリ水溶液としても、上記のアンモニア水の外、炭酸水素アンモニウム、炭酸アンモニウム、炭酸ナトリウム、炭酸水素ナトリウム、水酸化ナトリウム、水酸化カリウム等の水溶液を用いることもできる。
Subsequently, the carrier carrying ruthenium is dipped in an alkaline aqueous solution 3 times or more in terms of moles relative to the amount of ruthenium trichloride carried on the carrier, and the ruthenium trichloride is converted into ruthenium hydroxide as shown in the chemical formula 1. To convert ruthenium into insoluble and immobilized on the carrier. Due to such insolubilization / immobilization treatment, ruthenium trichloride chlorine is in the form of ammonium chloride, so that dechlorination can be efficiently carried out in the subsequent washing step.
Chemical formula 1: RuCl 3 + 3NH 4 OH → Ru (OH) 3 + 3NH 4 Cl
For supporting ruthenium on the support, not only the above-mentioned ruthenium trichloride hydrate, but also an aqueous solution of ruthenium trichloride anhydride, ruthenate such as potassium ruthenate, ruthenium salt such as ruthenium nitrate, etc. is used. You can also.
Also, as the aqueous alkaline solution used for insolubilization / immobilization of ruthenium, an aqueous solution of ammonium hydrogen carbonate, ammonium carbonate, sodium carbonate, sodium hydrogen carbonate, sodium hydroxide, potassium hydroxide, etc. may be used in addition to the above ammonia water. it can.

本発明において、ルテニウムの担持量は、後述する還元処理後の触媒基準、金属換算で、0.5〜5質量%、好ましくは1〜4質量%、さらに好ましくは1〜3質量%である。ルテニウムの分散度のみを改善するのであれば、その担持量を減ずればよいが、ナフサや灯油相当の重質炭化水素を原料とする水蒸気改質反応に用いる触媒にあっては、所要のレベルの活性点数と分散度を兼ね備えることが触媒性能を維持する上で重要である。また、担持量が高すぎると経済的に好ましくない。   In the present invention, the supported amount of ruthenium is 0.5 to 5% by mass, preferably 1 to 4% by mass, and more preferably 1 to 3% by mass in terms of a catalyst after reduction treatment described later, in terms of metal. If only the ruthenium dispersibility is to be improved, the loading amount may be reduced. However, the catalyst used in the steam reforming reaction using heavy hydrocarbons equivalent to naphtha or kerosene as the required level is required. Combining the number of active points and the degree of dispersion is important for maintaining the catalyst performance. Further, if the loading amount is too high, it is not economically preferable.

本発明の水素製造用触媒の中心を通るようにしてカットした断面、及びEPMA法により断面の中心を通るように線分析したときのルテニウムの特性X線(Lα線)強度との関係を図1に示す。本発明の特に好ましい触媒は、触媒断面の中心を通るように一方向にルテニウムについて線分析測定したときに、触媒外表面から触媒中心までの距離をr0とすると、触媒外表面からr0/4までの距離の間に検出されたルテニウムの特性X線強度が全X線強度の80%以上となる。このように、活性成分であるルテニウムを触媒の外表面近傍により多く担持することにより、反応に寄与しない触媒内部に担持されたルテニウムの割合を少なくし、結果として、同一担持量においても有効な活性点数を増やすことができる。なお、触媒の外表面からr0/4の間に存在するルテニウムの百分率Cは下記数式1で求められる。
数式1:C=[触媒外表面r0/4に存在するルテニウムの特性X線強度の積分値/全
ルテニウムの特性X線強度の積分値]×100
本発明の一例として、図1には、円柱状担体底面に対して、平行な面でカットした時の断面図を示した。
FIG. 1 shows the relationship between the section cut through the center of the catalyst for hydrogen production of the present invention and the characteristic X-ray (Lα-ray) intensity of ruthenium when line analysis is performed through the center of the section by the EPMA method. Shown in Particularly preferred catalysts of the present invention, when ruthenium was line analysis measured in one direction through the center of the catalyst section, and the distance from the catalyst outer surface to the catalytic center and r 0, r from the catalyst outer surface 0 / The characteristic X-ray intensity of ruthenium detected during the distance up to 4 is 80% or more of the total X-ray intensity. Thus, by supporting more ruthenium, which is an active component, in the vicinity of the outer surface of the catalyst, the ratio of ruthenium supported inside the catalyst that does not contribute to the reaction is reduced, and as a result, effective activity is maintained even at the same supported amount. You can increase your score. Incidentally, the percentage C of ruthenium existing between r 0/4 from the outer surface of the catalyst is obtained by Equation 1 below.
Equation 1: C = [integrated value of characteristic X-ray intensities of the ruthenium present in the catalyst outer surface r 0/4 / total
Integral value of characteristic X-ray intensity of ruthenium] × 100
As an example of the present invention, FIG. 1 shows a cross-sectional view when cut in a plane parallel to the bottom surface of a cylindrical carrier.

また、本発明の水素製造用触媒は、所要担持量のルテニウムを高分散で担持させたものとなる。すなわち、本発明では、前述したように、ルテニウム含有の水溶液をアルミナ−アルカリ金属酸化物の複合酸化物担体に含浸させた後、アルカリ水溶液にて担体上に不溶・固定化することにより、担体にルテニウムが分散度20%以上で担持されるが、実施例に記載するように、所要配合量を20〜80%、好ましくは、25〜50%担持することができる。
本発明においてルテニウム分散度とは、触媒にCOを吸着させたときに、触媒に担持されたルテニウムのモル数に対する吸着したCOのモル数の割合であり、下記数式2で表される。
数式2:ルテニウム分散度(%)=[400℃H2還元処理後の触媒への吸着COモル
数/触媒中のルテニウムモル数]×100
ルテニウムの分散度は、COがルテニウムに選択的に化学吸着する性質を利用して求められ、触媒中に含まれるルテニウムのうち、実際の触媒反応に関与できる活性点の割合を百分率で示したものである。従って、シンタリングや蒸発乾固によって表面から隠れたルテニウムや凝縮等によって表面に露出できないルテニウムがあれば、そこではCOの吸着は生じず分散度の値は低くなる。
Further, the hydrogen production catalyst of the present invention is a catalyst in which a required amount of ruthenium is supported in a highly dispersed state. That is, in the present invention, as described above, an alumina-alkali metal oxide composite oxide carrier is impregnated with a ruthenium-containing aqueous solution, and then insoluble and immobilized on the carrier with an alkaline aqueous solution. Ruthenium is supported at a dispersity of 20% or more, but as described in the examples, the required blending amount can be supported by 20 to 80%, preferably 25 to 50%.
In the present invention, the ruthenium dispersity is a ratio of the number of moles of CO adsorbed to the number of moles of ruthenium supported on the catalyst when CO is adsorbed on the catalyst, and is represented by the following formula 2.
Formula 2: Ruthenium dispersity (%) = [CO mol adsorbed on catalyst after 400 ° C. H 2 reduction treatment]
Number / number of moles of ruthenium in the catalyst] × 100
The degree of dispersion of ruthenium is obtained by utilizing the property that CO selectively chemisorbs on ruthenium, and indicates the percentage of active sites that can participate in the actual catalytic reaction among ruthenium contained in the catalyst. It is. Therefore, if there is ruthenium hidden from the surface by sintering or evaporation to dryness, or ruthenium that cannot be exposed to the surface by condensation or the like, CO adsorption does not occur there, and the dispersity value becomes low.

また、担体上に水酸化ルテニウムとして不溶・固定化した後、この水酸化ルテニウムの酸化を抑制するために、本発明の触媒の還元処理に先立ち、120℃以下、好ましくは90℃以下、より好ましくは50℃以下、減圧又は常圧下で、乾燥することが望ましい。   Further, after insoluble and immobilized as ruthenium hydroxide on the support, in order to suppress oxidation of this ruthenium hydroxide, prior to the reduction treatment of the catalyst of the present invention, 120 ° C. or less, preferably 90 ° C. or less, more preferably Is preferably dried at 50 ° C. or lower, under reduced pressure or normal pressure.

乾燥は、ヘリウム、アルゴン等の希ガス、あるいは窒素等の不活性ガス気流中で行うことが理にかなうが、120℃以下で操作すれば、空気中であっても、酸化物の生成量は僅少であり、問題にならない。空気中での乾燥では、乾燥温度は低ければ低いほど、酸化物の生成を抑制する点で有利になるが、乾燥温度が低すぎると、乾燥時間が著しく長くなるため、現実的でない。従って、乾燥時間は、乾燥温度、乾燥対象物の量等の条件に応じて適宜に選定すればよいが、通常は、1〜20時間程度が好ましい。
このようにして乾燥した担体上の水酸化ルテニウムを比較的低温で還元処理することにより、均一に(すなわち、上記のように分散度の高い状態で)担持させた水酸化ルテニウムをそのままの状態(すなわち、上記のように分散度の高い状態)で還元することができる。
It makes sense to dry in a noble gas such as helium or argon, or an inert gas stream such as nitrogen. However, if it is operated at 120 ° C. or lower, the amount of oxide produced is in air. It is scarce and does not matter. In drying in the air, the lower the drying temperature, the more advantageous in terms of suppressing the formation of oxides. However, if the drying temperature is too low, the drying time becomes significantly long, which is not realistic. Therefore, the drying time may be appropriately selected according to the conditions such as the drying temperature and the amount of the object to be dried, but usually about 1 to 20 hours is preferable.
By reducing the ruthenium hydroxide on the carrier thus dried at a relatively low temperature, the ruthenium hydroxide supported uniformly (that is, in a state of high dispersion as described above) remains as it is ( That is, reduction can be performed in a state of high dispersity as described above.

一般に、ルテニウムの分散度の低下は、シンタリングによって起こり、このシンタリングによる分散度の低下には、少なくとも2つの原因が挙げられる。その1つは、担体自体のシンタリングであり、せっかく活性金属を高分散させても、熱による変化により担体がシンタリングすると、活性金属の粒子間隔が狭まり、分散度が低下する。他の1つは、活性金属自体のシンタリングである。本発明では、担体の焼成温度を水蒸気改質反応温度以上とし、かつ活性金属として融点が高いルテニウム(金属ルテニウムの融点は2450℃)を選択することにより、水蒸気改質反応中(吸熱反応)の担体及び活性金属を熱による変化の受け難いものとすることができる。   In general, a decrease in the degree of dispersion of ruthenium is caused by sintering, and this decrease in the degree of dispersion due to sintering includes at least two causes. One of them is sintering of the carrier itself. Even if the active metal is highly dispersed, if the carrier is sintered due to a change due to heat, the particle interval of the active metal is narrowed and the degree of dispersion is lowered. The other is sintering of the active metal itself. In the present invention, by selecting ruthenium having a melting point higher than the steam reforming reaction temperature and the active metal as the active metal (the melting point of the metal ruthenium is 2450 ° C.), the steam reforming reaction (endothermic reaction) can be performed. The support and the active metal can be made less susceptible to changes due to heat.

また、担体に不溶・固定化された水酸化ルテニウムは、60〜80℃程度の低い温度領域で金属ルテニウムまで還元されるが、極めて微粒子状の活性金属の場合、極一部の活性点が熱による変化を受けることも考えられる。従って、本発明では、長期間安定した触媒性能が保持できるように、触媒の還元温度を400〜950℃、好ましくは400〜800℃とする。触媒の還元温度が上記範囲内であれば、ルテニウムの凝集やシンタリングによる金属表面積の減少が少なく、さらに、担体の細孔の閉塞、あるいはアルミナのα相への転移が起こることもなく、所定の触媒活性を維持できる。還元用ガスは、水素ガス、水素・水蒸気混合ガス、一酸化炭素等を用いることができる。中でも、水素ガスや水素・水蒸気混合ガスが好ましく、水素ガスが特に好ましい。還元時間は、還元温度、還元用ガスの通気量等の条件に応じて適宜選択すればよいが、1〜20時間程度が実用的である。   In addition, ruthenium hydroxide insoluble and immobilized on the carrier is reduced to metal ruthenium in a low temperature range of about 60 to 80 ° C. However, in the case of an extremely fine particle active metal, a part of the active sites are heated. It is also possible to undergo changes due to. Therefore, in the present invention, the reduction temperature of the catalyst is set to 400 to 950 ° C., preferably 400 to 800 ° C., so that stable catalyst performance can be maintained for a long time. If the reduction temperature of the catalyst is within the above range, there is little reduction in the metal surface area due to the aggregation and sintering of ruthenium, and further, there is no blockage of the pores of the support or the transition to the α phase of alumina. The catalytic activity can be maintained. As the reducing gas, hydrogen gas, hydrogen / water vapor mixed gas, carbon monoxide, or the like can be used. Among these, hydrogen gas and hydrogen / water vapor mixed gas are preferable, and hydrogen gas is particularly preferable. The reduction time may be appropriately selected according to conditions such as the reduction temperature and the amount of the reducing gas flow, but about 1 to 20 hours is practical.

以上のように、本発明の水素製造用触媒は、活性成分であるルテニウムが触媒外表面に多く存在し、かつルテニウム分散度が20%以上と高い触媒となる。   As described above, the hydrogen production catalyst of the present invention is a catalyst in which a large amount of ruthenium as an active component is present on the outer surface of the catalyst, and the ruthenium dispersity is as high as 20% or more.

以上詳述した本発明の水素製造用触媒の存在下で水素を製造する方法においては、原料として、硫黄含有量が0.1質量ppm以下、炭素数1以上、常圧における蒸留範囲が350℃以下の炭化水素が好適に用いられ、沸点範囲が130〜350℃にある留分が90質量%以上存在する炭化水素がより好ましく用いられ、特に灯油留分が好ましく用いることができる。このとき、反応圧力0〜5MPa−G、H2O/C=2.5〜5とし、反応温度は特に限定されるものではないが、400〜800℃が適している。反応方式は、特に限定されるものではないが、固定床あるいは移動床反応装置を利用するバッチ式、半連続式、あるいは連続式操作が好ましい。
本発明の水素製造法では、本発明の水素製造用触媒を単独で使用してもよいし、本発明の触媒以外の触媒と併用してもよい。
In the method for producing hydrogen in the presence of the hydrogen production catalyst of the present invention described in detail above, the raw material has a sulfur content of 0.1 mass ppm or less, a carbon number of 1 or more, and a distillation range at atmospheric pressure of 350 ° C. The following hydrocarbons are preferably used, and hydrocarbons having a fraction having a boiling point range of 130 to 350 ° C. of 90% by mass or more are more preferably used, and a kerosene fraction can be particularly preferably used. At this time, the reaction pressure is 0 to 5 MPa-G, H 2 O / C = 2.5 to 5, and the reaction temperature is not particularly limited, but 400 to 800 ° C. is suitable. The reaction method is not particularly limited, but a batch type, semi-continuous type or continuous type operation using a fixed bed or moving bed reactor is preferable.
In the hydrogen production method of the present invention, the hydrogen production catalyst of the present invention may be used alone or in combination with a catalyst other than the catalyst of the present invention.

また、本発明の水素製造用触媒を酸素可変型自己熱改質(ATR: Auto thermal Reforming)のリアクターの一部に充填し、水素を製造することができる。ATR反応は、リアクター入口部分で酸化反応が主に起こり、発熱が起こるが、リアクター深部では酸化反応による発熱はほとんど起こらず、水蒸気改質反応が主に起こるのが特徴といえる。この場合、前段に酸化反応に適したATR触媒を充填し、後段に本発明の水素製造用触媒を充填して使用する事ができる。   Further, hydrogen can be produced by filling the catalyst for producing hydrogen of the present invention in a part of an oxygen variable autothermal reforming (ATR) reactor. The ATR reaction is characterized by the fact that an oxidation reaction mainly occurs at the reactor inlet and heat is generated. However, heat generation due to the oxidation reaction hardly occurs in the deep part of the reactor, and a steam reforming reaction mainly occurs. In this case, the ATR catalyst suitable for the oxidation reaction can be filled in the former stage and the hydrogen production catalyst of the present invention can be filled in the latter stage.

以下の実施例において、生成ガス分析はステンレス(SUS)製管(内径3mm、長さ2m)に、60〜80メッシュの充填剤(Unibeads−C、GLサイエンス社製)を充填し、これを分離カラムとして取り付けた熱伝導型検出器(TCD)付きガスクロマトグラフ(GC−390、GLサイエンス製)にて、H2、CO、CO2、CH4について行った。
また、生成ガス中のC1〜C5の分析は、Al23/KClのキャピラリーカラムを分離カラムとして取り付けた水素炎イオン化検出器(FID)付きガスクロマトグラフ(GC−390、GLサイエンス製)にて行った。触媒の金属担持量は、誘導結合プラズマ発光分析(ICP分析)によって確認した。触媒への炭素析出量は、赤外線検出式炭素分析装置(ModelEMIA−810、堀場製作所製)で測定した。
In the following examples, the generated gas analysis is performed by filling a stainless steel (SUS) tube (inner diameter: 3 mm, length: 2 m) with a 60-80 mesh filler (Unibeads-C, manufactured by GL Sciences) and separating it. H 2 , CO, CO 2 , and CH 4 were measured with a gas chromatograph (GC-390, manufactured by GL Science) with a thermal conductivity detector (TCD) attached as a column.
In addition, the analysis of C 1 to C 5 in the product gas was performed on a gas chromatograph (GC-390, manufactured by GL Science) with a flame ionization detector (FID) equipped with a capillary column of Al 2 O 3 / KCl as a separation column. I went. The amount of metal supported on the catalyst was confirmed by inductively coupled plasma emission analysis (ICP analysis). The amount of carbon deposited on the catalyst was measured with an infrared detection type carbon analyzer (ModelEMIA-810, manufactured by Horiba, Ltd.).

触媒上へのCO吸着量はTCDガスクロマトグラフを内蔵した自動吸着装置(R6015、大倉理研製)により、測定した。CO吸着量の測定手順は、触媒を試料管に入れ、キャリアガスにHeガスを用い、還元ガスに水素を用いて、先ず、水素ガスを流して還元温度である400℃まで1時間で昇温し、1時間400℃で還元を行った。次いでHeガスに切り替えて50℃まで冷却し、その後、COガスを試料管に一定量流してCO吸着量を測定した。   The amount of CO adsorbed on the catalyst was measured by an automatic adsorption device (R6015, manufactured by Okura Riken) with a built-in TCD gas chromatograph. The CO adsorption amount is measured by putting a catalyst in a sample tube, using He gas as a carrier gas, using hydrogen as a reducing gas, first flowing hydrogen gas and raising the temperature in one hour to 400 ° C., which is the reduction temperature. Then, reduction was performed at 400 ° C. for 1 hour. Subsequently, the gas was switched to He gas and cooled to 50 ° C., and then a certain amount of CO gas was flowed through the sample tube to measure the CO adsorption amount.

触媒中心を通るように一方向にルテニウムについて行う線分析測定は、電子プローブマイクロアナライザー(日本電子株式会社製EPMA、JXA―8600MX)を用いて測定した。測定条件は加速電圧20kV、入射電流1×10-7A、測定点間のインターバル10μm、計数時間0.5secで行った。測定触媒の断面は、触媒をMMA(methyl methacrylate)に包埋し、研磨装置を用いて研磨することにより作製した。そして、上記数式1に従い、触媒の外表面から中心の距離をr0とした時、触媒の外表面から1/4r0の間に存在するルテニウムの百分率Cを求めた。 The line analysis measurement performed on ruthenium in one direction so as to pass through the center of the catalyst was performed using an electron probe microanalyzer (EPMA manufactured by JEOL Ltd., JXA-8600MX). The measurement conditions were an acceleration voltage of 20 kV, an incident current of 1 × 10 −7 A, an interval between measurement points of 10 μm, and a counting time of 0.5 sec. The cross section of the measurement catalyst was prepared by embedding the catalyst in MMA (methyl methacrylate) and polishing it using a polishing apparatus. Then, in accordance with the above equation 1, when the distance between the center and the r 0 from the outer surface of the catalyst was determined the percentage C of ruthenium present from the outer surface of the catalyst during the 1 / 4r 0.

原料C1転化率は、下記数式3から求めた。
数式3:原料C1転化率(%)=〔M/M0〕×100
式中、M0は単位時間当りの供給原料炭化水素の炭素モル数、Mは単位時間当りの生成ガス中のC1化合物(CO、CO2、CH4)の炭素モル数である。
The conversion rate of the raw material C 1 was obtained from the following formula 3.
Formula 3: Raw material C 1 conversion (%) = [M / M 0 ] × 100
In the formula, M 0 is the number of carbon moles of the feed hydrocarbon per unit time, and M is the number of carbon moles of the C 1 compound (CO, CO 2 , CH 4 ) in the product gas per unit time.

実施例1
アルミナ粉末(200メッシュ)を、打錠成型器(FK−1型、システムズエンジニアリング社製)を用いて、成形圧2000MPa(20トン/cm2)で、直径3.2mmの球状(球状ペレット)に成形し、マッフル炉にて空気中、600℃で3時間焼成し、アルミナ酸化物を得た。本複合酸化物の比表面積は140m2/g、細孔容積は0.43ml/gであった。
次に水酸化カリウム3.63gをイオン交換水19.3gに溶解し、35.0gのアルミナ酸化物に滴下し、担体全体に硝酸カリウム水溶液が均一になるように攪拌後、1時間静置後、乾燥した。次いで、マッフル炉にて空気中、600℃で3時間焼成し、アルミナ−酸化カリウム複合酸化物を得た。本複合酸化物の比表面積は132m2/g、細孔容積は0.34ml/gであった。
Example 1
Alumina powder (200 mesh) is formed into a spherical shape (spherical pellet) with a molding pressure of 2000 MPa (20 tons / cm 2 ) and a diameter of 3.2 mm using a tableting molding machine (FK-1 type, manufactured by Systems Engineering). Molding and firing in a muffle furnace in air at 600 ° C. for 3 hours gave alumina oxide. The composite oxide had a specific surface area of 140 m 2 / g and a pore volume of 0.43 ml / g.
Next, 3.63 g of potassium hydroxide was dissolved in 19.3 g of ion-exchanged water, dropped into 35.0 g of alumina oxide, stirred so that the aqueous potassium nitrate solution was uniform over the entire support, and allowed to stand for 1 hour. Dried. Subsequently, it baked at 600 degreeC in the air in the muffle furnace for 3 hours, and obtained alumina-potassium oxide complex oxide. The composite oxide had a specific surface area of 132 m 2 / g and a pore volume of 0.34 ml / g.

三塩化ルテニウム・水和物(RuCl3・nH2O、ルテニウム含量39質量%)1.81gを11.1gの水に溶解し、この水溶液を上記のアルミナ−酸化カリウム複合酸化物30gに滴下し、室温で1時間静置した。続いて球状ペレットをロータリーエバポレーターにより、約2.7kPa(約20mmHg)程度の真空下、赤外線式ホットプレートで50℃に加熱して、乾燥した。
次いで、球状ペレットを7mol/Lアンモニア水約1L(市販試薬特級の約2倍希釈)中に移し、スターラーで1時間ゆっくり攪拌して、ルテニウムを不溶・固定化した。この球状ペレットを、ブフナー漏斗を用いてアンモニア水から回収した。回収した球状ペレットをイオン交換水で充分洗浄した。洗浄終了は、濾液の一部に硝酸銀水溶液を滴下し、塩化銀の白色沈殿が生じなくなる点とした。洗浄した球状ペレットは乾燥機中50℃で15時間乾燥し、触媒Aを得た。触媒Aは、ルテニウム1.8質量%(金属換算)、酸化カリウム2.9質量%(酸化物換算)、残りアルミナからなる。触媒Aの物性を表1に示す。
反応器に触媒Aを7.5ml充填し、0.005MPa−G、450℃、GHSV=400(v/v)h−1で1時間、マスフローコントローラで流量調整した水素で還元した。続いて、この反応器に原料油として、表4記載の脱硫灯油を水蒸気と共に導入し、水蒸気改質反応を、反応温度450℃、0.005MPa−G、H2O/C=3.5、LHSV=0.83(v/v)h−1の条件下で行った。反応結果を表1に示す。
Ruthenium trichloride hydrate (RuCl 3 · nH 2 O, ruthenium content 39 mass%) 1.81 g was dissolved in 11.1 g of water, and this aqueous solution was dropped into 30 g of the above-mentioned alumina-potassium oxide composite oxide. And left at room temperature for 1 hour. Subsequently, the spherical pellets were heated to 50 ° C. with an infrared hot plate under a vacuum of about 2.7 kPa (about 20 mmHg) by a rotary evaporator and dried.
Next, the spherical pellet was transferred into about 1 L of 7 mol / L aqueous ammonia (diluted about twice as high as a commercially available reagent special grade), and stirred slowly with a stirrer for 1 hour to insolubilize and fix ruthenium. The spherical pellet was recovered from the aqueous ammonia using a Buchner funnel. The collected spherical pellets were thoroughly washed with ion exchange water. At the end of washing, an aqueous silver nitrate solution was dropped into a part of the filtrate, and the white precipitate of silver chloride was not generated. The washed spherical pellets were dried in a dryer at 50 ° C. for 15 hours to obtain Catalyst A. Catalyst A is composed of 1.8% by mass of ruthenium (converted to metal), 2.9% by mass of potassium oxide (converted to oxide), and the remaining alumina. Table 1 shows the physical properties of Catalyst A.
The reactor was charged with 7.5 ml of catalyst A, and reduced with hydrogen whose flow rate was adjusted with a mass flow controller at 0.005 MPa-G, 450 ° C., GHSV = 400 (v / v) h −1 for 1 hour. Subsequently, desulfurized kerosene listed in Table 4 was introduced into the reactor as raw material oil together with steam, and the steam reforming reaction was performed at a reaction temperature of 450 ° C., 0.005 MPa-G, H 2 O / C = 3.5, The test was performed under the condition of LHSV = 0.83 (v / v) h −1 . The reaction results are shown in Table 1.

実施例2
反応器に実施例1と同じ触媒Aを7.5ml充填し、0.005MPa−G、450℃、GHSV=400(v/v)h−1で1時間、マスフローコントローラで流量調整した水素で還元した。続いて、この反応器に表5記載の脱硫ナフサを水蒸気と共に導入し、水蒸気改質反応を、反応温度450℃、0.005MPa−G、H2O/C=3.5、LHSV=0.83(v/v)h−1の条件下で行った。反応結果を表1に示す。
Example 2
The reactor was charged with 7.5 ml of the same catalyst A as in Example 1, and reduced with hydrogen whose flow rate was adjusted with a mass flow controller at 0.005 MPa-G, 450 ° C., GHSV = 400 (v / v) h −1 for 1 hour. did. Subsequently, the desulfurized naphtha shown in Table 5 was introduced into the reactor together with steam, and the steam reforming reaction was performed at a reaction temperature of 450 ° C., 0.005 MPa-G, H 2 O / C = 3.5, LHSV = 0. It was performed under the condition of 83 (v / v) h −1 . The reaction results are shown in Table 1.

実施例3
反応器に実施例1と同じ触媒Aを7.5ml充填し、0.005MPa−G、600℃、GHSV=400(v/v)h−1で1時間、マスフローコントローラで流量調整した水素で還元した。続いて、この反応器に原料油として、表4記載の脱硫灯油を水蒸気と共に導入し、水蒸気改質反応を、反応温度450℃、0.005MPa−G、H2O/C=3.0、LHSV=3(v/v)h−1の条件下で行った。反応結果を表1に示す。
Example 3
The reactor was charged with 7.5 ml of the same catalyst A as in Example 1, and reduced with hydrogen whose flow rate was adjusted with a mass flow controller at 0.005 MPa-G, 600 ° C., GHSV = 400 (v / v) h −1 for 1 hour. did. Subsequently, desulfurized kerosene described in Table 4 was introduced into the reactor as raw material oil together with steam, and the steam reforming reaction was performed at a reaction temperature of 450 ° C., 0.005 MPa-G, H 2 O / C = 3.0, The test was performed under the condition of LHSV = 3 (v / v) h −1 . The reaction results are shown in Table 1.

参考例1
水酸化カリウムを硝酸カリウムに置き換え、担持量を6.54g、イオン交換水19.3g以外は実施例1と同様に調製した触媒Bを実施例3と同様に評価した。この結果を表1に示す。
Reference example 1
The catalyst B prepared in the same manner as in Example 1 was evaluated in the same manner as in Example 3 except that potassium hydroxide was replaced with potassium nitrate, the supported amount was 6.54 g, and ion-exchanged water 19.3 g. The results are shown in Table 1.

実施例5
水酸化カリウムを重炭酸カリウムに置き換え、担持量を6.48g、イオン交換水19.3g以外は実施例1と同様に調製した触媒Cを実施例3と同様に評価した。この結果を表1に示す。
Example 5
Catalyst C prepared in the same manner as in Example 1 was evaluated in the same manner as in Example 3 except that potassium hydroxide was replaced with potassium bicarbonate, the loading was 6.48 g, and ion-exchanged water was 19.3 g. The results are shown in Table 1.

実施例6
水酸化カリウムを炭酸カリウムに置き換え、担持量を4.47g、イオン交換水19.3g以外は実施例1と同様に調製した触媒Dを実施例3と同様に評価した。この結果を表1に示す。
Example 6
The catalyst D prepared in the same manner as in Example 1 was evaluated in the same manner as in Example 3 except that potassium hydroxide was replaced with potassium carbonate, the supported amount was 4.47 g, and ion-exchanged water 19.3 g. The results are shown in Table 1.

参考例2
実施例1のK源を硝酸カリウム担持量6.54g、三塩化ルテニウム・水和物5.79g以外は実施例1と同様に調製した触媒Eを実施例3と同様に評価した。この結果を表1に示す。
Reference example 2
Catalyst E prepared in the same manner as in Example 1 was evaluated in the same manner as in Example 3 except that the K source in Example 1 was loaded with 6.54 g of potassium nitrate and 5.79 g of ruthenium trichloride hydrate. The results are shown in Table 1.

参考例3
実施例1のアルミナを球状(球状ペレット)に成型後、マッフル炉にて焼成する温度を800℃にする事と、アルミナ−酸化カリウム複合酸化物をマッフル炉で800℃で焼成する以外は実施例1と同様に調製した触媒Fを実施例3と同様に評価した。この結果を表1に示す。
Reference example 3
Example 1 except that the alumina of Example 1 is molded into a spherical shape (spherical pellet) and then calcined in a muffle furnace at 800 ° C., and the alumina-potassium oxide composite oxide is calcined at 800 ° C. in a muffle furnace. Catalyst F prepared in the same manner as in Example 1 was evaluated in the same manner as in Example 3. The results are shown in Table 1.

比較例1
硝酸カリウムの量を2.62gとした以外は実施例1と同様にして、アルミナ−酸化カリウム複合酸化物を得た。
次いで、実施例1と同様にしてルテニウム担持及びアルカリ処理を行い、触媒Gを得た。触媒Gは、ルテニウム2.2質量%(金属換算)、酸化カリウム0.9質量%(酸化物換算)、残りとアルミナからなる。触媒Gの物性を表2に示す。
触媒Gを用いる以外は実施例1と同様にして、還元及び反応を行った。反応結果を表2に示す。
Comparative Example 1
An alumina-potassium oxide composite oxide was obtained in the same manner as in Example 1 except that the amount of potassium nitrate was 2.62 g.
Next, in the same manner as in Example 1, ruthenium support and alkali treatment were performed, and Catalyst G was obtained. The catalyst G is composed of ruthenium 2.2% by mass (metal conversion), potassium oxide 0.9% by mass (oxide conversion), the remainder and alumina. Table 2 shows the physical properties of the catalyst G.
Reduction and reaction were performed in the same manner as in Example 1 except that the catalyst G was used. The reaction results are shown in Table 2.

また、本発明の水素製造用触媒はATRの一部に使用することも可能である。以下のその例を示す。   The hydrogen production catalyst of the present invention can also be used as a part of ATR. The following is an example.

参考例4
前段にアルミナ粉末(200メッシュ)を、打錠成型器(FK−1型、システムズエンジニアリング社製)を用いて、成形圧2000MPa(20トン/cm2)で、直径3.2mmの円柱状(円柱状ペレット)に成形し、マッフル炉にて空気中、900℃で3時間焼成し、アルミナ成型体を得た。純度99.5%以上の硝酸ロジウム0.14gを3.8ccのイオン交換水に溶解させた溶液を先ほどのアルミナ成型体10gに担持し、担体全体に硝酸ロジウム水溶液が均一になるように攪拌後、1時間静置した。続いてペレットをロータリーエバポレーターにより、約2.7kPa(約20mmHg)程度の真空下、赤外線式ホットプレートで50℃に加熱して、乾燥した。
乾燥したペレットはマッフル炉で4時間焼成を行い、Rh0.5質量%、残りアルミナの触媒を調製し、前段に、この触媒を4cc充填した。
中段に、触媒Aを12cc充填した。
また、アルミナ粉末(200メッシュ)を、打錠成型器(FK−1型、システムズエンジニアリング社製)を用いて、成形圧2000MPa(20トン/cm2)で、直径3.2mmの円柱状ペレットに成形し、マッフル炉にて空気中、800℃で3時間焼成したアルミナ成型体を得た。三塩化ルテニウム・水和物(RuCl3・nH2O、ルテニウム含量39質量%)0.387g、イオン交換水11.4gを先ほどのアルミナ成型体30gに担持し、担体全体に塩化ルテニウム水溶液が均一になるように攪拌後、1時間静置した。続いて円柱状ペレットをロータリーエバポレーターにより、約2.7kPa(約20mmHg)程度の真空下、赤外線式ホットプレートで50℃に加熱して、乾燥した。次いで、ペレットを7mol/Lアンモニア水約1L(市販試薬特級の約2倍希釈)中に移し、スターラーで1時間ゆっくり攪拌して、ルテニウムを不溶・固定化した。この円柱状ペレットを、ブフナー漏斗を用いてアンモニア水から回収した。回収したペレットをイオン交換水で充分洗浄した。洗浄終了は、濾液の一部に硝酸銀水溶液を滴下し、塩化銀の白色沈殿が生じなくなる点とした。洗浄した円柱状ペレットは乾燥機中50℃で15時間乾燥し、ルテニウム0.5質量%(金属換算)、残りアルミナからなる触媒を得た。この触媒を後段に12cc充填した。
このリアクターを用い、酸素/炭素(mol/mol)=0.1、LHSV(vol/vol)=0.24、H2O/炭素(mol/mol)=3 リアクター前段部温度450℃、中段部温度486℃、後段部温度680℃にて評価した。これらの結果を表3に示す。
Reference example 4
Alumina powder (200 mesh) is used in the first stage, and a cylindrical shape (circle) with a molding pressure of 2000 MPa (20 tons / cm 2 ) using a tableting molding machine (FK-1 type, manufactured by Systems Engineering Co., Ltd.). Columnar pellets) and fired in a muffle furnace in air at 900 ° C. for 3 hours to obtain an alumina molded body. A solution prepared by dissolving 0.14 g of rhodium nitrate having a purity of 99.5% or more in 3.8 cc of ion-exchanged water is supported on 10 g of the above-mentioned alumina molded body, and stirred so that the aqueous rhodium nitrate solution is uniform over the entire support. And left for 1 hour. Subsequently, the pellets were dried by heating at 50 ° C. with an infrared hot plate under a vacuum of about 2.7 kPa (about 20 mmHg) by a rotary evaporator.
The dried pellets were calcined in a muffle furnace for 4 hours to prepare a catalyst of 0.5 mass% Rh and the remaining alumina, and 4 cc of this catalyst was filled in the previous stage.
In the middle, 12 cc of Catalyst A was charged.
Further, alumina powder (200 mesh) is formed into a cylindrical pellet having a diameter of 3.2 mm at a molding pressure of 2000 MPa (20 ton / cm 2 ) using a tableting molding machine (FK-1 type, manufactured by Systems Engineering). An alumina molded body that was molded and fired at 800 ° C. for 3 hours in air in a muffle furnace was obtained. Ruthenium trichloride hydrate (RuCl 3 · nH 2 O, ruthenium content 39% by mass) 0.387 g and ion-exchanged water 11.4 g are supported on 30 g of the above-mentioned alumina molded body, and the aqueous ruthenium chloride solution is uniform throughout the support. After stirring, the mixture was allowed to stand for 1 hour. Subsequently, the cylindrical pellet was dried by heating at 50 ° C. with an infrared hot plate under a vacuum of about 2.7 kPa (about 20 mmHg) using a rotary evaporator. Next, the pellet was transferred into about 1 L of 7 mol / L aqueous ammonia (diluted about twice as much as a special grade of commercially available reagent) and slowly stirred with a stirrer for 1 hour to insolubilize and fix ruthenium. This cylindrical pellet was recovered from the aqueous ammonia using a Buchner funnel. The collected pellets were thoroughly washed with ion exchange water. At the end of washing, an aqueous silver nitrate solution was dropped into a part of the filtrate, and the white precipitate of silver chloride was not generated. The washed cylindrical pellet was dried in a dryer at 50 ° C. for 15 hours to obtain a catalyst composed of 0.5% by mass of ruthenium (metal conversion) and the remaining alumina. 12 cc of this catalyst was charged in the latter stage.
Using this reactor, oxygen / carbon (mol / mol) = 0.1, LHSV (vol / vol) = 0.24, H 2 O / carbon (mol / mol) = 3 reactor front stage temperature 450 ° C., middle stage temperature 486 The evaluation was performed at 0 ° C. and the rear stage temperature of 680 ° C. These results are shown in Table 3.

参考例5
LHSV(vol/vol)=0.48、リアクター前段部温度470℃、中段部温度494℃、後段部温度680℃にする以外は参考例4と同様に評価した。この結果を表3に示す。
Reference Example 5
Evaluation was performed in the same manner as in Reference Example 4 except that LHSV (vol / vol) = 0.48, reactor front stage temperature 470 ° C., middle stage temperature 494 ° C., and rear stage temperature 680 ° C. The results are shown in Table 3.

参考例6
LHSV(vol/vol)=0.71、リアクター前段部温度471℃、中段部温度485℃、後段部温度680℃にする以外は参考例4と同様に評価した。この結果を表3に示す。
Reference Example 6
Evaluation was performed in the same manner as in Reference Example 4 except that LHSV (vol / vol) = 0.71, reactor front stage temperature 471 ° C., middle stage temperature 485 ° C., and rear stage temperature 680 ° C. The results are shown in Table 3.

実施例1〜3、5及び6から明らかなように、アルカリ金属酸化物を含有するアルミナ複合酸化物担体にルテニウムを0.5〜5質量%担持させた触媒を用いることにより、脱硫灯油など重質炭化水素を原料とした水蒸気改質反応においても、炭素析出を効果的に抑制し、かつ高い原料C転化率を得ることができる。また低酸素領域でのATR反応に一部充填しても高い原料C転化率が得ることができる。
これに対し比較例1から明らかなように、触媒中のアルカリ金属酸化物(K2O)担持量が0.9質量%と少ないと、副反応である炭素析出を効果的に抑制することができず、高活性が得る事ができない。
As is clear from Examples 1-3, 5 and 6 , by using a catalyst in which 0.5 to 5% by mass of ruthenium is supported on an alumina composite oxide support containing an alkali metal oxide, desulfurized kerosene or the like is used. Even in the steam reforming reaction using a high quality hydrocarbon as a raw material, carbon precipitation can be effectively suppressed and a high raw material C 1 conversion can be obtained. Also it is possible to lower high filled partially oxygen region ATR reaction in the material C 1 conversion rate obtained.
On the other hand, as is clear from Comparative Example 1, when the amount of alkali metal oxide (K 2 O) supported in the catalyst is as small as 0.9% by mass, carbon deposition as a side reaction can be effectively suppressed. Cannot be obtained, and high activity cannot be obtained.

本発明の水素製造用触媒の中心を通るようにしてカットした断面、及びEPMA法により断面の中心を通るように線分析したときのルテニウムの特性X線(Lα線)強度との関係を示す図である。The figure which shows the relationship with the characteristic X-ray (L alpha ray) intensity | strength of the cross section cut through the center of the catalyst for hydrogen production of this invention, and the ruthenium when carrying out a line analysis so that it may pass along the center of a cross section by EPMA method It is. 家庭用の小型見料電池発電システムに用いられている改質反応器の模式断面図である。It is a schematic cross section of the reforming reactor used for the small-sized sample battery power generation system for home use.

Claims (9)

(a)アルミナと、(b)アルカリ金属酸化物を触媒基準、酸化物換算で2.5〜10質量%とを含み、セリウム酸化物を含まない担体に、(c)ルテニウムを触媒基準、金属換算で0.5〜5質量%担持させてなることを特徴とする炭化水素からの水蒸気改質による水素製造用触媒。 And (a) alumina, (b) a catalyst based on the alkali metal oxides, seen containing a 2.5 to 10 mass% in terms of oxide, the carrier containing no cerium oxide, the catalyst relative to (c) ruthenium, A catalyst for producing hydrogen by steam reforming from hydrocarbons, which is supported in an amount of 0.5 to 5% by mass in terms of metal. (b)のアルカリ金属酸化物が酸化カリウムであることを特徴とする請求項1記載の水素製造用触媒。   2. The hydrogen production catalyst according to claim 1, wherein the alkali metal oxide of (b) is potassium oxide. EPMA(エレクトロンプローブマイクロアナライザー)により、触媒断面の中心を通るように一方向にルテニウムについて線分析測定したときに、触媒外表面から触媒中心までの距離をr0とすると、触媒外表面からr0/4までの距離の間に検出されたルテニウムの特性X線(Lα線)強度が全X線強度の80%以上となることを特徴とする請求項1または2記載の水素製造用触媒。 When ruthenium is linearly measured with EPMA (electron probe microanalyzer) in one direction so as to pass through the center of the catalyst cross section, if the distance from the catalyst outer surface to the catalyst center is r 0 , r 0 from the catalyst outer surface is r 0. The catalyst for hydrogen production according to claim 1 or 2, wherein the characteristic X-ray (Lα ray) intensity of ruthenium detected during a distance up to / 4 is 80% or more of the total X-ray intensity. ルテニウム分散度が20%以上であることを特徴とする請求項1〜3のいずれかに記載の水素製造用触媒。   The catalyst for hydrogen production according to any one of claims 1 to 3, wherein the ruthenium dispersity is 20% or more. 球状、楕円球状、角柱状、円柱状、中空状、リング状、及び打錠状から選ばれる形状であることを特徴とする請求項1〜4のいずれかに記載の水素製造用触媒。   The catalyst for hydrogen production according to any one of claims 1 to 4, which has a shape selected from a spherical shape, an elliptical spherical shape, a prismatic shape, a cylindrical shape, a hollow shape, a ring shape, and a tableting shape. (b)の酸化カリウムの出発原料が水酸化カリウムであることを特徴とする請求項1〜5のいずれかに記載の水素製造用触媒。   The catalyst for hydrogen production according to any one of claims 1 to 5, wherein the starting material of potassium oxide (b) is potassium hydroxide. (a)アルミナ又はその前駆体と、(b)アルカリ金属の酸化物及びその前駆体から選ばれる少なくとも1種とを含み、セリウム酸化物を含まない担体原料を焼成して、アルカリ金属酸化物を触媒基準、酸化物換算で2.5〜10質量%含むアルミナ複合酸化物担体を調製し、この担体に(c)ルテニウムを触媒基準、金属換算で0.5〜5質量%担持し、120℃以下の温度で、減圧下に乾燥し、次いでアルカリ処理し、その後水洗浄および乾燥することを特徴とする請求項1〜6のいずれかに記載の水素製造用触媒の製造法。 (A) an alumina or a precursor thereof, (b) viewed contains at least one member selected from oxides and their precursors of the alkali metals, by sintering a carrier material that does not contain cerium oxide, alkali metal oxides Is prepared on the basis of catalyst, 2.5 to 10% by mass in terms of oxide, and (c) ruthenium is supported on 0.5 to 5% by mass in terms of catalyst on the basis of catalyst. The method for producing a catalyst for hydrogen production according to any one of claims 1 to 6, wherein the catalyst is dried under reduced pressure at a temperature not higher than ° C, then treated with alkali, then washed with water and dried. 請求項1〜6のいずれかに記載の触媒の存在下に、沸点が130〜350℃の範囲にある留分が90質量%以上存在する炭化水素と水蒸気とを反応させることを特徴とする水素の製造法。   Hydrogen, characterized in that, in the presence of the catalyst according to any one of claims 1 to 6, a hydrocarbon having a boiling point in the range of 130 to 350 ° C is reacted with water vapor and a hydrocarbon having a fraction of 90 mass% or more. Manufacturing method. 反応温度400〜800℃、反応圧力0〜0.5MPa−G、H2O/C(モル比)=2.5〜5.0の条件下で、反応させることを特徴とする請求項8記載の水素の製造法。 9. The reaction is performed under the conditions of a reaction temperature of 400 to 800 ° C., a reaction pressure of 0 to 0.5 MPa-G, and H 2 O / C (molar ratio) = 2.5 to 5.0. Of hydrogen production.
JP2005059435A 2005-03-03 2005-03-03 Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst Expired - Fee Related JP4717474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005059435A JP4717474B2 (en) 2005-03-03 2005-03-03 Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005059435A JP4717474B2 (en) 2005-03-03 2005-03-03 Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst

Publications (2)

Publication Number Publication Date
JP2006239588A JP2006239588A (en) 2006-09-14
JP4717474B2 true JP4717474B2 (en) 2011-07-06

Family

ID=37046510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005059435A Expired - Fee Related JP4717474B2 (en) 2005-03-03 2005-03-03 Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst

Country Status (1)

Country Link
JP (1) JP4717474B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007025362A1 (en) 2007-05-31 2008-12-11 Süd-Chemie AG Doped Pd / Au coated catalyst, process for its preparation and its use
DE102007025442B4 (en) * 2007-05-31 2023-03-02 Clariant International Ltd. Use of a device for producing a coated catalyst and coated catalyst
DE102007025223A1 (en) 2007-05-31 2008-12-04 Süd-Chemie AG Zirconia-doped VAM shell catalyst, process for its preparation and its use
DE102007025443A1 (en) 2007-05-31 2008-12-04 Süd-Chemie AG Pd / Au coated catalyst containing HfO 2, process for its preparation and its use
DE202008017277U1 (en) 2008-11-30 2009-04-30 Süd-Chemie AG catalyst support
CN108645955B (en) * 2018-05-21 2021-07-16 中国矿业大学 Apparatus and method for evaluating the cyclic reforming-analytical performance of a composite catalyst
KR102366268B1 (en) * 2019-01-10 2022-02-21 주식회사 엘지에너지솔루션 Battery Pack Having Insulation Tube

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4648566B2 (en) * 2001-05-11 2011-03-09 Jx日鉱日石エネルギー株式会社 Autothermal reforming catalyst and method for producing fuel gas for fuel cell
JP4252783B2 (en) * 2002-09-26 2009-04-08 出光興産株式会社 Hydrocarbon reforming catalyst and hydrocarbon reforming method using the same
JP2004230312A (en) * 2003-01-31 2004-08-19 Idemitsu Kosan Co Ltd Catalyst for hydrocarbon reforming

Also Published As

Publication number Publication date
JP2006239588A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
KR101280200B1 (en) Reforming catalyst for hydrocarbon, method for producing hydrogen using such reforming catalyst, and fuel cell system
JP5531615B2 (en) Catalyst for cracking hydrocarbons
KR20030061395A (en) Catalyst for hydrocarbon reforming and method of reforming hydrocarbon with the same
JP2007203129A (en) Method for manufacturing particulate catalyst, particulate catalyst and reformer
Gallegos-Suárez et al. Efficient hydrogen production from glycerol by steam reforming with carbon supported ruthenium catalysts
JP2014159031A (en) Catalyst for producing hydrogen, and method for producing hydrogen by using the catalyst
JP2007069151A (en) Catalyst for catalytic partial oxidation of hydrocarbon and manufacturing method of synthetic gas
JP5624343B2 (en) Hydrogen production method
JP4717474B2 (en) Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst
JP4494254B2 (en) Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst
JP2002535119A (en) Catalyst carrier supporting nickel, ruthenium and lanthanum
JP2004344721A (en) Oxygen-containing hydrocarbon reforming catalyst, method for producing hydrogen or synthesis gas using the same, and fuel cell system
JPH11179204A (en) Gas methanation catalyst containing carbon monoxide and carbon dioxide and method for producing the same
JP6081445B2 (en) HYDROGEN GENERATION CATALYST, HYDROGEN GENERATION CATALYST MANUFACTURING METHOD, AND HYDROGEN-CONTAINING GAS MANUFACTURING METHOD, HYDROGEN GENERATOR, FUEL CELL SYSTEM, AND SILICON-SUPPORTED CEZR BASED OXIDE
JP2020032331A (en) Methanation catalyst, manufacturing method therefor, and manufacturing method of methane
JP4773418B2 (en) Method for producing catalyst for producing hydrogen from hydrocarbon, catalyst produced by the production method, and method for producing hydrogen using the catalyst
JPH09262468A (en) Catalyst for producing high calorie gas and method for producing the same
JP4647564B2 (en) Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst
JP4316181B2 (en) Hydrocarbon reforming catalyst and method for producing the same, and hydrocarbon reforming method using the catalyst
JP6768225B2 (en) Carbon dioxide occlusion reduction catalyst and its manufacturing method
JP4777190B2 (en) Catalyst for producing hydrogen from hydrocarbon, method for producing the catalyst, and method for producing hydrogen using the catalyst
JP2000061307A (en) Highly dispersed steam reforming catalyst and hydrogen production method
JP6197052B2 (en) Fuel reforming catalyst
JPH1024235A (en) Catalyst for producing high calorie gas and its production
CN111565838B (en) Catalyst for oxychlorination process of hydrocarbon, preparation method thereof and method for preparing oxychlorinated compound of hydrocarbon using the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060719

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20060822

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071024

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100518

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101029

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20101108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110330

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4717474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees