JP4779151B2 - Flexible substrate - Google Patents
Flexible substrate Download PDFInfo
- Publication number
- JP4779151B2 JP4779151B2 JP2005222283A JP2005222283A JP4779151B2 JP 4779151 B2 JP4779151 B2 JP 4779151B2 JP 2005222283 A JP2005222283 A JP 2005222283A JP 2005222283 A JP2005222283 A JP 2005222283A JP 4779151 B2 JP4779151 B2 JP 4779151B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- clay
- flexible substrate
- resin
- substrate according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000000758 substrate Substances 0.000 title claims description 113
- 239000004927 clay Substances 0.000 claims description 123
- 239000000654 additive Substances 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 27
- 230000000996 additive effect Effects 0.000 claims description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 238000010438 heat treatment Methods 0.000 claims description 16
- 239000012779 reinforcing material Substances 0.000 claims description 16
- 229920005989 resin Polymers 0.000 claims description 16
- 239000011347 resin Substances 0.000 claims description 16
- 239000012790 adhesive layer Substances 0.000 claims description 14
- 239000000835 fiber Substances 0.000 claims description 13
- 239000011737 fluorine Substances 0.000 claims description 13
- 229910052731 fluorine Inorganic materials 0.000 claims description 13
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical group OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims description 12
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 12
- 238000005452 bending Methods 0.000 claims description 12
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 claims description 12
- JBKVHLHDHHXQEQ-UHFFFAOYSA-N epsilon-caprolactam Chemical compound O=C1CCCCCN1 JBKVHLHDHHXQEQ-UHFFFAOYSA-N 0.000 claims description 12
- 229910052901 montmorillonite Inorganic materials 0.000 claims description 12
- 229920001296 polysiloxane Polymers 0.000 claims description 12
- 238000004381 surface treatment Methods 0.000 claims description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 11
- 238000010292 electrical insulation Methods 0.000 claims description 11
- 239000010703 silicon Substances 0.000 claims description 11
- 229910052710 silicon Inorganic materials 0.000 claims description 11
- 239000007787 solid Substances 0.000 claims description 11
- 238000012360 testing method Methods 0.000 claims description 11
- 239000004925 Acrylic resin Substances 0.000 claims description 10
- 229920000178 Acrylic resin Polymers 0.000 claims description 10
- 229920005749 polyurethane resin Polymers 0.000 claims description 10
- -1 stevensite Inorganic materials 0.000 claims description 10
- 239000002184 metal Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 9
- 238000007740 vapor deposition Methods 0.000 claims description 9
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 8
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- 229920000620 organic polymer Polymers 0.000 claims description 8
- 239000000919 ceramic Substances 0.000 claims description 6
- 230000005856 abnormality Effects 0.000 claims description 5
- 239000005871 repellent Substances 0.000 claims description 5
- 229920001817 Agar Polymers 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 102000053602 DNA Human genes 0.000 claims description 4
- 108020004414 DNA Proteins 0.000 claims description 4
- 239000004375 Dextrin Substances 0.000 claims description 4
- 229920001353 Dextrin Polymers 0.000 claims description 4
- 108010010803 Gelatin Proteins 0.000 claims description 4
- 108010068370 Glutens Proteins 0.000 claims description 4
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 4
- 239000002202 Polyethylene glycol Substances 0.000 claims description 4
- 229920002472 Starch Polymers 0.000 claims description 4
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 claims description 4
- 239000008272 agar Substances 0.000 claims description 4
- 235000010419 agar Nutrition 0.000 claims description 4
- 229920000180 alkyd Polymers 0.000 claims description 4
- 150000001558 benzoic acid derivatives Chemical class 0.000 claims description 4
- VNSBYDPZHCQWNB-UHFFFAOYSA-N calcium;aluminum;dioxido(oxo)silane;sodium;hydrate Chemical compound O.[Na].[Al].[Ca+2].[O-][Si]([O-])=O VNSBYDPZHCQWNB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 235000019425 dextrin Nutrition 0.000 claims description 4
- 239000003822 epoxy resin Substances 0.000 claims description 4
- 235000013312 flour Nutrition 0.000 claims description 4
- 229920000159 gelatin Polymers 0.000 claims description 4
- 239000008273 gelatin Substances 0.000 claims description 4
- 235000019322 gelatine Nutrition 0.000 claims description 4
- 235000011852 gelatine desserts Nutrition 0.000 claims description 4
- 239000011491 glass wool Substances 0.000 claims description 4
- 235000021312 gluten Nutrition 0.000 claims description 4
- 235000011187 glycerol Nutrition 0.000 claims description 4
- 229910000271 hectorite Inorganic materials 0.000 claims description 4
- KWLMIXQRALPRBC-UHFFFAOYSA-L hectorite Chemical compound [Li+].[OH-].[OH-].[Na+].[Mg+2].O1[Si]2([O-])O[Si]1([O-])O[Si]([O-])(O1)O[Si]1([O-])O2 KWLMIXQRALPRBC-UHFFFAOYSA-L 0.000 claims description 4
- 229910052900 illite Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052622 kaolinite Inorganic materials 0.000 claims description 4
- 239000000113 methacrylic resin Substances 0.000 claims description 4
- 239000010445 mica Substances 0.000 claims description 4
- 229910052618 mica group Inorganic materials 0.000 claims description 4
- 239000002557 mineral fiber Substances 0.000 claims description 4
- VGIBGUSAECPPNB-UHFFFAOYSA-L nonaaluminum;magnesium;tripotassium;1,3-dioxido-2,4,5-trioxa-1,3-disilabicyclo[1.1.1]pentane;iron(2+);oxygen(2-);fluoride;hydroxide Chemical compound [OH-].[O-2].[O-2].[O-2].[O-2].[O-2].[F-].[Mg+2].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[Al+3].[K+].[K+].[K+].[Fe+2].O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2.O1[Si]2([O-])O[Si]1([O-])O2 VGIBGUSAECPPNB-UHFFFAOYSA-L 0.000 claims description 4
- 229910000273 nontronite Inorganic materials 0.000 claims description 4
- 239000005011 phenolic resin Substances 0.000 claims description 4
- 150000002989 phenols Chemical class 0.000 claims description 4
- 238000007747 plating Methods 0.000 claims description 4
- 229920002401 polyacrylamide Polymers 0.000 claims description 4
- 229920006122 polyamide resin Polymers 0.000 claims description 4
- 229920000647 polyepoxide Polymers 0.000 claims description 4
- 229920001225 polyester resin Polymers 0.000 claims description 4
- 239000004645 polyester resin Substances 0.000 claims description 4
- 229920001223 polyethylene glycol Polymers 0.000 claims description 4
- 229920001721 polyimide Polymers 0.000 claims description 4
- 239000009719 polyimide resin Substances 0.000 claims description 4
- 229920000915 polyvinyl chloride Polymers 0.000 claims description 4
- 235000018102 proteins Nutrition 0.000 claims description 4
- 108090000623 proteins and genes Proteins 0.000 claims description 4
- 102000004169 proteins and genes Human genes 0.000 claims description 4
- 229920002477 rna polymer Polymers 0.000 claims description 4
- 229910000275 saponite Inorganic materials 0.000 claims description 4
- 239000008107 starch Substances 0.000 claims description 4
- 235000019698 starch Nutrition 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 239000000454 talc Substances 0.000 claims description 4
- 229910052623 talc Inorganic materials 0.000 claims description 4
- 229910052902 vermiculite Inorganic materials 0.000 claims description 4
- 239000010455 vermiculite Substances 0.000 claims description 4
- 235000019354 vermiculite Nutrition 0.000 claims description 4
- 238000007259 addition reaction Methods 0.000 claims description 3
- 238000006482 condensation reaction Methods 0.000 claims description 3
- 239000004020 conductor Substances 0.000 claims description 3
- 238000006116 polymerization reaction Methods 0.000 claims description 3
- 238000010998 test method Methods 0.000 claims description 3
- 239000004753 textile Substances 0.000 claims description 3
- 235000013311 vegetables Nutrition 0.000 claims description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims description 2
- 238000003475 lamination Methods 0.000 claims description 2
- 229920001568 phenolic resin Polymers 0.000 claims description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 2
- 229920002554 vinyl polymer Polymers 0.000 claims description 2
- 239000000306 component Substances 0.000 claims 1
- 125000001153 fluoro group Chemical group F* 0.000 claims 1
- 230000002940 repellent Effects 0.000 claims 1
- 239000010408 film Substances 0.000 description 106
- 239000000463 material Substances 0.000 description 34
- 239000006185 dispersion Substances 0.000 description 31
- 239000010410 layer Substances 0.000 description 21
- 239000000853 adhesive Substances 0.000 description 19
- 230000001070 adhesive effect Effects 0.000 description 19
- 239000010409 thin film Substances 0.000 description 12
- 238000001035 drying Methods 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 230000004888 barrier function Effects 0.000 description 7
- 239000011889 copper foil Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 6
- 229920003023 plastic Polymers 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 239000011247 coating layer Substances 0.000 description 5
- 230000035699 permeability Effects 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000004820 Pressure-sensitive adhesive Substances 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000002734 clay mineral Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 229910001369 Brass Inorganic materials 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- 239000010951 brass Substances 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 235000019441 ethanol Nutrition 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 150000003949 imides Chemical class 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000002787 reinforcement Effects 0.000 description 3
- 238000004078 waterproofing Methods 0.000 description 3
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- 238000005341 cation exchange Methods 0.000 description 2
- 239000012461 cellulose resin Substances 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000003292 diminished effect Effects 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229960000907 methylthioninium chloride Drugs 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 239000004745 nonwoven fabric Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920001308 poly(aminoacid) Polymers 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 238000001291 vacuum drying Methods 0.000 description 2
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 239000004830 Super Glue Substances 0.000 description 1
- 239000004809 Teflon Substances 0.000 description 1
- 229920006362 Teflon® Polymers 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- DQXBYHZEEUGOBF-UHFFFAOYSA-N but-3-enoic acid;ethene Chemical compound C=C.OC(=O)CC=C DQXBYHZEEUGOBF-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- GDVKFRBCXAPAQJ-UHFFFAOYSA-A dialuminum;hexamagnesium;carbonate;hexadecahydroxide Chemical compound [OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[OH-].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Mg+2].[Al+3].[Al+3].[O-]C([O-])=O GDVKFRBCXAPAQJ-UHFFFAOYSA-A 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 229910001701 hydrotalcite Inorganic materials 0.000 description 1
- 229960001545 hydrotalcite Drugs 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011164 primary particle Substances 0.000 description 1
- 238000007639 printing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000006884 silylation reaction Methods 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 229910021647 smectite Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Silicates, Zeolites, And Molecular Sieves (AREA)
Description
本発明は、粘土を主成分とするフレキシブル基板に関するものであり、更に詳しくは、高い耐熱性を有し、自立膜として利用可能な機械的強度、高い電気絶縁性を有し、かつ優れたフレキシビリティーを有し、それ自身を重ね合わせて厚膜化することが容易にできる単層又は多層構造のフレキシブル基板に関するものである。フレキシブル基板絶縁膜の技術分野においては、従来からグリーンシートが用いられてきたが、このグリーンシートには、電子回路の焼付け等の加熱により硬化してしまうという問題点があった。本発明は、粘土を主成分とする特定の粘土薄膜の基材を用いることで、電子回路の焼付け処理に耐える耐熱性を有し、フレキシブル基板としての実用レベルの柔軟性を有し、かつ高い電気絶縁性を有する新技術・新素材を利用した新規フレキシブル基板を提供するものである。 The present invention relates to a flexible substrate mainly composed of clay. More specifically, the present invention relates to a flexible substrate having high heat resistance, mechanical strength that can be used as a self-supporting film, high electrical insulation, and excellent flexibility. The present invention relates to a flexible substrate having a single layer or a multilayer structure that can be easily made thick by overlapping itself. Conventionally, green sheets have been used in the technical field of flexible substrate insulating films, but this green sheet has a problem that it is cured by heating such as baking of electronic circuits. The present invention uses a specific clay thin film base material mainly composed of clay, has heat resistance to withstand baking processing of electronic circuits, has a practical level of flexibility as a flexible substrate, and high It provides a new flexible substrate using new technology and new materials with electrical insulation.
多くの電子機器でコンパクト化が図られ、電子基板の薄膜化が進められている。また、褶曲が繰り返されるために、基板に柔軟性が求められる用途がある。更に、基板は、製品に貼り付けて用いるために、基板の柔軟性が求められる用途がある。現在、柔軟なフレキシブル基板として、グリーンセラミックスシートが用いられているが、グリーンセラミックスシートは、加熱により柔軟性が低下するという問題点があった。 Many electronic devices have been made compact and electronic substrates have been made thinner. In addition, since the curvature is repeated, there is an application in which flexibility is required for the substrate. Furthermore, since the substrate is used by being attached to a product, there is an application in which the flexibility of the substrate is required. Currently, a green ceramic sheet is used as a flexible flexible substrate. However, the green ceramic sheet has a problem that the flexibility is lowered by heating.
また、柔軟な有機高分子フィルムとして、イミドフィルムが用いられているが、有機高分子であるため、高温で燃焼するという問題点がある。また、イミドフィルムは、高分子材料の中でも特に高価であり、流通管理などの目的で製品に一つずつ取り付ける場合に、コストの面で問題点がある。また、イミド樹脂は、インクの溶媒の浸透が悪く、印刷後にインクがダレてしまい、結果として配線の分解能を稼ぎにくい、また、焼成後に電子回路が剥離しやすいという問題点がある。 Moreover, although the imide film is used as a flexible organic polymer film, since it is an organic polymer, there exists a problem of burning at high temperature. In addition, imide films are particularly expensive among polymer materials, and there is a problem in terms of cost when they are attached to products one by one for the purpose of distribution management. In addition, the imide resin has a problem that the solvent of the ink is poorly penetrated and the ink sags after printing, and as a result, it is difficult to increase the resolution of the wiring, and the electronic circuit is easily peeled off after firing.
一方、粘土は、天然物製品が非常に安価に流通しており、耐熱性も一般に高い。また、粘土は、水やアルコールに分散し、その分散液をガラス板の上に広げ、静置乾燥することにより粒子の配向の揃った膜を形成することが知られており、例えば、この方法で、X線回折用の定方位試料が調製されてきた(非特許文献1)。しかしながら、ガラス板上に粘土の膜を形成した場合、ガラス板から剥がすことが困難であり、剥がす際に膜に亀裂が生じるなど、自立膜として得ることが難しいという問題があった。また、膜を剥がせたとしても、得られた膜が脆く、強度が不足であった。 On the other hand, as for clay, natural products are distributed at a very low price, and heat resistance is generally high. It is also known that clay is dispersed in water or alcohol, and the dispersion is spread on a glass plate and left to dry to form a film with uniform particle orientation. Thus, a fixed orientation sample for X-ray diffraction has been prepared (Non-Patent Document 1). However, when a clay film is formed on a glass plate, it is difficult to remove the clay film from the glass plate, and there is a problem that it is difficult to obtain a self-supporting film, for example, a crack occurs in the film. Moreover, even if the film was peeled off, the obtained film was brittle and the strength was insufficient.
最近、ラングミュアーブロジェット法(Langmuir−Blodgett Method)を応用した粘土薄膜の作製が行われている(非特許文献2)。しかし、この方法では、粘土薄膜は、ガラス等の材料でできた基板表面上に形成されるものであり、自立膜にはならない。更に、自立膜としての強度を有する粘土薄膜を得ることができなかった。更に、従来、例えば、機能性粘土薄膜等を調製する方法が種々報告されている。 Recently, a clay thin film using a Langmuir-Blodgett method has been produced (Non-patent Document 2). However, in this method, the clay thin film is formed on the substrate surface made of a material such as glass and does not become a self-supporting film. Furthermore, a clay thin film having strength as a self-supporting film could not be obtained. Furthermore, conventionally, for example, various methods for preparing functional clay thin films have been reported.
先行技術として、例えば、ハイドロタルサイト系層間化合物の水分散液を膜状化して乾燥することからなる粘土薄膜の製造方法(特許文献5)、層状粘土鉱物と燐酸又は燐酸基との反応を促進させる熱処理を施すことによる層状粘土鉱物が持つ結合構造を配向固定した層状粘土鉱物薄膜の製造方法(特許文献6)、スメクタイト系粘土鉱物と2価以上の金属の錯化合物を含有する皮膜処理用水性組成物(特許文献7)、等をはじめ、多数の事例が存在する。しかしながら、当技術分野においては、これまで、自立膜として利用可能な機械的強度を有し、柔軟性に優れた粘土膜の開発例は本発明者らの研究例の他に事例がなく、また、粘土膜を用いたフレキシブル基板の製造も検討されてこなかったのが実情である。 As a prior art, for example, a method for producing a clay thin film comprising forming an aqueous dispersion of a hydrotalcite-based intercalation compound into a film and drying it (Patent Document 5), promoting the reaction between the layered clay mineral and phosphoric acid or phosphate groups For producing a layered clay mineral thin film in which the bonded structure of the layered clay mineral is fixed by orientation treatment (Patent Document 6), and an aqueous solution for film treatment containing a complex compound of smectite clay mineral and bivalent metal or higher There are many cases including the composition (Patent Document 7) and the like. However, in this technical field, there have been no examples of development of clay films that have mechanical strength that can be used as self-supporting films and that have excellent flexibility, in addition to our research examples. In fact, the production of flexible substrates using clay films has not been studied.
このような状況の中で、本発明者らは、上記従来技術に鑑みて、自立膜として利用可能な機械的強度を有し、しかも、優れた耐熱性、電気絶縁性、及びフレキシビリティーを有する粘土膜によるフレキシブル基板を開発することを目標として鋭意研究を積み重ねる過程で、粘土を主成分とし、十分な耐熱性と柔軟性を有し、自立膜として利用可能である粘土膜が作製できることを見出した。また、この膜は、電子回路を作製する際に従来用いられている加熱処理を施した後もその柔軟性が保たれることを見出した。本発明者らは、これらの事実に注目し、粘土膜への電子回路の形成のさせ方などに関して更に研究を重ねて、粘土を主成分とするフレキシブル基板を得ることに成功して、本発明を完成するに至った。 Under such circumstances, the present inventors have a mechanical strength that can be used as a self-supporting film in view of the above-described conventional technology, and have excellent heat resistance, electrical insulation, and flexibility. In the process of accumulating research with the goal of developing flexible substrates with clay films, it is possible to produce clay films that have clay as the main component, have sufficient heat resistance and flexibility, and can be used as free-standing films. I found it. Further, it has been found that the flexibility of the film is maintained even after a heat treatment that is conventionally used in manufacturing an electronic circuit. The present inventors paid attention to these facts, and further researched on how to form an electronic circuit on a clay film, and succeeded in obtaining a flexible substrate mainly composed of clay. It came to complete.
本発明は、優れた耐熱性と柔軟性を有する安価な粘土膜からなるフレキシブル基板を提供することを目的とするものである。また、本発明は、自立膜として利用可能な機械的強度と靭性を有し、しかも、優れた耐熱性、電気絶縁性、及び柔軟性を併せ持つフレキシブル基板、それらを積層した多層基板等の新技術・新素材を提供することを目的とするものである。 An object of the present invention is to provide a flexible substrate made of an inexpensive clay film having excellent heat resistance and flexibility. In addition, the present invention provides a new technology such as a flexible substrate having a mechanical strength and toughness that can be used as a self-supporting film, and also having excellent heat resistance, electrical insulation, and flexibility, and a multilayer substrate obtained by laminating them.・ The purpose is to provide new materials.
上記課題を解決するための本発明は、以下の技術的手段から構成される。
(1)粘土を主成分とし、粘土と添加物、粘土と補強材、又は粘土と添加物と補強材から構成され、柔軟性を有し、自立膜として利用可能であるフレキシブル基板であって、
前記添加物が、エチレングリコール、グリセリン、イプシロンカプロラクタム、デキストリン、澱粉、セルロース系樹脂、ゼラチン、寒天、小麦粉、グルテン、アルキド樹脂、ポリウレタン樹脂、エポキシ樹脂、フッ素樹脂、アクリル樹脂、メタクリル樹脂、フェノール樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリビニル樹脂、ポリエチレングリコール、ポリアクリルアマイド、ポリエチレンオキサイド、タンパク質、デオキシリボヌクレイン酸、リボヌクレイン酸及びポリアミノ酸、フェノール類、安息香酸類化合物、及びシリコン樹脂からなる群のうちから選択される一種以上であり、前記補強材が、鉱物繊維、グラスウール、セラミックス繊維、植物繊維及び有機高分子繊維の群のうちの一種以上であり、前記添加物の、全固体に対する重量割合が、30パーセント以下(粘土:70パーセント以上)であり、前記補強材の、全固体に対する重量割合が、30パーセント以下(粘土:70パーセント以上)であり、その剛軟度は、8.0(mN)を下回る値(曲げ反発性試験の値として、JIS L1096:1999「一般織物試験方法」A法に準拠して測定された値)であることを特徴とするフレキシブル基板。
(2)主要構成成分が、天然粘土又は合成粘土である前記(1)に記載のフレキシブル基板。
(3)前記天然粘土又は合成粘土が、雲母、タルク、カオリナイト、イライト、バーミキュライト、モンモリロナイト、鉄モンモリロナイト、バイデライト、サポナイト、ヘクトライト、スチーブンサイト、及びノントロナイトからなる群のうちの一種以上である前記(2)に記載のフレキシブル基板。
(4)厚さが、1mmよりも薄く、フレキシブル基板の面積が、1cm2よりも大きい前記(1)に記載のフレキシブル基板。
(5)加熱、光照射等の任意の手段により、付加反応、縮合反応、重合反応等の化学反応を行わせ、粘土、添加物、及び接着層の成分同士、又は成分間において、新たな化学結合を生じさせて、耐水性、電気絶縁性、及び/又は機械的強度を改善させた前記(1)から(4)のいずれかに記載のフレキシブル基板。
(6)300℃で72時間加熱後も外観に異状が観察されない前記(1)に記載のフレキシブル基板。
(7)表面処理を施して、撥水、防水、補強、表面性状改質、及び/又は表面平坦化をした前記(1)に記載のフレキシブル基板。
(8)前記表面処理が、フッ素系膜、シリコン系膜、ポリシロキサン膜、フッ素含有オルガノポリシロキサン膜、アクリル樹脂膜、塩化ビニル樹脂膜、ポリウレタン樹脂膜、高撥水メッキ膜、金属蒸着膜、又はカーボン蒸着膜を表面に形成することである前記(7)に記載のフレキシブル基板。
(9)膜に対して垂直方向の直流電気抵抗が、1メガΩ以上である前記(1)に記載のフレキシブル基板。
(10)前記(1)から(9)のいずれかに記載のフレキシブル基板に導電体によって電子回路が形成されたことを特徴とする部材。
(11)電子回路に表面処理が施された前記(10)に記載の部材。
(12)前記表面処理が、フッ素系膜、シリコン系膜、ポリシロキサン膜、フッ素含有オルガノポリシロキサン膜、アクリル樹脂膜、塩化ビニル樹脂膜、ポリウレタン樹脂膜を表面に形成することである前記(11)に記載の部材。
(13)積層により、電子回路を複数含む前記(10)から(12)のいずれかに記載の部材。
The present invention for solving the above-described problems comprises the following technical means.
(1) as a main component of clay, it was added a clay, clay and reinforcements, or clay consists additives and reinforcing material, flexible and meet Ru available Der full Rekishiburu substrate as self-supporting membrane And
The additive is ethylene glycol, glycerin, epsilon caprolactam, dextrin, starch, cellulosic resin, gelatin, agar, flour, gluten, alkyd resin, polyurethane resin, epoxy resin, fluororesin, acrylic resin, methacrylic resin, phenolic resin, Of the group consisting of polyamide resin, polyester resin, polyimide resin, polyvinyl resin, polyethylene glycol, polyacrylamide, polyethylene oxide, protein, deoxyribonucleic acid, ribonucleic acid and polyamino acid, phenols, benzoic acid compounds, and silicon resin At least one selected from the group consisting of mineral fiber, glass wool, ceramic fiber, vegetable fiber and organic polymer fiber, The weight ratio of the object to the total solid is 30% or less (clay: 70% or more), and the weight ratio of the reinforcing material to the total solid is 30% or less (clay: 70% or more). The softness is a value lower than 8.0 (mN) (value measured in accordance with JIS L1096: 1999 “General Textile Test Method” Method A as the value of the bending resilience test). Flexible substrate.
( 2 ) The flexible substrate according to (1), wherein the main component is natural clay or synthetic clay.
( 3 ) The natural clay or synthetic clay is one or more members selected from the group consisting of mica, talc, kaolinite, illite, vermiculite, montmorillonite, iron montmorillonite, beidellite, saponite, hectorite, stevensite, and nontronite. The flexible substrate according to ( 2 ) above.
( 4 ) The flexible substrate according to (1), wherein the thickness is thinner than 1 mm and the area of the flexible substrate is larger than 1 cm 2 .
( 5 ) A chemical reaction such as an addition reaction, a condensation reaction, or a polymerization reaction is performed by any means such as heating or light irradiation, and a new chemistry is performed between or between the components of the clay, additive, and adhesive layer. The flexible substrate according to any one of (1) to ( 4 ), wherein bonding is generated to improve water resistance, electrical insulation, and / or mechanical strength.
( 6 ) The flexible substrate according to (1), wherein no abnormality is observed in appearance even after heating at 300 ° C. for 72 hours.
( 7 ) The flexible substrate according to (1), which has been subjected to a surface treatment to perform water repellency, waterproofing, reinforcement, surface property modification, and / or surface flattening.
( 8 ) The surface treatment is performed using a fluorine-based film, a silicon-based film, a polysiloxane film, a fluorine-containing organopolysiloxane film, an acrylic resin film, a vinyl chloride resin film, a polyurethane resin film, a highly water-repellent plating film, a metal vapor deposition film, Or the flexible substrate as described in said ( 7 ) which is forming a carbon vapor deposition film on the surface.
( 9 ) The flexible substrate according to (1), wherein a direct current electric resistance in a direction perpendicular to the film is 1 megaΩ or more.
( 10 ) A member in which an electronic circuit is formed of a conductor on the flexible substrate according to any one of (1) to ( 9 ).
( 11 ) The member according to ( 10 ), wherein the electronic circuit is surface-treated.
(12) the surface treatment, a fluorine-based film, a silicon-based film, a polysiloxane film, a fluorine-containing organopolysiloxane film, acrylic resin film, a vinyl resin film chloride, the is to form a polyurethane resin film on the surface (11 ) Member.
( 13 ) The member according to any one of ( 10 ) to ( 12 ) including a plurality of electronic circuits by stacking.
次に、本発明について、更に詳細に説明する。
本発明は、粘土を主成分とするフレキシブル基板であり、粘土を主成分とし、耐熱性と柔軟性を有し、自立膜として利用可能であり、電気絶縁性を有し、粘土表面に電子回路が形成可能であることを特徴とするものである。本発明のフレキシブル基板は、室温における、面に垂直方向の体積抵抗率は一メガΩ以上であり、300℃の加熱で72時間後も外観に異状がなく、300℃で24時間加熱処理後の剛軟度が、曲げ反発性試験の値として8.0(mN)以下であることを特徴とする。
Next, the present invention will be described in more detail.
The present invention is a flexible substrate having clay as a main component, which has clay as a main component, has heat resistance and flexibility, can be used as a self-supporting film, has electrical insulation, and has an electronic circuit on the clay surface. Can be formed. The flexible substrate of the present invention has a volume resistivity of 1 megaΩ or more in the direction perpendicular to the surface at room temperature, and there is no abnormality in appearance after 72 hours of heating at 300 ° C., and after heat treatment at 300 ° C. for 24 hours. The bending resistance is 8.0 (mN) or less as a value of a bending resilience test.
本発明のフレキシブル基板は、粘土のみ、あるいは粘土と少量の添加物、あるいは粘土と少量の添加物、あるいは粘土と少量の添加物と少量の補強材から構成される。本発明のフレキシブル基板を構成する粘土層の主要構成成分は、天然粘土、あるいは合成粘土である。前記粘土層の主要構成成分としては、例えば、雲母、タルク、カオリナイト、イライト、バーミキュライト、モンモリロナイト、鉄モンモリロナイト、バイデライト、サポナイト、ヘクトライト、スチーブンサイト及びノントロナイトが例示される。 The flexible substrate of the present invention is composed of clay alone, clay and a small amount of additive, clay and a small amount of additive, or clay, a small amount of additive and a small amount of reinforcing material. The main constituent of the clay layer constituting the flexible substrate of the present invention is natural clay or synthetic clay. Examples of the main component of the clay layer include mica, talc, kaolinite, illite, vermiculite, montmorillonite, iron montmorillonite, beidellite, saponite, hectorite, stevensite, and nontronite.
前記添加物としては、例えば、エチレングリコール、グリセリン、イプシロンカプロラクタム、デキストリン、澱粉、セルロース系樹脂、ゼラチン、寒天、小麦粉、グルテン、アルキド樹脂、ポリウレタン樹脂、エポキシ樹脂、フッ素樹脂、アクリル樹脂、メタクリル樹脂、フェノール樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリビニル樹脂、ポリエチレングリコール、ポリアクリルアマイド、ポリエチレンオキサイド、タンパク質、デオキシリボヌクレイン酸、リボヌクレイン酸及びポリアミノ酸、フェノール類、安息香酸類化合物、シリコン樹脂が例示される。 Examples of the additive include ethylene glycol, glycerin, epsilon caprolactam, dextrin, starch, cellulose resin, gelatin, agar, flour, gluten, alkyd resin, polyurethane resin, epoxy resin, fluororesin, acrylic resin, methacrylic resin, Examples include phenol resin, polyamide resin, polyester resin, polyimide resin, polyvinyl resin, polyethylene glycol, polyacrylamide, polyethylene oxide, protein, deoxyribonucleic acid, ribonucleic acid and polyamino acids, phenols, benzoic acid compounds, and silicon resin. The
前記補強材としては、鉱物繊維、グラスウール、セラミックス繊維、植物繊維、有機高分子繊維、のうちの1種以上が例示される。本発明では、好適には、例えば、粘土を主成分とする膜に接着層が形成されているものが例示される。この接着層としては、接着剤、あるいは接着剤とベース層から構成されるものが例示される。本発明では、例えば、加熱、光照射等の任意の方法、手段により、付加反応、縮合反応、重合反応等の化学反応を行わせ、粘土、添加物、及び補強材の成分同士、あるいはそれらの成分間において、新たな化学結合を生じさせて、耐水性、電気絶縁性、あるいは機械的強度を改善させたフレキシブル基板も対象とされる。 Examples of the reinforcing material include one or more of mineral fibers, glass wool, ceramic fibers, plant fibers, and organic polymer fibers. In the present invention, for example, an example in which an adhesive layer is formed on a film mainly composed of clay is exemplified. Examples of the adhesive layer include an adhesive or a layer composed of an adhesive and a base layer. In the present invention, for example, chemical reaction such as addition reaction, condensation reaction, polymerization reaction, etc. is carried out by any method or means such as heating, light irradiation, etc., and the components of clay, additive, and reinforcing material, or their components. A flexible substrate in which water resistance, electrical insulation, or mechanical strength is improved by generating a new chemical bond between components is also targeted.
本発明では、例えば、300℃で24時間加熱処理後の剛軟度が、曲げ反発性試験の値として8.0(mN)以下であるフレキシブル基板を提供できる。また、本発明では、例えば、300℃で72時間加熱後も外観に異状が観察されないフレキシブル基板を提供できる。また、本発明では、例えば、円、正方形、長方形等に代表される任意の二次元平面形状を有し、自立膜として用いることが可能であり、厚さは1mmよりも薄く、面積は1cm2よりも大きいフレキシブル基板を提供できる。 In the present invention, for example, it is possible to provide a flexible substrate whose bending resistance after heat treatment at 300 ° C. for 24 hours is 8.0 (mN) or less as a value of a bending resilience test. In the present invention, for example, it is possible to provide a flexible substrate whose appearance is not observed after heating at 300 ° C. for 72 hours. Moreover, in this invention, it has arbitrary two-dimensional planar shapes represented by a circle, a square, a rectangle etc., for example, can be used as a self-supporting film | membrane, thickness is thinner than 1 mm, and an area is 1 cm < 2 >. Larger flexible substrates can be provided.
本発明では、例えば、撥水、防水、表面性状改質、補強、表面平坦化を目的として、表面処理を行うことが可能であり、表面処理により、フッ素系膜、シリコン系膜、ポリシロキサン膜、フッ素含有オルガノポリシロキサン膜、アクリル樹脂膜、塩化ビニル樹脂膜、ポリウレタン樹脂膜、高撥水メッキ膜、金属蒸着膜、カーボン蒸着膜を表面に形成することが可能である。前記添加物の、全固体に対する重量割合は、好適には、30パーセント以下であり、前記補強材の、全固体に対する重量割合も、好適には、30パーセント以下である。 In the present invention, for example, surface treatment can be performed for the purpose of water repellency, waterproofing, surface property modification, reinforcement, and surface flattening. By the surface treatment, fluorine-based film, silicon-based film, polysiloxane film can be used. It is possible to form a fluorine-containing organopolysiloxane film, an acrylic resin film, a vinyl chloride resin film, a polyurethane resin film, a highly water-repellent plating film, a metal vapor deposition film, and a carbon vapor deposition film on the surface. The weight ratio of the additive to the total solid is preferably 30% or less, and the weight ratio of the reinforcing material to the total solid is also preferably 30% or less.
本発明のフレキシブル基板は、自立膜、高耐熱性、柔軟、加工容易であり、厚さは、例えば、3〜100μm、粘土結晶の配向性は、マイクロメートル、ナノオーダーで高配向であるという特徴を有する。本発明のフレキシブル基板は、JIS K7127による引っ張り強度は、10MPa以上という特徴を有する。本発明のフレキシブル基板の基本性能については、柔軟性は300℃で24時間加熱処理後の剛軟度が、曲げ反発性試験の値として8.0(mN)以下である。本発明のフレキシブル基板では、特に、主要成分の粘土の割合を高め、耐熱性が高い材料を接着層として選ぶことで高い耐熱性が得られる。 The flexible substrate of the present invention is a self-supporting film, high heat resistance, flexible, easy to process, the thickness is, for example, 3 to 100 μm, and the orientation of clay crystals is highly oriented in the order of micrometers and nanometers. Have The flexible substrate of the present invention is characterized in that the tensile strength according to JIS K7127 is 10 MPa or more. Regarding the basic performance of the flexible substrate of the present invention, the flexibility is that the bending resistance after heat treatment at 300 ° C. for 24 hours is 8.0 (mN) or less as the value of the bending resilience test. In the flexible substrate of the present invention, in particular, high heat resistance can be obtained by increasing the proportion of the main component clay and selecting a material having high heat resistance as the adhesive layer.
本発明のフレキシブル基板を構成する粘土層は、粘土を主原料(90重量%以上)として用い、基本構成として、好適には、例えば,層厚約1nm、粒子径約1μm、アスペクト比約300程度の天然又は合成の膨潤性粘土が90重量%以上と、分子の大きさ数nm以下の天然又は合成の低分子・高分子の添加物が10重量%以下の構成、が例示される。このフレキシブル基板は、例えば、厚さ約1nmの層状結晶を同じ向きに配向させて重ねて緻密に積層することで作製される。 The clay layer constituting the flexible substrate of the present invention uses clay as a main raw material (90% by weight or more). As a basic structure, for example, the layer thickness is preferably about 1 nm, the particle diameter is about 1 μm, and the aspect ratio is about 300. A natural or synthetic swellable clay of 90% by weight or more and a natural or synthetic low-molecular / high-molecular additive having a molecular size of several nm or less are composed of 10% by weight or less. This flexible substrate is produced, for example, by densely laminating layered crystals having a thickness of about 1 nm, oriented in the same direction.
得られたフレキシブル基板は、粘土層の膜厚が3〜100μmであり、ガスバリア性能は、粘土層の厚さ30μmで酸素透過度0.00008cc/m2/24hr/atm未満、水素透過度0.002cc/m2/24hr/atm未満であり、面積は100×40cm以上に大面積化することが可能であり、膜に対して、垂直方向の直流電気抵抗は1メガΩ以上である。難燃性については、酸素指数が94%以上である。 The resulting flexible substrate is a film thickness of the clay layer is 3 to 100 m, the gas barrier performance, the oxygen permeability at a thickness 30μm of the clay layer 0.00008cc / m 2 / 24hr / atm under a hydrogen permeability 0. 002cc / m 2 / 24hr / less than atm, the area is capable of large area over 100 × 40 cm, with respect to the film, a DC electrical resistivity in the vertical direction is 1 or more mega Omega. For flame retardancy, the oxygen index is 94% or more.
本発明は、自立膜として利用可能な機械的強度と靭性を有し、しかも、優れた電気絶縁性、柔軟性を併せ持つフレキシブル基板を提供するものである。また、本発明では、フレキシブル基板を粘着層を介して貼り付けることにより、フレキシブル基板を容易に多層化することが可能であり、また、容易にプラスチック・ゴム・金属などの表面に貼り付けることが可能である。 The present invention provides a flexible substrate having mechanical strength and toughness that can be used as a self-supporting film, and having both excellent electrical insulation and flexibility. Further, in the present invention, the flexible substrate can be easily multilayered by attaching the flexible substrate via the adhesive layer, and can be easily attached to the surface of plastic, rubber, metal, etc. Is possible.
本発明では、粘土として、天然、あるいは合成物、好ましくは、天然粘土及び合成粘土の何れか、あるいはそれらの混合物を用い、これを、水あるいは水を主成分とする液体に加え、分散液を調製する。粘土として、雲母、タルク、カオリナイト、イライト、バーミキュライト、モンモリロナイト、鉄モンモリロナイト、バイデライト、サポナイト、ヘクトライト、スチーブンサイト及びノントロナイトからなる群のうちの一種以上を用いることができる。粘土分散液の濃度は、好適には0.5から15重量パーセント、より好ましくは、1から10重量パーセントである。このとき、粘土分散液の濃度が薄すぎる場合、乾燥に時間がかかりすぎる可能性がある。また、粘土分散液の濃度が濃すぎる場合、よく粘土が分散しないため、また、気泡が抜けないため、均一な膜ができ難い可能性がある。 In the present invention, the clay is natural or synthetic, preferably natural clay or synthetic clay, or a mixture thereof, and this is added to water or a liquid mainly composed of water, and the dispersion is added. Prepare. As the clay, one or more members selected from the group consisting of mica, talc, kaolinite, illite, vermiculite, montmorillonite, iron montmorillonite, beidellite, saponite, hectorite, stevensite, and nontronite can be used. The concentration of the clay dispersion is suitably from 0.5 to 15 weight percent, more preferably from 1 to 10 weight percent. At this time, if the concentration of the clay dispersion is too thin, drying may take too long. If the concentration of the clay dispersion is too high, clay does not disperse well, and bubbles do not escape, so that there is a possibility that a uniform film cannot be formed.
次に、本発明では、必要に応じて、秤量した固体状、あるいは液体状の添加物を、粘土分散液に加え、均一な分散液を調製する。添加物としては、フレキシブル基板の柔軟性、あるいは機械的強度を向上させる、粘土と均一に混合するものであれば、特に限定されないが、例えば、エチレングリコール、グリセリン、イプシロンカプロラクタム、デキストリン、澱粉、セルロース系樹脂、ゼラチン、寒天、小麦粉、グルテン、アルキド樹脂、ポリウレタン樹脂、エポキシ樹脂、フッ素樹脂、アクリル樹脂、メタクリル樹脂、フェノール樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリビニル樹脂、ポリエチレングリコール、ポリアクリルアマイド、ポリエチレンオキサイド、タンパク質、デオキシリボヌクレイン酸、リボヌクレイン酸及びポリアミノ酸、フェノール類、安息香酸類化合物、シリコン樹脂のうちの1種以上を用いることができる。 Next, in the present invention, if necessary, a weighed solid or liquid additive is added to the clay dispersion to prepare a uniform dispersion. The additive is not particularly limited as long as it can be mixed with clay to improve the flexibility or mechanical strength of the flexible substrate. For example, ethylene glycol, glycerin, epsilon caprolactam, dextrin, starch, cellulose Resin, gelatin, agar, flour, gluten, alkyd resin, polyurethane resin, epoxy resin, fluororesin, acrylic resin, methacrylic resin, phenol resin, polyamide resin, polyester resin, polyimide resin, polyvinyl resin, polyethylene glycol, polyacrylamide One or more of polyethylene oxide, protein, deoxyribonucleic acid, ribonucleic acid and polyamino acids, phenols, benzoic acid compounds, and silicon resins can be used.
添加物の全固体に対する重量割合は、30パーセント以下であり、好ましくは1パーセントから10パーセントである。このとき、添加物の割合が低過ぎる場合、添加の効果が現れず、添加物の割合が高すぎる場合、調製した膜中で添加物と粘土の分布が不均一になり、結果として得られるフレキシブル基板の均一性が低下し、やはり添加効果が薄れる。また、添加物の割合が高すぎる場合、フレキシブル基板の耐熱性が低下する。 The weight ratio of the additive to the total solids is 30 percent or less, preferably 1 to 10 percent. At this time, if the ratio of the additive is too low, the effect of the addition does not appear, and if the ratio of the additive is too high, the distribution of the additive and the clay becomes uneven in the prepared film, resulting in the resulting flexible The uniformity of the substrate is lowered and the effect of addition is also diminished. Moreover, when the ratio of an additive is too high, the heat resistance of a flexible substrate will fall.
次に、秤量した補強材を、粘土分散液に加え、均一な分散液を調製する。補強材として、好適には、例えば、鉱物繊維、グラスウール、炭素繊維、セラミックス繊維、植物繊維、有機高分子繊維樹脂、のうちの1種以上を用いることができる。補強材の全固体に対する重量割合は、30パーセント以下であり、好ましくは1パーセントから10パーセントである。このとき、補強材の割合が低過ぎる場合、添加の効果が現れず、補強材の割合が高すぎる場合、調製した膜中で補強材と粘土の分布が不均一になり、結果として得られる粘土膜の均一性が低下し、やはり添加効果が薄れる。なお、補強材と添加物の添加順序はどちらが先と決まっているわけではなく、どちらを先に加えてもよい。 Next, the weighed reinforcing material is added to the clay dispersion to prepare a uniform dispersion. As the reinforcing material, for example, one or more of mineral fiber, glass wool, carbon fiber, ceramic fiber, vegetable fiber, and organic polymer fiber resin can be used. The weight ratio of the reinforcing material to the total solid is 30% or less, preferably 1 to 10%. At this time, if the proportion of the reinforcing material is too low, the effect of addition does not appear, and if the proportion of the reinforcing material is too high, the distribution of the reinforcing material and the clay becomes uneven in the prepared film, and the resulting clay The uniformity of the film is lowered and the effect of addition is also diminished. Note that the order of adding the reinforcing material and the additive is not determined first, and either may be added first.
本発明のフレキシブル基板の作製方法としては、例えば、粘土を主成分とする原料の分散液である液体をゆっくりと蒸発させ、膜状に成形する、分散液を支持体表面に塗布し、分散媒である液体を乾燥除去する、などの方法が例示される。分散媒である液体の乾燥除去法としては、例えば、種々の固液分離方法、例えば、遠心分離、ろ過、真空乾燥、凍結真空乾燥、加熱蒸発法の何れか、あるいはこれらの方法の組み合わせが可能である。これらの方法のうち、例えば、分散液を容器に流し込み、加熱蒸発法を用いる場合、平坦なトレイ、好ましくはプラスチック製あるいは金属製のトレイを水平に置き、粘土の濃度を0.5〜3重量パーセントに調整し、事前に脱気処理した分散液を注ぎ、水平を保った状態で、強制送風式オーブン中で30℃から70℃の温度条件下、好ましくは30℃から50℃の温度条件下で、1時間から半日間程度、好ましくは1時間から5時間、乾燥して粘土層を得る。 As a method for producing the flexible substrate of the present invention, for example, a liquid, which is a dispersion of a raw material mainly composed of clay, is slowly evaporated to form a film, the dispersion is applied to the surface of a support, and a dispersion medium is formed. The method of drying and removing the liquid which is is illustrated. As a method for drying and removing the liquid as the dispersion medium, for example, various solid-liquid separation methods such as centrifugation, filtration, vacuum drying, freeze vacuum drying, heat evaporation method, or a combination of these methods are possible. It is. Among these methods, for example, when the dispersion is poured into a container and the heating evaporation method is used, a flat tray, preferably a plastic or metal tray is placed horizontally, and the clay concentration is 0.5 to 3 wt. Adjusted to a percentage, poured in advance with a degassed dispersion, kept in a horizontal state in a forced air oven at a temperature of 30 ° C. to 70 ° C., preferably 30 ° C. to 50 ° C. And drying for about 1 hour to half a day, preferably 1 hour to 5 hours to obtain a clay layer.
また、別の例として、固液比の比較的高いゲル状分散液を支持体となる物体に塗布し、加熱蒸発法を用いる場合、粘土の濃度を4〜7重量パーセントに調整し、事前に脱気処理した分散液を金属板などの物体の上に1から4mmの厚さに塗布し、強制送風式オーブン中で30℃から100℃の温度条件下、好ましくは30℃から80℃の温度条件下で、10分間から2時間程度、好ましくは20分間から1時間、乾燥してフレキシブル基板を得る。 As another example, when a gel-like dispersion having a relatively high solid-liquid ratio is applied to an object serving as a support and the heating evaporation method is used, the clay concentration is adjusted to 4 to 7 weight percent, The degassed dispersion is applied to an object such as a metal plate to a thickness of 1 to 4 mm, and is subjected to a temperature condition of 30 ° C. to 100 ° C., preferably 30 ° C. to 80 ° C. in a forced air oven. Under conditions, it is dried for about 10 minutes to 2 hours, preferably 20 minutes to 1 hour to obtain a flexible substrate.
粘土を主成分とする原料の分散液を事前に脱気処理しない場合、粘土層に気泡に由来する孔ができ易くなるという問題がある場合がある。また、乾燥条件は、液体分を乾燥除去するのに十分であるように設定される。このとき、乾燥速度が遅すぎると、乾燥に時間がかかるという問題がある。また、乾燥速度が速すぎると、分散液の対流が起こり、粘土層の均一性が低下するという問題がある。フレキシブル基板の厚さは、分散液に用いる固体量を調整することによって、任意の厚さに調整することができる。フレキシブル基板が厚すぎると乾燥時間が非常に長くなる傾向がある。また、フレキシブル基板が厚くなることによって柔軟性が低減する。そのため、好適には、フレキシブル基板の厚さは1mmよりも薄く作製される。前記粘土膜を形成する際に、粘土粒子の隙間を極力少なくし、緻密な構造にすることが重要である。本発明のフレキシブル基板を構成する基材の粘土薄膜のX線回折チャートを図2に示す。シャープな一連の底面反射ピーク(001),(002),(003),(004),(005)が、それぞれ1.24、0.62、0.42、0.31、0.21nmの位置に観察され、粘土薄膜の粒子の配向がよく揃っていることが示された。本発明のフレキシブル基板を構成する基材は、粘土粒子の隙間を極力少なくし、緻密な構造としたこと及びピンホールがないことで高ガスバリアー性及び柔軟性を300℃の高温まで保持することを特徴としている。 If the dispersion of the raw material containing clay as a main component is not degassed in advance, there may be a problem that pores derived from bubbles are easily formed in the clay layer. The drying conditions are set so as to be sufficient to dry and remove the liquid component. At this time, if the drying speed is too slow, there is a problem that it takes time to dry. Further, when the drying rate is too high, there is a problem that convection of the dispersion occurs and the uniformity of the clay layer is lowered. The thickness of the flexible substrate can be adjusted to an arbitrary thickness by adjusting the amount of solid used in the dispersion. If the flexible substrate is too thick, the drying time tends to be very long. Further, the flexibility is reduced by increasing the thickness of the flexible substrate. Therefore, the thickness of the flexible substrate is preferably made thinner than 1 mm. When forming the clay film, it is important to make the gap between clay particles as small as possible and to have a dense structure. FIG. 2 shows an X-ray diffraction chart of the base clay thin film constituting the flexible substrate of the present invention. A series of sharp bottom surface reflection peaks (001), (002), (003), (004), (005) are positioned at 1.24, 0.62, 0.42, 0.31, and 0.21 nm, respectively. It was observed that the orientation of the clay thin film particles was well aligned. The base material constituting the flexible substrate of the present invention has a high gas barrier property and flexibility up to a high temperature of 300 ° C. by minimizing the gap between clay particles and having a dense structure and no pinholes. It is characterized by.
次に、フレキシブル基板を容器あるいは物体表面から剥離する。フレキシブル基板が容器等の支持体から自然に剥離しない場合は、好適には、真空引きにより剥離を促進させる。また、剥離の別の方法として、好適には、約110℃から200℃の温度条件下で乾燥し、剥離を容易にして自立膜を得る。このとき、温度が低すぎる場合には、剥離が起こりにくいという問題がある。温度が高すぎる場合には、添加物が劣化しやすくなるという問題がある。添加物を含まない場合には、更に高温の処理により剥離を促進させることができる。このときの高温の処理は、フレキシブル基板の組成にもよるが、最高で700℃までの温度条件が可能である。 Next, the flexible substrate is peeled off from the container or the object surface. In the case where the flexible substrate does not naturally peel from a support such as a container, the peeling is preferably promoted by evacuation. Further, as another method of peeling, it is preferably dried under a temperature condition of about 110 ° C. to 200 ° C. to facilitate peeling and obtain a self-supporting film. At this time, if the temperature is too low, there is a problem that peeling does not easily occur. When the temperature is too high, there is a problem that the additive tends to deteriorate. When an additive is not included, peeling can be promoted by a higher temperature treatment. Although the high temperature treatment at this time depends on the composition of the flexible substrate, a temperature condition up to 700 ° C. is possible.
以上のようにして得られた本発明のフレキシブル基板は、基本的には、親水性であり、そのため、プラスチックフィルムや金属箔に比較して耐水性に劣る。そのため、このフレキシブル基板は、結露する条件下、あるいは水に接する条件下では、膨潤し、脆弱になるという問題点があり、また、高い遮湿性を持たせることが困難である。そこで、このフレキシブル基板の粘土層の表面を処理することにより、親水性から疎水性に変え、耐水性・高遮湿性を付与することが可能である。表面処理としては、フレキシブル基板表面を疎水化するものであれば、特に限定されるものではないが、例えば被覆層作製法がある。 The flexible substrate of the present invention obtained as described above is basically hydrophilic and therefore has poor water resistance compared to plastic films and metal foils. Therefore, this flexible substrate has a problem that it swells and becomes brittle under the conditions of dew condensation or in contact with water, and it is difficult to provide a high moisture barrier property. Therefore, by treating the surface of the clay layer of the flexible substrate, it is possible to change from hydrophilic to hydrophobic and to impart water resistance and high moisture barrier properties. The surface treatment is not particularly limited as long as the surface of the flexible substrate is hydrophobized. For example, there is a coating layer manufacturing method.
被覆層作製による方法としては、例えば、フッ素系膜、シリコン系膜、ポリシロキサン膜、フッ素含有オルガノポリシロキサン膜、アクリル樹脂膜、塩化ビニル樹脂膜、ポリウレタン樹脂膜、高撥水メッキ膜、金属蒸着膜、カーボン蒸着膜などを表面に形成するものがある。この場合、膜作成法として、湿式法、乾式法、蒸着法、噴霧法等の方法が例示される。表面に作製された被覆層は、疎水性であり、そのため、結果としてフレキシブル基板表面の撥水性が実現する。表面処理法としては、他に、シリル化、イオン交換などの化学処理、等によって表面改質を行う方法が例示される。 Examples of the method by which the coating layer is prepared include, for example, a fluorine-based film, a silicon-based film, a polysiloxane film, a fluorine-containing organopolysiloxane film, an acrylic resin film, a vinyl chloride resin film, a polyurethane resin film, a highly water-repellent plating film, and a metal vapor deposition. There are some which form a film, a carbon vapor deposition film or the like on the surface. In this case, examples of the film forming method include a wet method, a dry method, a vapor deposition method, and a spray method. The coating layer produced on the surface is hydrophobic, and as a result, water repellency on the surface of the flexible substrate is realized. Other examples of the surface treatment method include a method of modifying the surface by chemical treatment such as silylation and ion exchange.
この表面処理により、以上述べた撥水性、防水性の付与の他に、膜強度を高める補強効果、表面における光散乱を押さえ、光沢を与え、外見を美麗にする効果が期待できる。一方、被覆層を有機高分子とする場合、粘土膜の常用温度範囲が被覆層の材料の常用温度範囲によって規定される場合がある。そのため、用途によって、表面処理に用いる材料の選定や膜厚が注意深く選択されることになる。 By this surface treatment, in addition to the above-described water repellency and waterproofing, the effect of reinforcing the film strength, the effect of suppressing light scattering on the surface, giving gloss, and making the appearance beautiful can be expected. On the other hand, when the coating layer is an organic polymer, the normal temperature range of the clay film may be defined by the normal temperature range of the material of the coating layer. Therefore, selection of materials used for the surface treatment and film thickness are carefully selected depending on applications.
次に、本発明では、必要に応じてフレキシブル基板に接着層を形成させる。接着層形成前に、必要に応じてフレキシブル基板の清浄化を行う。また、必要に応じてプライマーによる前処理を行う。プライマーの塗布目的としては、フレキシブル基板と接着層の親和性改良、被着体表面の補強、接着界面の保護などがあり、プライマーとしては、例えば、エチレン−酢酸ビニル樹脂系接着剤などがあげられる。本発明のフレキシブル基板は、高いガスバリア性を有し、接着剤の乾燥を遅くすることから、無溶剤タイプの接着剤を用いることが推奨される。 Next, in the present invention, an adhesive layer is formed on the flexible substrate as necessary. Before forming the adhesive layer, the flexible substrate is cleaned as necessary. In addition, pretreatment with a primer is performed as necessary. The purpose of applying the primer is to improve the affinity between the flexible substrate and the adhesive layer, to reinforce the adherend surface, and to protect the adhesive interface. Examples of the primer include an ethylene-vinyl acetate resin adhesive. . Since the flexible substrate of the present invention has a high gas barrier property and slows the drying of the adhesive, it is recommended to use a solventless type adhesive.
本発明のフレキシブル基板への接着層の形成法としては、塗布、噴霧、ディップコーティングなどが例示される。接着剤としては、天然物接着剤、無機接着剤、熱可塑性接着剤、熱硬化性接着剤、ゴム系接着剤、シアノアクリレート系接着剤、耐熱性接着剤などが例示される。また、接着層がフィルム状になっており、熱プレスで粘土層へコートする方法も使用可能である。更に、これらの接着層を基材両面に塗布した、両面粘着シートを用いることも可能である。両面粘着シートの片側の離型シートを剥がしてフレキシブル基板に接着することで、フレキシブル基板の片側に簡便に接着面を形成することができる。 Examples of the method for forming the adhesive layer on the flexible substrate of the present invention include application, spraying, and dip coating. Examples of the adhesive include natural product adhesives, inorganic adhesives, thermoplastic adhesives, thermosetting adhesives, rubber adhesives, cyanoacrylate adhesives, and heat resistant adhesives. Further, the adhesive layer is in the form of a film, and a method of coating the clay layer by hot pressing can also be used. Furthermore, it is also possible to use a double-sided pressure-sensitive adhesive sheet in which these adhesive layers are applied to both sides of the substrate. By peeling off the release sheet on one side of the double-sided pressure-sensitive adhesive sheet and bonding it to the flexible substrate, an adhesive surface can be easily formed on one side of the flexible substrate.
また、基材を有する両面粘着シートを用いた場合、基材がフレキシブル基板を補強する役割を果たすという効果をもたらす。このとき、基材は、例えば、有機ポリマーフィルムや、不織布が例示される。フレキシブル基板の耐熱性を高めるためには、接着層の耐熱性を高める必要がある。そのためには、アクリル製材料をベースにするなどで耐熱性を確保することができる。また、本発明では、熱硬化性接着層を熱ラミネーションで仮着後、オーブンキュアで本硬化させるタイプの接着層をコートする方法を採用することで耐熱性を確保することができる。 Moreover, when the double-sided adhesive sheet which has a base material is used, the effect that a base material plays the role which reinforces a flexible substrate is brought about. At this time, examples of the base material include an organic polymer film and a non-woven fabric. In order to increase the heat resistance of the flexible substrate, it is necessary to increase the heat resistance of the adhesive layer. For this purpose, heat resistance can be ensured by using an acrylic material as a base. Moreover, in this invention, heat resistance can be ensured by employ | adopting the method of coat | covering the adhesive layer of the type hardened | cured by oven curing after temporarily attaching a thermosetting contact bonding layer by heat lamination.
本発明のフレキシブル基板は、例えば、はさみ、カッター等で容易に円、正方形、長方形などの任意の大きさ、形状に切り取ることができる。また、金型を使うなどの方法で容易に穴を開けることができる。本発明のフレキシブル基板は、好適には、厚さは1mmよりも薄く、面積は1cm2よりも大きい。また、本発明のフレキシブル基板は、自立膜として利用可能な機械的強度を有し、柔軟性が高く、耐熱性が高く、電気絶縁体であり、容易に、均一に、かつ確実に粘土膜フレキシブル基板同士あるいは他材料との複合部材を形成可能である、といった特徴を有する。 The flexible substrate of the present invention can be easily cut into an arbitrary size and shape such as a circle, a square, and a rectangle with, for example, scissors and a cutter. Moreover, a hole can be easily formed by using a mold or the like. The flexible substrate of the present invention preferably has a thickness of less than 1 mm and an area of greater than 1 cm 2 . In addition, the flexible substrate of the present invention has mechanical strength that can be used as a self-supporting film, is highly flexible, has high heat resistance, is an electrical insulator, and is easily, uniformly, and reliably flexible with a clay film. It has a feature that a composite member of substrates or other materials can be formed.
耐熱性の高いフレキシブル基板を作製する場合に、粘土に比較して耐熱性に劣る添加物の添加量を少なくすることは重要である。この場合、添加物の総固体に対する重量比は10%以下であることが好適である。特に、耐熱性を要求されない場合は、この限りではない。本発明のフレキシブル基板は、粘土が主成分であることから、電気絶縁性に優れ、絶縁膜として広範に使用することができる。 When producing a flexible substrate having high heat resistance, it is important to reduce the amount of an additive inferior in heat resistance compared to clay. In this case, the weight ratio of the additive to the total solid is preferably 10% or less. This is not particularly the case when heat resistance is not required. Since the flexible substrate of the present invention is mainly composed of clay, it has excellent electrical insulation and can be widely used as an insulating film.
本発明では、フレキシブル基板に導電体によって電子回路を形成することができる。電子回路としては、例えば、銅箔を貼り付けた後、エッチングによって回路パターンを描くことが可能である。フレキシブル基板を重ねて貼り付けることにより、厚いフレキシブル基板を容易に、かつ確実に作製することができる。これにより、電子回路を多層化したパッケージング部材を提供できる。 In the present invention, an electronic circuit can be formed using a conductor on a flexible substrate. As an electronic circuit, for example, a circuit pattern can be drawn by etching after attaching a copper foil. By stacking and attaching the flexible substrates, a thick flexible substrate can be easily and reliably manufactured. Thereby, the packaging member which made the electronic circuit multilayer can be provided.
次に、本発明の材料(基材)の特性値について説明する。
(1)密度
従来材料は、下表に示されるように、プラスチック・フィラーナノコンポジット製品において、その密度が最も高いものでも1.51である。これに対して、本発明の材料は、1.51を上回る密度を有し、2.0以上、例えば、2.10程度の密度の測定値を示す。このように、本発明の材料は、1.51を上回る密度、特に、1.60から2.50程度の高密度を有する。
Next, the characteristic value of the material (base material) of this invention is demonstrated.
(1) Density As shown in the table below, the conventional material has a highest density of 1.51 in the plastic-filler nanocomposite product. On the other hand, the material of the present invention has a density exceeding 1.51 and exhibits a measured value of density of 2.0 or more, for example, about 2.10. Thus, the material of the present invention has a density greater than 1.51, in particular a high density on the order of 1.60 to 2.50.
(2)柔軟性
従来材料で最も柔らかいものは、粘土とパルプ繊維からできている市販のシートであり、その剛軟度は、曲げ反発性試験の値として、JIS L1096:1999「一般織物試験方法」A法に準拠して測定された値は、8.0(mN)である。一方、粘土膜で最も硬いものは、HR50/5−80Hであり、表面が5.3(mN)、裏面が17.1(mN)である。これに対して、本発明の材料は、曲げ反発性試験の値が2.0mN程度であり、少なくとも、8.0mNを下回る値を有するものである。従来材料と本発明の材料の剛軟度の閾値は8.0mNであると言えることから、この値をもって、本発明の材料を従来材料と区別(識別)することができる。
(2) Flexibility The softest material in the past is a commercially available sheet made of clay and pulp fiber, and its bending resistance is JIS L1096: 1999 “General Textile Test Method” as the value of the bending resilience test. The value measured according to method A is 8.0 (mN). On the other hand, the hardest clay film is HR50 / 5-80H, the front surface is 5.3 (mN), and the back surface is 17.1 (mN). On the other hand, the material of the present invention has a bending rebound test value of about 2.0 mN and at least a value lower than 8.0 mN. Since it can be said that the bending resistance threshold of the conventional material and the material of the present invention is 8.0 mN, the material of the present invention can be distinguished (identified) from the conventional material by this value.
(3)原料粘土の特性
本発明では、原料粘土として、好適には、例えば、1次粒子のアスペクト比(粒子数基準)が320程度のもので、特に、メチレンブルー吸着量、陽イオン交換容量が高いものが使用される。具体例として、例えば、メチレンブルー吸着量が130mmol/100g、陽イオン交換容量が110meq/100g、2%水分散液pHが10.2、4%水分散液粘度が350mPa・s、水分散メジアン径が1.13μmの諸物性を有するものが例示される。しかし、これらに制限されるものではなく、これらを標準値として、これらと同等もしくは均等の物性を有するものであれば同様に使用することができる。これの原料粘土として、例えば、山形県月布産粘土及びこれを主原料とする材料が好適に用いられる。
(3) Properties of raw clay In the present invention, the raw clay preferably has, for example, an aspect ratio (based on the number of particles) of primary particles of about 320, and particularly has a methylene blue adsorption amount and a cation exchange capacity. Higher ones are used. As a specific example, for example, methylene blue adsorption amount is 130 mmol / 100 g, cation exchange capacity is 110 meq / 100 g, 2% aqueous dispersion pH is 10.2, 4% aqueous dispersion viscosity is 350 mPa · s, and aqueous dispersion median diameter is Those having various physical properties of 1.13 μm are exemplified. However, it is not limited to these, and these can be used in the same manner as long as they have the same or equivalent physical properties as standard values. As this raw material clay, for example, Yamagata Pref. Tsukifu clay and a material using this as a main raw material are preferably used.
(4)その他の特性
本発明の材料は、例えば、以下のような特性値を有する。熱サイクルテスト(100−600℃、30サイクル)で外観に異状がなく(高耐熱性)、電気抵抗は、体積抵抗率(500V)が2.3×107Ωm(JIS K6911:1995)であり(高絶縁性)、例えば、フレキシブル基板材料として使用される。本発明の材料は、他の特性として、例えば、以下のような特性値を有する。
(4) Other characteristics The material of this invention has the following characteristic values, for example. There is no abnormality in appearance in the thermal cycle test (100-600 ° C., 30 cycles) (high heat resistance), and the electrical resistance is 2.3 × 10 7 Ωm (JIS K6911: 1995) in volume resistivity (500V). (Highly insulating), for example, used as a flexible substrate material. The material of the present invention has, for example, the following characteristic values as other characteristics.
酸素透過度:<0.00008cm3/20μm・m2 day・atm、水素透過度:0.002cm3/20μm・m2 day・atm、破断延び:2.2%、引裂試験(JISK6252:2001):33.4N/mm、酸素指数(JIS K7201:1995):>94.0、比熱:1.19J/g・K、熱拡散率:1.12×10−7m2/s、熱伝導率:0.27W/m・K、熱膨張係数(−100〜100℃):0.1×10−4K−1、熱膨張係数(100〜200℃):−0.06×10−4K−1、耐ガス腐食試験:外観に異状なし。これらの値は、本発明の材料の好適な特性値を示すものであり、本発明は、これらに制限されるものではなく、これらを標準値として、これらと同等もしくは均等のものであれば、本発明の範囲に含まれる。 Oxygen permeability: <0.00008cm 3 / 20μm · m 2 day · atm, hydrogen permeability: 0.002cm 3 / 20μm · m 2 day · atm, fracture extends: 2.2%, tear test (JISK6252: 2001) : 33.4 N / mm, oxygen index (JIS K7201: 1995):> 94.0, specific heat: 1.19 J / g · K, thermal diffusivity: 1.12 × 10 −7 m 2 / s, thermal conductivity : 0.27 W / m · K, thermal expansion coefficient (−100 to 100 ° C.): 0.1 × 10 −4 K −1 , thermal expansion coefficient (100 to 200 ° C.): −0.06 × 10 −4 K -1 , Gas corrosion resistance test: No abnormality in the appearance. These values show suitable characteristic values of the material of the present invention, and the present invention is not limited to these values. If these are standard values, these are equivalent or equivalent, It is included in the scope of the present invention.
本発明により、自立膜として利用可能な機械的強度と靭性を有し、しかも、優れた柔軟性、熱安定性、優れたガスバリア性、優れた水蒸気バリア性を併せ持つ新規フレキシブル基板及びその新技術・新素材を提供できる、という効果が奏される。 According to the present invention, a novel flexible substrate having mechanical strength and toughness that can be used as a self-supporting film, and having both excellent flexibility, thermal stability, excellent gas barrier properties, and excellent water vapor barrier properties, and its new technology The effect is that new materials can be provided.
次に、実施例に基づいて本発明を具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。 Next, the present invention will be specifically described based on examples, but the present invention is not limited to these examples.
(1)フレキシブル基板の製造
粘土として、2グラムの天然モンモリロナイト(クニピアP、クニミネ工業株式会社製)を、60cm3の蒸留水に加え、プラスチック製密封容器に、回転子とともに入れ、激しく振とうし、均一な分散液を得た。この分散液を、長さ約30cm、幅20cmの真鍮製板の上に、厚さ約2ミリメートル塗布し、これを水平に静置し、強制送風式オーブン中で60℃の温度条件下で30分乾燥して、剥離し、厚さ約0.04ミリメートルの粘土層を得た。次に、両面粘着シート(日東電工株式会社製)の片方の粘着面を上記粘土層に接着し、フレキシブル基板を作製した。上記粘着シートの厚みは0.15ミリメートル、接着剤は、無溶剤型アクリル系粘土膜であり、ベース層は不織布である。
(1) Manufacture of flexible substrate As clay, 2 grams of natural montmorillonite (Kunipia P, manufactured by Kunimine Kogyo Co., Ltd.) is added to 60 cm 3 of distilled water, placed in a plastic sealed container with a rotor, and shaken vigorously. A uniform dispersion was obtained. This dispersion was applied on a brass plate having a length of about 30 cm and a width of 20 cm, and about 2 millimeters in thickness. The dispersion was allowed to stand horizontally, and was subjected to a temperature of 60 ° C. in a forced air oven at 30 ° C. It was partially dried and peeled to obtain a clay layer having a thickness of about 0.04 mm. Next, one adhesive surface of a double-sided pressure-sensitive adhesive sheet (manufactured by Nitto Denko Corporation) was adhered to the clay layer to produce a flexible substrate. The pressure-sensitive adhesive sheet has a thickness of 0.15 mm, the adhesive is a solventless acrylic clay film, and the base layer is a nonwoven fabric.
(2)多層膜の製造
上記(1)で作製したフレキシブル基板の粘着面に、厚さ約0.04ミリメートルの銅箔を貼り付けることによって、銅被覆フレキシブル基板を作製した。本多層膜の全体の厚みは、約0.23ミリメートルであった。
(2) Manufacture of multilayer film A copper-coated flexible substrate was prepared by attaching a copper foil having a thickness of about 0.04 mm to the adhesive surface of the flexible substrate prepared in (1) above. The overall thickness of the multilayer film was about 0.23 millimeters.
(3)多層膜の特性
本多層膜の室温における、ヘリウムガスに対する透過係数は、1×10−12cm2 s−1cmHg−1未満であった。走査型電子顕微鏡観察より、銅箔とフレキシブル基板は、均一に、かつ強固に接着して、密に製膜されている様子が分かった。膜に対して、垂直方向の直流電気抵抗を交流二端子法で測定した結果,1メガΩ以上であった。
(3) Characteristics of Multilayer Film The permeability coefficient of this multilayer film with respect to helium gas at room temperature was less than 1 × 10 −12 cm 2 s −1 cmHg −1 . From the observation with a scanning electron microscope, it was found that the copper foil and the flexible substrate were uniformly and firmly bonded to form a dense film. As a result of measuring the DC electric resistance in the vertical direction with respect to the film by the AC two-terminal method, it was 1 megaΩ or more.
(1)フレキシブル基板の製造
粘土として、2グラムの天然モンモリロナイト(クニピアP、クニミネ工業株式会社製)を、60cm3の蒸留水に加え、プラスチック製密封容器に、回転子とともに入れ、激しく振とうし、均一な分散液を得た。この分散液を、長さ約30cm、幅20cmの真鍮製板の上に、厚さ約2ミリメートル塗布し、これを水平に静置し、強制送風式オーブン中で60℃の温度条件下で30分乾燥して、剥離し、厚さ約0.04ミリメートルの粘土層を得た。
(1) Manufacture of flexible substrate As clay, 2 grams of natural montmorillonite (Kunipia P, manufactured by Kunimine Kogyo Co., Ltd.) is added to 60 cm 3 of distilled water, placed in a plastic sealed container with a rotor, and shaken vigorously. A uniform dispersion was obtained. This dispersion was applied on a brass plate having a length of about 30 cm and a width of 20 cm, and about 2 millimeters in thickness. The dispersion was allowed to stand horizontally, and was subjected to a temperature of 60 ° C. in a forced air oven at 30 ° C. It was partially dried and peeled to obtain a clay layer having a thickness of about 0.04 mm.
(2)電子回路の作製
30mm×50mmの長方形に切断した粘土膜表面に、耐熱性シリコン系接着剤を均一に塗布し、厚さ0.03mmの銅箔を貼付した。粘土層にフッ素系高分子スプレーを噴霧し、粘土層に疎水性を付与した。エチルアルコールで希釈した感光性樹脂(フォトレジスト)を銅箔表面に均一に塗布し、室温乾燥後、50℃のオーブンで30分乾燥した。透明プラスチックシート上に作製した回路パターンマスクを感光層上に密着させ、10W蛍光灯で6.5分感光した。現像液中に室温で3〜7分浸した後、水洗し、塩化第二鉄溶液により13分間エッチング処理を行った。水洗後、エチルアルコールで表面を洗浄し、これを乾燥することで、電子回路用基板が得られた(図1)。銅箔上では、末端から末端への導通が確認された。
(2) Production of electronic circuit A heat-resistant silicon-based adhesive was uniformly applied to the surface of a clay film cut into a 30 mm × 50 mm rectangle, and a copper foil having a thickness of 0.03 mm was attached. A fluorine polymer spray was sprayed on the clay layer to impart hydrophobicity to the clay layer. A photosensitive resin (photoresist) diluted with ethyl alcohol was uniformly applied to the copper foil surface, dried at room temperature, and then dried in an oven at 50 ° C. for 30 minutes. A circuit pattern mask prepared on a transparent plastic sheet was brought into close contact with the photosensitive layer, and exposed to light with a 10 W fluorescent lamp for 6.5 minutes. After being immersed in a developing solution at room temperature for 3 to 7 minutes, it was washed with water and etched with a ferric chloride solution for 13 minutes. After washing with water, the surface was washed with ethyl alcohol and dried to obtain an electronic circuit board (FIG. 1). On the copper foil, conduction from end to end was confirmed.
粘土として3.456グラムの天然モンモリロナイト(クニピアP、クニミネ工業株式会社製)を、100cm3の蒸留水に加え、プラスチック製密封容器に、テフロン(登録商標)回転子とともに入れ、25℃で2時間激しく振とうし、均一な分散液を得た。この分散液に、添加物として、イプシロンカプロラクタム(和光純薬工業株式会社製)を0.144グラム加え、激しく振とうし、天然モンモリロナイト及びイプシロンカプロラクタムを含む均一な分散液を得た。次に、真空脱泡装置により、この粘土ペーストの脱気を行った。 3.456 grams of natural montmorillonite (Kunipia P, manufactured by Kunimine Kogyo Co., Ltd.) as clay was added to 100 cm 3 of distilled water, placed in a plastic sealed container with a Teflon (registered trademark) rotor, and 2 hours at 25 ° C. Shake vigorously to obtain a uniform dispersion. To this dispersion, 0.144 g of epsilon caprolactam (manufactured by Wako Pure Chemical Industries, Ltd.) was added as an additive, and shaken vigorously to obtain a uniform dispersion containing natural montmorillonite and epsilon caprolactam. Next, this clay paste was deaerated with a vacuum deaerator.
次に、この粘土ペーストを、真鍮製トレイに塗布した。塗布には、ステンレス製地べらを用いた。スペーサーをガイドとして利用し、均一厚の粘土ペースト膜を成型した。ここで、ペーストの厚みを2ミリメートルとした。このトレイを強制送風式オーブン中において、60℃の温度条件下で1時間乾燥することにより、厚さ約40マイクロメートルの均一な添加物複合粘土薄膜を得た。生成した粘土膜をトレイから剥離して、自立した、フレキシビリティーに優れた粘土膜を得た。 Next, this clay paste was applied to a brass tray. For application, a stainless steel gravel was used. Using a spacer as a guide, a clay paste film having a uniform thickness was formed. Here, the thickness of the paste was 2 mm. The tray was dried in a forced air oven at 60 ° C. for 1 hour to obtain a uniform additive composite clay thin film having a thickness of about 40 μm. The produced clay film was peeled from the tray to obtain a self-supporting clay film having excellent flexibility.
この膜を電気炉で加熱した。室温から700℃まで毎時100℃の速度で加熱した。次に、700℃で24時間保持した。その後、電気炉内で放冷した。この加熱処理の結果、膜には黒化及びスポット的に膨れ形状が観察された。しかし、持ち上げた際に、スポット的に破壊を生じ、肉眼で観察できるピンホールは発生しなかった。本実施例及び他の試験結果から、本発明では、粘土の重量比95%を超える膜の場合、より高耐熱性を有する粘土膜が得られることが分かった。 This film was heated in an electric furnace. Heated from room temperature to 700 ° C. at a rate of 100 ° C. per hour. Next, it was kept at 700 ° C. for 24 hours. Then, it stood to cool in an electric furnace. As a result of this heat treatment, the film was observed to be blackened and swelled like spots. However, when it was lifted, it was spotted and no pinholes that could be observed with the naked eye were generated. From this example and other test results, it was found that in the present invention, a clay film having higher heat resistance can be obtained in the case of a film having a clay weight ratio exceeding 95%.
以上詳述したように、本発明は、フレキシブル基板に係るものであり、本発明により、自立膜として利用可能な機械的強度を有し、高い耐熱性を有し、優れたフレキシビリティーを有し、それ自身を重ね合わせて、多層化することができ、他材料表面との接着ができる新しいフレキシブル基板を提供することができる。本発明は、上述の新技術・新素材を利用することで、電気絶縁性に優れた粘土薄膜の基材からなるフレキシブル基板を提供することを可能とするものとして有用である。 As described above in detail, the present invention relates to a flexible substrate. According to the present invention, the present invention has mechanical strength that can be used as a self-supporting film, high heat resistance, and excellent flexibility. In addition, it is possible to provide a new flexible substrate that can be laminated to form a multilayer and can be bonded to the surface of another material. INDUSTRIAL APPLICATION This invention is useful as what makes it possible to provide the flexible substrate which consists of a base material of the clay thin film excellent in electrical insulation by utilizing the above-mentioned new technique and new material.
Claims (13)
前記添加物が、エチレングリコール、グリセリン、イプシロンカプロラクタム、デキストリン、澱粉、セルロース系樹脂、ゼラチン、寒天、小麦粉、グルテン、アルキド樹脂、ポリウレタン樹脂、エポキシ樹脂、フッ素樹脂、アクリル樹脂、メタクリル樹脂、フェノール樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリイミド樹脂、ポリビニル樹脂、ポリエチレングリコール、ポリアクリルアマイド、ポリエチレンオキサイド、タンパク質、デオキシリボヌクレイン酸、リボヌクレイン酸及びポリアミノ酸、フェノール類、安息香酸類化合物、及びシリコン樹脂からなる群のうちから選択される一種以上であり、前記補強材が、鉱物繊維、グラスウール、セラミックス繊維、植物繊維及び有機高分子繊維の群のうちの一種以上であり、前記添加物の、全固体に対する重量割合が、30パーセント以下(粘土:70パーセント以上)であり、前記補強材の、全固体に対する重量割合が、30パーセント以下(粘土:70パーセント以上)であり、その剛軟度は、8.0(mN)を下回る値(曲げ反発性試験の値として、JIS L1096:1999「一般織物試験方法」A法に準拠して測定された値)であることを特徴とするフレキシブル基板。 Clay as a main component, clay and additives, clay and reinforcing material or an additive with the clay is composed of reinforcing material has a flexibility, a Ru available Der full Rekishiburu substrate as self-supporting film,
The additive is ethylene glycol, glycerin, epsilon caprolactam, dextrin, starch, cellulosic resin, gelatin, agar, flour, gluten, alkyd resin, polyurethane resin, epoxy resin, fluororesin, acrylic resin, methacrylic resin, phenolic resin, Of the group consisting of polyamide resin, polyester resin, polyimide resin, polyvinyl resin, polyethylene glycol, polyacrylamide, polyethylene oxide, protein, deoxyribonucleic acid, ribonucleic acid and polyamino acid, phenols, benzoic acid compounds, and silicon resin At least one selected from the group consisting of mineral fiber, glass wool, ceramic fiber, vegetable fiber and organic polymer fiber, The weight ratio of the object to the total solid is 30% or less (clay: 70% or more), and the weight ratio of the reinforcing material to the total solid is 30% or less (clay: 70% or more). The softness is a value lower than 8.0 (mN) (value measured in accordance with JIS L1096: 1999 “General Textile Test Method” Method A as the value of the bending resilience test). Flexible substrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005222283A JP4779151B2 (en) | 2005-07-29 | 2005-07-29 | Flexible substrate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005222283A JP4779151B2 (en) | 2005-07-29 | 2005-07-29 | Flexible substrate |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007042693A JP2007042693A (en) | 2007-02-15 |
JP4779151B2 true JP4779151B2 (en) | 2011-09-28 |
Family
ID=37800431
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005222283A Expired - Fee Related JP4779151B2 (en) | 2005-07-29 | 2005-07-29 | Flexible substrate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4779151B2 (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5294249B2 (en) * | 2008-03-31 | 2013-09-18 | 独立行政法人産業技術総合研究所 | Porous free-standing clay film and method for producing the same |
WO2012137559A1 (en) * | 2011-04-04 | 2012-10-11 | 株式会社村田製作所 | Flexible clay film and method for producing same, and flexible substrate using same |
JP5669266B2 (en) * | 2011-08-18 | 2015-02-12 | 株式会社村田製作所 | Clay film and wiring board using the same |
KR20140110661A (en) * | 2013-03-08 | 2014-09-17 | 건국대학교 산학협력단 | Organic thin film transistor comprising agar gate insulator |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09208823A (en) * | 1996-01-29 | 1997-08-12 | Toyota Central Res & Dev Lab Inc | Polyimide composite powder and method for producing the same |
JP3744634B2 (en) * | 1997-02-17 | 2006-02-15 | 株式会社カネカ | Polyimide resin film |
JP3686258B2 (en) * | 1998-06-19 | 2005-08-24 | 株式会社カネカ | Polyimide film and production method |
JP4379941B2 (en) * | 1999-03-31 | 2009-12-09 | 住友ベークライト株式会社 | Maleimide-based resin containing layered clay mineral and production method |
JP2004323651A (en) * | 2003-04-24 | 2004-11-18 | Fujikura Ltd | Styrene-based resin composition, film, circuit-board and molded product |
JP3855003B2 (en) * | 2003-09-08 | 2006-12-06 | 独立行政法人産業技術総合研究所 | Clay alignment film and method for producing the same |
JP4719895B2 (en) * | 2003-09-16 | 2011-07-06 | 独立行政法人産業技術総合研究所 | Glucose oxidase composite clay membrane and method for producing the same |
JP4719896B2 (en) * | 2003-09-29 | 2011-07-06 | 独立行政法人産業技術総合研究所 | Polyhydric phenol composite clay membrane and method for producing the same |
JP5137050B2 (en) * | 2003-12-17 | 2013-02-06 | 独立行政法人産業技術総合研究所 | Nylon composite clay membrane and method for producing the same |
JP4366498B2 (en) * | 2003-10-06 | 2009-11-18 | 独立行政法人産業技術総合研究所 | Peroxidase composite clay membrane and method for producing the same |
JP4701438B2 (en) * | 2005-07-29 | 2011-06-15 | 独立行政法人産業技術総合研究所 | Flexible printed circuit board |
-
2005
- 2005-07-29 JP JP2005222283A patent/JP4779151B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007042693A (en) | 2007-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Thermally conductive but electrically insulating polybenzazole nanofiber/boron nitride nanosheets nanocomposite paper for heat dissipation of 5G base stations and transformers | |
JP5099412B2 (en) | Membrane using modified clay | |
US8206814B2 (en) | Film made from denatured clay | |
Song et al. | Highly anisotropic thermal conductivity of layer-by-layer assembled nanofibrillated cellulose/graphene nanosheets hybrid films for thermal management | |
JP6748990B2 (en) | Thermally conductive composition and method for producing the same | |
He et al. | Bioinspired ultrastrong solid electrolytes with fast proton conduction along 2D channels | |
Hu et al. | Ultrastrong and hydrophobic sandwich-structured MXene-based composite films for high-efficiency electromagnetic interference shielding | |
JP5688783B2 (en) | Clay film and method for producing the same | |
WO2006062209A1 (en) | Clay film product | |
JP5553330B2 (en) | Moisture-proof film for electronic device and method for producing the same | |
CN108521683B (en) | Nano-cellulose graphene oxide electric heating material and preparation method thereof | |
JP4205241B2 (en) | Laminated body | |
JP2012076958A (en) | Graphene composite material and method for producing graphene composite sheet | |
TW202120775A (en) | Method for preparing graphite sheet | |
JP4836166B2 (en) | Adhesive clay film and method of using the same | |
Lee et al. | Environment-friendly, durable, electro-conductive, and highly transparent heaters based on silver nanowire functionalized keratin nanofiber textiles | |
JP4779151B2 (en) | Flexible substrate | |
Zuo et al. | Cellulose Nanocrystals/Carboxylated Multiwall Carbon Nanotubes/Ti3C2T x Hybrid Aerogels for Electromagnetic Interference Shielding | |
JP5219059B2 (en) | Protective film composed of clay alignment film | |
Dang et al. | A flexible, robust and multifunctional montmorillonite/aramid nanofibers@ MXene electromagnetic shielding nanocomposite with an alternating structure for enhanced Joule heating and fire-resistant protective performance | |
Altan et al. | Multifunctional, flexible, and mechanically robust polyimide-MXene nanocomposites: a review | |
JP4701438B2 (en) | Flexible printed circuit board | |
JP5190905B2 (en) | Surface treated clay film | |
JP4691721B2 (en) | Composite film made of cloth and clay | |
Liu et al. | Preparation and mechanism research of bio-inspired dopamine decorated expanded graphite/silicone rubber composite with high thermal conductivity and excellent insulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080305 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20101108 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110606 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110615 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140715 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4779151 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140715 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |