[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4479527B2 - Image processing method, image processing apparatus, image processing program, and electronic camera - Google Patents

Image processing method, image processing apparatus, image processing program, and electronic camera Download PDF

Info

Publication number
JP4479527B2
JP4479527B2 JP2005036254A JP2005036254A JP4479527B2 JP 4479527 B2 JP4479527 B2 JP 4479527B2 JP 2005036254 A JP2005036254 A JP 2005036254A JP 2005036254 A JP2005036254 A JP 2005036254A JP 4479527 B2 JP4479527 B2 JP 4479527B2
Authority
JP
Japan
Prior art keywords
signal
color component
color
signal processing
luminance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005036254A
Other languages
Japanese (ja)
Other versions
JP2006115444A (en
Inventor
英康 国場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005036254A priority Critical patent/JP4479527B2/en
Publication of JP2006115444A publication Critical patent/JP2006115444A/en
Application granted granted Critical
Publication of JP4479527B2 publication Critical patent/JP4479527B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Image Processing (AREA)
  • Facsimile Image Signal Circuits (AREA)
  • Color Image Communication Systems (AREA)

Description

本発明は、階調変換などの信号処理に伴って生じる画像の彩度変化を補正する技術に関する。   The present invention relates to a technique for correcting a change in saturation of an image caused by signal processing such as gradation conversion.

デジタルスチルカメラ等で撮影する際、背景が明るく人物などの主要被写体が暗く写ってしまう事がある。また、晴天の日に撮影した場合、撮影画像では見た目以上に建物の影等が暗く写ってしまう。
これは、人間の視覚は非常に広いダイナミックレンジを持ち、見ている領域毎に感度を調節しているのに対し、デジタルスチルカメラではダイナミックレンジが狭く、画面全体で適正露光量を調節しているためである。
When shooting with a digital still camera or the like, the background may be bright and the main subject such as a person may appear dark. In addition, when shooting on a clear day, the shadow of the building appears darker than it looks in the captured image.
This is because human vision has a very wide dynamic range and the sensitivity is adjusted for each viewing area, while the digital still camera has a narrow dynamic range, and the appropriate exposure is adjusted over the entire screen. Because it is.

このような画像に階調補正を行い、より好ましい画像に補正をしたり、また各領域毎に明るさを調整し、明るく写った領域も暗く写った領域も適正な明るさになるようにする手法がある。
例えば、下記の特許文献1に記載の方法では、RGB信号から輝度信号を生成し、この輝度信号を所定の階調特性に変換し、この階調変換前後における輝度信号の比をRGB信号にそれぞれ乗ずる事により、階調補正されたRGB信号を得る。この方法は、補正前後でRGB色成分の各比率が一定に保たれる。この場合、明るく補正された箇所では、色成分間の差が拡大し、画像の色が濃くなって、彩度の強調された画像となる。
Tone correction is performed on such an image to make a more preferable image, and the brightness is adjusted for each area so that both bright and dark areas have appropriate brightness. There is a technique.
For example, in the method described in Patent Document 1 below, a luminance signal is generated from an RGB signal, the luminance signal is converted into a predetermined gradation characteristic, and the ratio of the luminance signal before and after the gradation conversion is converted into an RGB signal. By multiplying, a tone-corrected RGB signal is obtained. In this method, the ratios of RGB color components are kept constant before and after correction. In this case, at the brightly corrected portion, the difference between the color components is enlarged, and the color of the image becomes darker, resulting in an image with enhanced saturation.

このような彩度変化を抑制する技術として、特許文献2の記載方法が知られている。この特許文献2の記載方法では、補正前後で色成分の各比を一定にしたRGB信号と、色成分の各差を一定にしたRGB信号とをそれぞれ求め、ガンマ補正前の輝度信号の値に応じて両信号の加重合成を行っている。この加重合成によって、色成分間の差の拡大を抑え、上述した彩度変化を抑制することができる。
特開平4−150171号公報 特開平5− 76036号公報
As a technique for suppressing such saturation change, a method described in Patent Document 2 is known. In the method described in Patent Document 2, an RGB signal having a constant ratio of color components before and after correction and an RGB signal having a constant difference between color components are respectively obtained, and the luminance signal value before gamma correction is obtained. Accordingly, weighted synthesis of both signals is performed. By this weighted synthesis, it is possible to suppress an increase in the difference between the color components and suppress the above-described change in saturation.
JP-A-4-150171 JP-A-5-76036

本発明の目的は、特許文献2の記載方法とは異なる処理によって、画像の信号処理に伴う彩度変化を補正する画像処理技術を提供することである。   An object of the present invention is to provide an image processing technique for correcting a change in saturation associated with image signal processing by processing different from the method described in Patent Document 2.

[1]
本発明の画像処理方法は、次のステップを備える。
カラー画像信号より輝度信号を取得または生成し、輝度信号に予め定められた信号処理を実施し、信号処理を実施した後の輝度信号を信号処理を実施する前の輝度信号にて除算した値からなる変化比率を求める。
『カラー画像信号に含まれる各色成分』と『各色成分の最大値』とにより以下の式にて補正係数を画素単位で求める。
[(各色成分)/(各色成分の最大値)]
ただし、Pは、−1≦P<0
変化比率に補正係数を乗ずることにより、調整済み変化比率を求め、調整済み変化比率に基づいてカラー画像信号の信号処理を画素単位で行う。
[1]
The image processing method of the present invention includes the following steps.
A luminance signal is acquired or generated from a color image signal, signal processing predetermined for the luminance signal is performed, and the luminance signal after the signal processing is divided by the luminance signal before the signal processing is performed Find the change ratio.
Based on “each color component included in the color image signal” and “maximum value of each color component”, a correction coefficient is obtained in units of pixels by the following equation.
[(Each color component) / (maximum value of each color component)] P
However, P is -1 <= P <0.
By multiplying the correction coefficient change ratio, calculated an adjusted rate of change is performed in units of pixels a signal processing color image signals based on the adjusted pre change ratio.

[2]
本発明の別の画像処理方法は、次のステップを備える。
カラー画像信号より輝度信号を取得または生成し、輝度信号に予め定められた信号処理を実施した後に信号処理を実施する前のHSV色空間における輝度信号Vと信号処理を実施した後の輝度信号V’との差であるV’−Vを求める。
『カラー画像信号に含まれる各色成分』と『各色成分の最大値』とにより下記の式にて補正係数を画素単位で求める。
[(各色成分)/(各色成分の最大値)]P+1
輝度信号の差に補正係数を乗じた上で色成分に加算することにより、カラー画像信号の信号処理を画素単位で行う。
[2]
Another image processing method of the present invention includes the following steps.
A luminance signal is obtained from a color image signal, and a luminance signal V in the HSV color space before signal processing is performed after signal processing is performed on the luminance signal after predetermined signal processing is performed. V′−V which is a difference from “is obtained.
A correction coefficient is obtained for each pixel by the following formula using “each color component included in the color image signal” and “maximum value of each color component”.
[(Each color component) / (maximum value of each color component)] P + 1
By adding the color components in terms of the difference of the luminance signal is multiplied by the correction coefficient, it performs signal processing of the color image signal in units of pixels.

[3]
本発明の画像処理装置は、下記の変化生成部、補正係数生成部、および信号処理部を備える。
この変化生成部は、カラー画像信号より輝度信号を取得または生成し、輝度信号に予め定められた信号処理を実施し、信号処理を実施した後の輝度信号を信号処理を実施する前の輝度信号にて除算した値からなる変化比率を求める。
補正係数生成部は、『カラー画像信号に含まれる各色成分』と『各色成分の最大値』とにより以下の式にて補正係数を画素単位で求める。
[(各色成分)/(各色成分の最大値)]
ただし、Pは、−1≦P<0
信号処理部は、変化比率に補正係数を乗ずることにより、調整済み変化比率を求め、前記調整済み変化比率に基づいてカラー画像信号の信号処理を画素単位で行う。
[3]
The image processing apparatus of the present invention includes the following change generation unit, correction coefficient generation unit, and signal processing unit.
The change generation unit acquires or generates a luminance signal from the color image signal, performs predetermined signal processing on the luminance signal, and converts the luminance signal after the signal processing to the luminance signal before performing the signal processing. Find the change ratio consisting of the value divided by .
The correction coefficient generation unit obtains a correction coefficient in units of pixels using the following equation based on “each color component included in the color image signal” and “maximum value of each color component”.
[(Each color component) / (maximum value of each color component)] P
However, P is -1 <= P <0.
The signal processing unit, by multiplying the correction coefficient change ratio, calculated an adjusted rate of change is performed in units of pixels signal processing color image signals on the basis of the adjusted variation ratio.

[4]
本発明の別の画像処理装置は、下記の変化生成部、補正係数生成部、および信号処理部を備える。
この変化生成部は、カラー画像信号より輝度信号を取得または生成し、輝度信号に予め定められた信号処理を実施した後に信号処理を実施する前のHSV色空間における輝度信号Vと信号処理を実施した後の輝度信号V’との差であるV’−Vを求める。
補正係数生成部は、『カラー画像信号に含まれる各色成分』と『各色成分の最大値』とにより下記の式にて補正係数を画素単位で求める。
[(各色成分)/(各色成分の最大値)]P+1
信号処理部は、輝度信号の差に補正係数を乗じた上で色成分に加算することにより、カラー画像信号の信号処理を画素単位で行う。
[4]
Another image processing apparatus of the present invention includes the following change generation unit, correction coefficient generation unit, and signal processing unit.
The change generation unit acquires or generates a luminance signal from the color image signal, performs signal processing with the luminance signal V in the HSV color space after performing signal processing predetermined on the luminance signal and before performing signal processing. V′−V which is a difference from the luminance signal V ′ after the calculation is obtained.
The correction coefficient generation unit obtains a correction coefficient in units of pixels from the following formula using “each color component included in the color image signal” and “maximum value of each color component”.
[(Each color component) / (maximum value of each color component)] P + 1
The signal processing unit multiplies the luminance signal difference by a correction coefficient and adds the result to the color component, thereby performing signal processing of the color image signal in units of pixels .

[5]
本発明の画像処理プログラムは、コンピュータを、請求項3または請求項4に記載の変化生成部、補正係数生成部、および信号処理部として機能させるための画像処理プログラムである。
[5]
An image processing program according to the present invention is an image processing program for causing a computer to function as the change generation unit, the correction coefficient generation unit, and the signal processing unit according to claim 3 or claim 4.

[6]
本発明の電子カメラは、上記[3]または[4]に記載の画像処理装置と、被写体を撮像してカラー画像信号を生成する撮像部とを備える。さらに、この電子カメラは、撮像部で生成されたカラー画像信号に含まれる色成分を、画像処理装置で信号処理する。
[6]
An electronic camera according to the present invention includes the image processing device according to the above [3] or [4], and an imaging unit that images a subject and generates a color image signal. Furthermore, this electronic camera performs signal processing on the color components included in the color image signal generated by the imaging unit by the image processing apparatus.

本発明では、(画像信号の色成分)/(色成分の最大値)に応じた補正係数を、色成分ごとに生成し、この補正係数を画像信号に乗ずることにより、階調変換に伴う彩度変化を抑制する。   In the present invention, a correction coefficient corresponding to (color component of image signal) / (maximum value of color component) is generated for each color component, and this correction coefficient is multiplied by the image signal, whereby saturation associated with gradation conversion is generated. Suppress degree change.

《第1実施形態》
図1は、画像処理装置11の構成を示すブロック図である。
図1において、画像処理装置11にはカラー画像信号が入力される。変化生成部12は、このカラー画像信号から輝度信号を抽出し、予め定められた信号処理を施した場合に輝度信号に生じる変化を求める。変化生成部12は、この輝度信号の信号処理前後の変化から、変化比率や、色成分に生じる変化分(変化相当分)を検出する。
<< First Embodiment >>
FIG. 1 is a block diagram illustrating a configuration of the image processing apparatus 11.
In FIG. 1, a color image signal is input to the image processing apparatus 11. The change generation unit 12 extracts a luminance signal from the color image signal, and obtains a change that occurs in the luminance signal when predetermined signal processing is performed. The change generation unit 12 detects a change ratio and a change occurring in the color component (change equivalent) from the change before and after the signal processing of the luminance signal.

一方、補正係数生成部13は、カラー画像信号について、(RGBなどの色成分)/(RGBなどの色成分の内で最大値)に応じた補正係数を生成する。この補正係数は、彩度に相関した係数値となる。
信号処理部14は、変化生成部12の出力(変化比率または変化相当分)と、補正係数生成部の補正係数とに基づいて、カラー画像信号の信号処理を実行する。
On the other hand, the correction coefficient generation unit 13 generates a correction coefficient corresponding to (color component such as RGB) / (maximum value among color components such as RGB) for the color image signal. This correction coefficient is a coefficient value correlated with the saturation.
The signal processing unit 14 performs signal processing of the color image signal based on the output (change ratio or change equivalent) of the change generation unit 12 and the correction coefficient of the correction coefficient generation unit.

図2は、第1実施形態における画像処理装置11のデータフローを示す図である。
以下、図2を用いて、この画像処理装置11の動作について説明する。
まず、RGB信号が入力される(図2のS1)。変化生成部12は、このRGB信号に所定係数をかけて加算し、画素単位に輝度信号を生成する(図2のS2)。変化生成部12は、この輝度信号にガンマ補正などの信号処理を施し、補正後の輝度信号を生成する(図2のS3)。なお、輝度信号に対して周知のRetinex処理を行い、補正後の輝度信号を生成してもよい。
FIG. 2 is a diagram illustrating a data flow of the image processing apparatus 11 according to the first embodiment.
Hereinafter, the operation of the image processing apparatus 11 will be described with reference to FIG.
First, an RGB signal is input (S1 in FIG. 2). The change generation unit 12 adds a predetermined coefficient to the RGB signal and generates a luminance signal in units of pixels (S2 in FIG. 2). The change generation unit 12 performs signal processing such as gamma correction on the luminance signal to generate a corrected luminance signal (S3 in FIG. 2). Note that a well-known Retinex process may be performed on the luminance signal to generate a corrected luminance signal.

なお、変化生成部12で扱う輝度信号は、HSV色空間のVやYCbCr空間のY、Lab色空間のL等を用いるとよい。また一般的には、この輝度信号は、画像の明るさおよび色の濃さを反映した信号であることが好ましい。
次に、変化生成部12は、補正前の輝度信号Vと補正後の輝度信号V′との比率を求め、ゲインKとする(図2のS4)。
The luminance signal handled by the change generation unit 12 may be V in the HSV color space, Y in the YCbCr space, L in the Lab color space, or the like. In general, this luminance signal is preferably a signal reflecting the brightness and color density of an image.
Next, the change generation unit 12 obtains the ratio between the luminance signal V before correction and the luminance signal V ′ after correction, and sets it as a gain K (S4 in FIG. 2).

一方、補正係数生成部13では、入力されるRGB信号から画素単位にmax(R,G,B)を求める(図2のS6)。次に、補正係数生成部13は、RGBの各色成分とmax(R,G,B)と比を、色成分単位かつ画素単位に求める(図2のS7)。この比は、各画素における各色成分の濃さ(彩度)を反映した値である。補正係数生成部13は、この比を関数fに代入して、補正係数を求める。この関数fに単調減少関数やそれに類似する関数を使用すれば、彩度の高い箇所ほど、後述する調整済み変化比率を抑制して信号処理後の彩度変化を抑制できる。逆に、この関数fに単調増加関数やそれに類似する関数を使用すれば、彩度の高い箇所ほど、信号処理後の彩度変化を強調することが可能になる。   On the other hand, the correction coefficient generator 13 obtains max (R, G, B) in units of pixels from the input RGB signal (S6 in FIG. 2). Next, the correction coefficient generation unit 13 obtains the RGB color components and the ratio of max (R, G, B) in units of color components and in units of pixels (S7 in FIG. 2). This ratio is a value reflecting the density (saturation) of each color component in each pixel. The correction coefficient generator 13 obtains a correction coefficient by substituting this ratio into the function f. If a monotone decreasing function or a function similar thereto is used for the function f, it is possible to suppress a change in saturation after signal processing by suppressing an adjusted change ratio, which will be described later, at a higher saturation point. On the contrary, if a monotonically increasing function or a function similar thereto is used for this function f, it is possible to emphasize the saturation change after signal processing at a higher saturation point.

信号処理部14は、上述した変化比率と補正係数とを乗算することにより、調整済み変化比率を色成分単位かつ画素単位に算出する。信号処理部14は、この調整済み変化比率を画素単位にRGB色成分に乗算することにより、入力RGB信号に彩度変化を考慮した信号処理を施す。   The signal processing unit 14 calculates the adjusted change ratio in units of color components and in units of pixels by multiplying the above-described change ratio and the correction coefficient. The signal processing unit 14 multiplies the RGB color component by this adjusted change ratio for each pixel to perform signal processing in consideration of the saturation change on the input RGB signal.

このような処理により、下式に示すRGB信号が出力される(図2のS8)。
K=V′/Vとして、
R′=K・f(R/max(R,G,B))・R
G′=K・f(G/max(R,G,B))・G
B′=K・f(R/max(R,G,B))・B
By such processing, the RGB signal shown in the following equation is output (S8 in FIG. 2).
As K = V ′ / V,
R ′ = K · f (R / max (R, G, B)) · R
G ′ = K · f (G / max (R, G, B)) · G
B ′ = K · f (R / max (R, G, B)) · B

例えば、補正係数f(x)=x^pとすると(ただし、^はべき乗演算子)、
R′=K・(R/max(R,G,B))^p・R
G′=K・(G/max(R,G,B))^p・G
B′=K・(R/max(R,G,B))^p・B
となる。この場合、−1≦p<0が好ましい。
For example, if the correction coefficient f (x) = x ^ p (where ^ is a power operator),
R ′ = K · (R / max (R, G, B)) ^ p · R
G ′ = K · (G / max (R, G, B)) ^ p · G
B ′ = K · (R / max (R, G, B)) ^ p · B
It becomes. In this case, −1 ≦ p <0 is preferable.

ここでは、特に、補正係数を求める関数fとして、f(1)=1に設定する。この場合、RGB信号のうち最大の色成分については補正係数の値が常に『1』に設定されるため、最大の色成分については、補正なしの信号処理が実施される。
一方、最大以外の色成分については、p<0ならば、補正係数が1より大きくなるため、色成分は大きく補正され、階調変換に伴う彩度強調が抑制される。この抑制の程度は、pの値により調整することができる。
Here, in particular, f (1) = 1 is set as the function f for obtaining the correction coefficient. In this case, since the correction coefficient value is always set to “1” for the maximum color component of the RGB signal, signal processing without correction is performed for the maximum color component.
On the other hand, for the color components other than the maximum, if p <0, the correction coefficient becomes larger than 1, so that the color component is largely corrected, and saturation enhancement accompanying gradation conversion is suppressed. The degree of this suppression can be adjusted by the value of p.

なお、−1≦pであれば、最大以外の色成分が、最大の色成分を超える逆転現象は起こらない。
なお、補正係数f(x)としては、べき乗関数に限らず、単調減少関数であることが好ましい。また例えば、適切な関数や関数テーブルを使う事で、彩度低減の度合を高い自由度で制御することもできる。
If −1 ≦ p, a reversal phenomenon in which a color component other than the maximum exceeds the maximum color component does not occur.
The correction coefficient f (x) is not limited to a power function, and is preferably a monotonously decreasing function. For example, the degree of saturation reduction can be controlled with a high degree of freedom by using an appropriate function or function table.

また、輝度信号としてHSV空間の明度Vを使った場合は、V=max(R,G,B)なので、
R′=V′・f(R/V)・R
G′=V′・f(G/V)・G
B′=V′・f(B/V)・B
となる。
Further, when the brightness V of the HSV space is used as the luminance signal, V = max (R, G, B).
R ′ = V ′ · f (R / V) · R
G ′ = V ′ · f (G / V) · G
B ′ = V ′ · f (B / V) · B
It becomes.

この場合、f(x)=x^pとすると、
R′=V′・(R/V)^(p+1)
G′=V′・(G/V)^(p+1)
B′=V′・(B/V)^(p+1)
となる。なお、画質の主観評価実験によれば、p=−0.4程度が好ましい。
次に、別の実施形態について説明する。
In this case, if f (x) = x ^ p,
R ′ = V ′ · (R / V) ^ (p + 1)
G ′ = V ′ · (G / V) ^ (p + 1)
B ′ = V ′ · (B / V) ^ (p + 1)
It becomes. In addition, according to the subjective evaluation experiment of image quality, about p = −0.4 is preferable.
Next, another embodiment will be described.

《第2実施形態》
第2実施形態の画像処理装置は、第1実施形態(図1)と構成が同じため、構成説明を省略する。
図3は、第2実施形態における画像処理装置11のデータフローを示す図である。
なお、第1実施形態とは、S5,S8,S9の処理が異なるため、以下、その処理について説明する。
<< Second Embodiment >>
Since the image processing apparatus according to the second embodiment has the same configuration as that of the first embodiment (FIG. 1), description of the configuration is omitted.
FIG. 3 is a diagram illustrating a data flow of the image processing apparatus 11 according to the second embodiment.
Since the processing of S5, S8, and S9 is different from the first embodiment, the processing will be described below.

上述した処理では、ゲインK=1で輝度変化の生じない箇所についても、彩度補正がかかる。
そこで、彩度調整量をゲインに応じて変更し(図3のS5)、ゲインK=1の近辺では彩度補正を行わないようにする。そこで、y=0でg(y)=0となる調整関数g()を用いて、
R′=R+g(K−1)・f(R/max(R,G,B))・R
G′=G+g(K−1)・f(G/max(R,G,B))・G
B′=B+g(K−1)・f(B/max(R,G,B))・B
とする(図3のS8,S9)。
In the above-described processing, saturation correction is also applied to a portion where the luminance K does not change with the gain K = 1.
Therefore, the saturation adjustment amount is changed according to the gain (S5 in FIG. 3), and saturation correction is not performed in the vicinity of the gain K = 1. Therefore, by using an adjustment function g () in which y = 0 and g (y) = 0,
R '= R + g (K-1) .f (R / max (R, G, B)). R
G '= G + g (K-1) .f (G / max (R, G, B)). G
B '= B + g (K-1) .f (B / max (R, G, B)). B
(S8, S9 in FIG. 3).

このような調整関数g()としては、単調増加関数が好ましい。例えば、g(y)=yとすると、
R′=R+(K−1)・f(R/max(R,G,B))・R
G′=G+(K−1)・f(G/max(R,G,B))・G
B′=B+(K−1)・f(B/max(R,G,B))・B
となる。
As such an adjustment function g (), a monotonically increasing function is preferable. For example, if g (y) = y,
R '= R + (K-1) .f (R / max (R, G, B)). R
G '= G + (K-1) .f (G / max (R, G, B)). G
B '= B + (K-1) .f (B / max (R, G, B)). B
It becomes.

さらに、補正係数f(x)=x^pとし、HSV空間の明度Vを輝度信号とすると、
R′=R+(V′−V)・(R/V)^(p+1)
G′=G+(V′−V)・(G/V)^(p+1)
B′=B+(V′−V)・(B/V)^(p+1)
となる。なお、画質の主観評価実験によれば、p+1=0.6程度が好ましい。
次に、別の実施形態について説明する。
Further, assuming that the correction coefficient f (x) = x ^ p and the brightness V of the HSV space as the luminance signal,
R '= R + (V'-V). (R / V) ^ (p + 1)
G ′ = G + (V′−V) · (G / V) ^ (p + 1)
B '= B + (V'-V). (B / V) ^ (p + 1)
It becomes. In addition, according to the subjective evaluation experiment of image quality, it is preferable that p + 1 = 0.6.
Next, another embodiment will be described.

《第3実施形態》
第3実施形態は、電子カメラの実施形態である。
図4は、本実施形態の構成を示すブロック図である。
図4において、電子カメラ11には、撮影レンズ12が装着される。この撮影レンズ12の像空間には、撮像素子13の受光面が配置される。この撮像素子13は、タイミングジェネレータ22bの出力パルスによって動作が制御される。
<< Third Embodiment >>
The third embodiment is an embodiment of an electronic camera.
FIG. 4 is a block diagram showing the configuration of the present embodiment.
In FIG. 4, a photographing lens 12 is attached to the electronic camera 11. In the image space of the photographic lens 12, the light receiving surface of the image sensor 13 is arranged. The operation of the image sensor 13 is controlled by the output pulse of the timing generator 22b.

この撮像素子13で生成される画像は、A/D変換部15および信号処理部16を介して、バッファメモリ17に一時記憶される。
このバッファメモリ17は、バス18に接続される。このバス18には、画像処理部19、カードインターフェース20、マイクロプロセッサ22、圧縮伸張部23、および画像表示部24が接続される。この内、カードインターフェース20は、着脱自在なメモリカード21に対するデータの読み書きを行う。また、マイクロプロセッサ22には、電子カメラ11のスイッチ群22aからユーザー操作の信号が入力される。さらに、画像表示部24は、電子カメラ11の背面に設けられたモニタ画面25に画像を表示する。
このような構成の電子カメラ11は、マイクロプロセッサ22および画像処理部19において、第1〜第2の実施形態の信号処理を実行する。
このような信号処理は、撮像時の画像データに対して実施してもよいし、メモリカード21に保存された画像データに対して後から実施してもよい。
An image generated by the image sensor 13 is temporarily stored in the buffer memory 17 via the A / D converter 15 and the signal processor 16.
The buffer memory 17 is connected to the bus 18. An image processing unit 19, a card interface 20, a microprocessor 22, a compression / decompression unit 23, and an image display unit 24 are connected to the bus 18. Of these, the card interface 20 reads / writes data from / to the removable memory card 21. Further, a user operation signal is input to the microprocessor 22 from the switch group 22 a of the electronic camera 11. Further, the image display unit 24 displays an image on a monitor screen 25 provided on the back surface of the electronic camera 11.
The electronic camera 11 having such a configuration executes the signal processing of the first and second embodiments in the microprocessor 22 and the image processing unit 19.
Such signal processing may be performed on the image data at the time of imaging, or may be performed later on the image data stored in the memory card 21.

《実施形態の補足事項》
なお、上述した実施形態の階調変換処理を、コンピュータ上で実現することもできる。この場合、画像処理プログラムを用いて、コンピュータを、第1〜第2の実施形態における変化生成部12、補正係数生成部13、および信号処理部14として機能させればよい。
<< Additional items of embodiment >>
Note that the gradation conversion processing of the above-described embodiment can also be realized on a computer. In this case, the image processing program may be used to cause the computer to function as the change generation unit 12, the correction coefficient generation unit 13, and the signal processing unit 14 in the first and second embodiments.

また、上述した実施形態において、入力される画像信号をRAWデータ(ベイヤ配列などの色配列データ)として、RAWデータに信号処理を施しても良い。この場合、画素単位に輝度信号や色成分が揃わないため、画素単位に変化比率や補正係数を生成することができない。   In the above-described embodiment, the RAW data may be subjected to signal processing using the input image signal as RAW data (color array data such as Bayer array). In this case, since luminance signals and color components are not arranged for each pixel, it is not possible to generate a change ratio or a correction coefficient for each pixel.

この場合は、周辺画素の色成分を使用して、画素単位に輝度信号や色成分を生成する処理をRAWデータに実施し、得られた輝度信号や色成分について変化比率や補正係数を求めてもよい。   In this case, processing for generating a luminance signal and a color component for each pixel is performed on the RAW data using the color components of the peripheral pixels, and a change ratio and a correction coefficient are obtained for the obtained luminance signal and color components. Also good.

また、RAWデータを、輝度信号や全ての色成分の生成に必要な画素ブロック単位に分けて、画素ブロックごとに得られる輝度信号や色成分から変化比率や補正係数を決定してもよい。   Further, the RAW data may be divided into pixel block units necessary for generating the luminance signal and all the color components, and the change ratio and the correction coefficient may be determined from the luminance signal and color components obtained for each pixel block.

なお、RAWデータ中の色配列データに対して直に信号処理を実施してもよい。また、後から信号処理を実施できるように、RAWデータ中の画像処理情報に格納してもよい。   Note that signal processing may be performed directly on the color array data in the RAW data. Further, it may be stored in image processing information in RAW data so that signal processing can be performed later.

また、インターネット上などの画像処理サーバーや画像アルバムサーバーにおいて、ユーザーから伝送される画像データに対して、上述した実施形態の画像処理方法をサービスとして提供してもよい。なお、記録媒体や通信媒体を介して画像データを取得して、プリントサービスを提供するプリントサーバーが、プリント前処理として、上述した実施形態の画像処理方法を実施してもよい。   Further, in the image processing server or image album server on the Internet or the like, the image processing method of the above-described embodiment may be provided as a service for image data transmitted from a user. Note that a print server that acquires image data via a recording medium or a communication medium and provides a print service may implement the image processing method of the above-described embodiment as pre-print processing.

なお、上述した実施形態では、RGB色成分について説明した。しかしながら、本発明はこれに限定されるものではない。一般的には任意の表色系の色成分を使用することができる。   In the above-described embodiment, the RGB color components have been described. However, the present invention is not limited to this. In general, color components of an arbitrary color system can be used.

以上説明したように、本発明は画像処理などに利用可能な技術である。   As described above, the present invention is a technique that can be used for image processing and the like.

画像処理装置11の構成を示すブロック図である。2 is a block diagram illustrating a configuration of an image processing apparatus 11. FIG. 第1実施形態における画像処理装置11のデータフローを示す図である。It is a figure which shows the data flow of the image processing apparatus 11 in 1st Embodiment. 第2実施形態における画像処理装置11のデータフローを示す図である。It is a figure which shows the data flow of the image processing apparatus 11 in 2nd Embodiment. 電子カメラの構成を示す図である。It is a figure which shows the structure of an electronic camera.

符号の説明Explanation of symbols

V 輝度信号
11 画像処理装置
12 変化生成部
13 補正係数生成部
14 信号処理部
V luminance signal 11 image processing device 12 change generation unit 13 correction coefficient generation unit 14 signal processing unit

Claims (6)

カラー画像信号より輝度信号を取得または生成し、前記輝度信号に予め定められた信号処理を実施し、前記信号処理を実施した後の輝度信号を前記信号処理を実施する前の輝度信号にて除算した値からなる変化比率を求め、
『前記カラー画像信号に含まれる各色成分』と『前記各色成分の最大値』とにより以下の式にて補正係数を画素単位で求め、
[(前記各色成分)/(前記各色成分の最大値)]
ただし、Pは、−1≦P<0
前記変化比率に前記補正係数を乗ずることにより、調整済み変化比率を求め、前記調整済み変化比率に基づいて前記カラー画像信号の信号処理を画素単位で行う
ことを特徴とする画像処理方法。
A luminance signal is obtained or generated from a color image signal, predetermined signal processing is performed on the luminance signal, and the luminance signal after the signal processing is divided by the luminance signal before the signal processing is performed Find the change ratio consisting of
A correction coefficient is obtained in units of pixels by the following formula using “each color component included in the color image signal” and “maximum value of each color component”.
[(Each color component) / (maximum value of each color component)] P
However, P is -1 <= P <0.
An image processing method, wherein an adjusted change ratio is obtained by multiplying the change ratio by the correction coefficient, and signal processing of the color image signal is performed on a pixel basis based on the adjusted change ratio.
カラー画像信号より輝度信号を取得または生成し、輝度信号に予め定められた信号処理を実施した後に前記信号処理を実施する前のHSV色空間における輝度信号Vと前記信号処理を実施した後の輝度信号V’との差であるV’−Vを求め、
『前記カラー画像信号に含まれる各色成分』と『前記各色成分の最大値』とにより下記の式にて補正係数を画素単位で求め、
[(前記各色成分)/(前記各色成分の最大値)]P+1
前記輝度信号の差に前記補正係数を乗じた上で前記色成分に加算することにより、前記カラー画像信号の信号処理を画素単位で行う
ことを特徴とする画像処理方法。
Luminance signal V in the HSV color space after acquiring or generating a luminance signal from a color image signal and performing signal processing predetermined on the luminance signal and before performing the signal processing and luminance after performing the signal processing V′−V which is a difference from the signal V ′ is obtained,
A correction coefficient is obtained in units of pixels by the following formula using "each color component included in the color image signal" and "maximum value of each color component"
[(Each color component) / (maximum value of each color component)] P + 1
An image processing method characterized in that signal processing of the color image signal is performed in units of pixels by multiplying the difference between the luminance signals by the correction coefficient and adding the result to the color component.
カラー画像信号より輝度信号を取得または生成し、前記輝度信号に予め定められた信号処理を実施し、前記信号処理を実施した後の輝度信号を前記信号処理を実施する前の輝度信号にて除算した値からなる変化比率を求める変化生成部と、
『前記カラー画像信号に含まれる各色成分』と『前記各色成分の最大値』とにより以下の式にて補正係数を画素単位で求める補正係数生成部と、
[(前記各色成分)/(前記各色成分の最大値)]
ただし、Pは、−1≦P<0
前記変化比率に前記補正係数を乗ずることにより、調整済み変化比率を求め、前記調整済み変化比率に基づいて前記カラー画像信号の信号処理を画素単位で行う信号処理部と
を備えたことを特徴とする画像処理装置。
A luminance signal is obtained or generated from a color image signal, predetermined signal processing is performed on the luminance signal, and the luminance signal after the signal processing is divided by the luminance signal before the signal processing is performed A change generation unit for obtaining a change ratio composed of the obtained values ;
A correction coefficient generation unit that obtains a correction coefficient in units of pixels according to the following equation based on “each color component included in the color image signal” and “maximum value of each color component”;
[(Each color component) / (maximum value of each color component)] P
However, P is -1 <= P <0.
A signal processing unit that obtains an adjusted change ratio by multiplying the change ratio by the correction coefficient, and performs signal processing of the color image signal in units of pixels based on the adjusted change ratio; An image processing apparatus.
カラー画像信号より輝度信号を取得または生成し、輝度信号に予め定められた信号処理を実施した後に前記信号処理を実施する前のHSV色空間における輝度信号Vと前記信号処理を実施した後の輝度信号V’との差であるV’−Vを求める変化生成部と、
『前記カラー画像信号に含まれる各色成分』と『前記各色成分の最大値』とにより下記の式にて補正係数を画素単位で求める補正係数生成部と、
[(前記各色成分)/(前記各色成分の最大値)]P+1
前記輝度信号の差に前記補正係数を乗じた上で前記色成分に加算することにより、前記カラー画像信号の信号処理を画素単位で行う信号処理部と
を備えたことを特徴とする画像処理装置。
Luminance signal V in the HSV color space after acquiring or generating a luminance signal from a color image signal and performing signal processing predetermined on the luminance signal and before performing the signal processing and luminance after performing the signal processing A change generator for obtaining V′−V which is a difference from the signal V ′;
A correction coefficient generation unit that obtains a correction coefficient in units of pixels according to the following equation using “each color component included in the color image signal” and “maximum value of each color component”;
[(Each color component) / (maximum value of each color component)] P + 1
An image processing apparatus comprising: a signal processing unit that performs signal processing of the color image signal in units of pixels by multiplying the difference between the luminance signals by the correction coefficient and adding the result to the color component. .
コンピュータを、請求項3または請求項4に記載の前記変化生成部、前記補正係数生成部、および前記信号処理部として機能させるための画像処理プログラム。   An image processing program for causing a computer to function as the change generation unit, the correction coefficient generation unit, and the signal processing unit according to claim 3 or 4. 請求項3または請求項4に記載の画像処理装置と、
被写体を撮像してカラー画像信号を生成する撮像部とを備え、
前記撮像部で生成された前記カラー画像信号に含まれる色成分を、前記画像処理装置で信号処理する
ことを特徴とする電子カメラ。
An image processing apparatus according to claim 3 or 4,
An imaging unit that images a subject and generates a color image signal;
An electronic camera, wherein a color component included in the color image signal generated by the imaging unit is signal-processed by the image processing device.
JP2005036254A 2004-09-17 2005-02-14 Image processing method, image processing apparatus, image processing program, and electronic camera Expired - Lifetime JP4479527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005036254A JP4479527B2 (en) 2004-09-17 2005-02-14 Image processing method, image processing apparatus, image processing program, and electronic camera

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004272541 2004-09-17
JP2005036254A JP4479527B2 (en) 2004-09-17 2005-02-14 Image processing method, image processing apparatus, image processing program, and electronic camera

Publications (2)

Publication Number Publication Date
JP2006115444A JP2006115444A (en) 2006-04-27
JP4479527B2 true JP4479527B2 (en) 2010-06-09

Family

ID=36383529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005036254A Expired - Lifetime JP4479527B2 (en) 2004-09-17 2005-02-14 Image processing method, image processing apparatus, image processing program, and electronic camera

Country Status (1)

Country Link
JP (1) JP4479527B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8163786B2 (en) 2006-05-16 2012-04-24 Pacific Scientific Energetic Materials Company Preparation of a lead-free primary explosive
BRPI0711825B1 (en) 2006-05-16 2016-12-06 Pacific Scient Energetic Materials Co copper (i) nitrotetrazolate, and methods for its preparation
US8062443B2 (en) 2008-03-10 2011-11-22 Pacific Scientific Energetic Materials Company Lead-free primers
JP5392560B2 (en) * 2009-10-13 2014-01-22 株式会社Jvcケンウッド Image processing apparatus and image processing method
JP5365881B2 (en) * 2010-06-28 2013-12-11 株式会社Jvcケンウッド Image processing apparatus and image processing method
JP5596075B2 (en) * 2012-03-30 2014-09-24 Eizo株式会社 Gradation correction apparatus or method
JP5933332B2 (en) * 2012-05-11 2016-06-08 シャープ株式会社 Image processing apparatus, image processing method, image processing program, and recording medium storing image processing program
US9278984B2 (en) 2012-08-08 2016-03-08 Pacific Scientific Energetic Materials Company Method for preparation of a lead-free primary explosive
JP5932068B1 (en) 2015-01-06 2016-06-08 オリンパス株式会社 Image processing apparatus, imaging apparatus, image processing method, and image processing program
CN110277140A (en) * 2019-06-21 2019-09-24 贵州大学 Method, system and device for establishing combustion equivalence ratio calculation model based on flame color recognition

Also Published As

Publication number Publication date
JP2006115444A (en) 2006-04-27

Similar Documents

Publication Publication Date Title
JP4831067B2 (en) Image processing apparatus, image processing method, image processing program product, and imaging apparatus
KR101051604B1 (en) Image processing apparatus and method
CN101951457B (en) Image processing apparatus and computer-readable medium
JP5100565B2 (en) Image processing apparatus and image processing method
EP1302898A2 (en) System and method for digital image tone mapping using an adaptive sigmoidal function based on perceptual preference guidelines
CN100366052C (en) Image processing device and method
JP4208909B2 (en) Image processing device and photographing device
KR20080035981A (en) Image processing apparatus, imaging apparatus, image processing method and computer program
US20070115369A1 (en) Tone-conversion device for image, program, electronic camera, and tone-conversion method
JP2020145553A (en) Image processing apparatus, image processing method and program
US20100231757A1 (en) Image acquisition apparatus and image acquisition program
JP4479527B2 (en) Image processing method, image processing apparatus, image processing program, and electronic camera
JP2006080942A (en) Image processing apparatus, image processing program, image processing method, and imaging apparatus
JP2004246644A (en) Image processing apparatus, image processing method, and image processing program
JP2009272983A (en) Image processing apparatus, method, and program
JP4752912B2 (en) Image processing apparatus, image processing program, image processing method, and electronic camera for correcting texture of image
JP2006114005A (en) Gradation conversion apparatus, program, electronic camera, and method therefor
JP5234127B2 (en) Gradation conversion device, program, electronic camera, and method thereof
JP4992379B2 (en) Image gradation conversion apparatus, program, electronic camera, and method thereof
JP4774757B2 (en) Image processing apparatus, image processing program, electronic camera, and image processing method
JP5365881B2 (en) Image processing apparatus and image processing method
JP2004046329A (en) Image contour enhancement device
JP2006094419A (en) Image signal processing apparatus and image signal processing method
JP5561389B2 (en) Image processing program, image processing apparatus, electronic camera, and image processing method
JP6858073B2 (en) Image processing device, image processing method, and program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4479527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term