[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4661551B2 - Three-dimensional shaped object manufacturing equipment - Google Patents

Three-dimensional shaped object manufacturing equipment Download PDF

Info

Publication number
JP4661551B2
JP4661551B2 JP2005341226A JP2005341226A JP4661551B2 JP 4661551 B2 JP4661551 B2 JP 4661551B2 JP 2005341226 A JP2005341226 A JP 2005341226A JP 2005341226 A JP2005341226 A JP 2005341226A JP 4661551 B2 JP4661551 B2 JP 4661551B2
Authority
JP
Japan
Prior art keywords
machine
modeling
powder
dimensional shaped
optical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005341226A
Other languages
Japanese (ja)
Other versions
JP2007146216A5 (en
JP2007146216A (en
Inventor
裕彦 峠山
諭 阿部
喜万 東
俊 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2005341226A priority Critical patent/JP4661551B2/en
Publication of JP2007146216A publication Critical patent/JP2007146216A/en
Publication of JP2007146216A5 publication Critical patent/JP2007146216A5/ja
Application granted granted Critical
Publication of JP4661551B2 publication Critical patent/JP4661551B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は粉末層に光ビームを照射して焼結層を形成するとともにこの焼結層を積層することで所望の三次元形状造形物を製造する三次元形状造形物製造装置に関するものである。   The present invention relates to a three-dimensional shaped article manufacturing apparatus for forming a desired three-dimensional shaped article by irradiating a powder layer with a light beam to form a sintered layer and laminating the sintered layer.

無機質あるいは有機質の粉末材料から三次元形状造形物を製造するにあたり、ステージ上に形成した粉末層に光ビーム(指向性エネルギービーム、例えばレーザ)を照射して焼結層を形成し、この焼結層の上に新たな粉末層を形成して光ビームを照射することで焼結層を形成するということを繰り返して焼結層を積層することで三次元形状造形物を製造するとともに、焼結層の積層で三次元形状造形物を製造する途中に、焼結層の積層物としての造形物の表面の仕上げ加工を漸次行うことが特開2002−115004公報(特許文献1)に示されている。   When manufacturing a three-dimensional shaped object from an inorganic or organic powder material, the powder layer formed on the stage is irradiated with a light beam (directed energy beam, for example, a laser) to form a sintered layer, and this sintering Form a new powder layer on the layer and irradiate with a light beam to form a sintered layer, and then laminate the sintered layer to produce a three-dimensional shaped object and sinter Japanese Patent Application Laid-Open No. 2002-115004 (Patent Document 1) shows that a finishing process of a surface of a model as a laminate of sintered layers is gradually performed in the course of manufacturing a three-dimensional modeled model by stacking layers. Yes.

上記製造法で三次元形状造形物を製造するには、造形用のステージが設けられた造形部及びこの造形部に粉末を供給して粉末層を形成するための粉末供給部、造形部に対して光ビームを照射するための光学機器、仕上げ加工のための加工機が必要であるが、これらを有機的に結び合わせた状態で造形物を製造することから、従来の製造装置は、造形部と粉末供給部を有するとともに光学機器が付設されている造形機内に専用の加工機を設置したものとなっていた。   In order to manufacture a three-dimensional shaped object by the above manufacturing method, a modeling part provided with a modeling stage and a powder supply part for forming a powder layer by supplying powder to the modeling part, a modeling part Optical equipment for irradiating a light beam and a processing machine for finishing processing are necessary, but since a model is manufactured in a state where these are organically combined, a conventional manufacturing apparatus has a modeling part. In addition, a dedicated processing machine is installed in a modeling machine having a powder supply unit and an optical device.

この場合、装置全体が専用構成ということになるために、どうしてもコストが高くなり、製造する三次元形状造形物の値段も高くなる。
特開2002−115004公報
In this case, since the entire apparatus has a dedicated configuration, the cost is inevitably increased, and the price of the three-dimensional shaped object to be manufactured is also increased.
JP 2002-115004 A

本発明は上記の従来の問題点に鑑みて発明したものであって、低コストの三次元形状造形物製造装置を提供することを課題とするものである。   This invention is invented in view of said conventional problem, Comprising: It aims at providing a low-cost three-dimensional molded object manufacturing apparatus.

しかして本発明に係る三次元形状造形物製造装置は、造形用のステージが設けられた造形部及びこの造形部に粉末を供給して粉末層を形成するための粉末供給部とを有する造形機、上記造形部に対して光ビームを照射して粉末層の所定箇所の粉末を焼結させるための光学機器、焼結層の積層物としての造形物の表面の仕上げ加工を少なくとも造形途中に行う加工機で構成された三次元形状造形物製造装置であって、上記加工機は少なくとも3軸制御可能な汎用の数値制御工作機械であり、上記造形機は上記加工機におけるテーブル上にセットされ、上記光学機器は上記加工機における主軸台に着脱自在に取り付けられていることに特徴を有している。汎用の数値制御工作機械を利用できるようにしたものであり、殊に加工機における主軸台に着脱自在に取り付けているために、焼結させるための光ビームのスポット径の調整を主軸台の移動によって行ったりすることができるようにしたものである。 Therefore, the three-dimensional shaped article manufacturing apparatus according to the present invention includes a modeling unit having a modeling stage and a powder supply unit for supplying powder to the modeling unit to form a powder layer. An optical device for irradiating a light beam to the modeling part to sinter powder at a predetermined position of the powder layer, and finishing the surface of the model as a laminate of the sintered layer at least during modeling A three-dimensional shaped article manufacturing apparatus configured with a processing machine, wherein the processing machine is a general-purpose numerically controlled machine tool capable of controlling at least three axes, and the modeling machine is set on a table in the processing machine, the optical device has the particular feature is detachably attached to the spindle stock in the machine. A general-purpose numerically controlled machine tool can be used , especially because it is detachably attached to the headstock of a processing machine, so that the adjustment of the spot diameter of the light beam for sintering can be adjusted. It is something that can be done by .

上記光学機器前記主軸台との間に振動吸収材を介在させことも好ましい。 It is also preferred that Ru is interposed vibration-absorbing material between said headstock and said optics.

上記造形機は加工機におけるテーブル上に着脱自在に取り付けられていることが好ましい。加工機を他の用途にも使うことを簡便に行うことができる。   It is preferable that the modeling machine is detachably mounted on a table in the processing machine. It is possible to easily use the processing machine for other purposes.

造形機は不活性雰囲気下の焼結を可能とする密閉構造であり且つ加工機による加工時用に開閉自在な蓋を備えていることが、焼結時の雰囲気の確保による安定した焼結を得られると同時に、仕上げ加工を問題なく行うことができるものとなる点で好ましい。 The molding machine has a sealed structure that enables sintering in an inert atmosphere and is equipped with a lid that can be opened and closed for processing by the processing machine, which ensures stable sintering by securing the atmosphere during sintering. At the same time, it is preferable in that it can be finished without problems.

また、光学機器は光ビームを発する発振部とスキャン用の光学系ユニットとが分離しているとともに両者が光ファイバーで接続されたものであると、配置の自由度が高くなるとともに、発振部を振動の影響を受けることがない場所に設置することができるものとなる。   In addition, if the optical device has an oscillation unit that emits a light beam and a scanning optical system unit separated from each other and are connected by an optical fiber, the degree of freedom in arrangement increases and the oscillation unit vibrates. It can be installed in a place that is not affected by

本発明は、汎用の数値制御工作機械を利用できるために、装置コストを低減することができ、これ故に製造した三次元形状造形物のコストも低減することができる。また、加工機における主軸台に着脱自在に取り付けているために、焼結させるための光ビームのスポット径の調整を主軸台の移動によって行ったりすることができる。 Since the present invention can use a general-purpose numerically controlled machine tool, the apparatus cost can be reduced, and therefore the cost of the manufactured three-dimensional shaped object can also be reduced. Moreover, since it is detachably attached to the spindle stock in the processing machine, the adjustment of the spot diameter of the light beam for sintering can be performed by moving the spindle stock.

以下本発明を実施の形態の一例に基づいて詳述すると、図1に示す三次元形状造形物製造装置は、造形用のステージ11が設けられた造形部10及びこの造形部10に粉末を供給して粉末層を形成するための粉末供給部13とを有する造形機1、造形部10に対して光ビームを照射するための光学機器2、仕上げ加工のための加工機3で構成されているのは従来と同じであるが、ここにおける加工機3はテーブル(マシニングテーブル)30と少なくとも3軸制御が可能な主軸台31とを備える汎用の数値制御工作機械であり、そのスピンドルヘッド32には仕上げ加工のためのエンドミル33がセットされている。そして上記造形機1はテーブル30上にセットされ、上記光学機器2は主軸台31にセットされたものとなっている。   Hereinafter, the present invention will be described in detail based on an example of an embodiment. The three-dimensional shaped article manufacturing apparatus shown in FIG. 1 supplies a powder to the modeling part 10 provided with a modeling stage 11 and the modeling part 10. And a powder forming unit 1 for forming a powder layer, an optical device 2 for irradiating the modeling unit 10 with a light beam, and a processing machine 3 for finishing. However, the processing machine 3 here is a general-purpose numerically controlled machine tool including a table (machining table) 30 and a spindle head 31 capable of controlling at least three axes. An end mill 33 for finishing is set. The modeling machine 1 is set on a table 30, and the optical device 2 is set on a spindle stock 31.

図2はここで用いている造形機1の一例を示しており、密閉可能な筐体18内に造形部10と粉末供給部13とを納めたものとして構成されている。上記造形部10は上下に昇降させることができるステージ11を備え、また粉末供給部13は粉末を納めた粉末タンク14と該粉末タンク14内に上下に昇降自在に配された昇降テーブル15、粉末タンク14内の粉末を造形部10側に供給するとともに均すスキージング用ブレード16からなるものとして形成されている。また上記筐体18内には余剰粉末回収部17が設けられている。 FIG. 2 shows an example of the modeling machine 1 used here, which is configured as the modeling unit 10 and the powder supply unit 13 housed in a sealable casing 18. The modeling unit 10 includes a stage 11 that can be moved up and down, and a powder supply unit 13 includes a powder tank 14 that stores powder, an elevating table 15 that is arranged to be movable up and down in the powder tank 14, and powder. It is formed of a squeezing blade 16 that supplies and smoothes the powder in the tank 14 to the modeling unit 10 side. In addition, an excess powder recovery unit 17 is provided in the casing 18.

さらに上記筐体18はその上面が図3に示すようにシリンダーやソレノイド等の駆動機構40にて開閉される蓋19を備えているとともに、該蓋19には上記光学機器2から出力される光ビームを透過させる窓190が設けられている。図中180は蓋19の部分の密閉用のパッキンである。なお、光ビームがYAGレーザである場合には上記窓190に透明ガラスを用いればよいが、炭酸ガスレーザであるばあいには、ZnSeからなるものを用いる。   Further, the casing 18 is provided with a lid 19 whose upper surface is opened and closed by a driving mechanism 40 such as a cylinder or a solenoid as shown in FIG. A window 190 that transmits the beam is provided. In the figure, 180 is a packing for sealing the lid 19. Note that transparent glass may be used for the window 190 when the light beam is a YAG laser. However, when the light beam is a carbon dioxide gas laser, one made of ZnSe is used.

上記粉末供給部13は、造形タンク14内で上昇する昇降テーブル15で押し上げられた粉末の最上部の粉末をブレード16が造形部10側へとスライド移動することで造形部10側に供給するものであり、また上記ブレード16で造形部10上の粉末を均すことで所定厚みの粉末層を造形部10に形成する。   The powder supply unit 13 supplies the uppermost powder pushed up by the lifting table 15 rising in the modeling tank 14 to the modeling unit 10 side when the blade 16 slides to the modeling unit 10 side. Further, the powder on the modeling part 10 is leveled by the blade 16 to form a powder layer having a predetermined thickness on the modeling part 10.

主軸台31の側面に取り付けられた光学機器2は、レーザー発振器から出力されたレーザーをビーム形状補正手段及びガルバノミラー等のスキャン光学系を介して投射して、上記窓190を通じて造形部10における粉末層に照射する。上記光学系には使用するレーザの波長に応じたものを用いるのはもちろんである。   The optical device 2 attached to the side surface of the headstock 31 projects the laser beam output from the laser oscillator through a scanning optical system such as a beam shape correcting means and a galvanometer mirror, and the powder in the modeling unit 10 through the window 190. Irradiate the layer. Of course, an optical system corresponding to the wavelength of the laser used is used.

このものにおける三次元形状造形物の製造は、蓋19を閉めて密閉した筐体18内に不活性ガス(窒素)を満たした状態で、ステージ11上面に粉末タンク14から溢れさせた粉末をブレード16で供給すると同時にブレード16で均すことで第1層目の粉末層を形成し、図1(b)に示すように造形部10の上方に位置させた光学機器2からのレーザーLを上記粉末層の硬化させたい箇所に照射して粉末を焼結させて焼結層5を形成する。   The three-dimensional shaped object is manufactured by using a blade that is filled with an inert gas (nitrogen) in a sealed casing 18 with the lid 19 closed, and the powder overflowed from the powder tank 14 on the upper surface of the stage 11 is bladed. The first powder layer is formed by leveling with the blade 16 at the same time as the supply with the laser 16, and the laser L from the optical device 2 positioned above the modeling part 10 as shown in FIG. The sintered layer 5 is formed by irradiating a portion of the powder layer to be cured and sintering the powder.

この後、ステージ11を所定量だけ下げて再度粉末を供給してブレード16で均すことで第1層目の粉末層(と焼結層)の上に第2層目の粉末層を形成し、この第2層目の粉末層の硬化させたい箇所にレーザーLを照射して粉末を焼結させて下層の焼結層5と一体化した焼結層5を形成する。   Thereafter, the stage 11 is lowered by a predetermined amount, and the powder is supplied again and leveled by the blade 16 to form a second powder layer on the first powder layer (and the sintered layer). The portion of the second powder layer to be cured is irradiated with laser L to sinter the powder to form the sintered layer 5 integrated with the lower sintered layer 5.

ステージ11を下降させて新たな粉末層を形成し、レーザーを照射して所要箇所を焼結層とする工程を繰り返すことで、焼結層5の積層物として目的とする三次元形状造形物を製造するものであり、光ビームとしては炭酸ガスレーザーを好適に用いることができ、粉末層の厚みとしては、得られた三次元形状造形物を成形用金型などに利用する場合、0.05mm程度とするのが好ましい。   By lowering the stage 11 to form a new powder layer and irradiating a laser to make the required portion a sintered layer, a desired three-dimensional shaped object is obtained as a laminate of the sintered layers 5. A carbon dioxide laser can be suitably used as the light beam, and the thickness of the powder layer is 0.05 mm when the obtained three-dimensional shaped product is used for a molding die or the like. It is preferable to set the degree.

光ビームの照射経路(ハッチング経路)は、予め三次元CADデータから作成しておく。すなわち、三次元CADモデルから生成したSTLデータを等ピッチ(粉末層の厚み0.05mmとした場合、0.05mmピッチ)でスライスした各断面の輪郭形状データを用いる。この時、三次元形状造形物の少なくとも最表面が高密度(気孔率5%以下)となるように焼結させることができるように光ビームの照射を行い、内部は低密度となるように焼結させることで、つまりは形状モデルデータを予め、表層部と内部とに分割しておき、内部についてはポーラスとなるような焼結条件、表層部はほぼ粉末が溶融して高密度となる条件で光ビームを照射することで、緻密な表面を持つ造形物を高速に得ることができる。 The irradiation path (hatching path) of the light beam is created in advance from three-dimensional CAD data. That is, the contour shape data of each cross section obtained by slicing the STL data generated from the three-dimensional CAD model at an equal pitch (0.05 mm when the thickness of the powder layer is 0.05 mm) is used. At this time, irradiation with a light beam is performed so that at least the outermost surface of the three-dimensional shaped object can be sintered at a high density (porosity of 5% or less), and the inside is baked to a low density. In other words, the shape model data is preliminarily divided into the surface layer part and the inside, and the inside is a sintering condition that becomes porous, and the surface layer part is a condition that the powder almost melts and becomes high density By irradiating with a light beam, a shaped object having a dense surface can be obtained at high speed.

そして、上記粉末層を形成しては光ビームを照射して焼結層5を形成することを繰り返していくのであるが、焼結層5の全厚みがたとえば加工機3におけるエンドミル33の工具長さなどから求めた所要の値になれば、図1(a)に示すようにエンドミル33を造形部10の上方に位置させるとともに前記蓋19を開き、エンドミル33によってそれまでに造形した造形物の表面(主として上部側面)を切削する。たとえば、エンドミル33の工具(ボールエンドミル)が直径1mm、有効刃長3mmで深さ3mmの切削加工が可能であり、粉末層の厚みが0.05mmであるならば、60層の焼結層5を形成した時点でエンドミル33を作動させる。   Then, the powder layer is formed and the sintered layer 5 is repeatedly formed by irradiating the light beam. The total thickness of the sintered layer 5 is, for example, the tool length of the end mill 33 in the processing machine 3. If the required value obtained from the above is obtained, the end mill 33 is positioned above the modeling unit 10 as shown in FIG. 1A and the lid 19 is opened. Cut the surface (mainly the upper side). For example, if the tool of the end mill 33 (ball end mill) is capable of cutting with a diameter of 1 mm, an effective blade length of 3 mm, and a depth of 3 mm, and the powder layer thickness is 0.05 mm, 60 sintered layers 5 The end mill 33 is actuated at the time when is formed.

この加工機3による切削仕上げ加工により、造形物表面に付着した粉末による余剰硬化部を除去すると同時に、高密度部まで削り込むことで、造形物表面に高密度部を全面的に露出させることができる。この加工が終了すれば、蓋19を閉めて筐体18内に不活性ガスを満たし、再度粉末層の形成と焼結とを繰り返す。   By cutting and finishing by this processing machine 3, the excessively hardened portion due to the powder adhering to the surface of the modeled object is removed, and at the same time, the high-density part is completely exposed on the surface of the modeled object by cutting into the high-density part it can. When this processing is completed, the lid 19 is closed, the casing 18 is filled with an inert gas, and the formation and sintering of the powder layer are repeated again.

加工機3による切削加工経路は、レーザーLの照射経路と同様に予め三次元CADデータから作成しておく。この時、等高線加工を適用して加工経路を決定するが、Z方向(上下方向)ピッチは焼結時の積層ピッチにこだわる必要はなく、緩い傾斜の場合はZ方向ピッチをより細かくして補間することで、滑らかな表面を得られるようにしておく。   The cutting path by the processing machine 3 is created in advance from three-dimensional CAD data in the same manner as the laser L irradiation path. At this time, contour processing is applied to determine the machining path, but the Z-direction (vertical direction) pitch does not need to stick to the lamination pitch during sintering, and in the case of a gentle slope, the Z-direction pitch is made finer and interpolated. So that a smooth surface can be obtained.

図4に上記工程のフローチャートを、図5(a)(b)に図4中の焼結準備工程及び切削準備工程のフローチャートを示す。   FIG. 4 shows a flowchart of the above process, and FIGS. 5A and 5B show a flowchart of the sintering preparation process and the cutting preparation process in FIG.

ここにおいて、加工機3は前述のように汎用の数値工作機械であり、これに造形機1及び光学機器2を付加したものとして構成されているために、数値工作機械を既に所有している場合は、ハード的には造形機1と光学機器2を導入するだけでよいものであり、また数値工作機械も新たに導入するとしても、テーブル30上にボルトナット等の固定具39で固定された造形機1を取り外せばそれだけで加工機3を他のものの製造にも利用することができるために、やはりコスト的に有利となる。このために造形機1はテーブル30上に簡便に着脱できるようにしておくことが望ましい。 Here, the processing machine 3 is a general-purpose numerical machine tool as described above, and since it is configured with the modeling machine 1 and the optical device 2 added thereto, it already has a numerical machine tool. In terms of hardware, it is only necessary to introduce the modeling machine 1 and the optical device 2, and even if a numerical machine tool is newly introduced, it is fixed on the table 30 with a fixture 39 such as a bolt and nut. If the modeling machine 1 is removed, the processing machine 3 can be used for manufacturing other products by itself, which is also advantageous in terms of cost. Therefore, it is desirable that the modeling machine 1 can be easily attached to and detached from the table 30.

また、光学機器2を主軸台31に取り付けた図示例のものでは、光学機器2を上下方向に動かすことができるために、レーザーLの加工面でのスポット径を調整することができる。   Further, in the illustrated example in which the optical device 2 is attached to the spindle stock 31, the optical device 2 can be moved in the vertical direction, so that the spot diameter on the processing surface of the laser L can be adjusted.

光学機器2を主軸台31に取り付けるにあたっては、簡便に着脱が行えるようにしておくことも好ましい。図6はこの場合の一例を示しており、テーパ型の誘い込み部を有する連結部51,52を主軸台31と光学機器2側とに設けて、爪53でチャッキングすることで光学機器2の取り付けを行えるようにしている。電磁力を利用した固定でもよい。どのような連結手段を用いるにせよ、振動吸収シート等の振動吸収材54を光学機器2と主軸台31との間に介在させておくことが好ましい。   In attaching the optical device 2 to the head stock 31, it is also preferable that the optical device 2 can be easily attached and detached. FIG. 6 shows an example of this case. Connecting portions 51 and 52 having tapered lead-in portions are provided on the head stock 31 and the optical device 2 side, and are chucked by the claws 53, so that the optical device 2 It can be installed. It may be fixed using electromagnetic force. Whatever connecting means is used, it is preferable that a vibration absorbing material 54 such as a vibration absorbing sheet is interposed between the optical device 2 and the head stock 31.

また、図7に示すように、主軸台31のスピンドルヘッド32における工具固定用のコレットチャックを利用して光学機器2を工具(エンドミル33)に代えて取り付けられるようにしておいてもよい。レーザー照射時と加工時とで主軸台31をほぼ同じ位置においておくことができ、主軸台31側面に工学機器2を装着する場合に比して主軸31の全移動範囲を小さくすることができ、相対的に大きい造形物を製造することができる。   Further, as shown in FIG. 7, the optical device 2 may be attached in place of the tool (end mill 33) using a collet chuck for fixing the tool in the spindle head 32 of the head stock 31. The headstock 31 can be placed at substantially the same position during laser irradiation and during processing, and the total movement range of the main spindle 31 can be reduced as compared with the case where the engineering equipment 2 is mounted on the side surface of the headstock 31, A relatively large model can be produced.

図8に他例を示す。これはテーブル30(もしくはベース)上にアクチュエータによるXY駆動の可動テーブル35を備えた加工機3において、その可動テーブル35上に造形機1を設置するとともに加工機3から立設した支柱上に光学機器2を配したものであり、この場合における主軸台31は可動テーブル35側がXYの2軸についての自由度を有するために、上下軸方向にのみ可動となっているものであってもよい。 FIG. 8 shows another example. This is because in the processing machine 3 provided with an XY-driven movable table 35 by an actuator on a table 30 (or base), the modeling machine 1 is installed on the movable table 35 and the optical system is mounted on a support column standing from the processing machine 3. The apparatus 2 is arranged, and the headstock 31 in this case may be movable only in the vertical axis direction because the movable table 35 side has a degree of freedom about two axes XY.

そしてレーザーLによる焼結時には可動テーブル35によって図8(b)に示すように、光学機器2の下方側に造形機1の造形部10を移動させ、加工時には主軸台31の直下に造形部10を移動させる。 Then, as shown in FIG. 8 (b) by the movable table 35 at the time of sintering by laser L, moving the shaping part 10 of the molding machine 1 to the lower side of the optical device 2, the shaped portion 10 immediately below the headstock 31 during processing Move.

このものではレーザスキャン座標系と加工機3における切削座標系とを整合させる必要があることから、両座標系の軸方向及び造形機1の移動軸方向を合わせておくことが好ましい。また、上記座標軸合わせを簡単にするために、光学機器2の配置位置を微小調整するための精密テーブル(XYZ及びZ軸回りの回転ができるものが好ましい)を介して光学機器2をセットしておいてもよい。 In this case, since it is necessary to match the laser scan coordinate system and the cutting coordinate system of the processing machine 3, it is preferable to match the axial direction of both coordinate systems and the movement axis direction of the modeling machine 1. Further, in order to simplify the coordinate axis alignment, the optical device 2 is set via a precision table (preferably capable of rotating around the XYZ and Z axes) for finely adjusting the arrangement position of the optical device 2. It may be left.

光学機器2が図9に示すように造形機1における筐体18に取り付けられていてもよい。この場合、加工機3による加工時に光学機器2が邪魔になることがないように、光学機器2は造形部10の直上位置からスライド移動もしくは図10に示すように回転移動して退去させることができるようにしておく。図10の56は光学機器2の回転移動のための回転軸、57は不活性ガス充填口である。 The optical device 2 may be attached to the housing 18 in the modeling machine 1 as shown in FIG. In this case, the optical device 2 can be slid from the position directly above the modeling unit 10 or rotated and moved away as shown in FIG. 10 so that the optical device 2 does not get in the way during processing by the processing machine 3. Keep it available. In FIG. 10, reference numeral 56 denotes a rotating shaft for rotational movement of the optical apparatus 2, and 57 denotes an inert gas filling port.

なお、図示例では可動テーブル35上に光学機器2付きの造形機1をセットしているが、図1に示したテーブル30上に光学機器2付き造形機1をセットしたものであってもよいのはもちろんである。 In the illustrated example, the modeling machine 1 with the optical device 2 is set on the movable table 35, but the modeling machine 1 with the optical device 2 may be set on the table 30 shown in FIG. Of course.

更に、光学機器2は図11に示すようにそのレーザー発振器21とスキャン光学系の光学系ユニット22とが分離されて両者が光ファイバー23で接続されているものであってもよい。この場合、光学機器2における造形部10の上方に配置すべき部分を光学系ユニット22のみとし、レーザー発振器21は他の箇所に設置することができるために、図9,図10に示したもののように、加工機3による加工時に光学機器2を退去移動させなくてならないものにおいて、移動させなくてはならない距離を小さくすることができる。なお、上記光ファイバー23には前記窓190と同様に、使用するレーザーの種類に応じて適切な材質からなるものを用いる。   Further, as shown in FIG. 11, the optical device 2 may be one in which the laser oscillator 21 and the optical unit 22 of the scanning optical system are separated and both are connected by an optical fiber 23. In this case, since the portion to be disposed above the modeling portion 10 in the optical device 2 is only the optical system unit 22 and the laser oscillator 21 can be installed in another location, the one shown in FIGS. 9 and 10 is used. Thus, in the case where the optical device 2 has to be moved away during processing by the processing machine 3, the distance that must be moved can be reduced. The optical fiber 23 is made of an appropriate material according to the type of laser used, like the window 190.

(a)(b)は共に本発明の実施の形態の一例の概略断面図である。(a) (b) is a schematic sectional drawing of an example of embodiment of this invention. (a)(b)は同上の造形機の概略断面図と蓋を外した状態の平面図である。(a) and (b) are a schematic cross-sectional view of the above-described modeling machine and a plan view with a lid removed. 同上の造形機における蓋の開閉構造を示す概略断面図である。It is a schematic sectional drawing which shows the opening / closing structure of the lid | cover in a modeling machine same as the above. 同上のフローチャートである。It is a flowchart same as the above. (a)(b)は同上の焼結準備工程及び切削準備工程のフローチャートである。(a) (b) is a flowchart of a sintering preparatory process and a cutting preparatory process same as the above. (a)(b)は光学機器取り付け部の概略断面図と拡大断面図である。(a) and (b) are the schematic sectional drawing and an expanded sectional view of an optical equipment attachment part. (a)(b)は他例の概略断面図である。(a) (b) is a schematic sectional drawing of another example. (a)(b)は他の実施の形態の一例の概略断面図である。(a) (b) is a schematic sectional drawing of an example of other embodiment. (a)(b)は別の実施の形態の一例の概略断面図である。(a) (b) is a schematic sectional drawing of an example of another embodiment. (a)(b)は同上の他例の概略断面図である。(a) (b) is a schematic sectional drawing of the other example same as the above. 同上の光学機器の他例のブロック図である。It is a block diagram of the other example of the optical apparatus same as the above.

符号の説明Explanation of symbols

造形機
2 光学機器
3 加工機
1 Modeling machine 2 Optical equipment 3 Processing machine

Claims (5)

造形用のステージが設けられた造形部及びこの造形部に粉末を供給して粉末層を形成するための粉末供給部とを有する造形機、上記造形部に対して光ビームを照射して粉末層の所定箇所の粉末を焼結させるための光学機器、焼結層の積層物としての造形物の表面の仕上げ加工を少なくとも造形途中に行う加工機で構成された三次元形状造形物製造装置であって、上記加工機は少なくとも3軸制御可能な汎用の数値制御工作機械であり、上記造形機は上記加工機におけるテーブル上にセットされ、上記光学機器は上記加工機における主軸台に着脱自在に取り付けられていることを特徴とする三次元形状造形物製造装置。 A modeling machine having a modeling part provided with a modeling stage and a powder supply part for supplying powder to the modeling part to form a powder layer, and irradiating the modeling part with a light beam to form a powder layer This is a three-dimensional shaped article manufacturing apparatus composed of an optical device for sintering the powder at a predetermined location, and a processing machine that performs at least the finishing process on the surface of the molded article as a laminate of sintered layers. Te, the machine is a numerically controlled machine tool at least 3-axis control general purpose, the shaping device is set on a table in the machine, the optical instrument removably attached to the headstock in the machine A three-dimensional shaped article manufacturing apparatus characterized by being made. 前記光学機器と前記主軸台との間に振動吸収材を介在させていることを特徴とする請求項1記載の三次元形状造形物製造装置。 2. The three-dimensional shaped article manufacturing apparatus according to claim 1, wherein a vibration absorbing material is interposed between the optical device and the headstock . 造形機は加工機におけるテーブル上に着脱自在に取り付けられていることを特徴とする請求項1または2記載の三次元形状造形物製造装置。 The three-dimensional shaped article manufacturing apparatus according to claim 1 or 2, wherein the modeling machine is detachably mounted on a table in the processing machine . 造形機は不活性雰囲気下の焼結を可能とする密閉構造であり且つ加工機による加工時用に開閉自在な蓋を備えていることを特徴とする請求項1〜3のいずれか1項に記載の三次元形状造形物製造装置。 4. The molding machine according to any one of claims 1 to 3, wherein the modeling machine has a sealed structure that enables sintering in an inert atmosphere and includes a lid that can be opened and closed for processing by the processing machine. The three-dimensional shaped article manufacturing apparatus described. 光学機器は光ビームを発する発振部とスキャン用の光学系ユニットとが分離しているとともに両者が光ファイバーで接続されたものであることを特徴とする請求項1〜4のいずれか1項に記載の三次元形状造形物製造装置。 5. The optical device according to claim 1, wherein an oscillation unit that emits a light beam and a scanning optical system unit are separated and both are connected by an optical fiber. 6. 3D shaped object manufacturing equipment.
JP2005341226A 2005-11-25 2005-11-25 Three-dimensional shaped object manufacturing equipment Expired - Fee Related JP4661551B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005341226A JP4661551B2 (en) 2005-11-25 2005-11-25 Three-dimensional shaped object manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005341226A JP4661551B2 (en) 2005-11-25 2005-11-25 Three-dimensional shaped object manufacturing equipment

Publications (3)

Publication Number Publication Date
JP2007146216A JP2007146216A (en) 2007-06-14
JP2007146216A5 JP2007146216A5 (en) 2008-04-24
JP4661551B2 true JP4661551B2 (en) 2011-03-30

Family

ID=38207976

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005341226A Expired - Fee Related JP4661551B2 (en) 2005-11-25 2005-11-25 Three-dimensional shaped object manufacturing equipment

Country Status (1)

Country Link
JP (1) JP4661551B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105014961A (en) * 2014-04-29 2015-11-04 中国科学院福建物质结构研究所 3D printing device and galvanometer scanning control method thereof
CN105128344A (en) * 2015-10-23 2015-12-09 南京倍立达新材料系统工程股份有限公司 Large 3D printing and five-axis linking all-in-one machine

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054445A1 (en) * 2007-10-26 2009-04-30 Panasonic Electric Works Co., Ltd. Production device and production method of metal powder sintered component
JP2011241450A (en) * 2010-05-19 2011-12-01 Keijiro Yamamoto Layered manufacturing method and layered manufacturing apparatus
US20140374249A1 (en) 2011-12-26 2014-12-25 Industrie De Nora S.P.A. Anode for oxygen generation and manufacturing method for the same
JP2014125643A (en) 2012-12-25 2014-07-07 Honda Motor Co Ltd Apparatus for three-dimensional shaping and method for three-dimensional shaping
CN103394693B (en) * 2013-08-15 2016-03-23 石家庄铁道大学 A kind of laser multidimensional print device and method manufacturing large-angle cantilever structure workpiece
CN103612390B (en) * 2013-11-12 2016-03-09 广东卓耐普智能股份有限公司 A kind of 3D laser printer and Method of printing thereof
KR101665939B1 (en) * 2014-07-18 2016-10-25 한국생산기술연구원 A material supply apparatus for 3D manufacturing, a rapid 3D printer therewith, and 3D manufacturing method using it.
US10016852B2 (en) * 2014-11-13 2018-07-10 The Boeing Company Apparatuses and methods for additive manufacturing
JP5940712B1 (en) * 2015-05-25 2016-06-29 Dmg森精機株式会社 Processing machine
CN104999080B (en) * 2015-08-03 2017-10-24 北京理工大学 A kind of compound increasing material manufacturing method for precise fine complex structural member
CN105398059A (en) * 2015-12-17 2016-03-16 三星工作机械有限公司 High-precision printing and grinding integrated vacuum 3D printer
IT201900023991A1 (en) 2019-12-13 2021-06-13 Cms Spa Work center and method for machining pieces

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277878A (en) * 2003-02-25 2004-10-07 Matsushita Electric Works Ltd Apparatus and method for manufacturing three dimensionally shaped article
WO2005056221A1 (en) * 2003-12-11 2005-06-23 Keijirou Yamamoto Laminate molding method and laminate molding device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06152036A (en) * 1992-11-13 1994-05-31 Semiconductor Energy Lab Co Ltd Apparatus and method for laser treatment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004277878A (en) * 2003-02-25 2004-10-07 Matsushita Electric Works Ltd Apparatus and method for manufacturing three dimensionally shaped article
WO2005056221A1 (en) * 2003-12-11 2005-06-23 Keijirou Yamamoto Laminate molding method and laminate molding device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105014961A (en) * 2014-04-29 2015-11-04 中国科学院福建物质结构研究所 3D printing device and galvanometer scanning control method thereof
CN105128344A (en) * 2015-10-23 2015-12-09 南京倍立达新材料系统工程股份有限公司 Large 3D printing and five-axis linking all-in-one machine

Also Published As

Publication number Publication date
JP2007146216A (en) 2007-06-14

Similar Documents

Publication Publication Date Title
JP4661551B2 (en) Three-dimensional shaped object manufacturing equipment
JP5777187B1 (en) Additive manufacturing equipment
JP5355213B2 (en) Laminate modeling equipment for modeling three-dimensional shaped objects
JP3446733B2 (en) Method and apparatus for manufacturing three-dimensional shaped object
WO2009131103A1 (en) Laminate molding device
EP3023177B1 (en) Carrier arrangement for use in a method for simultaneously repairing a plurality of components by using additive manufacturing
JP5119123B2 (en) Manufacturing method of three-dimensional shaped object
CN110340355B (en) Method for manufacturing three-dimensional shaped object
US20020100750A1 (en) Rapid prototyping method using 3-D laser inner cutting
EP3427870B1 (en) Three-dimensional molded object production method
US20120251378A1 (en) Process for producing three-dimensionally shaped object and device for producing same
JP5456400B2 (en) Manufacturing apparatus and manufacturing method of three-dimensional shaped object
KR20140116496A (en) Method of manufacturing three-dimensional sculpture
CN102458722A (en) Method for producing three-dimensional shaped object and three-dimensional shaped object obtained by same
US10919114B2 (en) Methods and support structures leveraging grown build envelope
US20190134891A1 (en) Dmlm build platform and surface flattening
JP2007146216A5 (en)
KR20040028593A (en) Method of manufacturing a three dimensional object
JP2010132961A (en) Lamination forming device and lamination forming method
WO2017195773A1 (en) Method for manufacturing hybrid shaped article, and hybrid shaped article
JP2015030872A (en) Method and apparatus for production of three-dimensional laminate formed object
JP4384420B2 (en) Additive manufacturing method
JP6192677B2 (en) Additive manufacturing method and additive manufacturing apparatus
JPWO2017221912A1 (en) Manufacturing method of three-dimensional shaped object
JP3601535B1 (en) Manufacturing method of three-dimensional shaped object

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080310

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101220

R151 Written notification of patent or utility model registration

Ref document number: 4661551

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees