JP4415161B2 - Organometallic complex, gas storage material, hydrogenation catalyst and hydrogenation reaction method using the complex - Google Patents
Organometallic complex, gas storage material, hydrogenation catalyst and hydrogenation reaction method using the complex Download PDFInfo
- Publication number
- JP4415161B2 JP4415161B2 JP2003030659A JP2003030659A JP4415161B2 JP 4415161 B2 JP4415161 B2 JP 4415161B2 JP 2003030659 A JP2003030659 A JP 2003030659A JP 2003030659 A JP2003030659 A JP 2003030659A JP 4415161 B2 JP4415161 B2 JP 4415161B2
- Authority
- JP
- Japan
- Prior art keywords
- group
- metal
- complex
- reaction
- hydrogenation reaction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 125000002524 organometallic group Chemical group 0.000 title claims description 50
- 238000005984 hydrogenation reaction Methods 0.000 title claims description 37
- 238000000034 method Methods 0.000 title claims description 25
- 239000003054 catalyst Substances 0.000 title claims description 21
- 239000011232 storage material Substances 0.000 title claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 66
- 239000002184 metal Substances 0.000 claims description 66
- 239000007789 gas Substances 0.000 claims description 42
- 150000004032 porphyrins Chemical group 0.000 claims description 38
- 239000003446 ligand Substances 0.000 claims description 28
- -1 atom Metal complex Chemical class 0.000 claims description 21
- 125000004429 atom Chemical group 0.000 claims description 17
- 229910052763 palladium Inorganic materials 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 10
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 9
- 239000007809 chemical reaction catalyst Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 229910052703 rhodium Inorganic materials 0.000 claims description 8
- 229910052725 zinc Inorganic materials 0.000 claims description 8
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 125000000217 alkyl group Chemical group 0.000 claims description 6
- 125000003118 aryl group Chemical group 0.000 claims description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 6
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 claims description 5
- 125000005843 halogen group Chemical group 0.000 claims description 5
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 125000003545 alkoxy group Chemical group 0.000 claims description 4
- 125000003277 amino group Chemical group 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 125000001624 naphthyl group Chemical group 0.000 claims description 4
- 229910052762 osmium Inorganic materials 0.000 claims description 4
- 229910052702 rhenium Inorganic materials 0.000 claims description 4
- 229910052707 ruthenium Inorganic materials 0.000 claims description 4
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 4
- 239000001257 hydrogen Substances 0.000 claims description 3
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 2
- 150000004696 coordination complex Chemical class 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 description 41
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 20
- 239000011148 porous material Substances 0.000 description 19
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 150000001875 compounds Chemical class 0.000 description 17
- KDLHZDBZIXYQEI-UHFFFAOYSA-N palladium Substances [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 14
- 229910052757 nitrogen Inorganic materials 0.000 description 12
- 239000010949 copper Substances 0.000 description 11
- 230000003197 catalytic effect Effects 0.000 description 10
- 238000003860 storage Methods 0.000 description 10
- HHDUMDVQUCBCEY-UHFFFAOYSA-N 4-[10,15,20-tris(4-carboxyphenyl)-21,23-dihydroporphyrin-5-yl]benzoic acid Chemical compound OC(=O)c1ccc(cc1)-c1c2ccc(n2)c(-c2ccc(cc2)C(O)=O)c2ccc([nH]2)c(-c2ccc(cc2)C(O)=O)c2ccc(n2)c(-c2ccc(cc2)C(O)=O)c2ccc1[nH]2 HHDUMDVQUCBCEY-UHFFFAOYSA-N 0.000 description 9
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 9
- 150000002736 metal compounds Chemical class 0.000 description 9
- 239000010948 rhodium Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 7
- 239000007791 liquid phase Substances 0.000 description 7
- 125000000962 organic group Chemical group 0.000 description 7
- 229910001873 dinitrogen Inorganic materials 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- IAQRGUVFOMOMEM-UHFFFAOYSA-N but-2-ene Chemical compound CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 5
- 125000004432 carbon atom Chemical group C* 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 239000011651 chromium Substances 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000000921 elemental analysis Methods 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 3
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 150000002430 hydrocarbons Chemical group 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- YNWSXIWHOSSPCO-UHFFFAOYSA-N rhodium(2+) Chemical compound [Rh+2] YNWSXIWHOSSPCO-UHFFFAOYSA-N 0.000 description 3
- 238000001179 sorption measurement Methods 0.000 description 3
- 125000001424 substituent group Chemical group 0.000 description 3
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 2
- PJLHTVIBELQURV-UHFFFAOYSA-N 1-pentadecene Chemical compound CCCCCCCCCCCCCC=C PJLHTVIBELQURV-UHFFFAOYSA-N 0.000 description 2
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 2
- MHNNAWXXUZQSNM-UHFFFAOYSA-N 2-methylbut-1-ene Chemical compound CCC(C)=C MHNNAWXXUZQSNM-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 2
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052797 bismuth Inorganic materials 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000007810 chemical reaction solvent Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 2
- 238000006471 dimerization reaction Methods 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 229910052733 gallium Inorganic materials 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- 238000005469 granulation Methods 0.000 description 2
- 230000003179 granulation Effects 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 229910052745 lead Inorganic materials 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- ZGEGCLOFRBLKSE-UHFFFAOYSA-N methylene hexane Natural products CCCCCC=C ZGEGCLOFRBLKSE-UHFFFAOYSA-N 0.000 description 2
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 2
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- QMMOXUPEWRXHJS-UHFFFAOYSA-N pentene-2 Natural products CCC=CC QMMOXUPEWRXHJS-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 229910052718 tin Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000005829 trimerization reaction Methods 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1 -dodecene Natural products CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 description 1
- BKOOMYPCSUNDGP-UHFFFAOYSA-N 2-methylbut-2-ene Chemical compound CC=C(C)C BKOOMYPCSUNDGP-UHFFFAOYSA-N 0.000 description 1
- RCBGGJURENJHKV-UHFFFAOYSA-N 2-methylhept-1-ene Chemical compound CCCCCC(C)=C RCBGGJURENJHKV-UHFFFAOYSA-N 0.000 description 1
- IRUDSQHLKGNCGF-UHFFFAOYSA-N 2-methylhex-1-ene Chemical compound CCCCC(C)=C IRUDSQHLKGNCGF-UHFFFAOYSA-N 0.000 description 1
- QDMFTFWKTYXBIW-UHFFFAOYSA-N 3-Methyl-1-heptene Chemical compound CCCCC(C)C=C QDMFTFWKTYXBIW-UHFFFAOYSA-N 0.000 description 1
- ZQDPJFUHLCOCRG-UHFFFAOYSA-N 3-hexene Chemical compound CCC=CCC ZQDPJFUHLCOCRG-UHFFFAOYSA-N 0.000 description 1
- YHQXBTXEYZIYOV-UHFFFAOYSA-N 3-methylbut-1-ene Chemical compound CC(C)C=C YHQXBTXEYZIYOV-UHFFFAOYSA-N 0.000 description 1
- XTVRLCUJHGUXCP-UHFFFAOYSA-N 3-methyleneheptane Chemical compound CCCCC(=C)CC XTVRLCUJHGUXCP-UHFFFAOYSA-N 0.000 description 1
- RITONZMLZWYPHW-UHFFFAOYSA-N 3-methylhex-1-ene Chemical compound CCCC(C)C=C RITONZMLZWYPHW-UHFFFAOYSA-N 0.000 description 1
- XZJZVNABSFJYOK-UHFFFAOYSA-N 3-methylidenenonane Chemical compound CCCCCCC(=C)CC XZJZVNABSFJYOK-UHFFFAOYSA-N 0.000 description 1
- GLUPFQMLFXGTNL-UHFFFAOYSA-N 3-methyloct-1-ene Chemical compound CCCCCC(C)C=C GLUPFQMLFXGTNL-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- UWFLHGCFLVUJHO-UHFFFAOYSA-N C(=O)=C1CC=C(C=C1)C1=C2C=CC(C(=C3C=CC(=C(C=4C=CC(=C(C5=CC=C1N5)C5=CCC(C=C5)=C=O)N4)C4=CCC(C=C4)=C=O)N3)C3=CCC(C=C3)=C=O)=N2 Chemical compound C(=O)=C1CC=C(C=C1)C1=C2C=CC(C(=C3C=CC(=C(C=4C=CC(=C(C5=CC=C1N5)C5=CCC(C=C5)=C=O)N4)C4=CCC(C=C4)=C=O)N3)C3=CCC(C=C3)=C=O)=N2 UWFLHGCFLVUJHO-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 241000238366 Cephalopoda Species 0.000 description 1
- 229910021592 Copper(II) chloride Inorganic materials 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000005427 anthranyl group Chemical group 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 238000009876 asymmetric hydrogenation reaction Methods 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000006757 chemical reactions by type Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000004093 cyano group Chemical group *C#N 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- XNMQEEKYCVKGBD-UHFFFAOYSA-N dimethylacetylene Natural products CC#CC XNMQEEKYCVKGBD-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 229940069096 dodecene Drugs 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000004817 gas chromatography Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 150000003278 haem Chemical class 0.000 description 1
- 125000001188 haloalkyl group Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- 125000003253 isopropoxy group Chemical group [H]C([H])([H])C([H])(O*)C([H])([H])[H] 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 125000006606 n-butoxy group Chemical group 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N n-decene Natural products CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- 125000001298 n-hexoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000003935 n-pentoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000003506 n-propoxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 125000004957 naphthylene group Chemical group 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- JOXIMZWYDAKGHI-UHFFFAOYSA-N p-toluenesulfonic acid Substances CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 1
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-M perchlorate Inorganic materials [O-]Cl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-M 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 125000005561 phenanthryl group Chemical group 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 238000002428 photodynamic therapy Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229930188006 polyphyllin Natural products 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N propyl ethylene Natural products CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 150000003233 pyrroles Chemical class 0.000 description 1
- 230000005359 quantum Heisenberg model Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 125000005920 sec-butoxy group Chemical group 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 239000012265 solid product Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 229910052713 technetium Inorganic materials 0.000 description 1
- 125000004213 tert-butoxy group Chemical group [H]C([H])([H])C(O*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229940095068 tetradecene Drugs 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Landscapes
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Description
【0001】
【産業上の利用分野】
本発明は、金属を含有するポルフィリン構造を有する新規な有機金属錯体、並びに、この錯体を用いた気体吸蔵物質、水素化反応用触媒、及び水素化反応方法に関する。
【0002】
【従来の技術】
ゼオライト等の多孔体は、細孔の存在に基づく吸着作用、イオン交換作用、触媒作用等の特性によって、化学工業的に広く利用されており、近年、その応用範囲は多岐に亘っている。
【0003】
中でも、有機金属錯体を構成要素とする多孔体の合成が活発に研究されている。原料である配位子を選択することにより精密な多孔体のデザインが可能であり、分子認識や触媒作用に対して新しい機能の展開も期待されている。
【0004】
様々な細孔構造を有する有機金属錯体が合成されている中で、下記式(A)に表わされるポルフィリン構造を繰り返し単位として有する有機金属錯体が合成・同定されており、水素化反応が試みられた報告がある(非特許文献1)。
【0005】
【化2】
【0006】
しかしながら、その活性に関する知見は明らかになっていない。また、その構造中に金属ポルフィリン骨格を有する有機金属錯体は、未だ報告されていない。
【0007】
【非特許文献1】
日本化学会第80秋季年会(2001)、講演予稿集、p114、1B9−14
【0008】
【発明が解決しようとする課題】
本発明の目的は、ポルフィリン骨格を有する新規な構造を有するとともに、気体吸蔵物質や水素化反応用触媒として優れた活性を有する有機金属錯体を提供すること、並びに、この有機金属錯体を用いた気体吸蔵物質及び水素化反応用触媒、更にはこの触媒を用いた水素化反応方法を提供することに存する。
【0009】
【課題を解決するための手段】
本発明者は、上記課題に鑑み鋭意検討した結果、金属ポルフィリン骨格を有する新規な構造のジカルボン有機金属錯体を見出し、驚くべきことにこれが顕著なガス吸蔵能力・触媒能を有するとの知見を得、本発明を完成させた。
【0010】
本発明の要旨は、金属原子と、該金属原子に配位結合した金属ポルフィリン構造を有する配位子とから構成された、下記一般式(1)に示される2次元格子構造を繰り返し単位として有することを特徴とする有機金属錯体に存する。
【0011】
【化3】
(上記一般式(1)中、M1 は、Rh、Cr、Pd、Zn、Mo、Cu、Ru、W、Re、及びOsより選択される金属原子を表わし、M 2 は、Cu、Cr、Rh、Ru、Pd、Mo、Zn、及びWより選択される金属原子を表わす。R1、R2、R3、及びR4は各々独立に、フェニル基、シクロヘキシル基、ナフチル基、及びデカヒドロナフチル基より選択される基を表わす。R5、R6、R7、R8、R9、R10、R11、及びR12は各々独立に、水素原子、ハロゲン原子、又は炭素数が1以上20以下の、アルキル基;アルコキシ基;アリール基;ビニル基;アミノ基;ホルミル基;カルボキシル基;及びチオール基より選択される基を表わす。)
【0012】
また、本発明の別の要旨は、上記の有機金属錯体を含有することを特徴とする気体吸蔵物質及び水素化反応用触媒に存する。
【0013】
更に、本発明の別の要旨は、上記の水素化反応用触媒の存在下で水素化反応を行なうことを特徴とする水素化反応方法に存する。
【0014】
【発明の実施の形態】
以下、本発明につき詳細に説明する。
(1)本発明の有機金属錯体の構造:
本発明に係る有機金属錯体は、金属原子と、該金属原子に配位結合した金属ポルフィリン構造を有する配位子とから構成された、下記一般式(1)に示される2次元格子構造を繰り返し単位として有する。
【0015】
【化4】
以下、上記一般式(1)における各符号について説明する。
【0016】
(1−1)M1:
M1は金属原子を表わす。具体的には、2個のM1に対してカルボキシル基が二座で配位できる金属原子である。
二座配位が可能な金属原子であれば、その種類は特に限定されないが、通常はRh、Cr、Pd、Zn、Mo、Cu、Ru、W、Re、及びOsから選択される。中でも、本発明の有機金属錯体を触媒として使用した場合に特に高い触媒活性が得られることから、Rh、Ru、Mo、Pdが好ましい。
複数のM1は、同じであっても異なっていてもよいが、製造の便宜性や、触媒として使用した場合に反応の効率性が良いという観点からは、同じである方が好ましい。
【0017】
(1−2)M2:
M2は金属原子であり、具体的には、ポルフィリン系化合物に配位する能力を有する金属である。
ポルフィリン系化合物に配位する能力を有する金属原子であれば、その種類は特に限定されないが、通常用いられる金属としては、Mg、Al、Si、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、As、Sr、Y、Zr、Nb、Mo、Tc、Ru、Rh、Pd、Ag、Cd、In、Sn、Sb、Ba、Pr、Eu、Yb、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、Tl、Pb、Bi、Th、Be、P等が挙げられる。これらの中でも、ポルフィリン系化合物に配位して金属ポルフィリンを形成し易いという点で、Mg、Al、Si、Ca、Ti、V、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Pd、In、Sn、Pb、Pが好ましい。また、触媒として使用した場合に反応の効率性が良いという点からは、Cu、Cr、Rh、Ru、Pd、Mo、Zn、Wが好ましい。
【0018】
なお、M2は軸配位子を有していても良い。その場合、M21個当たりの軸配位子の数は、通常1又は2である。
軸配位子の種類は、M2に軸配位子として配位するものであれば、特に限定されないが、通常の分子量は100以下であり、反応系に影響を及ぼさないものの中から選択される。
【0019】
具体例としては、F-、Cl-、Br-、I-等のハロゲンイオン;OR-、OPh-、NCS、N3 -、OH-、CN-、CH3COO-、CF3COO-、BF4 -、PF6 -、ClO4 -、パラトルエンスルホン酸アニオン;ピリジン、イミダゾール等の塩基;NO、CO、O2等のガス;水等が挙げられる(なお、前記の記載中、Rは、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、tert−ブチル基、sec−ブチル基、n−ペンチル基、n−ヘキシル基等の炭素数1〜10の直鎖又は分岐のアルキル基を表わし、Phは、置換基を有していてもよいフェニル基を表わす。)。
これらの金属含有ポルフィリン化合物は、二次元格子構造中に1種類が単独で存在してもよいし、2種類以上が任意の組み合わせで存在してもよい。
【0020】
(1−3)R1〜R4:
R1、R2、R3、R4は各々独立に、M1にカルボキシル基を介して配位結合できる二価の有機基を示す。なお、上記一般式(1)中、M1に配位している2個の酸素原子は、該カルボキシル基の酸素を表す。
【0021】
M1に配位できるカルボキシル基と結合できる有機基であれば、その種類は特に限定されないが、安定した二次元格子構造を形成する上で、ポルフィリン骨格とM1とをより直線状に結合させる置換基が好ましく、直鎖構造を有する置換基がより好ましい。
【0022】
有機基の炭素数は、通常1以上、好ましくは2以上、より好ましくは5以上、更に好ましくは7以上であり、通常100以下、好ましくは60以下、より好ましくは20以下、更に好ましくは10以下である。
【0023】
有機基の種類としては、M1に配位しているカルボキシル基を含めた形で、カルボキシアルキレン基、カルボキシアリーレン基、カルボキシシクロアルキレン基、カルボキシアルキニレン基が好ましい。
中でも、通常10個以下、好ましくは5個以下、より好ましくは2個以下のベンゼン核および/又はシクロアルキル環を有する、カルボキシアリーレン基、カルボキシアルキニレン基又はカルボキシシクロアルキレン基が好ましく、4−カルボキシナフチレン基、4−カルボキシデカヒドロナフチレン基が特に好ましく、4−カルボキシフェニレン基が最も好ましい。
【0024】
(1−4)R5〜R12:
R5、R6、R7、R8、R9、R10、R11、及びR12は各々独立に、水素原子、ハロゲン原子、又は一価の有機基を表わす。これらの基は、それぞれ同じでもよく、互いに異なっていてもよい。
【0025】
ハロゲン原子の場合、その種類は特に限定されないが、フッ素、塩素、臭素又はヨウ素が好ましく、中でもフッ素、塩素がより好ましい。
一価の有機基の場合、その炭素数は通常1以上であり、20以下、好ましくは18以下である。有機基の種類は特に制限されないが、無置換又は置換の一価の炭化水素基が好ましい。
【0026】
炭化水素基の種類としては、アルキル基、アルコキシ基、アリール基、ビニル基、アミノ基、ホルミル基、カルボキシル基及びチオール基が挙げられる。中でも、アルキル基又はアリール基が好ましい。
【0027】
アルキル基の場合、炭素数1〜6のものが好ましく、その具体例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、n−ヘキシル基等が挙げられる。
【0028】
アルコキシ基の場合も、炭素数1〜6のものが好ましく、その具体例としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、n−ペントキシ基、n−ヘキソキシ基等が挙げられる。
【0029】
アリール基の場合、核炭素数6〜18のものが好ましく、その具体例としては、フェニル基、ナフチル基、アントラニル基、フェナンスリル基、ビフェニル基等が挙げられる。
【0030】
炭化水素基が置換基を有する場合、その種類としては、アルコキシ基、アリール基、ビニル基、アミノ基、ニトロ基、水酸基、シアノ基、ホルミル基、カルボキシル基、チオール基などが挙げられる。
これらの中でも、水素、ハロゲン原子、アルキル基が好ましい。
【0031】
(2)本発明の有機金属錯体の製造方法:
本発明の有機金属錯体は、▲1▼上記M2を含む金属含有ポルフィリン構造を有する配位子と上記M1を含む金属化合物との反応により二次元格子構造を形成させて製造しても、▲2▼ポルフィリン構造を有する配位子と金属化合物とを反応させて二次元格子構造を形成させた後ポルフィリン構造部分に金属導入してもよいが、通常は▲1▼の方法で製造する。
以下、▲1▼の製造方法について、詳細に説明する。
【0032】
(2−1)金属含有ポルフィリン構造を有する配位子:
金属含有ポルフィリン構造を有する配位子は、金属に配位できる官能基を有するポルフィリンと上記M2に相当する金属の化合物とを反応させて、ポルフィリンの中心にM2金属を導入することにより、容易に合成することができる。合成法としては、例えば、Yutaka A. et al., Porphyrins 1998; 7(2・3) に記載の方法を使用することができる。
【0033】
<ポルフィリン>
中心金属を含まないポルフィリンとして、具体的には、下記一般式(2)で表わされる構造のポルフィリン化合物が使用される。
【化5】
上記一般式(2)中の符号は、上記一般式(1)の同じ符号と同義である。
【0034】
上記一般式(2)で表わされるポルフィリン化合物は、例えば、金属に配位できる官能基を有するアルデヒド誘導体及びピロール誘導体を原料として、公知の方法より合成することができる(Green Chemistry, 2001, 6, 267)。あるいは、天然に存在するヘムを出発原料として、これを縮合することにより合成することもできる。
【0035】
<M2金属化合物>
M2を含む金属化合物の種類は、M2を含む化合物であれば特に限定されないが、通常はM2を含む金属塩を用いる。
金属塩の種類は特に限定されないが、通常はハロゲン化物、酢酸塩、金属アセチルアセトナ−ト錯体、又は金属カルボニル錯体を用いる。中でも、脱離基としての反応容易性の点でハロゲン化物が好ましい。
【0036】
M2の種類、及びこれを含む金属塩の種類は、一種のみでも二種以上の組み合わせでもよいが、一種を単独で用いるのが好ましい。
M2を含む金属化合物を上記のポルフィリン化合物と反応させることにより、M2金属がポルフィリン骨格の中心に取り込まれる。中心金属は、中心金属を含むポルフィリン面に対して上下に配位子(軸配位子)を有する場合がある。
【0037】
<反応方法>
ポルフィリン骨格への中心金属M2の導入は、上記の中心金属を含まないポリフィリン化合物を、酢酸、N,N−ジメチルホルムアミド、ベンゼン、エーテル、クロロホルム、ピリジン等の有機溶媒中で、上記のM2を含む金属化合物とともに、還流しながら加熱することにより行なうことができる。
【0038】
反応時の温度は、通常は室温以上、好ましくは50℃以上、また、通常250℃以下、好ましくは200℃以下の範囲である。また、反応時の圧力は、溶媒が液相を保持する反応圧力であれば特に限定されない。
【0039】
反応時間は、反応条件に応じて異なるが、通常は30分以上、好ましくは5時間以上、また、通常は24時間以下、好ましくは10時間以下で行なうのが好適であるため、上記範囲で反応が完結する様に反応条件を選択するのが好ましい。
【0040】
なお、反応中にポルフィリン中心金属と溶媒が反応し、溶媒が軸配位子として金属に配位する場合がある。
以上の手順により金属含有ポルフィリン化合物が得られるが、得られた金属含有ポルフィリン化合物は、そのまま配位子として使用することができる。
【0041】
(2−2)M1を含む金属化合物:
M1を含む金属化合物の種類は特に制限されないが、通常はM1を含む金属塩を用いる。塩の種類は特に限定されないが、通常、酢酸塩、炭酸塩、蟻酸塩、硝酸塩、硫酸塩、燐酸塩、ハロゲン塩、過塩素酸塩、テトラフルオロほう酸塩、ヘキサフルオロ燐酸塩が用いられる。中でも、反応が容易な蟻酸塩、酢酸塩が好ましい。
【0042】
(2−3)金属含有ポルフィリン構造を有する配位子とM1を含む金属化合物との反応:
上記の金属含有ポルフィリン構造を有する配位子(金属含有ポルフィリン配位子)と、上記の金属M1を含む金属化合物とを反応させることにより、本発明の有機金属錯体が合成される。
【0043】
金属含有ポルフィリン配位子は、二次元格子構造中に1種類が単独で存在してもよいし、2種類以上が存在してもよいが、安定した二次元格子構造を得るためには、1種類のみを用いることが好ましい。
手順としては、上記金属化合物と金属含有ポルフィリン配位子の両者が溶解する溶媒中で、室温又は加熱条件下で反応させ、合成する。
【0044】
溶媒の種類は特に限定されないが、通常はメタノール、エタノール、プロパノールなどのアルコール、アセトン、メチルエチルケトン、メチルイソブチルケトン、アセトニトリル、テトラヒドロフラン、ジメチルエーテル、ジエチルエーテル、ジオキサン、ジメチルホルムアミド、ジメチルホルムアミド、スルホラン、トルエン、ベンゼン、ヘキサン、ヘプタンなどの汎用有機溶媒又はそれらの混合溶媒が用いられる。中でも、メタノールが好ましい。
【0045】
反応温度は、反応溶媒が凝固しない温度以上、反応溶媒が液相状態を保てる温度以下であれば、特に限定されないが、通常は5℃以上、好ましくは25℃以上、また、通常250℃以下、好ましくは170℃以下である。
反応圧力は、用いられる溶媒が液相を保持できる反応圧力であれば、特に制限されないが、通常は常圧以上、5MPa以下の範囲である。
【0046】
反応時間は、反応条件に応じて異なるが、通常は1時間以上、好ましくは5時間以上、また、通常は24時間以下、好ましくは5時間以下で行なうのが好適であるため、上記範囲で反応が完結する様に反応条件を選択するのが好ましい。
【0047】
<回収方法>
反応後、生成物は通常、自然に固体として析出させるか、もしくは溶媒をエバポレートして除去し、固体状の沈殿又は微結晶として回収することができる。
【0048】
<回収後の処理>
得られた固体状の生成物は、適切な溶媒を用いて洗浄した後、室温又は加熱条件下において、また、常圧又は減圧条件下において乾燥することにより、最終的に目的とする本発明の有機金属錯体を、通常1μm〜1cm程度の大きさで得ることができる。
最終的に得られる本発明の有機金属錯体の構造は特に限定されないが、好ましくは結晶構造を取る。また、その形状も特に限定されず、微粉末やそれらが凝集した凝集体等の様々な形状を取り得る。
【0049】
(3)本発明の有機金属錯体の用途:
(3−1)気体吸蔵物質:
本発明の有機金属錯体は、通常、孔径5〜20オングストロームの、2次元格子構造により規定される細孔を有する。そして、この細孔内に気体を吸着することにより、気体吸蔵能(気体吸着能、気体貯蔵能)を有することから、気体吸蔵物質の材料として好適に用いられる。なお、本発明において「気体吸蔵能を有する」とは、77Kにおけるアルゴンの最大吸蔵量が、金属原子(ポルフィリン化合物の配位を受ける金属原子)1モル当たり0.01モル以上であることを表わす。
【0050】
本発明の有機金属錯体が吸蔵できる気体の種類は特に制限されない。具体例としては、水素ガス、酸素ガス、窒素ガス、アルゴンガス、メタン、メタンを含む天然ガス等が挙げられる。
【0051】
本発明の有機金属錯体の細孔径は、原料とする金属M2の種類や金属ポルフィリン構造を有する配位子、特に置換基R1〜R4の種類によって制御することが可能であり、これによって気体吸蔵量を調整することができる。例えば、ポルフィリン化合物としてテトラキス(4−カルボキシフェニル)ポルフィリンを使用した場合、得られる有機金属錯体は、孔径が約6オングストロームの細孔を有する。この有機金属錯体は、液体窒素温度(77K)において、ポルフィリン分子1モルあたり最大約5モルの窒素ガスを吸蔵する。
【0052】
なお、本発明の有機金属錯体を気体吸蔵物質として用いる場合には、なるべく細孔径分布が狭く、均一な細孔を有する有機金属錯体を用いることが望ましい。
【0053】
(3−2)各種触媒
本発明の有機金属錯体は、触媒能を有する金属ポルフィリン化合物を配位子として用いたり、細孔内部に反応場としての機能を持たせたりすることにより、酸化触媒、還元触媒、不斉酸化触媒、不斉還元触媒、水素添加触媒、不斉水素化触媒、光触媒、水分解触媒、脱硝触媒等の気相又は液相用の各種触媒として使用できる。
【0054】
中でも、本発明の有機金属錯体は、水素化反応用の触媒として、特に好適に用いることができる。
本発明の有機金属錯体を水素化反応用触媒として用いる場合、上述の方法で得られた微粉状や微紛凝集体状等の有機金属錯体をそのまま用いてもよく、これを公知の手法に従って造粒して用いても良い。造粒する場合、その形状や大きさにも特に制限は無く、任意に選択することができるが、使用目的に応じて、例えば通常5μm〜1cm程度の大きさに造粒できる。
【0055】
以下、本発明の有機金属錯体を触媒として用いた水素化反応の方法について説明する。
【0056】
<反応基質>
反応基質は、水素化反応の対象となる物質であれば特に制限されないが、通常はオレフィン性化合物を用いる。オレフィン性化合物としては、末端又は内部位に炭素−炭素二重結合を有する、直鎖又は分岐鎖状のオレフィン化合物が挙げられる。中でも、直鎖状のオレフィン性化合物が好ましい。オレフィン性化合物の炭素数は、通常2以上、また、通常16以下、好ましくは8以下、より好ましくは6以下である。オレフィン性化合物は、一種を単独で用いてもよく、二種以上を任意の組み合わせで混合して用いることもできる。
【0057】
中でも好ましいオレフィン化合物として、エチレン、プロピレン、1−ブテン、2−ブテン、イソブテン、1−又は2−ペンテン、2−メチルブテン−1、2−メチルブテン−2、3−メチルブテン−1、1−、2−又は3−ヘキセン、プロペンの二量化の際に得られるC6−オレフィン混合物(ジプロペン)、ヘプテン、2−又は3−メチル−1−ヘキセン、オクテン、2−メチルヘプテン、3−メチルヘプテン、5−メチルヘプテン−2、6−メチルヘプテン−2、2−エチルヘキセン−1、ブテンの二量化の際に得られる異性C8−オレフィン(ジブテン)の混合物、ノネン、2−又は3−メチルオクテン、プロペンの三量化の際に得られるC9−オレフィン混合物(トリプロペン)、デセン、2−エチル−1−オクテン、ドデセン、プロペンの四量化又はブテンの三量化の際に得られるC12−オレフィン混合物(テトラプロペン又はトリブテン)、テトラデセン、ペンタデセン、ヘキサデセン、ブテンの四量化の際に得られるC16−オレフィン混合物(テトラブテン)等が挙げられる。
【0058】
<反応系及び反応形式>
反応系の種類は特に限定されず、液相系、気相系の何れを採用することも可能である。中でも気相系の方が、反応の効率が良く、反応後の処理も不要であることから好ましい。気相系を採用する場合、その反応形式としては、本発明の有機金属錯体を反応器中に固定化させ、これに反応基質を作用させる、固定床流通反応による方式が一般に用いられる。
【0059】
一方、液相系を用いる場合、その反応形式としては、反応基質を含む反応溶液中に本発明の有機金属錯体を分散させて行なう液相懸濁床による方式や、本発明の有機金属錯体を反応器中に固定化させ、これに反応基質を作用させる固定床流通反応による方式などを、適宜選択して採用することができる。何れの場合も、反応終了後に公知の固液分離法を用いて本発明の有機金属錯体を回収し、必要に応じて公知の手法により洗浄等することにより、水素化反応用触媒として再利用することが可能となる。
【0060】
<反応条件>
水素化反応時の圧力は、通常0.5MPa以上、好ましくは1MPa以上、また、通常10MPa以下、好ましくは4MPa、より好ましくは2.5MPa以下の範囲である。
【0061】
水素化反応時の温度は、室温以上、220℃以下の範囲から適宜選択するのが望ましい。本発明の有機金属錯体は高い触媒能を有するので、従来よりも低温で効率的に水素化反応を行なうことが可能である。
【0062】
(3−3)その他の用途:
本発明で配位子として使用する金属ポルフィリン化合物は、触媒能、光応答性(いわゆる光アンテナ機能)、酸素輸送機能等、工業分野や生化学分野において有用な機能を有する化合物である。よって、本発明の有機金属錯体は、配位子として用いる金属ポルフィリン化合物を適切に選択することにより、光動力学療法に対する増感材、ディスプレイ等の表示装置における発光素子、有機染料(着色剤)、レーザー光に対応する光学記録媒体など、各種の光機能材料や有機−無機電子材料として、多くの工業的用途が期待できる。また、化学的にも安定であることから、化粧品や脱臭剤としての用途などにも利用できる。
【0063】
【実施例】
以下、本発明を実施例により具体的に説明するが、本発明はこの実施例に限定されるものではない。なお、以下の記載において「TCPP」とは、テトラキス(4−カルボニルフェニル)ポルフィリンを表わす。
【0064】
・参考例1{TCPPRh(II)錯体}:
<錯体の製造>
酢酸ロジウム(II)二量体二水和物100.1mg(2.094×10-4mol)と、TCPP165.6mg(2.094×10-4mol)と、脱水メタノール25mlとを、窒素気流下でオートクレーブ中に密閉し、180℃で3時間加熱することにより配位子交換し、二次元ブロック錯体を合成した。オートクレーブを冷ました後、遠心分離しメタノールで洗浄後、真空乾燥することにより、中心金属を有さないポルフィリン系有機金属錯体であるTCPPロジウム(II)錯体[TCPPRh(II)錯体]を得た。
【0065】
<元素分析>
得られたTCPPRh(II)錯体の元素分析の結果は以下の通りである。
分析値:C=56.39%,H=3.39%,N=4.94%。
計算値{Rh2(C20N4H10)(C6H4COO)4(H2O)0.5(CH3OH)2}:C=56.35%,H=3.31%,N=5.26%。
【0066】
<気体吸蔵量の温度依存性の測定>
Cahn(モデル:Cahn−1000)電子天秤を使用し、圧力20torr、温度77〜250Kの条件下で、窒素ガスについての気体吸蔵量の測定を行なった。測定によって得られた、気体吸蔵量と温度との関係を表わすグラフを、図1に示す。液体窒素温度(77K)において、ポルフィリン1モルに対して5.7モルの窒素ガスを吸蔵した。図1に示される様に、多量の気体吸蔵量がみられることから、気体はTCPPRh(II)錯体の表面ではなく、その細孔中に吸蔵されることが分かる。
【0067】
また、気体吸蔵量より求められる細孔分布を図2に示す。図2より、TCPPRh(II)錯体の有効細孔径は5.7オングストロームであり、極めて均一な細孔を有することが分かる。
【0068】
<磁化率の温度依存性の測定>
SQUID磁化率測定装置(Quantum Design, MPMS-5S)を使用して、磁化率の温度依存性を温度2〜300Kの条件で測定した。測定によって得られた、磁化率と温度との関係を表わすグラフを図3に示す。Bleaney-Bowersの方法(B. Bleaney and K. D. Browers, Proc. R. Soc. London, Ser A. 214, 415 (1952))により、このTCCPRh(II)錯体は、2核構造のHeisenbergモデルに従うことが分かった。また、得られた物理定数{S(スピン数)=1/2、2J(カップリング定数)=−1920cm-1、g(g−因子)=2.09}からも、TCPPRh(II)錯体が酢酸銅と同様の2核構造を有することが判る。
【0069】
・実施例1(PdTCCPRh(II)錯体):
<錯体の製造>
塩化パラジウム100.1mg(5.639×10-4mol)と、TCPP200.1mg(2.529×10-4mol)とに、ジメチルホルムアミド(DMF)60mlを加え、130℃で6時間環流した。濃縮後、アセトンで沈殿を洗浄し、真空乾燥することにより、中心金属(Pd)を有するポルフィリン化合物であるパラジウムTCPP(PdTCPP)を得た。
【0070】
このPdTCPP60.0mg(6.702×10-4mol)と、酢酸ロジウム(II)二量体二水和物36.7mg(7.677×10-5mol)と、脱水メタノール25mlとを、窒素気流下でオートクレーブ中に密閉し、180℃で3時間加熱することにより配位子交換し、二次元ブロック構造の錯体を合成した。オートクレーブを冷ました後、遠心分離して沈殿生成物を収集し、メタノールで洗浄後、真空乾燥することにより、中心金属(Pd)を有するポルフィリン系有機金属錯体であるパラジウムTCPPロジウム(II)錯体[PdTCPPRh(II)錯体]を得た。
【0071】
<元素分析>
得られたPdTCPPRh(II)錯体の分析結果は以下の通りである。
分析値:C=48.34%、H=3.57%、N=4.30%。
計算値{Rh2(C20N4H8Pd)(C6H4COO)4(H2O)4.5(CH3OH)2}:C=48.35%;H=3.33%;N=4.51%
<気体吸蔵量の温度依存性の測定>
参考例1と同様の手順によって、PdTCPPRh(II)錯体の気体吸蔵量を測定した。測定によって得られた、気体吸蔵量と温度との関係を表わすグラフを図1に示す。液体窒素温度(77K)において、ポリフィリン1モルあたり窒素ガスを5.0モル吸蔵した。
【0072】
<錯体を用いた水素化反応>
上記の方法で製造したPdTCCPRh(II)錯体0.07gを、容積155.69mlのガラス製の反応容器に仕込み、エチレンと水素の混合気流下に放置し、閉鎖系のガス循環ポンプにてガスを2時間循環させた。
【0073】
反応生成物を、PropackQカラムを用いたガスクロマトグラフィーにより分析した。反応温度193Kでのエタンの収率は100%であった。反応開始から5分後には反応は完結した。
反応開始から5分後の平均水素化速度は2.4×10-3モル/秒・g、10分後のそれは3.4×10-3モル/秒・gであった。
【0074】
・実施例2(CuTCPPRh(II)錯体):
<錯体の製造>
塩化銅(II)74.0mg(5.639×10-4mol)と、TCPP198.8mg(2.529×10-4mol)とに、ジメチルホルムアミド(DMF)60mlを加え、130℃で30分環流した。放冷後、濃縮しアセトンで沈殿を洗浄し、真空乾燥することにより、中心金属(Cu)を有するポルフィリン化合物である銅TCPP(CuTCPP)を得た。
【0075】
このCuTCPP60.1mg(7.040×10-5mol)と、酢酸ロジウム(II)二量体二水和物36.8mg(7.677×10-5mol)と、脱水メタノール25mlとを、窒素気流下でオートクレーブ中に密閉し、180℃で3時間加熱することにより配位子交換し、二次元ブロック錯体を合成した。オートクレーブを冷ました後、遠心分離しメタノールで洗浄後、真空乾燥することにより、中心金属(Cu)を有するポルフィリン系有機金属錯体である銅TCPPロジウム(II)錯体[CuTCPPRh(II)錯体]を得た。
【0076】
<元素分析>
得られたCuTCPPRh(II)錯体の分析結果は以下の通りである。
分析値:C=48.97%、H=3.62%、N=4.57%。
計算値{Rh2(C20N4H8Cu)(C6H4COO)4(H2O)6(CH3OH)2}:C=49.04%、H=3.41%、N=4.52%)
<気体吸蔵量の測定>
参考例1と同様の手順によって、CuTCPPRh(II)錯体の気体吸蔵量を測定した。測定によって得られた、気体吸蔵量と温度との関係を表わすグラフを図1に示す。液体窒素温度(77K)において、ポリフィリン1モルあたり窒素ガスを6.4モル吸蔵した。この気体吸蔵量から求めた細孔径は、8.0オングストロームであった。
【0077】
<錯体を用いた水素化反応>
上記手順で合成したCuTCPPRh(II)錯体を用いて、実施例1と同様の条件で水素化反応を実施した。水素化の反応初期速度は656×10-9モル/秒・gであった。
【0078】
・比較例1(TCCPRh(II)錯体):
参考例1で製造したTCPPRh(II)錯体を用いて、実施例1と同様の条件で水素化反応を実施した。
5分後の平均水素化速度は4.6×10-4モル/秒・g、10分後のそれは1.48×10-3モル/秒・gであった。
【0079】
上記の結果より、実施例1の有機金属錯体(PdTCCPRh(II)錯体)及び実施例2の有機金属錯体(CuTCCPRh(II)錯体)は、比較例1の有機金属錯体(TCCPRh(II)錯体)と比較して、何れも高い触媒活性を有しており、優れた水素化反応用触媒として使用できることが分かる。
【0080】
以上の結果から明らかなように、本発明の金属含有ポルフィリン構造を有する有機金属錯体は、水素化反応の触媒として用いた場合に、低温でも優れた触媒活性を示し、工業的に極めて有利であることが見出された。本発明の有機金属錯体は、細孔の存在によって単位体積当たりのガス吸着能力が高いことから、反応物質と活性を有する金属部分とが効率良く接触でき、且つ、ポルフィリン部分の中心に金属が存在することで、より高い触媒能力が発揮されたものと考えられる。
【0081】
【発明の効果】
本発明の有機金属錯体は、ポルフィリン骨格を有する新規な構造を有するとともに、気体吸蔵物質や水素化反応用触媒として優れた活性を有することから、これらの用途に好適に用いることができる。また、容易且つ安価に製造でき、工業的にも有利である。
【図面の簡単な説明】
【図1】参考例1及び実施例1,2の有機金属錯体の気体吸蔵量と温度との関係を表わすグラフである。
【図2】参考例1の有機金属錯体の細孔分布を表わすグラフである。
【図3】参考例1の有機金属錯体の磁化率と温度との関係を表わすグラフである。[0001]
[Industrial application fields]
The present invention relates to a novel organometallic complex having a porphyrin structure containing metal, a gas storage material, a hydrogenation catalyst, and a hydrogenation reaction method using the complex.
[0002]
[Prior art]
Porous materials such as zeolite are widely used in the chemical industry due to the characteristics such as adsorption action, ion exchange action, and catalytic action based on the presence of pores, and in recent years their application range is wide-ranging.
[0003]
In particular, the synthesis of porous bodies having organometallic complexes as constituent elements is being actively studied. By selecting a ligand as a raw material, it is possible to design a precise porous body, and it is expected to develop new functions for molecular recognition and catalytic action.
[0004]
While organometallic complexes having various pore structures have been synthesized, organometallic complexes having a porphyrin structure represented by the following formula (A) as a repeating unit have been synthesized and identified, and hydrogenation reactions have been attempted. (Non-patent Document 1).
[0005]
[Chemical 2]
[0006]
However, knowledge about its activity is not clear. An organometallic complex having a metalloporphyrin skeleton in its structure has not been reported yet.
[0007]
[Non-Patent Document 1]
The 80th Annual Meeting of the Chemical Society of Japan (2001), Proceedings of Lectures, p114, 1B9-14
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide an organometallic complex having a novel structure having a porphyrin skeleton and having an excellent activity as a gas storage material and a hydrogenation reaction catalyst, and a gas using the organometallic complex It is an object of the present invention to provide an occlusion substance and a hydrogenation reaction catalyst, and further a hydrogenation reaction method using this catalyst.
[0009]
[Means for Solving the Problems]
As a result of intensive studies in view of the above problems, the present inventors have found a dicarboxylic organometallic complex having a novel structure having a metalloporphyrin skeleton, and surprisingly obtained knowledge that this has remarkable gas storage capacity and catalytic capacity. The present invention has been completed.
[0010]
The gist of the present invention is that a repeating unit has a two-dimensional lattice structure represented by the following general formula (1), which is composed of a metal atom and a ligand having a metal porphyrin structure coordinated to the metal atom. It exists in the organometallic complex characterized by this.
[0011]
[Chemical Formula 3]
(In the above general formula (1), M1 Represents a metal atom selected from Rh, Cr, Pd, Zn, Mo, Cu, Ru, W, Re, and Os; 2 Is selected from Cu, Cr, Rh, Ru, Pd, Mo, Zn, and WRepresents a metal atom. R1, R2, RThreeAnd RFourAre each independentlySelected from phenyl, cyclohexyl, naphthyl, and decahydronaphthylRepresents a group. RFive, R6, R7, R8, R9, RTen, R11And R12Each independently represents a hydrogen atom, a halogen atom, orAlkyl group having 1 to 20 carbon atoms; alkoxy group; aryl group; vinyl group; amino group; formyl group; carboxyl group; and thiol groupRepresents a group. )
[0012]
Another gist of the present invention resides in a gas storage material and a hydrogenation reaction catalyst characterized by containing the above organometallic complex.
[0013]
Furthermore, another gist of the present invention resides in a hydrogenation reaction method characterized in that the hydrogenation reaction is performed in the presence of the hydrogenation reaction catalyst.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
(1) Structure of the organometallic complex of the present invention:
The organometallic complex according to the present invention repeats a two-dimensional lattice structure represented by the following general formula (1) composed of a metal atom and a ligand having a metal porphyrin structure coordinated to the metal atom. Have as a unit.
[0015]
[Formula 4]
Hereafter, each code | symbol in the said General formula (1) is demonstrated.
[0016]
(1-1) M1:
M1Represents a metal atom. Specifically, two M1Is a metal atom capable of coordinating with a bidentate carboxyl group.
The type is not particularly limited as long as it is a metal atom capable of bidentate coordination, but is usually selected from Rh, Cr, Pd, Zn, Mo, Cu, Ru, W, Re, and Os. Among these, Rh, Ru, Mo, and Pd are preferable because particularly high catalytic activity is obtained when the organometallic complex of the present invention is used as a catalyst.
Multiple M1May be the same or different, but are preferably the same from the viewpoint of convenience in production and efficiency of reaction when used as a catalyst.
[0017]
(1-2) M2:
M2Is a metal atom, specifically, a metal having the ability to coordinate to a porphyrin-based compound.
The type of metal atom is not particularly limited as long as it is a metal atom capable of coordinating with a porphyrin-based compound. Examples of commonly used metals include Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, and Fe. , Co, Ni, Cu, Zn, Ga, Ge, As, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Ba, Pr, Eu, Yb Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, Bi, Th, Be, P and the like. Among these, Mg, Al, Si, Ca, Ti, V, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, and the like are easy to coordinate with porphyrin-based compounds to form metal porphyrins. Pd, In, Sn, Pb, and P are preferable. Moreover, Cu, Cr, Rh, Ru, Pd, Mo, Zn, and W are preferable from the point that reaction efficiency is good when used as a catalyst.
[0018]
M2May have an axial ligand. In that case, M2The number of axial ligands per piece is usually 1 or 2.
The type of axial ligand is M2As long as it is coordinated as an axial ligand, the molecular weight is usually 100 or less, and it is selected from those that do not affect the reaction system.
[0019]
As a specific example, F-, Cl-, Br-, I-Halogen ion such as OR-, OPh-, NCS, NThree -, OH-, CN-, CHThreeCOO-, CFThreeCOO-, BFFour -, PF6 -, ClOFour -, P-toluenesulfonic acid anion; bases such as pyridine and imidazole; NO, CO, O2(In the above description, R is methyl, ethyl, n-propyl, isopropyl, n-butyl, tert-butyl, sec-butyl, n, etc.) -Represents a linear or branched alkyl group having 1 to 10 carbon atoms such as a pentyl group and an n-hexyl group, and Ph represents a phenyl group which may have a substituent.
One kind of these metal-containing porphyrin compounds may be present alone in the two-dimensional lattice structure, or two or more kinds may be present in any combination.
[0020]
(1-3) R1~ RFour:
R1, R2, RThree, RFourAre each independently M1Shows a divalent organic group that can be coordinated via a carboxyl group. In the general formula (1), M1Two oxygen atoms coordinated to each represent oxygen of the carboxyl group.
[0021]
M1The organic group that can be bonded to the carboxyl group capable of coordinating to the group is not particularly limited, but in forming a stable two-dimensional lattice structure, the porphyrin skeleton and M1Are more preferably a linear group, and more preferably a linear group.
[0022]
The carbon number of the organic group is usually 1 or more, preferably 2 or more, more preferably 5 or more, more preferably 7 or more, and usually 100 or less, preferably 60 or less, more preferably 20 or less, still more preferably 10 or less. It is.
[0023]
As the type of organic group, M1A carboxyalkylene group, a carboxyarylene group, a carboxycycloalkylene group, and a carboxyalkynylene group are preferable in a form including a carboxyl group coordinated to the carboxyalkylene group.
Among them, a carboxyarylene group, a carboxyalkynylene group or a carboxycycloalkylene group having usually 10 or less, preferably 5 or less, and more preferably 2 or less benzene nuclei and / or a cycloalkyl ring is preferred. A naphthylene group and a 4-carboxydecahydronaphthylene group are particularly preferable, and a 4-carboxyphenylene group is most preferable.
[0024]
(1-4) RFive~ R12:
RFive, R6, R7, R8, R9, RTen, R11And R12Each independently represents a hydrogen atom, a halogen atom, or a monovalent organic group. These groups may be the same or different from each other.
[0025]
In the case of a halogen atom, the kind is not particularly limited, but fluorine, chlorine, bromine or iodine is preferable, and fluorine and chlorine are more preferable.
In the case of a monovalent organic group, the carbon number is usually 1 or more, 20 or less, preferably 18 or less. The type of the organic group is not particularly limited, but an unsubstituted or substituted monovalent hydrocarbon group is preferable.
[0026]
Examples of the hydrocarbon group include an alkyl group,AExamples include a ruxoxy group, an aryl group, a vinyl group, an amino group, a formyl group, a carboxyl group, and a thiol group. Among these, an alkyl group or an aryl group is preferable.
[0027]
In the case of an alkyl group, those having 1 to 6 carbon atoms are preferred, and specific examples thereof include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a sec-butyl group, a tert-butyl group, An n-pentyl group, an n-hexyl group, etc. are mentioned.
[0028]
Also in the case of an alkoxy group, those having 1 to 6 carbon atoms are preferable, and specific examples thereof include methoxy group, ethoxy group, n-propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group. Group, n-pentoxy group, n-hexoxy group and the like.
[0029]
In the case of an aryl group, those having 6 to 18 nuclear carbon atoms are preferable, and specific examples thereof include a phenyl group, a naphthyl group, an anthranyl group, a phenanthryl group, and a biphenyl group.
[0030]
When the hydrocarbon group has a substituent, examples of the type include an alkoxy group, an aryl group, a vinyl group, an amino group, a nitro group, a hydroxyl group, a cyano group, a formyl group, a carboxyl group, and a thiol group.
Among these, hydrogen, a halogen atom, and an alkyl group are preferable.
[0031]
(2) Method for producing organometallic complex of the present invention:
The organometallic complex of the present invention has the following (1) M2A ligand having a metal-containing porphyrin structure containing1Even if it is produced by forming a two-dimensional lattice structure by a reaction with a metal compound containing bismuth, a porphyrin structure is formed after reacting a ligand having a porphyrin structure with a metal compound to form a two-dimensional lattice structure. Although metal may be introduced into the part, it is usually produced by the method (1).
Hereinafter, the production method (1) will be described in detail.
[0032]
(2-1) A ligand having a metal-containing porphyrin structure:
The ligand having a metal-containing porphyrin structure includes a porphyrin having a functional group capable of coordinating to a metal and the above M2Is reacted with a metal compound corresponding to2By introducing a metal, it can be easily synthesized. As a synthesis method, for example, the method described in Yutaka A. et al., Porphyrins 1998; 7 (2 · 3) can be used.
[0033]
<Porphyrin>
Specifically, a porphyrin compound having a structure represented by the following general formula (2) is used as the porphyrin that does not contain a central metal.
[Chemical formula 5]
The code | symbol in the said General formula (2) is synonymous with the same code | symbol of the said General formula (1).
[0034]
The porphyrin compound represented by the general formula (2) can be synthesized by a known method using, for example, an aldehyde derivative and a pyrrole derivative having a functional group capable of coordinating with a metal (Green Chemistry, 2001, 6, 267). Alternatively, it can be synthesized by condensing natural heme as a starting material.
[0035]
<M2Metal compound>
M2The type of metal compound containing2Although it will not specifically limit if it is a compound containing, Usually, M2A metal salt containing is used.
The type of metal salt is not particularly limited, but usually a halide, acetate, metal acetylacetonate complex, or metal carbonyl complex is used. Among these, a halide is preferable from the viewpoint of easy reaction as a leaving group.
[0036]
M2Although the kind of this and the kind of metal salt containing this may be only 1 type, or 2 or more types of combinations may be sufficient, it is preferable to use 1 type independently.
M2Is reacted with the porphyrin compound as described above to produce M2Metal is incorporated into the center of the porphyrin skeleton. A central metal may have a ligand (axial ligand) up and down with respect to the porphyrin surface containing a central metal.
[0037]
<Reaction method>
Central metal M to porphyrin skeleton2Introducing the above-mentioned polyphyllin compound not containing the central metal in an organic solvent such as acetic acid, N, N-dimethylformamide, benzene, ether, chloroform, pyridine and the like.2It can carry out by heating with recirculation | reflux with the metal compound containing this.
[0038]
The temperature during the reaction is usually in the range of room temperature or higher, preferably 50 ° C. or higher, and usually 250 ° C. or lower, preferably 200 ° C. or lower. Moreover, the pressure at the time of reaction will not be specifically limited if the solvent is the reaction pressure which hold | maintains a liquid phase.
[0039]
Although the reaction time varies depending on the reaction conditions, it is usually 30 minutes or more, preferably 5 hours or more, and usually 24 hours or less, preferably 10 hours or less. It is preferable to select the reaction conditions so that is completed.
[0040]
In addition, a porphyrin center metal and a solvent may react during reaction, and a solvent may coordinate to a metal as an axial ligand.
The metal-containing porphyrin compound is obtained by the above procedure, but the obtained metal-containing porphyrin compound can be used as a ligand as it is.
[0041]
(2-2) M1Metal compounds containing:
M1The type of metal compound containing is not particularly limited, but is usually M1A metal salt containing is used. Although the kind of salt is not specifically limited, Usually, acetate, carbonate, formate, nitrate, sulfate, phosphate, halogen salt, perchlorate, tetrafluoroborate, hexafluorophosphate is used. Of these, formate and acetate are preferable because they can be easily reacted.
[0042]
(2-3) A ligand having a metal-containing porphyrin structure and M1Reaction with metal compounds containing:
A ligand having the above metal-containing porphyrin structure (metal-containing porphyrin ligand) and the above metal M1The organometallic complex of this invention is synthesize | combined by making it react with the metal compound containing this.
[0043]
One type of metal-containing porphyrin ligand may be present alone or two or more types may be present in the two-dimensional lattice structure. In order to obtain a stable two-dimensional lattice structure, It is preferable to use only the type.
As a procedure, synthesis is performed by reacting at room temperature or under heating conditions in a solvent in which both the metal compound and the metal-containing porphyrin ligand are dissolved.
[0044]
The type of solvent is not particularly limited, but usually alcohols such as methanol, ethanol, propanol, acetone, methyl ethyl ketone, methyl isobutyl ketone, acetonitrile, tetrahydrofuran, dimethyl ether, diethyl ether, dioxane, dimethylformamide, dimethylformamide, sulfolane, toluene, benzene General purpose organic solvents such as hexane, heptane or a mixed solvent thereof are used. Of these, methanol is preferable.
[0045]
The reaction temperature is not particularly limited as long as it is not lower than the temperature at which the reaction solvent does not solidify and is not higher than the temperature at which the reaction solvent can maintain the liquid phase state, but is usually 5 ° C or higher, preferably 25 ° C or higher, and usually 250 ° C or lower, Preferably it is 170 degrees C or less.
The reaction pressure is not particularly limited as long as the solvent to be used is a reaction pressure capable of maintaining a liquid phase, but is usually in the range of normal pressure to 5 MPa.
[0046]
Although the reaction time varies depending on the reaction conditions, it is usually 1 hour or longer, preferably 5 hours or longer, and usually 24 hours or shorter, preferably 5 hours or shorter. It is preferable to select the reaction conditions so that is completed.
[0047]
<Recovery method>
After the reaction, the product is usually naturally precipitated as a solid or can be removed by evaporation of the solvent and recovered as a solid precipitate or microcrystal.
[0048]
<Process after collection>
The obtained solid product is washed with an appropriate solvent, and then dried at room temperature or under heating conditions, or under normal pressure or reduced pressure conditions. The organometallic complex can be usually obtained in a size of about 1 μm to 1 cm.
The structure of the organometallic complex of the present invention finally obtained is not particularly limited, but preferably has a crystal structure. Moreover, the shape is not particularly limited, and various shapes such as a fine powder and an aggregate obtained by agglomerating them can be taken.
[0049]
(3) Use of the organometallic complex of the present invention:
(3-1) Gas storage material:
The organometallic complex of the present invention usually has pores defined by a two-dimensional lattice structure having a pore diameter of 5 to 20 angstroms. And since it has gas storage ability (gas adsorption ability, gas storage ability) by adsorb | sucking gas in this pore, it is used suitably as a material of a gas storage substance. In the present invention, “having gas storage ability” means that the maximum storage amount of argon at 77 K is 0.01 mol or more per 1 mol of metal atom (metal atom receiving the coordination of porphyrin compound). .
[0050]
The type of gas that can be occluded by the organometallic complex of the present invention is not particularly limited. Specific examples include hydrogen gas, oxygen gas, nitrogen gas, argon gas, methane, natural gas containing methane, and the like.
[0051]
The pore diameter of the organometallic complex of the present invention is the same as that of the metal M used as a raw material.2And ligands having a metalloporphyrin structure, particularly the substituent R1~ RFourIt is possible to control depending on the kind of the gas, thereby adjusting the gas occlusion amount. For example, when tetrakis (4-carboxyphenyl) porphyrin is used as the porphyrin compound, the resulting organometallic complex has pores with a pore size of about 6 angstroms. This organometallic complex occludes up to about 5 moles of nitrogen gas per mole of porphyrin molecule at liquid nitrogen temperature (77K).
[0052]
When the organometallic complex of the present invention is used as a gas storage material, it is desirable to use an organometallic complex having a narrow pore size distribution and having uniform pores as much as possible.
[0053]
(3-2) Various catalysts
The organometallic complex of the present invention uses an oxidation catalyst, a reduction catalyst, an asymmetric oxidation catalyst by using a metalloporphyrin compound having catalytic ability as a ligand or by providing a function as a reaction field inside the pores. It can be used as various catalysts for gas phase or liquid phase such as asymmetric reduction catalyst, hydrogenation catalyst, asymmetric hydrogenation catalyst, photocatalyst, water splitting catalyst, denitration catalyst.
[0054]
Among these, the organometallic complex of the present invention can be particularly suitably used as a catalyst for hydrogenation reaction.
When the organometallic complex of the present invention is used as a hydrogenation reaction catalyst, the organometallic complex such as fine powder or fine powder aggregate obtained by the above method may be used as it is, and this may be prepared according to a known method. You may use it granulated. In the case of granulation, the shape and size are not particularly limited and can be arbitrarily selected. However, depending on the purpose of use, for example, granulation can usually be performed to a size of about 5 μm to 1 cm.
[0055]
Hereinafter, a hydrogenation method using the organometallic complex of the present invention as a catalyst will be described.
[0056]
<Reaction substrate>
The reaction substrate is not particularly limited as long as it is a substance to be subjected to hydrogenation reaction, but usually an olefinic compound is used. Examples of the olefinic compound include linear or branched olefinic compounds having a carbon-carbon double bond at the terminal or the inner site. Of these, linear olefinic compounds are preferred. The carbon number of the olefinic compound is usually 2 or more, and usually 16 or less, preferably 8 or less, more preferably 6 or less. An olefinic compound may be used individually by 1 type, and 2 or more types can also be mixed and used for it in arbitrary combinations.
[0057]
Among them, preferred olefin compounds are ethylene, propylene, 1-butene, 2-butene, isobutene, 1- or 2-pentene, 2-methylbutene-1, 2-methylbutene-2, 3-methylbutene-1, 1-, 2- Or 3-hexene, C6-olefin mixture obtained during dimerization of propene (dipropene), heptene, 2- or 3-methyl-1-hexene, octene, 2-methylheptene, 3-methylheptene, 5-methylheptene-2 , 6-methylheptene-2, 2-ethylhexene-1, a mixture of isomeric C8-olefins (dibutenes) obtained during dimerization of butene, nonene, 2- or 3-methyloctene, during the trimerization of propene C9-olefin mixture obtained (tripropene), decene, 2-ethyl-1-octene, dodecene, C12-olefin mixture (tetrapropene or tributene) obtained in the case of tetramerization of lopen or trimerization of butene, tetradecene, pentadecene, hexadecene, C16-olefin mixture (tetrabutene) obtained in the case of tetramerization of butene, etc. It is done.
[0058]
<Reaction system and reaction type>
The type of reaction system is not particularly limited, and either a liquid phase system or a gas phase system can be adopted. Among these, the gas phase system is preferable because the efficiency of the reaction is good and the treatment after the reaction is unnecessary. In the case of employing a gas phase system, a system using a fixed bed flow reaction in which the organometallic complex of the present invention is immobilized in a reactor and a reaction substrate acts on the complex is generally used.
[0059]
On the other hand, in the case of using a liquid phase system, the reaction mode includes a liquid phase suspension bed method in which the organometallic complex of the present invention is dispersed in a reaction solution containing a reaction substrate, or the organometallic complex of the present invention. A method using a fixed bed flow reaction in which a reaction substrate is allowed to immobilize in a reactor can be appropriately selected and employed. In any case, after completion of the reaction, the organometallic complex of the present invention is recovered using a known solid-liquid separation method, and is reused as a hydrogenation reaction catalyst by washing or the like using a known method as necessary. It becomes possible.
[0060]
<Reaction conditions>
The pressure during the hydrogenation reaction is usually 0.5 MPa or more, preferably 1 MPa or more, and usually 10 MPa or less, preferably 4 MPa, more preferably 2.5 MPa or less.
[0061]
The temperature during the hydrogenation reaction is preferably selected as appropriate from the range of room temperature to 220 ° C. Since the organometallic complex of the present invention has a high catalytic ability, it is possible to perform a hydrogenation reaction more efficiently at a lower temperature than in the past.
[0062]
(3-3) Other uses:
The metalloporphyrin compound used as a ligand in the present invention is a compound having useful functions in the industrial and biochemical fields such as catalytic ability, photoresponsiveness (so-called optical antenna function), oxygen transport function and the like. Therefore, the organometallic complex of the present invention can be selected by appropriately selecting a metalloporphyrin compound used as a ligand, thereby sensitizing materials for photodynamic therapy, light emitting elements in display devices such as displays, organic dyes (colorants). Many industrial applications can be expected as various optical functional materials and organic-inorganic electronic materials such as optical recording media corresponding to laser light. In addition, since it is chemically stable, it can be used for cosmetics and as a deodorant.
[0063]
【Example】
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples. In the following description, “TCPP” represents tetrakis (4-carbonylphenyl) porphyrin.
[0064]
Reference Example 1 {TCPPRh (II) complex}:
<Manufacture of complex>
Rhodium (II) acetate dimer dihydrate 100.1 mg (2.094 × 10 6-Fourmol) and TCPP165.6 mg (2.094 × 10 6).-Fourmol) and 25 ml of dehydrated methanol were sealed in an autoclave under a nitrogen stream, and the ligand was exchanged by heating at 180 ° C. for 3 hours to synthesize a two-dimensional block complex. The autoclave was cooled, centrifuged, washed with methanol, and vacuum dried to obtain a TCPP rhodium (II) complex [TCPPRh (II) complex] which is a porphyrin-based organometallic complex having no central metal.
[0065]
<Elemental analysis>
The results of elemental analysis of the obtained TCPPRh (II) complex are as follows.
Analytical values: C = 56.39%, H = 3.39%, N = 4.94%.
Calculated value {Rh2(C20NFourHTen) (C6HFourCOO)Four(H2O)0.5(CHThreeOH)2}: C = 56.35%, H = 3.31%, N = 5.26%.
[0066]
<Measurement of temperature dependence of gas storage amount>
Using a Cahn (model: Cahn-1000) electronic balance, the gas occlusion amount of nitrogen gas was measured under the conditions of a pressure of 20 torr and a temperature of 77 to 250K. A graph showing the relationship between the gas storage amount and the temperature obtained by the measurement is shown in FIG. At a liquid nitrogen temperature (77 K), 5.7 mol of nitrogen gas was occluded with respect to 1 mol of porphyrin. As shown in FIG. 1, since a large amount of gas occlusion is observed, it can be seen that the gas is occluded not in the surface of the TCPPRh (II) complex but in the pores.
[0067]
Moreover, the pore distribution calculated | required from the gas occlusion amount is shown in FIG. FIG. 2 shows that the effective pore diameter of the TCPPRh (II) complex is 5.7 angstroms and has extremely uniform pores.
[0068]
<Measurement of temperature dependence of magnetic susceptibility>
Using a SQUID magnetic susceptibility measuring device (Quantum Design, MPMS-5S), the temperature dependence of magnetic susceptibility was measured under the condition of a temperature of 2 to 300K. A graph showing the relationship between magnetic susceptibility and temperature obtained by measurement is shown in FIG. According to the method of Bleaney-Bowers (B. Bleaney and KD Browers, Proc. R. Soc. London, Ser A. 214, 415 (1952)), this TCCPRh (II) complex can follow the Heisenberg model of a binuclear structure. I understood. Further, the obtained physical constant {S (number of spins) = 1/2, 2J (coupling constant) = − 1920 cm.-1, G (g-factor) = 2.09}, it can be seen that the TCPPRh (II) complex has the same binuclear structure as copper acetate.
[0069]
Example 1 (PdTCCPRh (II) complex):
<Manufacture of complex>
100.1 mg of palladium chloride (5.639 × 10-Fourmol) and TCPP 200.1 mg (2.529 × 10 6).-Fourmol) was added 60 ml of dimethylformamide (DMF) and refluxed at 130 ° C. for 6 hours. After concentration, the precipitate was washed with acetone and vacuum dried to obtain palladium TCPP (PdTCPP) which is a porphyrin compound having a central metal (Pd).
[0070]
This PdTCPP 60.0 mg (6.702 × 10 6-Fourmol) and 36.7 mg (7.677 × 10 6) of rhodium (II) acetate dimer dihydrate.-Fivemol) and 25 ml of dehydrated methanol were sealed in an autoclave under a nitrogen stream, and the ligand was exchanged by heating at 180 ° C. for 3 hours to synthesize a complex having a two-dimensional block structure. After cooling the autoclave, the precipitate was collected by centrifugation, washed with methanol, and then vacuum-dried to obtain a palladium TCPP rhodium (II) complex, which is a porphyrin-based organometallic complex having a central metal (Pd) [ PdTCPPRh (II) complex] was obtained.
[0071]
<Elemental analysis>
The analysis results of the obtained PdTCPPRh (II) complex are as follows.
Analytical values: C = 48.34%, H = 3.57%, N = 4.30%.
Calculated value {Rh2(C20NFourH8Pd) (C6HFourCOO)Four(H2O)4.5(CHThreeOH)2}: C = 48.35%; H = 3.33%; N = 4.51%
<Measurement of temperature dependence of gas storage amount>
The gas occlusion amount of the PdTCPPRh (II) complex was measured by the same procedure as in Reference Example 1. A graph showing the relationship between the gas occlusion amount and the temperature obtained by the measurement is shown in FIG. At a liquid nitrogen temperature (77 K), 5.0 mol of nitrogen gas was occluded per mol of porphyrin.
[0072]
<Hydrogenation using complex>
0.07 g of the PdTCCPRh (II) complex produced by the above method is charged into a glass reaction vessel having a volume of 155.69 ml, left in a mixed gas stream of ethylene and hydrogen, and gas is discharged with a closed system gas circulation pump. Circulated for 2 hours.
[0073]
The reaction product was analyzed by gas chromatography using a PropackQ column. The yield of ethane at the reaction temperature of 193 K was 100%. The reaction was completed 5 minutes after the start of the reaction.
The average hydrogenation rate 5 minutes after the start of the reaction was 2.4 × 10-3Mol / sec · g, after 10 minutes it is 3.4 × 10-3Mol / second · g.
[0074]
Example 2 (CuTCPPRh (II) complex):
<Manufacture of complex>
Copper (II) chloride 74.0 mg (5.639 × 10-Fourmol) and TCPP 198.8 mg (2.529 × 10 6).-Fourmol) was added with 60 ml of dimethylformamide (DMF) and refluxed at 130 ° C. for 30 minutes. After allowing to cool, the mixture was concentrated, the precipitate was washed with acetone, and vacuum dried to obtain copper TCPP (CuTCPP) which is a porphyrin compound having a central metal (Cu).
[0075]
This CuTCPP 60.1mg (7.040x10-Fivemol) and 36.8 mg (7.677 × 10 6) of rhodium (II) acetate dimer dihydrate.-Fivemol) and 25 ml of dehydrated methanol were sealed in an autoclave under a nitrogen stream, and the ligand was exchanged by heating at 180 ° C. for 3 hours to synthesize a two-dimensional block complex. After cooling the autoclave, centrifuging, washing with methanol, and vacuum drying, a copper TCPP rhodium (II) complex [CuTCPPRh (II) complex], which is a porphyrin-based organometallic complex having a central metal (Cu), is obtained. It was.
[0076]
<Elemental analysis>
The analysis results of the obtained CuTCPPRh (II) complex are as follows.
Analytical values: C = 48.97%, H = 3.62%, N = 4.57%.
Calculated value {Rh2(C20NFourH8Cu) (C6HFourCOO)Four(H2O)6(CHThreeOH)2}: C = 49.04%, H = 3.41%, N = 4.52%)
<Measurement of gas storage amount>
The gas occlusion amount of the CuTCPPRh (II) complex was measured by the same procedure as in Reference Example 1. A graph showing the relationship between the gas occlusion amount and the temperature obtained by the measurement is shown in FIG. At a liquid nitrogen temperature (77 K), 6.4 mol of nitrogen gas was occluded per mol of porphyrin. The pore diameter determined from this gas occlusion amount was 8.0 angstrom.
[0077]
<Hydrogenation using complex>
A hydrogenation reaction was carried out under the same conditions as in Example 1 using the CuTCPPRh (II) complex synthesized by the above procedure. Initial reaction rate of hydrogenation is 656 × 10-9Mol / second · g.
[0078]
Comparative Example 1 (TCCPRh (II) complex):
Using the TCPPRh (II) complex produced in Reference Example 1, a hydrogenation reaction was carried out under the same conditions as in Example 1.
The average hydrogenation rate after 5 minutes is 4.6 × 10-FourMol / sec · g, after 10 minutes it is 1.48 × 10-3Mol / second · g.
[0079]
From the above results, the organometallic complex of Example 1 (PdTCCPRh (II) complex) and the organometallic complex of Example 2 (CuTCCPRh (II) complex) are the same as those of Comparative Example 1 (TCCPRh (II) complex). It can be seen that both have high catalytic activity and can be used as an excellent catalyst for hydrogenation reaction.
[0080]
As is clear from the above results, the organometallic complex having a metal-containing porphyrin structure of the present invention exhibits excellent catalytic activity even at low temperatures when used as a hydrogenation catalyst, and is extremely advantageous industrially. It was found. Since the organometallic complex of the present invention has a high gas adsorption capacity per unit volume due to the presence of pores, the reactant and the active metal portion can be efficiently contacted, and the metal exists in the center of the porphyrin portion. By doing so, it is considered that higher catalytic ability was exhibited.
[0081]
【The invention's effect】
The organometallic complex of the present invention has a novel structure having a porphyrin skeleton and has excellent activity as a gas storage material and a hydrogenation reaction catalyst, and therefore can be suitably used for these applications. Moreover, it can be manufactured easily and inexpensively, and is industrially advantageous.
[Brief description of the drawings]
1 is a graph showing the relationship between the amount of gas occluded and the temperature of organometallic complexes of Reference Example 1 and Examples 1 and 2. FIG.
2 is a graph showing the pore distribution of the organometallic complex of Reference Example 1. FIG.
3 is a graph showing the relationship between the magnetic susceptibility and temperature of the organometallic complex of Reference Example 1. FIG.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003030659A JP4415161B2 (en) | 2003-02-07 | 2003-02-07 | Organometallic complex, gas storage material, hydrogenation catalyst and hydrogenation reaction method using the complex |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003030659A JP4415161B2 (en) | 2003-02-07 | 2003-02-07 | Organometallic complex, gas storage material, hydrogenation catalyst and hydrogenation reaction method using the complex |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004238347A JP2004238347A (en) | 2004-08-26 |
JP4415161B2 true JP4415161B2 (en) | 2010-02-17 |
Family
ID=32957482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003030659A Expired - Fee Related JP4415161B2 (en) | 2003-02-07 | 2003-02-07 | Organometallic complex, gas storage material, hydrogenation catalyst and hydrogenation reaction method using the complex |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4415161B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7259123B2 (en) * | 2005-04-08 | 2007-08-21 | Shell Oil Company | Catalytic trimerization and tetramerization of olefinic monomers |
JP5013173B2 (en) * | 2005-11-22 | 2012-08-29 | 株式会社豊田中央研究所 | Organometallic complex, occlusion material and catalyst using the same |
JP2008161754A (en) * | 2006-12-27 | 2008-07-17 | Osaka Univ | Catalyst containing macrocyclic Co complex, method for producing the catalyst, and use thereof |
CA2680248A1 (en) * | 2007-03-09 | 2008-09-18 | National Institute Of Advanced Industrial Science And Technology | Electrode catalyst for fuel cell |
JP2008258151A (en) * | 2007-03-09 | 2008-10-23 | Sumitomo Chemical Co Ltd | Fuel cell electrode catalyst |
EP2527325B1 (en) | 2010-01-18 | 2016-04-13 | Japan Science And Technology Agency | Method for producing a three-dimensional structure |
KR101979968B1 (en) * | 2014-10-15 | 2019-05-17 | 건국대학교 산학협력단 | Material for adsorbing and storaging carbon dioxide and method for adsorbing and storaging carbon dioxide using the same |
KR101913328B1 (en) * | 2014-10-15 | 2018-10-30 | 건국대학교 산학협력단 | Material for adsorbing and storaging carbon dioxide and method for adsorbing and storaging carbon dioxide using the same |
CN116253897B (en) * | 2023-03-24 | 2024-07-30 | 湖南师范大学 | Ultrathin Ba-MOFs nano material and preparation method and application thereof |
-
2003
- 2003-02-07 JP JP2003030659A patent/JP4415161B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004238347A (en) | 2004-08-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dhakshinamoorthy et al. | Iron (III) metal–organic frameworks as solid Lewis acids for the isomerization of α-pinene oxide | |
CN101940948B (en) | Method for immobilizing metalloporphyrin by crosslinked polystyrene microspheres | |
JP5305278B2 (en) | Porous metal complex, method for producing porous metal complex, adsorbent, separation material, gas adsorbent and hydrogen adsorbent | |
JP5437554B2 (en) | Method for producing porous metal complex, porous metal complex, adsorbent, separation material, gas adsorbent and hydrogen adsorbent | |
JP4415161B2 (en) | Organometallic complex, gas storage material, hydrogenation catalyst and hydrogenation reaction method using the complex | |
Karmakar et al. | Zinc (II) and Copper (II) Metal–Organic Frameworks Constructed from a Terphenyl‐4, 4′′‐dicarboxylic Acid Derivative: Synthesis, Structure, and Catalytic Application in the Cyanosilylation of Aldehydes | |
Chutia et al. | Synthesis and characterization of Co (II) and Cu (II) supported complexes of 2-pyrazinecarboxylic acid for cyclohexene oxidation | |
Verma et al. | Luminescent metal organic frameworks for sensing and gas adsorption studies | |
Gu et al. | Coordination polymers from an unexplored biphenyl-tricarboxylate linker: hydrothermal synthesis, structural traits and catalytic cyanosilylation | |
Sato et al. | A new type of supportbipyridine containing aromatic polyamide'to CuCl2 for synthesis of dimethyl carbonate (DMC) by oxidative carbonylation of methanol | |
JP2007277106A (en) | Porous metal complex, method for producing porous metal complex, adsorbent, separation material, gas adsorbent and hydrogen adsorbent | |
Li et al. | Synthesis, characterization, crystal structure of magnesium compound based 3, 3′, 5, 5′-azobenzentetracarboxylic acid and application as high-performance heterogeneous catalyst for cyanosilylation | |
Li et al. | Syntheses, structures and catalytic properties of Evans–Showell-type polyoxometalate-based 3D metal–organic complexes constructed from the semi-rigid bis (pyridylformyl) piperazine ligand and transition metals | |
CN114289067B (en) | Binary metal catalyst, preparation method and application thereof | |
Yeşilel et al. | A series of coordination polymers constructed by 2-phenylsuccinic acid and flexible bis (imidazole) ligands: Syntheses, structures, and photoluminescent properties | |
Liu et al. | An electron-deficient MOF as an efficient electron-transfer catalyst for selective oxidative carbon–carbon coupling of 2, 6-di-tert-butylphenol | |
Alam et al. | Synthesis, structure, catalytic and magnetic properties of a pyrazole based five coordinated di-nuclear cobalt (II) complex | |
US7285679B2 (en) | Oxidation of alkanes | |
Ma et al. | Semi-conductive helical homochiral metal–organic frameworks based on enantiomeric proline derivatives | |
CN109225339A (en) | A kind of high activity cooperates with classification assemble method and the application of MOF catalyst | |
WO2015170688A1 (en) | Metal-supported porous coordination polymer catalyst | |
CN109810147A (en) | Pyrene-labeled benzimidazole nitrogen heterocyclic carbene palladium metal complexes and their preparation and application | |
CN104447588B (en) | Based on Ni (II) metal organic frame and synthetic method thereof and application | |
Kang et al. | Structural diversity and catalytic properties of coordination polymers with functionalized naphthalene dicarboxylate linkers | |
JP4814478B2 (en) | Organometallic complex, method for producing the same, and gas storage material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051018 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20051018 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090630 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090828 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20090828 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091013 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20091104 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091104 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20091104 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4415161 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121204 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121204 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131204 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |