[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4479418B2 - Exhaust gas purification catalyst - Google Patents

Exhaust gas purification catalyst Download PDF

Info

Publication number
JP4479418B2
JP4479418B2 JP2004246336A JP2004246336A JP4479418B2 JP 4479418 B2 JP4479418 B2 JP 4479418B2 JP 2004246336 A JP2004246336 A JP 2004246336A JP 2004246336 A JP2004246336 A JP 2004246336A JP 4479418 B2 JP4479418 B2 JP 4479418B2
Authority
JP
Japan
Prior art keywords
exhaust gas
temperature region
high temperature
catalyst
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004246336A
Other languages
Japanese (ja)
Other versions
JP2006061803A (en
Inventor
奈緒子 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004246336A priority Critical patent/JP4479418B2/en
Publication of JP2006061803A publication Critical patent/JP2006061803A/en
Application granted granted Critical
Publication of JP4479418B2 publication Critical patent/JP4479418B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明は、NOx 吸蔵還元型の排ガス浄化用触媒に関する。 The present invention relates to an NO x storage reduction type exhaust gas purification catalyst.

従来より自動車の排ガス浄化用触媒として、理論空燃比(ストイキ)において排ガス中のCO及びHCの酸化とNOx の還元とを同時に行って浄化する三元触媒が用いられている。このような三元触媒としては、例えばコーディエライトなどからなる耐熱性基材にγ−アルミナからなる多孔質担体層を形成し、その多孔質担体層に白金(Pt)、ロジウム(Rh)などの貴金属を担持させたものが広く知られている。 Conventionally, as a catalyst for exhaust gas purification of automobiles, a three-way catalyst that purifies by performing CO and HC oxidation and NO x reduction simultaneously in exhaust gas at a stoichiometric air-fuel ratio (stoichiometric) has been used. As such a three-way catalyst, for example, a porous carrier layer made of γ-alumina is formed on a heat-resistant substrate made of cordierite or the like, and platinum (Pt), rhodium (Rh) or the like is formed on the porous carrier layer. Those carrying a noble metal are widely known.

一方、近年、地球環境保護の観点から、自動車などの内燃機関から排出される排ガス中の二酸化炭素(CO2 )が問題とされ、その解決策として酸素過剰雰囲気において希薄燃焼させるいわゆるリーンバーンが有望視されている。このリーンバーンにおいては、燃料の使用量が低減され、その燃焼排ガスであるCO2 の発生を抑制することができる。 On the other hand, in recent years, from the viewpoint of protecting the global environment, carbon dioxide (CO 2 ) in exhaust gas discharged from internal combustion engines such as automobiles has become a problem. Is being viewed. In this lean burn, the amount of fuel used is reduced, and the generation of CO 2 as the combustion exhaust gas can be suppressed.

これに対し、従来の三元触媒は、空燃比が理論空燃比(ストイキ)において排ガス中のCO,HC,NOx を同時に酸化・還元し浄化するものであって、リーンバーン時の排ガスの酸素過剰雰囲気下においては、NOx の還元除去に対して充分な浄化性能を示さない。このため、酸素過剰雰囲気下においてもNOx を効率よく浄化しうる触媒及び浄化システムの開発が望まれていた。 In contrast, conventional three-way catalysts are those that simultaneously oxidize, reduce, and purify CO, HC, and NO x in exhaust gas when the air-fuel ratio is the stoichiometric air-fuel ratio (stoichiometric). In an excess atmosphere, it does not show sufficient purification performance for NO x reduction and removal. Therefore, it has been desired to develop a catalyst and a purification system that can efficiently purify NO x even in an oxygen-excess atmosphere.

そこでリーンバーンにおいて、常時は酸素過剰のリーン条件で燃焼させ、一時的にストイキ〜リッチ条件とすることにより排ガスを還元雰囲気としてNOx を還元浄化するシステムが開発された。そしてこのシステムに最適な、リーン雰囲気でNOx を吸蔵し、ストイキ〜リッチ雰囲気で吸蔵されたNOx を放出するNOx 吸蔵材を用いたNOx 吸蔵還元型の排ガス浄化用触媒が開発されている。 Therefore, in the lean burn, normally it is burned with oxygen excess lean condition, temporarily stoichiometric-system that reduces and purifies NO x exhaust gas as a reducing atmosphere by a rich condition is developed. The ideal for this system, occludes NO x in lean atmosphere, and the NO x storage-reduction type exhaust gas purifying catalyst using the NO x storage material that releases NO x occluded in the stoichiometric-rich atmosphere has been developed Yes.

このNOx の吸蔵・放出作用をもつNOx 吸蔵材としては、アルカリ土類金属、アルカリ金属及び希土類元素が知られ、例えば特開平05−317652号公報には、Baなどのアルカリ土類金属とPtをアルミナなどの多孔質担体に担持したNOx 吸蔵還元型触媒が提案されている。また特開平06−031139号公報には、Kなどのアルカリ金属とPtをアルミナなどの多孔質担体に担持したNOx 吸蔵還元型触媒が提案されている。さらに特開平5-168860号公報には、Laなどの希土類元素とPtをアルミナなどの多孔質担体に担持したNOx 吸蔵還元型触媒が提案されている。 As the NO x storage material with absorbing and releasing action of the NO x, the alkaline earth metals, known alkali metal and rare earth elements, for example, JP-A-05-317652, and alkaline earth metals such as Ba Pt was supported on a porous carrier such as alumina NO x storage-and-reduction type catalyst has been proposed. Japanese Laid-Open Patent Publication No. 06-031139 proposes a NO x storage reduction catalyst in which an alkali metal such as K and Pt are supported on a porous carrier such as alumina. More Hei 5-168860 discloses, NO x storage-reduction catalyst carrying a rare earth element and Pt, such as La on a porous support such as alumina have been proposed.

これらのNOx 吸蔵還元型触媒を用いれば、空燃比をリーン側からパルス状にストイキ〜リッチ側となるように制御することにより、リーン側ではNOx がNOx 吸蔵材に吸蔵され、それがストイキ又はリッチ側で放出されてHCやCOなどの還元性成分と反応して浄化されるため、リーンバーンエンジンからの排ガスであってもNOx を効率良く浄化することができる。 By using these NO x storage reduction type catalysts, by controlling the air-fuel ratio from the lean side to the stoichiometric to rich side from the lean side, NO x is occluded by the NO x storage material on the lean side. since released in the stoichiometric or rich side are purified by reacting with reducing components such as HC and CO, it can be purified efficiently NO x even exhaust gas from a lean burn engine.

ところがNOx 吸蔵還元型触媒は、排ガス温度が特に 300℃未満の低温域におけるNOx 吸蔵能が不充分であり、低温域になるほどNOx 吸蔵能が低下するという不具合がある。そのため始動時や冷間時などの排ガスが低温域にある場合には、 300〜 400℃の中温域に比べてNOx 浄化能が低下するという問題があった。また排ガス温度が 400℃以上の高温域においてもNOx 吸蔵能が低下し、300〜 400℃の中温域に比べてNOx 浄化能が低下するという問題がある。また排ガス浄化用触媒は、エンジン直下、あるいはアンダーフロアなど様々であり、流入する排ガス温度も様々である。したがって、低温域から高温域まで幅広い温度域でNOx を浄化できる触媒が求められている。 However the NO x storage reduction catalyst is insufficient the NO x storage ability in low temperature range below the exhaust gas temperature is particularly 300 ° C., there is a problem that the more the NO x storage ability becomes low temperature region is lowered. Therefore, when the exhaust gas at the time of start-up or cold is in a low temperature range, there has been a problem that the NO x purification ability is lowered as compared with the middle temperature range of 300 to 400 ° C. Further, there is a problem that the NO x storage ability is lowered even in a high temperature range where the exhaust gas temperature is 400 ° C. or higher, and the NO x purification ability is lowered as compared with the intermediate temperature range of 300 to 400 ° C. Further, there are various exhaust gas purifying catalysts, such as directly under the engine or under floor, and the exhaust gas temperature flowing in varies. Therefore, there is a need for a catalyst that can purify NO x in a wide temperature range from a low temperature range to a high temperature range.

そこで特開2000−167356号公報には、高温型NOx 吸蔵還元触媒を排ガス流の上流側に配置し、低温型NOx 吸蔵還元触媒を高温型NOx 吸蔵還元触媒の下流側に配置してなる排ガス浄化装置が提案されている。高温型NOx 吸蔵還元触媒のNOx 吸蔵材にはアルカリ金属が用いられ、低温型NOx 吸蔵還元触媒のNOx 吸蔵材にはアルカリ土類金属及びランタンが用いられている。K,Naなどのアルカリ金属は 400〜 600℃の酸素過剰雰囲気下においてNOx を効率よく吸蔵し、Ba,Srなどのアルカリ土類金属やLaは 250〜 400℃の酸素過剰雰囲気下においてNOx を効率よく吸蔵する。したがってこの排ガス浄化装置によれば、低温域から高温域まで幅広い温度ウィンドウでNOx を吸蔵することができ、NOx 浄化性能が大幅に向上する。
特開平05−317652号 特開平06−031139号 特開2000−167356号
Therefore, Japanese Patent Laid-Open No. 2000-167356 discloses that a high-temperature NO x storage reduction catalyst is disposed upstream of the exhaust gas flow, and a low-temperature NO x storage reduction catalyst is disposed downstream of the high-temperature NO x storage reduction catalyst. An exhaust gas purifying apparatus has been proposed. An alkali metal is used for the NO x storage material of the high temperature type NO x storage reduction catalyst, and an alkaline earth metal and lanthanum are used for the NO x storage material of the low temperature type NO x storage reduction catalyst. Alkali metals such as K and Na efficiently store NO x in an oxygen-excess atmosphere of 400 to 600 ° C, while alkaline earth metals such as Ba and Sr and La contain NO x in an oxygen-excess atmosphere of 250 to 400 ° C. Occlude efficiently. Therefore, according to the exhaust gas purifying apparatus, it is possible to occlude NO x over a wide temperature window from the low temperature region to high temperature region, NO x purifying performance is greatly improved.
JP 05-317652 A JP 06-031139 JP 2000-167356 A

ところがアルカリ金属及びアルカリ土類金属をNOx 吸蔵材とする触媒であっても、担体種によっては、 400〜 600℃の高温域におけるNOx 吸蔵能が低い場合があり、 250〜 400℃の低温域におけるNOx 吸蔵能が低い場合があることが明らかとなった。触媒は、流れる排ガスの影響により温度分布をもつので、高温部及び低温部でそれぞれNOx 吸蔵材のNOx 吸蔵能が低い状態となる場合がある。 However, even in the case of a catalyst using an alkali metal or alkaline earth metal as a NO x storage material, depending on the carrier type, the NO x storage capacity in a high temperature range of 400 to 600 ° C. may be low, and a low temperature of 250 to 400 ° C. It was revealed that the NO x storage capacity in the region may be low. The catalyst flows because it has a temperature distribution due to the influence of the exhaust gas, there is a case where the NO x storage capacity of each high temperature part and low temperature part the NO x storage material is low.

本発明は上記した事情に鑑みてなされたものであり、触媒に生じる温度分布に応じて適切にNOx を吸蔵し、NOx をさらに効率よく浄化できるようにすることを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to appropriately store NO x in accordance with the temperature distribution generated in the catalyst and further efficiently purify NO x .

上記課題を解決する本発明の排ガス浄化用触媒の特徴は、担体基材と、多孔質酸化物よりなり担体基材の表面に形成されたコート層と、コート層に担持された貴金属及びNOx 吸蔵材と、よりなる排ガス浄化用触媒であって、
使用中に高温となる高温域部は塩基性の多孔質酸化物とNOx 吸蔵材との組み合わせとし、使用中に高温域部より相対的に低温となる低温域部は両性及び酸性の少なくとも一方の多孔質酸化物とNOx 吸蔵材との組み合わせとしたことにある。
Features of the exhaust gas purifying catalyst of the present invention for solving the aforementioned problems is a carrier substrate, a coating layer formed on a surface of the support substrate made of a porous oxide, noble metals and NO x, which is supported on the coat layer An exhaust gas purification catalyst comprising an occlusion material,
The high temperature region that becomes hot during use is a combination of a basic porous oxide and a NO x storage material, and the low temperature region that becomes relatively cooler than the high temperature region during use is at least one of amphoteric and acidic. It lies in the combination of the porous oxide and the NO x storage material.

本発明の排ガス浄化用触媒によれば、触媒に生じる温度分布に応じて適切にNOx を吸蔵できるので、NOx の浄化率が向上する。 According to the exhaust gas purifying catalyst of the present invention, it is possible to absorb appropriately NO x in accordance with a temperature distribution generated in the catalyst, the purification rate of the NO x can be improved.

NOx 吸蔵材は、触媒上では炭酸塩の状態で担持され、例えばKの場合、酸素過剰のリーン雰囲気では次(1)式の反応によって硝酸塩となることでNOx を吸蔵する。 The NO x storage material, on the catalyst is carried in the form of carbonates, for example, in the case of K, the oxygen excess lean atmosphere to occlude NO x by the nitrates by the reaction of the following formula (1).

K2CO3 + 2NO2 + 1/2O2 → 2KNO3 + CO2 (1)
そして還元剤過剰のリッチ雰囲気では、次(2)式の反応によってNOx を放出し、NOx 吸蔵材はNOx 吸蔵能を回復する。
K 2 CO 3 + 2NO 2 + 1 / 2O 2 → 2KNO 3 + CO 2 (1)
In a rich atmosphere with excess reducing agent, NO x is released by the reaction of the following equation (2), and the NO x storage material recovers the NO x storage capacity.

KNO3 + HC,CO → K2CO3 + N2 + H2O (2)
(1)式の標準生成エンタルピーを表1に示す。表1より、(1)式の反応は複数の反応を経て生じ、NOx を吸蔵するには、つまり炭酸カリウムが分解して硝酸カリウムが生成するには 427℃以上の温度が必要であることがわかる。
KNO 3 + HC, CO → K 2 CO 3 + N 2 + H 2 O (2)
Table 1 shows the standard generation enthalpy of the formula (1). From Table 1, the reaction of the formula (1) occurs through a plurality of reactions, and in order to occlude NO x , that is, to decompose potassium carbonate and form potassium nitrate, it is necessary that a temperature of 427 ° C. or higher is required. Recognize.

Figure 0004479418
Figure 0004479418

ところが炭酸カリウムを各種酸化物に担持した場合には、図1に示すように、酸化物種によって CO2の発生速度が異なることが明らかとなり、炭酸塩の分解速度が最大となる温度は、NOx 吸蔵材を担持している酸化物種によって異なることが明らかとなった。例えば Al2O3にKを担持した場合には、分解速度が最大となる温度は約 300℃であるのに対し、ZrO2にKを担持した場合には、分解速度が最大となる温度は約 700℃となり、 Al2O3にKを担持した場合より分解速度が最大となる温度が高い。したがって Al2O3にKを担持した触媒は低温域の約 300℃付近で高いNOx 吸蔵能を発現し、ZrO2にKを担持した触媒は高温域の約 700℃付近で高いNOx 吸蔵能を発現すると考えられる。 However, when potassium carbonate is supported on various oxides, as shown in FIG. 1, it is clear that the generation rate of CO 2 varies depending on the oxide species, and the temperature at which the decomposition rate of carbonate is maximum is NO x. It became clear that it was different depending on the oxide species carrying the occlusion material. For example, when K is supported on Al 2 O 3 , the temperature at which the decomposition rate is maximum is about 300 ° C., whereas when K is supported on ZrO 2 , the temperature at which the decomposition rate is maximum is The temperature is about 700 ° C., and the temperature at which the decomposition rate is maximum is higher than when K is supported on Al 2 O 3 . Therefore catalyst supporting K to Al 2 O 3 is expressed higher the NO x storage ability at around 300 ° C. in a low temperature range, catalyst supporting K to ZrO 2 is higher the NO x storage at around 700 ° C. in a high temperature range It is thought that the ability is expressed.

そこで本発明では、使用中に高温となる高温域部は、炭酸塩の分解速度が最大となる温度が高い多孔質酸化物とNOx 吸蔵材との組み合わせとし、使用中に高温域部より相対的に低温となる低温域部は炭酸塩の分解速度が最大となる温度が低い多孔質酸化物とNOx 吸蔵材との組み合わせとした。これにより高温域部では高温の排ガスと接触することでNOx を効率よく吸蔵でき、低温域部では低温の排ガスと接触することでNOx を効率よく吸蔵できるので、触媒全体としてNOx 吸蔵能が向上する。 Therefore, in the present invention, the high-temperature region portion that becomes high during use is a combination of a porous oxide and a NO x storage material that has a high temperature at which the decomposition rate of carbonate is maximized, and is relatively higher than the high-temperature region portion during use. In particular, the low temperature region where the temperature is low is a combination of a porous oxide and a NO x storage material having a low temperature at which the decomposition rate of carbonate is maximum. This allows efficient occluding NO x by contact with the hot exhaust gas in the high temperature region portion, since the low temperature range portion can be efficiently occluding NO x by contact with a low temperature of the exhaust gas, NO x storage ability as a whole a catalyst Will improve.

担体基材は、ハニカム形状あるいはフォーム形状などのものを用いることができ、コージェライトなどのセラミックス製、あるいはメタル製のものを用いることができる。   The carrier substrate can be in the form of a honeycomb or foam, and can be made of ceramics such as cordierite or metal.

担体基材の排ガス通路の表面には、多孔質酸化物からなるコート層が形成されている。多孔質酸化物は、アルミナ、ジルコニア、チタニア、セリア、シリカなどの単種又は混合物、あるいはこれらから選ばれる複数種の複合酸化物などから選択して用いることができる。   A coating layer made of a porous oxide is formed on the surface of the exhaust gas passage of the carrier substrate. The porous oxide can be selected and used from a single kind or a mixture of alumina, zirconia, titania, ceria, silica, or a plurality of kinds of composite oxides selected from these.

コート層には、貴金属とNOx 吸蔵材とが担持されている。貴金属は、Pt、Rh、Pd、Irなどから選択される。またNOx 吸蔵材は、アルカリ金属、アルカリ土類金属及び希土類元素の中から選択することができる。貴金属及びNOx 吸蔵材の担持量は特に制限されず、従来のNOx 吸蔵還元型触媒と同様でよい。 The coat layer carries a precious metal and a NO x storage material. The noble metal is selected from Pt, Rh, Pd, Ir and the like. The NO x storage material can be selected from alkali metals, alkaline earth metals and rare earth elements. The loading amounts of the noble metal and the NO x storage material are not particularly limited, and may be the same as those of the conventional NO x storage reduction catalyst.

高温域部とは使用中に高温となる部位をいい、高温の排ガスが流れる排ガス流れ方向の軸中心軸部、あるいは高温の排ガスが流入する排ガス上流側の部分をいう。また低温域部とは、高温域部より相対的に低温の排ガスが流れる部位をいい、排ガス流れ方向の外周部分、あるいは排ガス下流側の部分である。   The high temperature region portion refers to a portion that becomes high temperature during use, and refers to the axial central shaft portion in the exhaust gas flow direction in which the high temperature exhaust gas flows or the upstream portion of the exhaust gas into which the high temperature exhaust gas flows. Further, the low temperature region portion refers to a portion where exhaust gas relatively cooler than the high temperature region portion flows, and is an outer peripheral portion in the exhaust gas flow direction or a portion on the downstream side of the exhaust gas.

一般に、NOx 吸蔵材は塩基性の多孔質酸化物と親和性が強く、炭酸塩の分解温度が比較的高いので、高温域部のコート層は塩基性の多孔質酸化物からなり、低温域部のコート層は両性及び酸性の少なくとも一方の多孔質酸化物からなることが望ましい。塩基性の多孔質酸化物としては例えばZrO2が例示され、両性の多孔質酸化物としては例えば Al2O3が例示され、酸性の多孔質酸化物としては例えばTiO2が例示される。 In general, NO x storage materials have a strong affinity with basic porous oxides, and the decomposition temperature of carbonate is relatively high. Therefore, the coating layer in the high temperature region is composed of basic porous oxides, and the low temperature region. The coat layer of the part is preferably made of at least one of amphoteric and acidic porous oxides. Examples of the basic porous oxide include ZrO 2 , examples of the amphoteric porous oxide include Al 2 O 3 , and examples of the acidic porous oxide include TiO 2 .

したがって、炭酸塩の分解速度が最大となる温度が高い多孔質酸化物とNOx 吸蔵材との組み合わせとしては、例えばZrO2とKとの組み合わせが例示される。また炭酸塩の分解速度が最大となる温度が低い多孔質酸化物とNOx 吸蔵材との組み合わせとしては、例えば Al2O3とKとの組み合わせ、あるいはTiO2とKとの組み合わせが例示される。これらは、NOx 吸蔵材としてKを選択した場合の例であり、NOx 吸蔵材として他のアルカリ金属あるいはアルカリ土類金属などを選択した場合には、組み合わせられる多孔質酸化物種が異なる場合もある。 Therefore, examples of the combination of the porous oxide having a high temperature at which the decomposition rate of carbonate is maximum and the NO x storage material include a combination of ZrO 2 and K. Examples of the combination of the porous oxide having a low temperature at which the decomposition rate of carbonate is low and the NO x storage material include a combination of Al 2 O 3 and K, or a combination of TiO 2 and K. The These are examples in the case of selecting the K as the NO x storage material, when selecting and other alkali metal or alkaline earth metal as the NO x storage material, even if the porous oxide species for different combinations is there.

なお高温域部及び低温域部が排ガス上流側及び下流側である場合、炭酸塩の分解速度が最大となる温度が高い多孔質酸化物とNOx 吸蔵材との組み合わせと、炭酸塩の分解速度が最大となる温度が低い多孔質酸化物とNOx 吸蔵材との組み合わせは、一つの担体基材上に塗り分けることで設定してもよいし、二つの担体基材のそれぞれに形成しそれを直列に並べたタンデム構造とすることもできる。 In the case the high temperature region portion and the low temperature region portion is an exhaust gas upstream side and the downstream side, a combination of the temperature at which the decomposition rate of the carbonate is maximum high porous oxide and the NO x storage material, the degradation rate of the carbonate the combination may be set by separately applying on one of the carrier substrate, is formed on each of the two carrier substrates it but the temperature is low porous oxide and the NO x storage material to be a maximum A tandem structure in which can be arranged in series.

以下、試験例、実施例及び比較例により本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to test examples, examples and comparative examples.

(試験例1)
市販のγ-Al2O3粉末、ZrO2粉末、TiO2粉末を用意し、所定濃度のジニトロジアンミン白金溶液の所定量をそれぞれ含浸し、蒸発・乾固後 500℃で1時間焼成して、それぞれの粉末にPtを担持した。次いで所定濃度の硝酸カリウム水溶液の所定量を含浸させ、蒸発・乾固後 550℃で1時間焼成して、それぞれの粉末にKを担持した。γ-Al2O3粉末の 120gに対してPtが2gとKが 0.2モル担持され、ZrO2粉末の 280gに対してPtが2gとKが 0.2モル担持され、TiO2の 250gに対してPtが2gとKが 0.2モル担持された。
(Test Example 1)
Prepare commercially available γ-Al 2 O 3 powder, ZrO 2 powder, and TiO 2 powder, impregnate each with a predetermined amount of dinitrodiammine platinum solution with a predetermined concentration, evaporate and dry, and calcinate for 1 hour at 500 ° C. Pt was supported on each powder. Subsequently, a predetermined amount of a potassium nitrate aqueous solution having a predetermined concentration was impregnated, evaporated and dried, and then fired at 550 ° C. for 1 hour, so that K was supported on each powder. 2 g of Pt and 0.2 mol of Pt are supported on 120 g of γ-Al 2 O 3 powder, 2 g of Pt and 0.2 mol of K are supported on 280 g of ZrO 2 powder, and Pt on 250 g of TiO 2 2 g and 0.2 mol of K were supported.

得られた触媒粉末を反応管にそれぞれ所定量充填し、Heを流しながら、各温度における CO2生成量を測定した。結果を図1に示す。 A predetermined amount of the obtained catalyst powder was filled in each reaction tube, and the amount of CO 2 produced at each temperature was measured while flowing He. The results are shown in FIG.

Heには含まれていない CO2が生成したことから、Kは K2CO3として担持されていることが明らかである。そして図1より、 Al2O3又はTiO2にKを担持した場合には分解速度が最大となる温度は約 300℃であるのに対し、ZrO2にKを担持した場合には、分解速度が最大となる温度は約 700℃となり、 Al2O3又はTiO2にKを担持した場合より分解速度が最大となる温度が高いことが明らかである。 Since CO 2 not contained in He was generated, it is clear that K is supported as K 2 CO 3 . From Fig. 1, the temperature at which the decomposition rate becomes maximum when K is supported on Al 2 O 3 or TiO 2 is about 300 ° C, whereas the decomposition rate is determined when K is supported on ZrO 2. There temperature with a maximum of about 700 ° C. next, Al 2 O 3 or degradation rates than when carrying the K to TiO 2 it is evident that higher temperatures of maximum.

(実施例1)
図2に本実施例の触媒の模式図を示す。この触媒では、排ガス上流側半分にZrO2コート層10が形成され、排ガス下流側半分にTiO2コート層20が形成されている。そして全長に均一にPt及びKが担持されている。以下、この触媒の製造方法を説明し、構成の詳細な説明に代える。
Example 1
FIG. 2 shows a schematic diagram of the catalyst of this example. In this catalyst, a ZrO 2 coat layer 10 is formed in the exhaust gas upstream half, and a TiO 2 coat layer 20 is formed in the exhaust gas downstream half. Pt and K are supported uniformly over the entire length. Hereinafter, the method for producing the catalyst will be described, and the detailed description of the configuration will be substituted.

コージェライト製の円筒状ハニカム基材(直径30mm、長さ50mm、セル密度 300セル/in2 )を用意し、ZrO2粉末を主成分とするスラリーに上流側端面から軸長の1/2の範囲を浸漬し、引き上げて 100℃で乾燥後 500℃で焼成してZrO2コート層10を形成した。続いてTiO2粉末を主成分とするスラリーに反対側の下流側端面から軸長の1/2の範囲を浸漬し、引き上げて 100℃で乾燥後 500℃で焼成してTiO2コート層20を形成した。ZrO2コート層10及びTiO2コート層20は、ハニカム基材の体積1Lあたりそれぞれ 265g形成された。 A cordierite cylindrical honeycomb substrate (diameter 30 mm, length 50 mm, cell density 300 cells / in 2 ) was prepared, and slurry with ZrO 2 powder as the main component had an axial length of 1/2 from the upstream end face. range was immersed to form a ZrO 2 coating layer 10 by firing after drying 500 ° C. at 100 ° C. pulled up. Subsequently, a slurry having TiO 2 powder as a main component is immersed in a range of 1/2 of the axial length from the downstream end face on the opposite side, pulled up, dried at 100 ° C., and then fired at 500 ° C. to form the TiO 2 coat layer 20. Formed. The ZrO 2 coat layer 10 and the TiO 2 coat layer 20 were formed in an amount of 265 g per 1 L volume of the honeycomb substrate.

その後、所定濃度のジニトロジアンミン白金溶液の所定量を全体に均一に含浸させ、 100℃で乾燥後 500℃で焼成してPtを担持した。次いで所定濃度の硝酸カリウム水溶液の所定量を含浸させ、蒸発・乾固後 550℃で焼成してKを担持した。ハニカム基材1Lあたり、Ptは2g担持され、Kは 0.2モル担持された。   Thereafter, a predetermined amount of a dinitrodiammine platinum solution having a predetermined concentration was uniformly impregnated on the whole, dried at 100 ° C., and calcined at 500 ° C. to carry Pt. Subsequently, a predetermined amount of a potassium nitrate aqueous solution having a predetermined concentration was impregnated, evaporated and dried, and then calcined at 550 ° C. to carry K. 2 g of Pt was supported and 0.2 mol of K was supported per liter of the honeycomb substrate.

(比較例1)
実施例1と同様にハニカム基材を用い、全長にZrO2コート層を形成したこと以外は実施例1と同様である。ZrO2コート層は、ハニカム基材の体積1Lあたり 280g形成された。またPt及びKも、実施例1と同量担持されている。
(Comparative Example 1)
Similar to Example 1, except that a honeycomb substrate was used and a ZrO 2 coating layer was formed over the entire length. The ZrO 2 coat layer was formed in an amount of 280 g per liter of the honeycomb substrate. Pt and K are also supported in the same amount as in Example 1.

(比較例2)
実施例1と同様にハニカム基材を用い、全長にTiO2コート層を形成したこと以外は実施例1と同様である。TiO2コート層は、ハニカム基材の体積1Lあたり 250g形成された。またPt及びKも、実施例1と同量担持されている。
(Comparative Example 2)
Similar to Example 1, except that a honeycomb substrate was used and a TiO 2 coating layer was formed over the entire length. The TiO 2 coat layer was formed in an amount of 250 g per liter of the honeycomb substrate volume. Pt and K are also supported in the same amount as in Example 1.

(試験例2)
実施例1、比較例1及び比較例2の触媒をそれぞれコンバータ容器に収納し、4気筒、1800ccのエンジンベンチに取り付けた。そして A/F=22のリーン条件の排ガスを1分間流通させた後に A/F=14のリッチ条件の排ガスを 240秒間流通させる繰り返し運転条件下にて、リッチ条件の排ガスを流通させた後の飽和NOx 吸蔵量を触媒入りガス温度 200℃、 300℃、 400℃、 500℃、 600℃及び 700℃の各温度にてそれぞれ測定した。結果を図3に示す。
(Test Example 2)
The catalysts of Example 1, Comparative Example 1 and Comparative Example 2 were each housed in a converter vessel and attached to a 4-cylinder, 1800 cc engine bench. Then, after the exhaust gas with the lean condition of A / F = 22 is circulated for 1 minute and the exhaust gas with the rich condition of A / F = 14 is circulated for 240 seconds, the exhaust gas under the rich condition is circulated for 240 seconds. It saturated the NO x storage amount of the catalyst entering gas temperature 200 ℃, 300 ℃, 400 ℃ , 500 ℃, were measured at various temperatures 600 ° C. and 700 ° C.. The results are shown in FIG.

図3より、実施例1の触媒は各比較例の触媒に比べて、各温度において飽和NOx 吸蔵量が高いことがわかり、これはZrO2コート層10を排ガス上流側に、TiO2コート層20を排ガス下流側に形成した効果であることが明らかである。 From FIG. 3, the catalyst of Example 1 as compared with the catalysts of Comparative Examples, it turns out higher saturated the NO x storage amount at each temperature, which the ZrO 2 coating layer 10 on the exhaust gas upstream side, TiO 2 coating layer It is clear that this is the effect of forming 20 on the exhaust gas downstream side.

(実施例2)
実施例1では、排ガス上流側半分にZrO2コート層10を形成し、排ガス下流側半分にTiO2コート層20を形成したが、本実施例では、図4に示すように、ハニカム基材の軸心から直径10mmの範囲にZrO2コート層10を形成し、その外周にTiO2コート層20を形成している。
(Example 2)
In Example 1, the ZrO 2 coat layer 10 was formed in the exhaust gas upstream half, and the TiO 2 coat layer 20 was formed in the exhaust gas downstream half, but in this example, as shown in FIG. A ZrO 2 coat layer 10 is formed in a range of 10 mm in diameter from the axis, and a TiO 2 coat layer 20 is formed on the outer periphery thereof.

排ガスは軸中心が高温であり、外周ほど低温である温度分布を有している。また外周部分は、外気によって冷却されやすい。したがって本実施例の触媒によれば、高温域部である軸中心部に高温域でNOx 吸蔵能が高いZrO2とKとの組み合わせを採用し、低温域部である外周部に低温域でNOx 吸蔵能が高いTiO2とKとの組み合わせを採用しているので、実施例1と同様の効果が発現される。 The exhaust gas has a temperature distribution in which the shaft center is hot and the outer periphery is colder. Further, the outer peripheral portion is easily cooled by the outside air. Therefore, according to the catalyst of the present embodiment employs a combination of the NO x storage ability is high ZrO 2 and K in a high temperature range in the axial center portion is a high temperature region portion, a low temperature region in the outer peripheral portion is a low temperature region portion Since the combination of TiO 2 and K having a high NO x storage capacity is adopted, the same effect as in Example 1 is exhibited.

(実施例3)
本実施例では、図5に示すように、排ガス上流側半分にZrO2コート層10を形成するとともに、排ガス下流側半分では軸心から直径10mmの範囲にZrO2コート層10を形成し、その外周にTiO2コート層20を形成している。したがって本実施例の触媒によれば、高温域部である排ガス上流側半分と軸中心部に高温域でNOx 吸蔵能が高いZrO2とKとの組み合わせを採用し、低温域部である排ガス下流側半分の外周部に低温域でNOx 吸蔵能が高いTiO2とKとの組み合わせを採用しているので、実施例1と同様の効果が発現される。
(Example 3)
In this embodiment, as shown in FIG. 5, to form a ZrO 2 coating layer 10 on the exhaust gas upstream side half, forming a ZrO 2 coating layer 10 in the range of axial center diameter 10mm in the exhaust gas downstream half thereof A TiO 2 coat layer 20 is formed on the outer periphery. Therefore, according to the catalyst of the present embodiment, a combination of ZrO 2 and K, which has a high NO x storage capacity in the high temperature region, is adopted in the exhaust gas upstream half that is the high temperature region and the shaft center portion, and the exhaust gas that is in the low temperature region. Since a combination of TiO 2 and K having a high NO x storage capacity in a low temperature region is adopted in the outer peripheral portion of the downstream half, the same effect as in Example 1 is exhibited.

各種多孔質酸化物にPt及びKを担持した触媒粉末による温度と CO2生成量との関係を示すグラフである。It is a graph showing the relationship between the temperature and the CO 2 generation amount of catalyst powder carrying Pt and K in various porous oxide. 本発明の一実施例の触媒を示す模式的な斜視図である。It is a typical perspective view which shows the catalyst of one Example of this invention. 実施例及び比較例の触媒による温度と飽和NOx 吸蔵量との関係を示すグラフである。It is a graph showing the relationship between temperature and saturation the NO x storage amount of the catalysts of Examples and Comparative Examples. 本発明の第2の実施例の触媒を示す模式的な斜視図である。It is a typical perspective view which shows the catalyst of the 2nd Example of this invention. 本発明の第3の実施例の触媒を示す模式的な斜視図である。It is a typical perspective view which shows the catalyst of the 3rd Example of this invention.

符号の説明Explanation of symbols

10:ZrO2コート層 20:TiO2コート層 10: ZrO 2 coating layer 20: TiO 2 coating layer

Claims (4)

担体基材と、多孔質酸化物よりなり該担体基材の表面に形成されたコート層と、該コート層に担持された貴金属及びNOx 吸蔵材と、よりなる排ガス浄化用触媒であって、
使用中に高温となる高温域部は塩基性の多孔質酸化物と該NOx 吸蔵材との組み合わせとし、使用中に該高温域部より相対的に低温となる低温域部は両性及び酸性の少なくとも一方の多孔質酸化物と該NOx 吸蔵材との組み合わせとしたことを特徴とする排ガス浄化用触媒。
A catalyst for exhaust gas purification comprising a support substrate, a coat layer made of a porous oxide and formed on the surface of the support substrate, a noble metal and a NO x storage material supported on the coat layer,
The high temperature region that becomes high during use is a combination of a basic porous oxide and the NO x storage material, and the low temperature region that is relatively cooler than the high temperature region during use is amphoteric and acidic. An exhaust gas purifying catalyst comprising a combination of at least one porous oxide and the NO x storage material.
前記高温域部は排ガス上流側に配置され、前記低温域部は排ガス下流側に配置される請求項1に記載の排ガス浄化用触媒。2. The exhaust gas purifying catalyst according to claim 1, wherein the high temperature region portion is disposed on the exhaust gas upstream side, and the low temperature region portion is disposed on the exhaust gas downstream side. 前記低温域部の軸心部には前記高温域部が配置されている請求項2に記載の排ガス浄化用触媒。The exhaust gas purifying catalyst according to claim 2, wherein the high temperature region portion is disposed at an axial center portion of the low temperature region portion. 前記担体基材はハニカム基材であり、前記高温域部は該ハニカム基材の軸心部であり前記低温域部は該ハニカム基材の外周部である請求項1に記載の排ガス浄化用触媒。The exhaust gas purifying catalyst according to claim 1, wherein the carrier base material is a honeycomb base material, the high temperature region portion is an axial center portion of the honeycomb base material, and the low temperature region portion is an outer peripheral portion of the honeycomb base material. .
JP2004246336A 2004-08-26 2004-08-26 Exhaust gas purification catalyst Expired - Fee Related JP4479418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004246336A JP4479418B2 (en) 2004-08-26 2004-08-26 Exhaust gas purification catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004246336A JP4479418B2 (en) 2004-08-26 2004-08-26 Exhaust gas purification catalyst

Publications (2)

Publication Number Publication Date
JP2006061803A JP2006061803A (en) 2006-03-09
JP4479418B2 true JP4479418B2 (en) 2010-06-09

Family

ID=36108726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246336A Expired - Fee Related JP4479418B2 (en) 2004-08-26 2004-08-26 Exhaust gas purification catalyst

Country Status (1)

Country Link
JP (1) JP4479418B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109395528A (en) * 2017-08-15 2019-03-01 中国石油化工股份有限公司 Activating agent, preparation method and applications

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027599A (en) * 2006-07-18 2008-02-07 Toyota Motor Corp Fuel cell system
JP5078638B2 (en) * 2008-01-29 2012-11-21 株式会社豊田中央研究所 Exhaust gas purification device
JPWO2009141894A1 (en) * 2008-05-20 2011-09-22 イビデン株式会社 Honeycomb structure
WO2009141886A1 (en) * 2008-05-20 2009-11-26 イビデン株式会社 Honeycomb structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109395528A (en) * 2017-08-15 2019-03-01 中国石油化工股份有限公司 Activating agent, preparation method and applications
CN109395528B (en) * 2017-08-15 2021-05-11 中国石油化工股份有限公司 Active agent, preparation method and application thereof

Also Published As

Publication number Publication date
JP2006061803A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
JPH08168675A (en) Catalyst for purifying exhaust gas
KR20170120698A (en) Lean NOx trap with improved high temperature and low temperature performance
JP2009273988A (en) Catalyst for cleaning exhaust gas
JP4144174B2 (en) Exhaust gas purification device
JP2003340291A (en) Exhaust gas cleaning catalyst
JP2009226349A (en) Exhaust gas purifying catalyst
JP3821343B2 (en) Exhaust gas purification device
JP2009273986A (en) Exhaust gas cleaning catalyst
JP3685463B2 (en) Exhaust gas purification catalyst
JP3789231B2 (en) Exhaust gas purification catalyst
JP4450984B2 (en) Exhaust gas purification catalyst
KR20080066944A (en) Exhaust gas clean-up system and exhaust gas clean-up method
JP4479418B2 (en) Exhaust gas purification catalyst
JP2008284487A (en) Sulfur occlusion catalyst and apparatus for cleaning exhaust gas
JP4923412B2 (en) Exhaust gas purification catalyst
JPH10128114A (en) Catalyst for purifying exhaust gas
JP2010017694A (en) NOx ABSORBING CATALYST FOR REDUCTION
JP2009248057A (en) Catalyst for exhaust gas purification
JP5328133B2 (en) Exhaust gas purification catalyst
JP2004216224A (en) Nox occlusion reduction type catalyst
JP3775080B2 (en) Exhaust gas purification catalyst
JP3659028B2 (en) Exhaust gas purification device and method of using the same
JP2006289301A (en) Catalyst for clarifying exhaust gas
JPH10174868A (en) Catalyst for cleaning of exhaust gas
JP2006102628A (en) Sulfur oxide absorber and its manufacturing method, and emission gas purifying facility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070619

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees