[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4517615B2 - Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus - Google Patents

Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus Download PDF

Info

Publication number
JP4517615B2
JP4517615B2 JP2003339761A JP2003339761A JP4517615B2 JP 4517615 B2 JP4517615 B2 JP 4517615B2 JP 2003339761 A JP2003339761 A JP 2003339761A JP 2003339761 A JP2003339761 A JP 2003339761A JP 4517615 B2 JP4517615 B2 JP 4517615B2
Authority
JP
Japan
Prior art keywords
reverse osmosis
osmosis membrane
water
evaluation
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003339761A
Other languages
Japanese (ja)
Other versions
JP2005103431A (en
Inventor
光和 益戸
伸説 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2003339761A priority Critical patent/JP4517615B2/en
Publication of JP2005103431A publication Critical patent/JP2005103431A/en
Application granted granted Critical
Publication of JP4517615B2 publication Critical patent/JP4517615B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、逆浸透膜供給水の評価方法及び装置と逆浸透膜を含む水処理装置の運転管理方法に関する。詳しくは、本発明は、逆浸透膜の透過流束の低下を招くことなく、長期間にわたって逆浸透膜装置を安定して運転するための逆浸透膜供給水の評価方法及び逆浸透膜供給水の評価装置と、この評価結果に基づいて水処理装置の運転を適正に管理する方法に関する。   The present invention relates to an evaluation method and apparatus for reverse osmosis membrane feed water and an operation management method for a water treatment apparatus including a reverse osmosis membrane. More specifically, the present invention relates to a method for evaluating reverse osmosis membrane feed water and reverse osmosis membrane feed water for stably operating a reverse osmosis membrane device over a long period of time without causing a decrease in the permeation flux of the reverse osmosis membrane. And a method for appropriately managing the operation of the water treatment apparatus based on the evaluation result.

なお、本発明において、「逆浸透膜」は、「逆浸透膜」と「ナノ濾過膜」を包含する広義の「逆浸透膜」を意味する。   In the present invention, “reverse osmosis membrane” means “reverse osmosis membrane” in a broad sense including “reverse osmosis membrane” and “nanofiltration membrane”.

表面緻密層と多孔質支持層とからなり、溶媒分子は通すが溶質分子を通さない逆浸透膜により、海水の一段淡水化が可能になった。その後、逆浸透膜の利用分野が広がり、低圧力で運転可能な低圧逆浸透膜が開発され、下水二次処理水、工場排水、河川水、湖沼水、ゴミ埋め立て浸出水などの浄化にも逆浸透膜が利用されるようになった。   A reverse osmosis membrane consisting of a dense surface layer and a porous support layer that allows solvent molecules to pass through but not solute molecules to allow one-stage desalination of seawater. Later, the field of use of reverse osmosis membranes expanded, and low-pressure reverse osmosis membranes that can be operated at low pressure were developed, which also reverses purification of sewage secondary treated water, factory effluent, river water, lake water, landfill leachate, etc. Osmotic membranes have been used.

逆浸透膜は溶質の阻止率が高いため、逆浸透膜処理により得られる透過水は良好な水質を有するので、各種用途に有効に再利用が可能である。しかし、その一方で、処理の継続に伴い膜の透過流束が低下し、操作圧力が上昇するため、この場合には、膜性能を回復させるために、運転を停止して逆浸透膜を洗浄する処理が必要となる。   Since the reverse osmosis membrane has a high solute rejection rate, the permeated water obtained by the reverse osmosis membrane treatment has good water quality and can be effectively reused in various applications. However, on the other hand, the permeation flux of the membrane decreases with the continuation of the process and the operating pressure increases. In this case, the operation is stopped and the reverse osmosis membrane is washed to restore the membrane performance. It is necessary to perform processing.

従来においては、逆浸透膜を用いて水処理を行う場合、このような膜洗浄頻度を低減して、処理効率を高めるために、逆浸透膜モジュールへの供給水を、JIS K3802に定義されているファウリングインデックス(FI)、又はASTM D4189に定義されているシルトデンシティインデックス(SDI)や、より簡便な評価方法として谷口により提案されたMF値(Desalination,vol.20,p.353−364,1977)で評価し、この値が既定値以下となるように、例えばFI値又はSDI値が3〜4、あるいはそれ以下となるように、必要に応じて前処理を実施し、逆浸透膜供給水をある程度清澄にすることにより、逆浸透膜モジュールにおける透過流束の低下や操作圧力の上昇などの障害を避け、安定運転を継続する方法が実施されている。   Conventionally, when water treatment is performed using a reverse osmosis membrane, the supply water to the reverse osmosis membrane module is defined in JIS K3802 in order to reduce the frequency of membrane washing and increase the treatment efficiency. Fouling index (FI), silt density index (SDI) defined in ASTM D4189, or MF value proposed by Taniguchi as a simpler evaluation method (Desalination, vol. 20, p.353-364) 1977), and pretreatment is performed as necessary so that the FI value or SDI value is 3 to 4 or less, for example, so that this value is not more than the predetermined value, and the reverse osmosis membrane supply By clarifying the water to some extent, avoiding obstacles such as reduced permeation flux and increased operating pressure in the reverse osmosis membrane module, stable A method of continuing operation has been implemented.

FI値、SDI値、MF値はいずれも逆浸透膜供給水を0.45μmの精密濾過膜(通常、日本ミリポア株式会社の「ミリポアフィルター」を用いることが多い。)で濾過したときの所定の濾過時間を測定し、この測定値に基いて算出されるものである。前処理としては、例えば、工場廃水の場合、活性汚泥法などによる生物学的処理や、活性炭吸着、限外濾過などの物理化学的処理を行うことが一般的である。   The FI value, SDI value, and MF value are all determined when the reverse osmosis membrane feed water is filtered through a 0.45 μm microfiltration membrane (usually, a “Millipore filter” manufactured by Nihon Millipore Corporation is often used). The filtration time is measured and calculated based on this measured value. As the pretreatment, for example, in the case of factory wastewater, it is common to perform biological treatment by an activated sludge method or the like, or physicochemical treatment such as activated carbon adsorption or ultrafiltration.

しかしながら、FI値又はSDI値やMF値が既定値以下の逆浸透膜供給水であっても、逆浸透膜において透過流束の低下や操作圧力の上昇が早期に発生する場合があった。即ち、従来のFI値、SDI値又はMF値の評価は、逆浸透膜供給水中のSS(懸濁固形物)を捕捉することにより、これを濾過時間に反映することができるため、SSに基く逆浸透膜供給水としての良否の判定には有効であるが、原水中の溶解性の汚れ成分を濾過時間に反映しない。このため、溶存物質の化学的相互作用に基く逆浸透膜供給水としての良否を的確には判定できない。   However, even if the reverse osmosis membrane supply water has a FI value, an SDI value, or an MF value equal to or lower than a predetermined value, a decrease in permeation flux and an increase in operating pressure may occur at an early stage in the reverse osmosis membrane. That is, the conventional evaluation of FI value, SDI value or MF value is based on SS because it can be reflected in filtration time by capturing SS (suspended solids) in reverse osmosis membrane feed water. Although effective for determining the quality of the reverse osmosis membrane supply water, the soluble soil component in the raw water is not reflected in the filtration time. For this reason, the quality as reverse osmosis membrane supply water based on the chemical interaction of dissolved substances cannot be accurately determined.

特願2002−362543号では、逆浸透膜供給水をポリアミド系メンブレンフィルターに通水し、濾過抵抗の大小により逆浸透膜供給水としての良否を評価する方法が示されている。この方法であれば、逆浸透膜と同素材のポリアミド系メンブレンフィルターを用いることにより、供給水中に溶存し、逆浸透膜に吸着して障害となるような膜汚染物質も検出することができる。しかしながら、ポリアミド系メンブレンフィルターは精密濾過膜であり、いかに逆浸透膜と素材が同一であったとしても、逆浸透膜における透過流束の低下等を予測するには限界があり、必ずしも十分な逆浸透膜供給水の管理ができるわけではない。また、評価操作自体も煩雑で手間を要するという不具合があった。   Japanese Patent Application No. 2002-362543 discloses a method of passing reverse osmosis membrane feed water through a polyamide membrane filter and evaluating the quality of the reverse osmosis membrane feed water based on the magnitude of filtration resistance. With this method, by using a polyamide membrane filter made of the same material as the reverse osmosis membrane, it is also possible to detect a membrane contaminant that dissolves in the supply water and adsorbs on the reverse osmosis membrane. However, polyamide membrane filters are microfiltration membranes, and no matter how the reverse osmosis membrane and the material are the same, there is a limit to predicting a decrease in the permeation flux in the reverse osmosis membrane. Management of osmotic membrane feed water is not possible. In addition, the evaluation operation itself is complicated and troublesome.

特開平10−286445号公報では、分離膜供給水を主膜モジュールと主膜モジュールよりも小さな膜面積を有する副膜モジュールに通水し、主膜モジュールと副膜モジュールの動作状態を対比することにより、主膜モジュール又は副膜モジュール、或いはその両方における透過水量の低下が、膜分離装置の原水に起因するものか、機器自体に起因するものかを判別する方法が示されている。しかしながら、この方法は、主膜モジュール又は副膜モジュール、或いは両方のモジュールにおいて発生した透過水量の低下が、膜供給水水質の悪化によるものか、装置の不備によるものかを判別する手法であり、必ずしも膜供給水の水質の良否を判断する方法ではない。   In JP-A-10-286445, separation membrane feed water is passed through a main membrane module and a sub-membrane module having a smaller membrane area than the main membrane module, and the operation states of the main membrane module and the sub-membrane module are compared. Shows a method for discriminating whether the decrease in the amount of permeated water in the main membrane module and / or the sub-membrane module is due to the raw water of the membrane separation device or the device itself. However, this method is a method for discriminating whether the decrease in the amount of permeated water generated in the main membrane module or the sub-membrane module or both modules is due to deterioration in the quality of the water supplied to the membrane or due to inadequate equipment. It is not necessarily a method for judging the quality of the water supplied to the membrane.

仮にこの方法を逆浸透膜供給水の評価に用いようとした場合、主膜モジュールと副膜モジュールともに連続的に長期通水するので、副膜モジュールにおいて透過流束の低下を検知したときには既に主膜モジュールにおいても透過水量が低下していることとなる。逆浸透膜においては、一度透過水量が低下してしまうと薬品洗浄等でもなかなか回復できないような不可逆な汚染も発生することから、この方法では手遅れとなってしまう。   If this method is to be used for the evaluation of reverse osmosis membrane feed water, both the main membrane module and the sub membrane module continuously pass water for a long time. Even in the membrane module, the amount of permeated water is reduced. In a reverse osmosis membrane, once the permeated water amount is reduced, irreversible contamination that cannot be easily recovered by chemical cleaning or the like is generated, so this method is too late.

しかも、膜モジュールに連続的に通水する場合、ある時点で供給水の水質が悪化して透過水量が低下すると、その後の供給水が正常であっても膜モジュールの透過水量は低下したままである。従って、主膜モジュール、副膜モジュールにおいて透過水量の低下を検出した時点における供給水は必ずしも悪化しているとは限らない。一方で、逆浸透膜供給水が例えば排水等の場合、水質は刻一刻と変化しており、その時点における即時的な水質の評価が必要とされるが、膜モジュールに供給水を連続通水する特開平10−286445号公報の方法では、どの時期で透過水量が低下したのかを判定することはできず、その時々の供給水の水質を十分に評価することはできない。
特願2002−362543号 特開平10−286445号公報 Desalination,vol.20,p.353−364,1977
In addition, when water is continuously passed through the membrane module, if the quality of the feed water deteriorates at a certain point in time and the permeate flow rate decreases, the permeate flow rate of the membrane module remains low even if the subsequent feed water is normal. is there. Therefore, the supply water at the time of detecting a decrease in the amount of permeated water in the main membrane module and the sub membrane module is not necessarily deteriorated. On the other hand, when the reverse osmosis membrane supply water is, for example, drainage, the water quality is changing every moment, and an immediate evaluation of the water quality is required at that time, but the supply water is continuously passed through the membrane module. In the method disclosed in Japanese Patent Laid-Open No. 10-286445, it is impossible to determine at which time the amount of permeated water has decreased, and the quality of the supplied water at that time cannot be sufficiently evaluated.
Japanese Patent Application No. 2002-362543 Japanese Patent Laid-Open No. 10-286445 Desalination, vol. 20, p. 353-364, 1977

本発明は、逆浸透膜の透過流束の低下を招くことなく、長期間にわたって逆浸透膜装置を安定して運転することができる逆浸透膜供給水の評価方法及び評価装置と、逆浸透膜装置を含む水処理装置の運転管理方法を提供することを目的とする。   The present invention relates to a reverse osmosis membrane feed water evaluation method and evaluation device capable of stably operating a reverse osmosis membrane device over a long period of time without causing a decrease in the permeation flux of the reverse osmosis membrane, and a reverse osmosis membrane It aims at providing the operation management method of the water treatment equipment containing a device.

さらに詳しくは、稼動中の逆浸透膜装置に供給される逆浸透膜供給水の良否を、短時間で正確に評価することにより、逆浸透膜の透過流束の低下を事前に回避し、長期間にわたって逆浸透膜装置を安定して運転することができる逆浸透膜供給水の評価方法及び評価装置と逆浸透膜装置を含む水処理装置の運転管理方法を提供することを目的とする。   More specifically, by accurately evaluating the quality of the reverse osmosis membrane feed water supplied to the operating reverse osmosis membrane device in a short time, it is possible to avoid a decrease in the permeation flux of the reverse osmosis membrane in advance, It is an object of the present invention to provide a method for evaluating reverse osmosis membrane feed water that can stably operate a reverse osmosis membrane device over a period, and an operation management method for a water treatment device including the evaluation device and the reverse osmosis membrane device.

本発明の逆浸透膜供給水の評価方法は、逆浸透膜装置(以下「主逆浸透膜装置」と称す。)に供給される水の逆浸透膜供給水としての良否を、該逆浸透膜装置の運転中に評価する方法であって、該主逆浸透膜装置とは別の評価用逆浸透膜装置に、前記主逆浸透膜装置よりも高い圧力で該逆浸透膜供給水を断続的に通水し、該評価用逆浸透膜装置における通水開始から1時間以内の所定時間内の逆浸透膜供給水の透過水量を測定し、この測定値を予め設定した基準値と比較することにより、該逆浸透膜供給水を評価する方法であって、該評価用逆浸透膜装置の逆浸透膜が、前記主逆浸透膜装置の逆浸透膜よりも低い圧力で同等の透過流束が得られる逆浸透膜であり、前記透過水量の測定値が基準値よりも多い場合に良好な逆浸透膜供給水であると評価し、少ない場合に良好でない逆浸透膜供給水と評価することを特徴とする。 The method for evaluating the reverse osmosis membrane feed water of the present invention is based on whether the reverse osmosis membrane feed water supplied to a reverse osmosis membrane device (hereinafter referred to as “main reverse osmosis membrane device”) is good or bad. An evaluation method during operation of the apparatus , wherein the reverse osmosis membrane supply water is intermittently supplied to a reverse osmosis membrane device for evaluation different from the main reverse osmosis membrane device at a pressure higher than that of the main reverse osmosis membrane device. Measure the amount of permeated water in the reverse osmosis membrane feed water within a predetermined time within 1 hour from the start of water flow in the evaluation reverse osmosis membrane device, and compare this measured value with a preset reference value. The reverse osmosis membrane feed water is evaluated by the reverse osmosis membrane device for evaluation, and the reverse osmosis membrane device has an equivalent permeation flux at a lower pressure than the reverse osmosis membrane of the main reverse osmosis membrane device. It is a reverse osmosis membrane to be obtained, and is a good reverse osmosis membrane supply water when the measured value of the permeated water amount is larger than the reference value Evaluated, and evaluating the reverse osmosis membrane supply water is not good when less.

本発明の逆浸透膜供給水の評価装置は、逆浸透膜装置(以下「主逆浸透膜装置」と称す。)に供給される水の逆浸透膜供給水としての良否を評価する装置であって、該逆浸透膜供給水が、前記主逆浸透膜装置よりも高い圧力で断続的に通水される評価用逆浸透膜装置と、該評価用逆浸透膜装置における通水開始から1時間以内の所定時間内の逆浸透膜供給水の透過水量を測定する手段と、該測定手段の測定値を予め設定した基準値と比較し、前記透過水量の測定値が基準値よりも多い場合に良好な逆浸透膜供給水であると評価し、少ない場合に良好でない逆浸透膜供給水と評価する演算手段を備えてなり、前記評価用逆浸透膜装置の逆浸透膜が、前記主逆浸透膜装置の逆浸透膜よりも低い圧力で同等の透過流束が得られる逆浸透膜であることを特徴とする。 The apparatus for evaluating reverse osmosis membrane supply water of the present invention is an apparatus for evaluating the quality of reverse osmosis membrane supply water supplied to a reverse osmosis membrane device (hereinafter referred to as “main reverse osmosis membrane device”). Thus, the reverse osmosis membrane supply water is intermittently passed at a pressure higher than that of the main reverse osmosis membrane device , and the evaluation reverse osmosis membrane device is one hour from the start of water passage in the evaluation reverse osmosis membrane device. Means for measuring the amount of permeated water in the reverse osmosis membrane feed water within a predetermined time within , and comparing the measured value of the measuring means with a preset reference value, when the measured value of the permeated water amount is greater than the reference value It was evaluated to be a good reverse osmosis membrane supply water, Ri na an arithmetic means for assessing the reverse osmosis membrane supply water is not good if less, the reverse osmosis membrane of the evaluation reverse osmosis membrane device, the main reverse reverse osmosis membrane der Rukoto the equivalent flux can be obtained at a pressure lower than the reverse osmosis membrane of osmosis unit And features.

本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、逆浸透膜供給水を評価用逆浸透膜装置に通水したときの通水初期の逆浸透膜供給水の透過性、特に透過水量と、その供給水にて運転を継続する主逆浸透膜装置の透過流束との間に密接な関係があることを見出し、この知見に基づいて本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have determined that the permeability of reverse osmosis membrane feed water at the initial stage of water flow when reverse osmosis membrane feed water is passed through a reverse osmosis membrane device for evaluation. In particular, it has been found that there is a close relationship between the amount of permeated water and the permeation flux of the main reverse osmosis membrane device that continues to operate with the supplied water, and the present invention has been completed based on this finding. .

本発明によれば、逆浸透膜供給水を評価用逆浸透膜装置に断続的に通水し、その通水初期の所定時間内の逆浸透膜供給水の透過性、特に透過水量を基準値と比較することにより、逆浸透膜供給水としての良否を、短時間で簡易に、正確に評価することができる。   According to the present invention, the reverse osmosis membrane supply water is intermittently passed through the evaluation reverse osmosis membrane device, and the permeability of the reverse osmosis membrane supply water within a predetermined time at the initial stage of the water flow, in particular, the permeated water amount is a reference value. As a result, it is possible to simply and accurately evaluate the quality of the reverse osmosis membrane supply water in a short time.

本発明の水処理装置の運転管理方法は、このような本発明の逆浸透膜供給水の評価方法又は評価装置により逆浸透膜供給水の良否を評価し、その結果に基いて運転管理を行う方法であって、前記測定された透過水量が基準値よりも多い場合に良好な逆浸透膜供給水であると評価して、そのままの条件で逆浸透膜処理を継続し、少ない場合に良好でない逆浸透膜供給水と評価して、逆浸透膜供給水の前処理条件及び/又は主逆浸透膜装置の運転条件を制御して透過流束の低下を防止するものであり、的確な評価結果に基いて逆浸透膜装置における透過流束の低下や操作圧力の上昇などの障害を引き起こすことなく、長期にわたり安定な運転を継続することができる。 The operation management method of the water treatment apparatus of the present invention evaluates the quality of the reverse osmosis membrane supply water by the evaluation method or the evaluation apparatus of the reverse osmosis membrane supply water of the present invention, and performs the operation management based on the result. When the measured amount of permeated water is larger than the reference value, it is evaluated that the reverse osmosis membrane supply water is good, and the reverse osmosis membrane treatment is continued under the same conditions, and when it is small, it is not good. Evaluate it as reverse osmosis membrane feed water and control the pretreatment conditions of reverse osmosis membrane feed water and / or the operating conditions of the main reverse osmosis membrane device to prevent a decrease in permeation flux. Therefore, stable operation can be continued for a long time without causing problems such as a decrease in permeation flux and an increase in operating pressure in the reverse osmosis membrane device.

本発明の逆浸透膜供給水の評価方法及び評価装置によれば、逆浸透膜供給水を評価用逆浸透膜装置に断続的に通水し、その通水初期の所定時間内の透過水量等の透過性を基準値と比較することにより、逆浸透膜供給水としての良否を短時間で簡易にかつ的確に評価することができる。そして、このような評価用逆浸透膜装置の通水初期の透過水量等の透過性を用いた評価結果に基いて運転管理を行う本発明の水処理装置の運転管理方法によれば、逆浸透膜装置において高透過流束を維持することができ、長期にわたり安定した運転を継続することができる。   According to the evaluation method and apparatus for reverse osmosis membrane supply water of the present invention, the reverse osmosis membrane supply water is intermittently passed through the evaluation reverse osmosis membrane device, and the amount of permeated water within a predetermined time at the initial stage of the water flow, etc. The quality of the reverse osmosis membrane feed water can be easily and accurately evaluated in a short time by comparing the permeability of the water with the reference value. And according to the operation management method of the water treatment apparatus of the present invention for performing operation management based on the evaluation result using the permeability such as the amount of permeated water at the initial stage of water passing through such an evaluation reverse osmosis membrane apparatus, A high permeation flux can be maintained in the membrane device, and stable operation can be continued for a long time.

以下に本発明の逆浸透膜供給水の評価方法及び評価装置と水処理装置の運転管理方法の実施の形態を詳細に説明する。   Embodiments of a reverse osmosis membrane feed water evaluation method and evaluation apparatus according to the present invention and an operation management method for a water treatment apparatus will be described in detail below.

本発明においては、主逆浸透膜装置に供給される逆浸透膜供給水の一部を評価用逆浸透膜装置に断続的に通水し、この評価用逆浸透膜装置における通水開始後所定時間内の逆浸透膜供給水の透過性を測定し、この測定値を予め設定した基準値と比較することにより、逆浸透膜供給水を評価する。   In the present invention, a part of the reverse osmosis membrane supply water supplied to the main reverse osmosis membrane device is intermittently passed through the evaluation reverse osmosis membrane device, and after the start of water passage in the evaluation reverse osmosis membrane device, a predetermined amount is passed. The reverse osmosis membrane feed water is evaluated by measuring the permeability of the reverse osmosis membrane feed water in time and comparing this measured value with a preset reference value.

なお、逆浸透膜供給水の透過性としては、透過水量が好ましいが、操作圧や透過流束或いは一定量の透過水量を得るために必要な処理時間など、一般的に膜の透過性を表すものが用いられる。   The permeability of the reverse osmosis membrane feed water is preferably the amount of permeated water, but generally represents the permeability of the membrane, such as operating pressure, permeation flux, or processing time required to obtain a certain amount of permeated water. Things are used.

本発明の逆浸透膜供給水の評価方法が適用される主逆浸透膜装置の逆浸透膜(以下「主逆浸透膜」と称す。)の材質に特に制限はなく、例えばポリアミド系逆浸透膜、セルロースエステル系逆浸透膜、ポリスルホン系逆浸透膜、ポリイミド系逆浸透膜などを挙げることができる。主逆浸透膜の形態にも特に制限はなく、相転換膜、複合膜のいずれにも用いることができる。これらの中でも、膜支持体となる限外濾過膜にポリスルホンを用い、緻密層に架橋ポリアミド、線状ポリアミド、ポリピペラジンアミドなどを用いたポリアミド系逆浸透膜を好適に用いることができる。   The material of the reverse osmosis membrane (hereinafter referred to as “main reverse osmosis membrane”) of the main reverse osmosis membrane device to which the method for evaluating the reverse osmosis membrane feed water of the present invention is applied is not particularly limited, and for example, a polyamide-based reverse osmosis membrane , Cellulose ester reverse osmosis membrane, polysulfone reverse osmosis membrane, polyimide reverse osmosis membrane and the like. The form of the main reverse osmosis membrane is not particularly limited, and it can be used for either a phase change membrane or a composite membrane. Among these, a polyamide-based reverse osmosis membrane using polysulfone as an ultrafiltration membrane serving as a membrane support and using a crosslinked polyamide, linear polyamide, polypiperazine amide or the like as a dense layer can be suitably used.

また、主逆浸透膜装置の膜モジュールの種類にも特に制限はなく、例えばスパイラルモジュール、中空糸モジュール、平面膜モジュール、管型モジュールなども挙げることができる。   Moreover, there is no restriction | limiting in particular also in the kind of membrane module of a main reverse osmosis membrane apparatus, For example, a spiral module, a hollow fiber module, a plane membrane module, a tubular module etc. can be mentioned.

一方、評価用逆浸透膜装置の逆浸透膜(以下「評価用逆浸透膜」と称す。)の材質にも特に制限はなく、例えばポリアミド系逆浸透膜、セルロースエステル系逆浸透膜、ポリスルホン系逆浸透膜、ポリイミド系逆浸透膜などを挙げることができる。評価用逆浸透膜の形態にも特に制限はなく、相転換膜、複合膜のいずれにも用いることができる。また、評価用逆浸透膜装置の膜モジュールの種類にも特に制限はなく、例えばスパイラルモジュール、中空糸モジュール、平面膜モジュール、管型モジュールなども挙げることができる。これらの中でも、主逆浸透膜と同一の逆浸透膜や、主逆浸透膜と同素材であるがより低圧で通水可能な、即ち、主逆浸透膜よりも低い圧力で同等の透過流束を得ることができる低圧、超低圧逆浸透膜を好適に用いることができる。例えば、主逆浸透膜として低圧逆浸透膜を用いた場合、評価用逆浸透膜として超低圧逆浸透膜を用いることは、好ましい組み合せである。   On the other hand, the material of the reverse osmosis membrane of the evaluation reverse osmosis membrane device (hereinafter referred to as “reverse osmosis membrane for evaluation”) is not particularly limited. For example, polyamide reverse osmosis membrane, cellulose ester reverse osmosis membrane, polysulfone A reverse osmosis membrane, a polyimide-type reverse osmosis membrane, etc. can be mentioned. There is no restriction | limiting in particular also in the form of the reverse osmosis membrane for evaluation, It can use for any of a phase change membrane and a composite membrane. Moreover, there is no restriction | limiting in particular also in the kind of membrane module of the reverse osmosis membrane apparatus for evaluation, For example, a spiral module, a hollow fiber module, a plane membrane module, a tubular module etc. can be mentioned. Among these, the same reverse osmosis membrane as the main reverse osmosis membrane, or the same material as the main reverse osmosis membrane, but capable of passing water at a lower pressure, that is, equivalent permeation flux at a lower pressure than the main reverse osmosis membrane A low-pressure, ultra-low pressure reverse osmosis membrane capable of obtaining the above can be suitably used. For example, when a low pressure reverse osmosis membrane is used as the main reverse osmosis membrane, it is a preferable combination to use an ultra-low pressure reverse osmosis membrane as the evaluation reverse osmosis membrane.

即ち、本発明では、評価用逆浸透膜装置の通水開始から所定時間内の透過水量を測定することが好ましい態様であるが、この透過水量は、通水開始から短時間でなるべく多くの透過水量が得られることが、測定誤差を小さくし、測定精度を上げる上で重要である。このためには、主逆浸透膜よりも低い圧力で同等の透過流束を得ることができる評価用逆浸透膜を用い主逆浸透膜装置と同等の圧力で通水するか、或いは、評価用逆浸透膜装置を主逆浸透膜装置よりも高い圧力で通水して、透過水量を多くすることが好ましい。   That is, in the present invention, it is a preferable aspect to measure the amount of permeated water within a predetermined time from the start of water passage of the evaluation reverse osmosis membrane device, but this amount of permeated water is as much as possible in a short time from the start of water passage. Obtaining the amount of water is important for reducing measurement errors and increasing measurement accuracy. For this purpose, use an evaluation reverse osmosis membrane that can obtain an equivalent permeation flux at a pressure lower than that of the main reverse osmosis membrane, and pass water at the same pressure as the main reverse osmosis membrane device, or for evaluation. It is preferable to pass the reverse osmosis membrane device at a higher pressure than the main reverse osmosis membrane device to increase the amount of permeated water.

また、本発明において、評価用逆浸透膜装置の通水開始からの透過水量を測定する所定時間は、過度に短いと十分な透過水量を得ることができず、測定誤差の原因となる。ただし、この所定時間が過度に長いと、評価頻度が低くなって、逆浸透膜供給水の経時による水質の変化に追随し得なくなる。   In the present invention, if the predetermined time for measuring the amount of permeated water from the start of water passage of the evaluation reverse osmosis membrane device is excessively short, a sufficient amount of permeated water cannot be obtained, which causes measurement errors. However, if the predetermined time is excessively long, the frequency of evaluation becomes low, and it becomes impossible to follow the change in water quality over time of the reverse osmosis membrane feed water.

従って、評価間隔(評価用逆浸透膜装置への断続的な通水間隔)や透過水量を測定する通水開始からの所定時間は、用いる評価用逆浸透膜の性能や逆浸透膜供給水の水質、その変動の状況によっても異なるが、一般的には、朝昼晩の1日に3回程度の頻度で評価用逆浸透膜装置への通水による評価を行い、透過水量を測定する通水開始からの所定時間は、1時間以内、例えば、5分〜40分、好ましくは10〜30分程度とするのが好ましい。   Therefore, the evaluation interval (intermittent water flow to the evaluation reverse osmosis membrane device) and the predetermined time from the start of water flow for measuring the amount of permeated water are the performance of the reverse osmosis membrane for evaluation and the reverse osmosis membrane feed water used. Although it depends on the quality of the water and its fluctuations, in general, evaluation is performed by passing water through the evaluation reverse osmosis membrane device at a frequency of about three times a day in the morning, day and night, and the amount of permeated water is measured. The predetermined time from the start of water is within 1 hour, for example, 5 minutes to 40 minutes, preferably about 10 to 30 minutes.

なお、本発明においては、透過水量の測定毎に、即ち、評価用逆浸透膜装置への逆浸透膜供給水の断続的な通水毎に評価用逆浸透膜を新膜と交換する。このようにすることで、評価用逆浸透膜装置の透過水量に基いて、逆浸透膜供給水の水質を正確に評価することができる。ただし、この新膜とは必ずしも未使用の逆浸透膜に限らず、使用済の逆浸透膜を洗浄するなどして新膜と同等にその性能を回復させたものを用いても良い。   In the present invention, the evaluation reverse osmosis membrane is replaced with a new membrane every time the amount of permeated water is measured, that is, every time the reverse osmosis membrane supply water is intermittently passed to the evaluation reverse osmosis membrane device. By doing in this way, based on the amount of permeated water of the evaluation reverse osmosis membrane device, the quality of the reverse osmosis membrane feed water can be accurately evaluated. However, the new membrane is not necessarily limited to an unused reverse osmosis membrane, and a membrane whose performance has been restored to the same level as the new membrane by washing the used reverse osmosis membrane may be used.

評価用逆浸透膜装置に逆浸透膜供給水を断続的に通水して測定した通水開始から所定時間内の透過水量と比較するための基準値の設定方法には特に制限はなく、例えば、模擬排水を用い評価用逆浸透膜における通水初期所定時間内の透過水量と、主逆浸透膜における安定時の透過水量又は透過流束との関係を求めて検量線を作成し、検量線と必要な透過水量又は透過流束とから設定した基準値や、実際の水処理装置において日々のデータを蓄積し、その蓄積データに基いて設定した基準値を用いることができる。   There is no particular limitation on the method of setting a reference value for comparison with the permeated water amount within a predetermined time from the start of water flow measured by intermittently passing reverse osmosis membrane supply water to the evaluation reverse osmosis membrane device, for example, , Create a calibration curve by determining the relationship between the amount of permeated water in the initial reverse osmosis membrane for the evaluation reverse osmosis membrane using the simulated drainage and the stable permeated water amount or permeation flux in the main reverse osmosis membrane. And a reference value set from the necessary permeate amount or permeate flux, or a daily value stored in an actual water treatment apparatus, and a reference value set based on the stored data can be used.

しかして、このようにして設定した基準値と比較して、測定された透過水量が少ないようであれば、その逆浸透膜供給水は逆浸透膜処理において適当な水質であるとは言えず、処理を継続することにより早期に逆浸透膜装置の透過流束を低減する恐れがあると判断される。逆に、測定された透過水量が、この基準値よりも多いようであれば、良好な逆浸透膜供給水であり、そのままの条件で逆浸透膜処理を継続することができる。   Therefore, if the amount of permeated water measured is small compared to the reference value set in this way, the reverse osmosis membrane supply water cannot be said to have an appropriate water quality in the reverse osmosis membrane treatment, It is judged that there is a risk of reducing the permeation flux of the reverse osmosis membrane device at an early stage by continuing the processing. Conversely, if the measured amount of permeated water seems to be larger than this reference value, it is good reverse osmosis membrane feed water, and the reverse osmosis membrane treatment can be continued under the same conditions.

このような本発明の逆浸透膜供給水の評価方法は、例えば、主逆浸透膜装置に供給される逆浸透膜供給水の一部を断続的に分取する手段と、この逆浸透膜供給水が断続的に通水される評価用逆浸透膜装置と、この評価用逆浸透膜装置における通水開始後所定時間内の透過水量を測定する手段と、この測定値を予め設定した基準値と比較して逆浸透膜供給水としての良否を評価する演算手段とを備える評価装置により容易に実施することができる。   Such an evaluation method of the reverse osmosis membrane supply water of the present invention includes, for example, means for intermittently separating a part of the reverse osmosis membrane supply water supplied to the main reverse osmosis membrane device, and the reverse osmosis membrane supply Reverse osmosis membrane device for evaluation in which water is intermittently passed, means for measuring the amount of permeated water within a predetermined time after the start of water passage in the reverse osmosis membrane device for evaluation, and a reference value in which this measured value is set in advance Compared to the above, it can be easily carried out by an evaluation device comprising a calculation means for evaluating the quality of the reverse osmosis membrane supply water.

本発明の水処理装置の運転管理方法においては、このような本発明の逆浸透膜供給水の評価方法又は評価装置により、逆浸透膜供給水を評価用逆浸透膜装置に断続的に通水して逆浸透膜供給水の良否を評価し、その結果に基いて主逆浸透膜装置を含む水処理装置の運転を管理する。この運転管理方法に特に制限はなく、例えば、逆浸透膜供給水の前処理条件の制御、及び/又は主逆浸透膜装置の運転条件の制御が挙げられる。   In the operation management method of the water treatment apparatus of the present invention, the reverse osmosis membrane supply water is intermittently passed through the evaluation reverse osmosis membrane apparatus by the reverse osmosis membrane supply water evaluation method or evaluation apparatus of the present invention. Then, the quality of the reverse osmosis membrane supply water is evaluated, and the operation of the water treatment device including the main reverse osmosis membrane device is managed based on the result. There is no restriction | limiting in particular in this operation management method, For example, control of the pretreatment conditions of reverse osmosis membrane feed water, and / or control of the operation conditions of the main reverse osmosis membrane apparatus are mentioned.

逆浸透膜供給水の前処理方法に特に制限はなく、例えば、活性汚泥法、光酸化法、湿式接触酸化法、凝集沈殿法、加圧浮上法、活性炭吸着法、精密濾過法、限外濾過法などを挙げることができる。これらの前処理方法は、1種を単独で用いることができ、また、2種以上を組み合わせて用いることもできる。前処理条件の制御は、これらの前処理装置を新たに追加したり、組み替えたり、削減したり、また、各々の前処理装置の処理条件を変更するなどの方法で実施される。   There is no particular restriction on the pretreatment method of reverse osmosis membrane feed water, for example, activated sludge method, photo-oxidation method, wet contact oxidation method, coagulation sedimentation method, pressurized flotation method, activated carbon adsorption method, microfiltration method, ultrafiltration Law. These pretreatment methods can be used alone or in combination of two or more. The preprocessing conditions are controlled by a method of newly adding, rearranging, or reducing these preprocessing devices, or changing the processing conditions of each preprocessing device.

また、逆浸透膜装置の運転条件については、逆浸透膜装置の運転圧力、水回収率、逆洗頻度、洗浄頻度の調整等が挙げられ、逆浸透膜供給水の評価結果に基いて、これらの条件を制御することにより、透過流束の経時低下を防止し、高透過流束を維持して長期に亘り逆浸透膜装置の安定した運転を行うことができる。   As for the operating conditions of the reverse osmosis membrane device, the operating pressure of the reverse osmosis membrane device, the water recovery rate, the frequency of backwashing, adjustment of the washing frequency, etc. can be mentioned. By controlling these conditions, it is possible to prevent the permeation flux from decreasing with time, maintain a high permeation flux, and perform stable operation of the reverse osmosis membrane device over a long period of time.

以下に、実施例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例により何ら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.

実施例1
純水に非イオン界面活性剤ポリオキシエチレンノニルフェニルエーテル[NS208.5,日本油脂(株)]を各々0.1、1.0、5.0、10.0mg/L溶解した水溶液を調製し、各々逆浸透膜供給水とした。即ち、非イオン界面活性剤は、逆浸透膜において透過流束を低下させる逆浸透膜汚染物質の一例であり、各濃度の水溶液を用いることにより、逆浸透膜汚染度合いの異なる逆浸透膜供給水を模擬した。
Example 1
Prepare an aqueous solution in which 0.1, 1.0, 5.0, 10.0 mg / L of the nonionic surfactant polyoxyethylene nonylphenyl ether [NS208.5, Nippon Oil & Fat Co., Ltd.] was dissolved in pure water, respectively. These were used as reverse osmosis membrane feed water. That is, a nonionic surfactant is an example of a reverse osmosis membrane contaminant that lowers the permeation flux in a reverse osmosis membrane, and reverse osmosis membrane supply water having different degrees of reverse osmosis membrane contamination by using aqueous solutions of various concentrations. Was simulated.

逆浸透膜供給水は、主逆浸透膜として低圧ポリアミド系逆浸透膜[NTR759HR,日東電工(株)]を用い25℃、操作圧力1.5MPaでの定圧通水を連続的に実施した。   As the reverse osmosis membrane supply water, a low pressure polyamide reverse osmosis membrane [NTR759HR, Nitto Denko Corporation] was used as the main reverse osmosis membrane, and constant pressure water flow at 25 ° C. and an operating pressure of 1.5 MPa was continuously performed.

逆浸透膜供給水の評価は、評価用逆浸透膜として低圧ポリアミド系逆浸透膜[NTR759HR,日東電工(株)]をφ35mmに裁断した平膜を準備し、この平膜を専用の耐圧セルに充填し、主逆浸透膜と同様に25℃、操作圧力1.5MPaでの定圧通水を断続的に実施することにより行った。評価用逆浸透膜は1回の評価毎に新膜に交換した。また、逆浸透膜供給水の評価時は評価用逆浸透膜の透過水の全量を電子天秤で受け、通水開始から30分後の電子天秤の指示値を測定した。   For evaluation of reverse osmosis membrane feed water, a flat membrane was prepared by cutting a low pressure polyamide reverse osmosis membrane [NTR759HR, Nitto Denko Corp.] into φ35mm as an evaluation reverse osmosis membrane, and this flat membrane was made into a dedicated pressure cell. Filling was performed by intermittently performing constant-pressure water passage at 25 ° C. and an operating pressure of 1.5 MPa in the same manner as the main reverse osmosis membrane. The reverse osmosis membrane for evaluation was replaced with a new membrane for each evaluation. Moreover, at the time of evaluation of reverse osmosis membrane feed water, the total amount of permeated water of the evaluation reverse osmosis membrane was received by an electronic balance, and the indicated value of the electronic balance was measured 30 minutes after the start of water flow.

主逆浸透膜への通水は、まず非イオン界面活性剤ポリオキシエチレンノニルフェニルエーテル0.1mg/L水溶液を用いて開始した。主逆浸透膜への通水開始直後、評価用逆浸透膜を用いた1回目の供給水評価を実施したところ、天秤指示値は17.53gであった。この評価用逆浸透膜への通水は30分で停止し、主逆浸透膜への通水はその後も継続した。主逆浸透膜における透過流束は、通水開始50時間後1.00m/dでほぼ安定した。   Water flow through the main reverse osmosis membrane was first started with a nonionic surfactant polyoxyethylene nonylphenyl ether 0.1 mg / L aqueous solution. Immediately after the start of water flow to the main reverse osmosis membrane, the first feed water evaluation using the evaluation reverse osmosis membrane was performed, and the balance indicated value was 17.53 g. The water flow to the evaluation reverse osmosis membrane was stopped in 30 minutes, and the water flow to the main reverse osmosis membrane was continued thereafter. The permeation flux in the main reverse osmosis membrane was almost stable at 1.00 m / d 50 hours after the start of water flow.

逆浸透膜供給水を非イオン界面活性剤濃度1mg/Lの水溶液に変更し、そのまま主逆浸透膜への通水を継続した。供給水の変更直後、評価用逆浸透膜を用いた2回目の供給水評価を実施したところ、天秤指示値は14.86gであった。評価用逆浸透膜への通水は30分で停止し、主逆浸透膜への通水はその後も継続した。主逆浸透膜における透過流束は、供給水変更後より低下傾向を示したが、供給水変更50時間後0.90m/dでほぼ安定した。   The reverse osmosis membrane feed water was changed to an aqueous solution having a nonionic surfactant concentration of 1 mg / L, and water flow to the main reverse osmosis membrane was continued as it was. Immediately after the change of the feed water, the second feed water evaluation using the evaluation reverse osmosis membrane was performed, and the balance indicated value was 14.86 g. Water flow to the evaluation reverse osmosis membrane was stopped in 30 minutes, and water flow to the main reverse osmosis membrane was continued thereafter. The permeation flux in the main reverse osmosis membrane showed a tendency to decrease after the supply water change, but was almost stable at 0.90 m / d after 50 hours of the supply water change.

この結果を受けて、純水の透過流束にやや劣る透過流束を得るための基準値として、評価用逆浸透膜における通水開始後30分後までの透過水量(天秤指示値)15.00gとして設定した。   Based on this result, as a reference value for obtaining a permeation flux slightly inferior to the permeation flux of pure water, the permeated water amount (balance indication value) until 30 minutes after the start of water passage in the evaluation reverse osmosis membrane. Set as 00 g.

その後、逆浸透膜供給水を非イオン界面活性剤濃度5mg/Lの水溶液に変更し、主逆浸透膜への通水を継続した。供給水の変更直後、評価用逆浸透膜を用いた3回目の供給水評価を実施したところ、天秤指示値は11.21gであった。   Thereafter, the reverse osmosis membrane feed water was changed to an aqueous solution having a nonionic surfactant concentration of 5 mg / L, and water flow to the main reverse osmosis membrane was continued. Immediately after the change of the feed water, the third feed water evaluation using the evaluation reverse osmosis membrane was carried out, and the indicated value of the balance was 11.21 g.

天秤指示値が基準値を下回る結果であったので、非イオン界面活性剤濃度5mg/Lの水溶液を前処理として粒状活性炭[クリコールWG160,栗田工業(株)]を充填したカラムに通水し、吸着処理水を逆浸透膜供給水として主逆浸透膜に供給した。吸着処理開始後、吸着処理水を対象に評価用逆浸透膜を用いた4回目の供給水評価を実施したところ、天秤指示値は18.22gであった。   Since the balance indicated value was lower than the standard value, water was passed through a column packed with granular activated carbon [Crycol WG160, Kurita Kogyo Co., Ltd.] as a pretreatment with an aqueous solution having a nonionic surfactant concentration of 5 mg / L. Adsorption treated water was supplied to the main reverse osmosis membrane as reverse osmosis membrane feed water. After the start of the adsorption treatment, the fourth feed water evaluation using the evaluation reverse osmosis membrane was performed on the adsorption treated water. As a result, the balance indicated value was 18.22 g.

天秤指示値が基準値を上回る結果を得たので、評価用逆浸透膜への通水は30分で停止し、主逆浸透膜への通水はその後も継続した。主逆浸透膜における透過流束は、吸着処理開始50時間後0.90m/dでほぼ安定した。   Since the balance indicated value exceeded the reference value, water flow to the evaluation reverse osmosis membrane was stopped in 30 minutes, and water flow to the main reverse osmosis membrane was continued thereafter. The permeation flux in the main reverse osmosis membrane was almost stable at 0.90 m / d 50 hours after the start of the adsorption treatment.

その後、逆浸透膜供給水を非イオン界面活性剤濃度10mg/Lの水溶液に変更し、主逆浸透膜への通水を継続した。この際、前処理として実施していた活性炭吸着処理も継続した。供給水の変更直後、吸着処理水を対象に評価用逆浸透膜を用いた5回目の供給水評価を実施したところ、天秤指示値は18.05gであった。   Thereafter, the reverse osmosis membrane feed water was changed to an aqueous solution having a nonionic surfactant concentration of 10 mg / L, and water flow to the main reverse osmosis membrane was continued. At this time, the activated carbon adsorption treatment that was carried out as a pretreatment was also continued. Immediately after the change of the feed water, the fifth feed water evaluation using the reverse osmosis membrane for evaluation was performed on the adsorption treated water, and the balance indicated value was 18.05 g.

天秤指示値が基準値を上回る結果を得たので、評価用逆浸透膜への通水は30分で停止し、主逆浸透膜への通水はその後も継続した。主逆浸透膜における透過流束は、供給水変更50時間後0.89m/dでほぼ安定した。   Since the balance indicated value exceeded the reference value, water flow to the evaluation reverse osmosis membrane was stopped in 30 minutes, and water flow to the main reverse osmosis membrane was continued thereafter. The permeation flux in the main reverse osmosis membrane was almost stable at 0.89 m / d after 50 hours of supply water change.

実施例2
評価用逆浸透膜における評価結果をもとに逆浸透膜供給水の管理を行わなかったこと以外は実施例1と同様に主逆浸透膜への通水、評価用逆浸透膜による供給水評価を実施した。
Example 2
Except that the management of the reverse osmosis membrane supply water was not performed based on the evaluation result in the evaluation reverse osmosis membrane, the water flow to the main reverse osmosis membrane and the evaluation of the supply water by the evaluation reverse osmosis membrane were the same as in Example 1. Carried out.

主逆浸透膜への通水は、まず非イオン界面活性剤ポリオキシエチレンノニルフェニルエーテル0.1mg/L水溶液を用いて開始した。主逆浸透膜への通水開始直後、評価用逆浸透膜を用いた1回目の供給水評価を実施したところ、天秤指示値は17.53gであった。この評価用逆浸透膜への通水は30分で停止し、主逆浸透膜への通水はその後も継続した。主逆浸透膜における透過流束は、通水開始50時間後1.00m/dでほぼ安定した。   Water flow through the main reverse osmosis membrane was first started with a nonionic surfactant polyoxyethylene nonylphenyl ether 0.1 mg / L aqueous solution. Immediately after the start of water flow to the main reverse osmosis membrane, the first feed water evaluation using the evaluation reverse osmosis membrane was performed, and the balance indicated value was 17.53 g. The water flow to the evaluation reverse osmosis membrane was stopped in 30 minutes, and the water flow to the main reverse osmosis membrane was continued thereafter. The permeation flux in the main reverse osmosis membrane was almost stable at 1.00 m / d 50 hours after the start of water flow.

逆浸透膜供給水を非イオン界面活性剤濃度1mg/Lの水溶液に変更し、そのまま主逆浸透膜への通水を継続した。供給水の変更直後、評価用逆浸透膜を用いた2回目の供給水評価を実施したところ、天秤指示値は14.86gであった。評価用逆浸透膜への通水は30分で停止し、主逆浸透膜への通水はその後も継続した。主逆浸透膜における透過流束は、供給水変更後より低下傾向を示したが、供給水変更50時間後0.90m/dでほぼ安定した。   The reverse osmosis membrane feed water was changed to an aqueous solution having a nonionic surfactant concentration of 1 mg / L, and water flow to the main reverse osmosis membrane was continued as it was. Immediately after the change of the feed water, the second feed water evaluation using the evaluation reverse osmosis membrane was performed, and the balance indicated value was 14.86 g. Water flow to the evaluation reverse osmosis membrane was stopped in 30 minutes, and water flow to the main reverse osmosis membrane was continued thereafter. The permeation flux in the main reverse osmosis membrane showed a tendency to decrease after the supply water change, but was almost stable at 0.90 m / d after 50 hours of the supply water change.

その後、逆浸透膜供給水を非イオン界面活性剤濃度5mg/Lの水溶液に変更し、主逆浸透膜への通水を継続した。供給水の変更直後、評価用逆浸透膜を用いた3回目の供給水評価を実施したところ、天秤指示値は11.21gであった。評価用逆浸透膜への通水は30分で停止し、主逆浸透膜への通水はその後も継続した。主逆浸透膜における透過流束は、供給水変更後より低下傾向を示し、供給水変更50時間後0.45m/dまで低下した。   Thereafter, the reverse osmosis membrane feed water was changed to an aqueous solution having a nonionic surfactant concentration of 5 mg / L, and water flow to the main reverse osmosis membrane was continued. Immediately after the change of the feed water, the third feed water evaluation using the evaluation reverse osmosis membrane was carried out, and the indicated value of the balance was 11.21 g. Water flow to the evaluation reverse osmosis membrane was stopped in 30 minutes, and water flow to the main reverse osmosis membrane was continued thereafter. The permeation flux in the main reverse osmosis membrane showed a decreasing tendency after the supply water change, and decreased to 0.45 m / d 50 hours after the supply water change.

更に、逆浸透膜供給水を非イオン界面活性剤濃度10mg/L水溶液に変更し、主逆浸透膜への通水を継続した。供給水の変更直後、評価用逆浸透膜を用いた4回目の供給水評価を実施したところ、天秤指示値は、9.10gであった。評価用逆浸透膜への通水は30分で停止し、主逆浸透膜への通水はその後も継続した。主逆浸透膜における透過流束は、供給水変更後より低下傾向を示し、供給水変更50時間後0.29m/dまで低下した。   Furthermore, the reverse osmosis membrane feed water was changed to a nonionic surfactant concentration 10 mg / L aqueous solution, and water flow to the main reverse osmosis membrane was continued. Immediately after the change of the feed water, the fourth feed water evaluation using the evaluation reverse osmosis membrane was performed, and the balance indicated value was 9.10 g. Water flow to the evaluation reverse osmosis membrane was stopped in 30 minutes, and water flow to the main reverse osmosis membrane was continued thereafter. The permeation flux in the main reverse osmosis membrane showed a decreasing tendency after the supply water change, and decreased to 0.29 m / d 50 hours after the supply water change.

実施例1及び実施例2の主逆浸透膜における透過流束の変化を図1に示す。   Changes in the permeation flux in the main reverse osmosis membranes of Example 1 and Example 2 are shown in FIG.

実施例1及び実施例2の結果から、逆浸透膜供給水を評価用逆浸透膜に断続的に通水して、その初期透過水量から逆浸透膜供給水としての良否を短時間で判別することができ、この結果に基いて運転管理を行うことにより、主逆浸透膜において高透過流束を維持することができることが分かる。   From the results of Example 1 and Example 2, the reverse osmosis membrane supply water is intermittently passed through the evaluation reverse osmosis membrane, and the quality of the reverse osmosis membrane supply water is determined in a short time from the initial permeate flow rate. It can be seen that high permeation flux can be maintained in the main reverse osmosis membrane by performing operation management based on this result.

実施例2の評価用逆浸透膜における4回の測定結果と主逆浸透膜の安定時の透過流束を表1及び図2にまとめた。   Table 1 and FIG. 2 summarize the measurement results of four times in the evaluation reverse osmosis membrane of Example 2 and the stable permeation flux of the main reverse osmosis membrane.

Figure 0004517615
Figure 0004517615

表1より供給水の変更に伴い天秤指示値(評価用逆浸透膜における通水初期の透過水量)が変化していること、この透過水量が低下すると、主逆浸透膜の透過流束が低下することが分かる。   From Table 1, the balance indicated value (permeated water amount at the initial stage of water flow in the evaluation reverse osmosis membrane) is changed with the change of the feed water, and when the permeated water amount decreases, the permeation flux of the main reverse osmosis membrane decreases. I understand that

また、図2より、評価用逆浸透膜における通水開始後30分後までの透過水量(天秤指示値)と主逆浸透膜における安定時の透過流束との間に密接な関係があることが分かる。   In addition, as shown in FIG. 2, there is a close relationship between the amount of permeated water (balance indication value) until 30 minutes after the start of water passage in the evaluation reverse osmosis membrane and the stable permeation flux in the main reverse osmosis membrane. I understand.

実施例3
実施例2の実施と併行し、評価用逆浸透膜として、主逆浸透膜と素材が同一であり、主逆浸透膜よりも低い操作圧力にて同等の透過流束を得ることができる超低圧逆浸透膜[ES10,日東電工(株)]を用い、評価用逆浸透膜における透過水量を通水開始から10分後の天秤指示値で評価すること以外は同様にして逆浸透膜供給水の評価を実施した。
Example 3
In parallel with the implementation of Example 2, as a reverse osmosis membrane for evaluation, the main reverse osmosis membrane and the raw material are the same, and an ultra-low pressure capable of obtaining an equivalent permeation flux at a lower operating pressure than the main reverse osmosis membrane Using reverse osmosis membrane [ES10, Nitto Denko Corporation], the reverse osmosis membrane feed water was similarly evaluated except that the amount of permeated water in the evaluation reverse osmosis membrane was evaluated with the balance indicated value 10 minutes after the start of water flow. Evaluation was performed.

逆浸透膜供給水が非イオン界面活性剤濃度0.1mg/Lの水溶液のとき、10分後の天秤指示値は12.12gであった。   When the reverse osmosis membrane feed water was an aqueous solution having a nonionic surfactant concentration of 0.1 mg / L, the balance indicated value after 10 minutes was 12.12 g.

逆浸透膜供給水が非イオン界面活性剤濃度1mg/Lの水溶液のとき、10分後の天秤指示値は10.92gであった。   When the reverse osmosis membrane feed water was an aqueous solution having a nonionic surfactant concentration of 1 mg / L, the balance indicated value after 10 minutes was 10.92 g.

逆浸透膜供給水が非イオン界面活性剤濃度5mg/Lの水溶液のとき、10分後の天秤指示値は7.99gであった。   When the reverse osmosis membrane feed water was an aqueous solution having a nonionic surfactant concentration of 5 mg / L, the balance indicated value after 10 minutes was 7.9 g.

逆浸透膜供給水が非イオン界面活性剤濃度10mg/Lの水溶液のとき、10分後の天秤指示値は6.57gであった。   When the reverse osmosis membrane feed water was an aqueous solution having a nonionic surfactant concentration of 10 mg / L, the balance indicated value after 10 minutes was 6.57 g.

この結果と、実施例1の結果とから、基準値を、評価用逆浸透膜における10分後の天秤指示値を11g以上に管理することにより、主逆浸透膜における透過流束の低下を回避し、長時間安定して高透過流束を得ることができることが分かる。   From this result and the result of Example 1, by managing the reference value to be 11 g or more after 10 minutes in the evaluation reverse osmosis membrane, a decrease in the permeation flux in the main reverse osmosis membrane is avoided. It can be seen that a high permeation flux can be obtained stably for a long time.

評価用逆浸透膜に超低圧逆浸透膜を用いたときの、評価用逆浸透膜における通水10分後までの透過水量(天秤指示値)と、主逆浸透膜に低圧逆浸透膜を用いたときの安定時の透過流束との関係を図3に示す。   When an ultra-low pressure reverse osmosis membrane is used for the evaluation reverse osmosis membrane, the amount of permeated water (balance indication value) up to 10 minutes after water flow in the evaluation reverse osmosis membrane, and the low pressure reverse osmosis membrane is used for the main reverse osmosis membrane FIG. 3 shows the relationship with the stable permeation flux.

図3より、両者に密接な関係があることが分かる。更に、評価用逆浸透膜とした超低圧逆浸透膜に基準操作圧力(0.75MPa)の2倍の操作圧力にて通水したことにより、より短時間で逆浸透膜供給水としての良否を判断できることが分かる。   FIG. 3 shows that there is a close relationship between the two. Furthermore, by passing the water through the ultra-low pressure reverse osmosis membrane, which is a reverse osmosis membrane for evaluation, at an operation pressure twice as high as the standard operation pressure (0.75 MPa), the quality of the reverse osmosis membrane supply water can be improved in a shorter time. I understand that I can judge.

本発明は逆浸透膜装置の長期安定運転に有効である。   The present invention is effective for long-term stable operation of a reverse osmosis membrane device.

実施例1及び実施例2における主逆浸透膜の透過流束の経時変化を示すグラフである。It is a graph which shows a time-dependent change of the permeation | transmission flux of the main reverse osmosis membrane in Example 1 and Example 2. FIG. 実施例2における主逆浸透膜の安定時の透過流束と、評価用逆浸透膜における30分後の天秤指示値との関係を示すグラフである。It is a graph which shows the relationship between the permeation flux at the time of the stability of the main reverse osmosis membrane in Example 2, and the balance instruction | indication value after 30 minutes in the reverse osmosis membrane for evaluation. 実施例3における主逆浸透膜の安定時の透過流束と、評価用逆浸透膜における10分後の天秤指示値との関係を示すグラフである。It is a graph which shows the relationship between the permeation | transmission flux at the time of the stability of the main reverse osmosis membrane in Example 3, and the balance instruction | indication value after 10 minutes in the reverse osmosis membrane for evaluation.

Claims (6)

逆浸透膜装置(以下「主逆浸透膜装置」と称す。)に供給される水の逆浸透膜供給水としての良否を、該逆浸透膜装置の運転中に評価する方法であって、
該主逆浸透膜装置とは別の評価用逆浸透膜装置に、前記主逆浸透膜装置よりも高い圧力で該逆浸透膜供給水を断続的に通水し、該評価用逆浸透膜装置における通水開始から1時間以内の所定時間内の逆浸透膜供給水の透過水量を測定し、この測定値を予め設定した基準値と比較することにより、該逆浸透膜供給水を評価する方法であって、
該評価用逆浸透膜装置の逆浸透膜が、前記主逆浸透膜装置の逆浸透膜よりも低い圧力で同等の透過流束が得られる逆浸透膜であり、
前記透過水量の測定値が基準値よりも多い場合に良好な逆浸透膜供給水であると評価し、少ない場合に良好でない逆浸透膜供給水と評価することを特徴とする逆浸透膜供給水の評価方法。
A method for evaluating the quality of water supplied to a reverse osmosis membrane device (hereinafter referred to as "main reverse osmosis membrane device") as reverse osmosis membrane supply water during operation of the reverse osmosis membrane device,
The reverse osmosis membrane device for evaluation is passed through a reverse osmosis membrane device for evaluation different from the main reverse osmosis membrane device at a pressure higher than that of the main reverse osmosis membrane device. how the permeate flow of the reverse osmosis membrane supply water within one hour within a predetermined time after passing the start of water was measured by comparing the reference value set this measurement in advance, to assess the reverse osmosis membrane supply water in Because
The reverse osmosis membrane of the reverse osmosis membrane device for evaluation is a reverse osmosis membrane that can obtain an equivalent permeation flux at a lower pressure than the reverse osmosis membrane of the main reverse osmosis membrane device,
The reverse osmosis membrane supply water is evaluated as a good reverse osmosis membrane supply water when the measured value of the permeated water amount is larger than a reference value, and is evaluated as an unfavorable reverse osmosis membrane supply water when the measured value of the permeated water amount is larger than a reference value. Evaluation method.
請求項1において、該評価用逆浸透膜装置の逆浸透膜を逆浸透膜供給水の透過性の測定毎に新膜と交換することを特徴とする逆浸透膜供給水の評価方法。 Oite to claim 1, the evaluation method of the reverse osmosis membrane supply water, characterized in that to replace the reverse osmosis membrane a reverse osmosis membrane supply water permeability measurements every new film of the evaluation for reverse osmosis unit. 逆浸透膜装置(以下「主逆浸透膜装置」と称す。)に供給される水の逆浸透膜供給水としての良否を評価する装置であって、該逆浸透膜供給水が、前記主逆浸透膜装置よりも高い圧力で断続的に通水される評価用逆浸透膜装置と、該評価用逆浸透膜装置における通水開始から1時間以内の所定時間内の逆浸透膜供給水の透過水量を測定する手段と、該測定手段の測定値を予め設定した基準値と比較し、前記透過水量の測定値が基準値よりも多い場合に良好な逆浸透膜供給水であると評価し、少ない場合に良好でない逆浸透膜供給水と評価する演算手段を備えてなり、前記評価用逆浸透膜装置の逆浸透膜が、前記主逆浸透膜装置の逆浸透膜よりも低い圧力で同等の透過流束が得られる逆浸透膜であることを特徴とする逆浸透膜供給水の評価装置。 A device for evaluating the quality of water supplied to a reverse osmosis membrane device (hereinafter referred to as “main reverse osmosis membrane device”) as reverse osmosis membrane supply water , wherein the reverse osmosis membrane supply water is the main reverse osmosis membrane supply water. Reverse osmosis membrane device for evaluation that is intermittently passed at a pressure higher than that of the osmosis membrane device, and permeation of reverse osmosis membrane feed water within a predetermined time within one hour from the start of water passage in the reverse osmosis membrane device for evaluation A means for measuring the amount of water , comparing the measured value of the measuring means with a preset reference value, and evaluating that the reverse osmosis membrane feed water is good when the measured value of the permeated water amount is larger than the reference value, Ri Na an arithmetic means for assessing the reverse osmosis membrane supply water is less not good, reverse osmosis membrane of the evaluation reverse osmosis membrane device, comparable at a pressure lower than the reverse osmosis membrane of the main reverse osmosis unit reverse osmosis membrane supply water of the evaluation device, characterized in reverse osmosis membrane der Rukoto the permeation flux can be obtained 請求項において、前記主逆浸透膜装置に供給される逆浸透膜供給水の一部を断続的に分取する手段を備えることを特徴とする逆浸透膜供給水の評価装置。 4. The reverse osmosis membrane feed water evaluation device according to claim 3 , further comprising means for intermittently separating a part of the reverse osmosis membrane feed water supplied to the main reverse osmosis membrane device. 逆浸透膜装置を含む水処理装置の運転を管理する方法において、請求項1又は2に記載の逆浸透膜供給水の評価方法により、該逆浸透膜装置に供給される水の良否を評価し、この評価結果に基づいて運転管理を行う方法であって、前記測定された透過水量が基準値よりも多い場合に良好な逆浸透膜供給水であると評価して、そのままの条件で逆浸透膜処理を継続し、少ない場合に良好でない逆浸透膜供給水と評価して、逆浸透膜供給水の前処理条件及び/又は主逆浸透膜装置の運転条件を制御して透過流束の低下を防止することを特徴とする水処理装置の運転管理方法。 In the method of managing the operation of a water treatment apparatus including a reverse osmosis membrane device, the quality of water supplied to the reverse osmosis membrane device is evaluated by the reverse osmosis membrane feed water evaluation method according to claim 1 or 2. , A method for performing operation management based on the evaluation results, and evaluating that the reverse osmosis membrane feed water is good when the measured permeated water amount is larger than the reference value, and performing reverse osmosis under the same conditions. Continue the membrane treatment and evaluate the reverse osmosis membrane feed water as poor when there is little, and control the pretreatment conditions of the reverse osmosis membrane feed water and / or the operating conditions of the main reverse osmosis membrane device to lower the permeation flux The operation management method of the water treatment apparatus characterized by preventing . 逆浸透膜装置を含む水処理装置の運転を管理する方法において、請求項3又は4に記載の逆浸透膜供給水の評価装置により、該逆浸透膜装置に供給される水の良否を評価し、この評価結果に基づいて運転管理を行う方法であって、前記測定された透過水量が基準値よりも多い場合に良好な逆浸透膜供給水であると評価して、そのままの条件で逆浸透膜処理を継続し、少ない場合に良好でない逆浸透膜供給水と評価して、逆浸透膜供給水の前処理条件及び/又は主逆浸透膜装置の運転条件を制御して透過流束の低下を防止することを特徴とする水処理装置の運転管理方法。 In the method of managing the operation of a water treatment apparatus including a reverse osmosis membrane device, the quality of water supplied to the reverse osmosis membrane device is evaluated by the reverse osmosis membrane feed water evaluation device according to claim 3 or 4. , A method for performing operation management based on the evaluation results, and evaluating that the reverse osmosis membrane feed water is good when the measured permeated water amount is larger than the reference value, and performing reverse osmosis under the same conditions. Continue the membrane treatment and evaluate the reverse osmosis membrane feed water as poor when there is little, and control the pretreatment conditions of the reverse osmosis membrane feed water and / or the operating conditions of the main reverse osmosis membrane device to lower the permeation flux The operation management method of the water treatment apparatus characterized by preventing .
JP2003339761A 2003-09-30 2003-09-30 Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus Expired - Fee Related JP4517615B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003339761A JP4517615B2 (en) 2003-09-30 2003-09-30 Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003339761A JP4517615B2 (en) 2003-09-30 2003-09-30 Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus

Publications (2)

Publication Number Publication Date
JP2005103431A JP2005103431A (en) 2005-04-21
JP4517615B2 true JP4517615B2 (en) 2010-08-04

Family

ID=34534864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003339761A Expired - Fee Related JP4517615B2 (en) 2003-09-30 2003-09-30 Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus

Country Status (1)

Country Link
JP (1) JP4517615B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106362598A (en) * 2015-07-22 2017-02-01 成均馆大学校产学协力团 Apparatus and method for continuously measuring membrane fouling index

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4931039B2 (en) * 2005-12-02 2012-05-16 国立大学法人横浜国立大学 Water quality monitoring equipment and water treatment equipment
JP2008253923A (en) * 2007-04-05 2008-10-23 Japan Organo Co Ltd Condensate filter
JP4979519B2 (en) * 2007-09-06 2012-07-18 三菱レイヨン株式会社 Operation method of membrane separation activated sludge treatment equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153245A (en) * 1980-04-30 1981-11-27 Kurita Water Ind Ltd Measuring device for water quality of low turbidity
JPS5750642A (en) * 1980-09-12 1982-03-25 Kurita Water Ind Ltd Method and device for monitoring of ultrapure water
JPH10286445A (en) * 1997-04-17 1998-10-27 Kurita Water Ind Ltd Membrane separator
JPH11142395A (en) * 1997-11-07 1999-05-28 Toray Ind Inc Method for measuring oxidation power of water
JP2002205053A (en) * 2001-01-12 2002-07-23 Kanta Ishii System for monitoring raw water and method for controlling operation of concentrating/separating apparatus using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56153245A (en) * 1980-04-30 1981-11-27 Kurita Water Ind Ltd Measuring device for water quality of low turbidity
JPS5750642A (en) * 1980-09-12 1982-03-25 Kurita Water Ind Ltd Method and device for monitoring of ultrapure water
JPH10286445A (en) * 1997-04-17 1998-10-27 Kurita Water Ind Ltd Membrane separator
JPH11142395A (en) * 1997-11-07 1999-05-28 Toray Ind Inc Method for measuring oxidation power of water
JP2002205053A (en) * 2001-01-12 2002-07-23 Kanta Ishii System for monitoring raw water and method for controlling operation of concentrating/separating apparatus using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106362598A (en) * 2015-07-22 2017-02-01 成均馆大学校产学协力团 Apparatus and method for continuously measuring membrane fouling index

Also Published As

Publication number Publication date
JP2005103431A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
JP4867413B2 (en) Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus
Huang et al. Novel approach for the analysis of bench-scale, low pressure membrane fouling in water treatment
KR101815932B1 (en) Fouling index measuring system of multi-channel using high pressure syringe pump of constant flow operation and membrane filter, and method for the same
Kumar et al. Fouling behaviour, regeneration options and on-line control of biomass-based power plant effluents using microporous ceramic membranes
JP2018012062A (en) Membrane blockage estimation method and membrane blockage estimation device of reverse osmosis membrane supply water, and operation management method of water treatment equipment using the membrane blockage estimation method
KR101417917B1 (en) Measuring method for membrane fouling index
JPWO2008096585A1 (en) Filtration apparatus and water treatment method
Mousa Investigation of UF membranes fouling by humic acid
JP2011115705A (en) Method for determining filtration condition of hollow fiber membrane module
JP4517615B2 (en) Evaluation method and apparatus for reverse osmosis membrane feed water and operation management method for water treatment apparatus
JP2012196590A (en) Filtration membrane, cleaning means of filtration membrane, and selection method of pretreat means
Rodríguez et al. Flux dependency of particulate/colloidal fouling in seawater reverse osmosis systems
Roorda et al. Understanding membrane fouling in ultrafiltration of WWTP-effluent
JP4385704B2 (en) Reverse osmosis membrane feed water evaluation method and water treatment device operation management method
JP6441712B2 (en) Method for evaluating membrane clogging of treated water
JP7033841B2 (en) Membrane obstruction evaluation method of reverse osmosis membrane supply water and operation management method of water treatment equipment using the membrane obstruction evaluation method
JP2018008192A (en) Foulant quantification method
JPH11169851A (en) Water filter and its operation
JP5151009B2 (en) Membrane separation device and membrane separation method
KR101522254B1 (en) Two stage membrane filtration system having flexible recovery ratio and operation method thereof
JP6838436B2 (en) Filtration membrane evaluation method and filtration membrane evaluation device
CN115297950B (en) Washing failure determination method for water generator and washing failure determination program
JP2004108864A (en) Sdi measuring method and its device and fresh water generating method using reverse osmosis membrane
JP2005087948A (en) Method for detecting membrane damage of membrane filtration apparatus and device therefor
JP4082202B2 (en) Reverse osmosis membrane feed water evaluation method and water treatment device operation management method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100510

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130528

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4517615

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140528

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees