[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4460898B2 - Automatic ice machine - Google Patents

Automatic ice machine Download PDF

Info

Publication number
JP4460898B2
JP4460898B2 JP2004002404A JP2004002404A JP4460898B2 JP 4460898 B2 JP4460898 B2 JP 4460898B2 JP 2004002404 A JP2004002404 A JP 2004002404A JP 2004002404 A JP2004002404 A JP 2004002404A JP 4460898 B2 JP4460898 B2 JP 4460898B2
Authority
JP
Japan
Prior art keywords
ice making
ice
making chamber
chamber
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004002404A
Other languages
Japanese (ja)
Other versions
JP2005195259A (en
Inventor
伸二 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoshizaki Electric Co Ltd
Original Assignee
Hoshizaki Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoshizaki Electric Co Ltd filed Critical Hoshizaki Electric Co Ltd
Priority to JP2004002404A priority Critical patent/JP4460898B2/en
Publication of JP2005195259A publication Critical patent/JP2005195259A/en
Application granted granted Critical
Publication of JP4460898B2 publication Critical patent/JP4460898B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Description

この発明は、下方に開口する複数の製氷小室を備えた製氷室の上面に配設した蒸発管に冷媒を循環供給すると共に、前記各製氷小室に製氷水を供給することで、各製氷小室中に氷塊を生成するよう構成した自動製氷機に関するものである。   The present invention circulates and supplies a refrigerant to an evaporation pipe disposed on the upper surface of an ice making chamber having a plurality of ice making chambers opening downward, and supplies ice making water to each ice making chamber. The present invention relates to an automatic ice maker configured to generate ice blocks.

下向きに開口する多数の製氷小室に製氷水を下方から噴射供給して、角氷(氷塊)を連続的に製造する噴射式の自動製氷機が、喫茶店やレストラン等の施設、その他の厨房で好適に使用されている。この自動製氷機の概略構成を説明すれば、製氷機内に水平に配置した製氷室に、下方に開口する製氷小室が碁盤目状に多数画成されると共に、該製氷室の上面には、冷凍系から導出する蒸発管が密着的に蛇行配置される。また製氷室の直下には、支軸を介して水皿が傾動可能に枢支されると共に、該水皿の下部には所定量の製氷水を貯留する製氷水タンクが一体的に設けられている。   A spray-type automatic ice maker that continuously produces ice cubes (ice blocks) by spraying ice-making water from below into many ice-making chambers that open downward is suitable for facilities such as coffee shops and restaurants, and other kitchens. Is used. Describing the schematic configuration of this automatic ice maker, a large number of ice making chambers that open downward are defined in an ice making chamber horizontally arranged in the ice making machine, and a freezer is formed on the upper surface of the ice making chamber. Evaporating tubes leading from the system are closely arranged in a meandering manner. A water tray is pivotally supported via a support shaft directly below the ice making chamber, and an ice making water tank for storing a predetermined amount of ice making water is integrally provided at the bottom of the water tray. Yes.

前記自動製氷機では、製氷工程において前記製氷小室を下方から閉成する閉成位置に水皿を保持した状態で、前記蒸発管に冷媒を循環供給して製氷小室を強制的に冷却すると共に、製氷水タンク内の製氷水を、水皿を介して製氷小室に噴射供給することで、該小室内に角氷を生成する。そして、角氷の生成を製氷完了検知手段が検知すると、製氷工程から除氷工程に移行し、前記蒸発管にホットガス(高温冷媒)を循環供給して製氷室を加熱すると共に、開閉機構により水皿を、支軸を中心として斜め下方の開放位置へ傾動して、製氷小室を開放するよう構成される。この除氷工程において、ホットガスの循環供給により各製氷小室と角氷との氷結部が融解し、該角氷は自重により製氷小室から離脱落下し、開放位置の水皿上を滑落してストッカに貯留される。製氷室からの角氷の離脱を除氷完了検知手段が検知することで、除氷工程から製氷工程に移行し、前記開閉機構により水皿が再び閉成位置に復帰するよう構成されている。   In the automatic ice making machine, in a state where the water tray is held in a closed position where the ice making chamber is closed from below in the ice making process, the refrigerant is circulated and supplied to the evaporation pipe to forcibly cool the ice making chamber, Ice ice in the ice making water tank is sprayed and supplied to the ice making compartment through the water tray, thereby generating ice cubes in the compartment. Then, when the ice making completion detecting means detects the formation of ice cubes, the ice making process is shifted to the deicing process, and hot ice (high temperature refrigerant) is circulated and supplied to the evaporation pipe to heat the ice making chamber, and the open / close mechanism is used. The water tray is tilted to the open position obliquely downward with the support shaft as a center, and is configured to open the ice making chamber. In this deicing process, the ice supply part of each ice making chamber and the ice cubes melts by circulating supply of hot gas, and the ice cubes separate from the ice making chambers by their own weight and slide down on the water tray in the open position. It is stored in. When the deicing completion detecting means detects the removal of the ice cube from the ice making chamber, the deicing process is shifted to the ice making process, and the water tray is again returned to the closed position by the opening / closing mechanism.

なお、前記蒸発管は、製氷室に対して一方の端部側から他方の端部側に向かうように蛇行配置されている(例えば、特許文献1参照)。
特開2001−227850号公報
In addition, the said evaporation pipe is meanderingly arrange | positioned so that it may go to the other edge part side from the one edge part side with respect to an ice making chamber (for example, refer patent document 1).
JP 2001-227850 A

前記蒸発管を循環する冷媒あるいはホットガスは、該蒸発管の入口側においては熱交換を行なう大きな熱量を有しているが、前述した従来の蒸発管の配設構造では、その入口側が製氷室の一端部に位置しているため、冷媒あるいはホットガスが有している大きな熱量は局所的にしか用いられておらず、有効に利用されていないのが実状である。   The refrigerant or hot gas circulating through the evaporation pipe has a large amount of heat for exchanging heat at the inlet side of the evaporation pipe. In the conventional arrangement structure of the evaporation pipe, the inlet side is the ice making chamber. Therefore, the large amount of heat that the refrigerant or hot gas has is used only locally and is not effectively used.

また、例えば除氷行程において、蒸発管の入口側においては熱量の大きなホットガスにより製氷室は効率的に加熱されるのに対し、出口側においてはホットガスが有している熱量が小さくなるため、製氷室の効率的な加熱がなされず、製氷室全体に温度ムラを生ずる。このため、各製氷小室に生成される角氷を相互に連結して一度に落下させる構成を採用する場合においては、製氷室の一端側(蒸発管の入口側)においては角氷が剥離しているのにも拘わらず、他端側(蒸発管の出口側)においては角氷が固着したままとなり、相互に連結する角氷群が一度に落下せず、氷噛み等の問題を招くおそれがある。   Further, for example, in the deicing process, the ice making chamber is efficiently heated by the hot gas having a large amount of heat at the inlet side of the evaporation tube, whereas the amount of heat of the hot gas is reduced at the outlet side. As a result, the ice making chamber is not efficiently heated, resulting in temperature unevenness throughout the ice making chamber. For this reason, when adopting a configuration in which ice cubes generated in each ice making chamber are interconnected and dropped at once, ice cubes are peeled off at one end side of the ice making chamber (the inlet side of the evaporation tube). Despite being present, the ice cubes remain stuck on the other end (evaporator outlet side), and the ice cubes connected to each other do not fall at once, which may cause problems such as ice biting. is there.

すなわち本発明は、前述した従来の技術に内在している前記課題に鑑み、これを好適に解決するべく提案されたものであって、製氷工程および除氷工程における製氷室温度の均一化を図り、効率的な製氷および除氷を行ない得るようにした自動製氷機を提供することを目的とする。   That is, the present invention has been proposed in view of the above-mentioned problems inherent in the prior art described above, and has been proposed to suitably solve this problem, and aims to make the ice making chamber temperature uniform in the ice making process and the deicing process. An object of the present invention is to provide an automatic ice making machine capable of performing efficient ice making and deicing.

前記課題を克服し、所期の目的を好適に達成するため、本発明に係る自動製氷機は、下方に開口する複数の製氷小室を備えた製氷室の上面に、冷凍系の蒸発管が密着配置され、製氷工程時には蒸発管に冷媒を循環させて製氷室を強制冷却すると共に、前記各製氷小室に製氷水を供給して各製氷小室中に氷塊を生成し、除氷工程時には蒸発管にホットガスを循環させて製氷室を加熱して各製氷小室と氷塊との氷結部を融解して該氷塊を製氷室から離脱落下するよう構成し、前記蒸発管は、前記冷媒およびホットガスの入口側が前記製氷室の中央部に位置すると共に、前記製氷室の中央部から渦巻状に配置される自動製氷機において、前記蒸発管の冷媒出口側における隣り合う直管部の配設ピッチが、外側に向かうにつれて狭くなるよう設定されていることを特徴とする。 In order to overcome the above-mentioned problems and to achieve the intended purpose suitably, the automatic ice maker according to the present invention has a freezing system evaporator tube in close contact with the upper surface of an ice making chamber having a plurality of ice making chambers opening downward. The ice making chamber is forcibly cooled by circulating a refrigerant through the evaporation pipe during the ice making process, and ice making water is supplied to each ice making chamber to generate ice blocks in the ice making chamber. configured to leave dropping ice lumps from the ice making chamber to heat the ice making chamber by circulating hot gas to melt the frozen portion of each ice making chamber and ice blocks, the evaporator tube, an inlet of the refrigerant and the hot gas with the side is positioned at the center portion of the front Symbol Freezer, in an automatic ice making machine which is arranged in a spiral shape from the center of the ice making compartment, the arrangement pitch of the straight pipe portion adjacent the refrigerant outlet side of the evaporator tubes Set to narrow toward the outside And said that you are.

本発明に係る自動製氷機によれば、蒸発管の入口側を製氷室の中央部に配置したから、冷媒やホットガスが有する大きな熱量を有効利用することができる。また、蒸発管を製氷室の中央部から外側に向かう渦巻状に配置したことで、製氷室の全体を略均一に冷却または加熱することができ、製氷および除氷を効率的に行なうことができる。更に、蒸発管における隣り合う直管部の配設ピッチを、外側に向かうにつれて狭くなるよう設定したことで、製氷室の温度をより均一化し得る。   According to the automatic ice maker according to the present invention, since the inlet side of the evaporation pipe is disposed at the center of the ice making chamber, a large amount of heat possessed by the refrigerant and hot gas can be effectively utilized. Further, by arranging the evaporation pipes in a spiral shape outward from the center of the ice making chamber, the entire ice making chamber can be cooled or heated substantially uniformly, and ice making and deicing can be performed efficiently. . Furthermore, the temperature of the ice making chamber can be made more uniform by setting the arrangement pitch of the adjacent straight pipe portions in the evaporation pipe to be narrower toward the outside.

次に、本発明に係る自動製氷機につき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。   Next, an automatic ice making machine according to the present invention will be described below with reference to the accompanying drawings by way of preferred embodiments.

図1は、実施例に係る自動製氷機の製氷室および蒸発管を示し、図2は、自動製氷機の概略構成を示すものである。自動製氷機10は、製氷機構12と冷凍機構(冷凍系)14とから基本的に構成される。製氷機構12は、下方に開口する複数の製氷小室16aを備えた矩形状の製氷室16と、下部に製氷水タンク20を一体に備えた水皿18と、製氷水タンク20に配設されたポンプモータPMとから基本的に構成される。また水皿18は、その一端部が支軸22を介して回動可能に軸支されると共に、他端部は開閉機構24に連繋されており、該開閉機構24におけるアクチュエータモータAMの正逆回転に伴って水皿18は支軸22を支点として正逆方向に傾動し、前記製氷小室16aを下方から閉成する閉成位置と、該小室16aを開放する下方の開放位置とに位置決めされるよう構成されている。   FIG. 1 shows an ice making chamber and an evaporation pipe of an automatic ice maker according to an embodiment, and FIG. 2 shows a schematic configuration of the automatic ice maker. The automatic ice making machine 10 basically includes an ice making mechanism 12 and a refrigeration mechanism (refrigeration system) 14. The ice making mechanism 12 is disposed in a rectangular ice making chamber 16 having a plurality of ice making chambers 16 a that open downward, a water tray 18 that is integrally provided with an ice making water tank 20 at the bottom, and an ice making water tank 20. It is basically composed of a pump motor PM. One end of the water dish 18 is pivotally supported via a support shaft 22 and the other end is connected to an opening / closing mechanism 24. The actuator motor AM in the opening / closing mechanism 24 is forward / reverse. Along with the rotation, the water pan 18 tilts forward and backward with the support shaft 22 as a fulcrum, and is positioned at a closed position where the ice making chamber 16a is closed from below and a lower open position where the chamber 16a is opened. It is comprised so that.

前記冷凍機構14は、図2に示す如く、圧縮機26、凝縮器28、ファンモータFM、膨張弁30および前記製氷室16の上面に配設された蒸発管32等から構成されている。蒸発管32には、冷凍機構14の製氷工程では冷媒が循環供給されて製氷室16の強制冷却を行なうと共に、除氷工程では冷凍系のホットガス弁HVの切換えによりホットガス(高温冷媒)が循環供給されて製氷小室16aと角氷(氷塊)との氷結部の融解を促進するよう構成される。また水皿18の上部には、外部水道系に接続する給水管34が臨み、該給水管34にはウォータバルブWVが介挿されている。そして、ウォータバルブWVは、除氷工程に際して設定時間だけ開弁され、給水管34から開放位置の水皿18上に供給された常温の融氷水(水道水)により、該水皿18上に氷結している氷片を融解させるようになっている。またウォータバルブWVは、除氷工程から製氷工程に移行した際に開弁され、この水が水皿18を介して製氷水タンク20に貯留されて次回の製氷水として使用されるようになっている。なお、前記製氷機構12の下方には、該製氷機構12で製造された角氷を貯留するストッカ36が配設される。   As shown in FIG. 2, the refrigeration mechanism 14 includes a compressor 26, a condenser 28, a fan motor FM, an expansion valve 30, and an evaporation pipe 32 disposed on the upper surface of the ice making chamber 16. In the ice making process of the refrigeration mechanism 14, the refrigerant is circulated and supplied to the evaporation pipe 32 to forcibly cool the ice making chamber 16, and in the deicing process, hot gas (high temperature refrigerant) is supplied by switching the hot gas valve HV of the refrigeration system. It is configured to be supplied in a circulating manner so as to promote the melting of the frozen portion between the ice making chamber 16a and the ice cube (ice block). In addition, a water supply pipe 34 connected to an external water system faces the upper portion of the water tray 18, and a water valve WV is inserted in the water supply pipe 34. The water valve WV is opened for a set time during the deicing process, and is frozen on the water tray 18 by normal temperature melted water (tap water) supplied from the water supply pipe 34 onto the water tray 18 in the open position. The ice pieces are melted. The water valve WV is opened when the deicing process shifts to the ice making process, and this water is stored in the ice making water tank 20 through the water tray 18 and used as the next ice making water. Yes. A stocker 36 for storing ice cubes manufactured by the ice making mechanism 12 is disposed below the ice making mechanism 12.

前記製氷室16には、コントローラに接続するサーミスタ(何れも図示せず)が配設され、製氷工程に際して該製氷室16が製氷完了温度まで達したことを該サーミスタが検知したとき、コントローラは製氷工程から除氷工程に移行する制御を行なうよう設定される。また、除氷工程に際して製氷室16が除氷完了温度まで達したことをサーミスタが検知したときには、コントローラは除氷工程から製氷工程に移行する制御を行なうよう設定されている。   The ice making chamber 16 is provided with a thermistor (not shown) connected to a controller, and when the thermistor detects that the ice making chamber 16 has reached the ice making completion temperature during the ice making process, the controller makes the ice making. It is set to perform control to shift from the process to the deicing process. Further, when the thermistor detects that the ice making chamber 16 has reached the deicing completion temperature during the deicing process, the controller is set to perform control to shift from the deicing process to the ice making process.

前記蒸発管32は、図1または図3に示す如く、その冷媒入口部32aが、前記製氷室16の略中央部に位置するよう配置されると共に、該製氷室16の中央部から外側に向けて渦巻状となるよう配置され、その冷媒出口部32bが製氷室16の端部(実施例では水皿18の枢支部とは反対側)に位置するよう設定される。なお、実施例の蒸発管32は、直管部32cと略90゜で折曲された折曲部32dとが交互に連結するよう形成されて矩形の渦巻状になると共に、各直管部32cが、製氷室16の対応する各辺と平行となるよう設定されている。   As shown in FIG. 1 or FIG. 3, the evaporation pipe 32 is arranged such that the refrigerant inlet portion 32 a is positioned at the substantially central portion of the ice making chamber 16, and is directed outward from the central portion of the ice making chamber 16. The refrigerant outlet portion 32b is set so as to be positioned at the end of the ice making chamber 16 (in the embodiment, on the side opposite to the pivot portion of the water tray 18). In addition, the evaporation pipe 32 of the embodiment is formed so that the straight pipe portion 32c and the bent portions 32d bent at about 90 ° are alternately connected to form a rectangular spiral shape, and each straight pipe portion 32c. Are set to be parallel to the corresponding sides of the ice making chamber 16.

また、前記蒸発管32の冷媒出口側32bにおいて、隣接する直管部32c,32cの配設ピッチは、外側に向かうにつれて狭くなるよう設定される。すなわち、製氷室16と熱交換しつつ蒸発管32を循環する冷媒またはホットガスが有している熱量の変動に応じて直管部32c,32cの配設ピッチを異ならせることで、冷媒またはホットガスとの熱交換により製氷室16の全体が略均一に冷却または加熱されるようにしてある。 Further, in the refrigerant outlet side 32b of the evaporation pipe 32, adjacent contacts straight pipe portion 32c, arrangement pitch of 32c is set to be narrower toward the outer side. That is, by changing the arrangement pitch of the straight pipe portions 32c and 32c according to the change in the amount of heat of the refrigerant or hot gas circulating in the evaporation pipe 32 while exchanging heat with the ice making chamber 16, the refrigerant or hot The entire ice making chamber 16 is cooled or heated substantially uniformly by heat exchange with the gas.

[実施例の作用]
次に、前述した実施例に係る自動製氷機の作用につき説明する。
[Operation of Example]
Next, the operation of the automatic ice maker according to the above-described embodiment will be described.

前記自動製氷機10での製氷工程では、前記圧縮機26、ファンモータFMおよびポンプモータPMが運転され、前記蒸発管32への冷媒の循環供給と製氷小室16aへの製氷水の循環供給とが行なわれ、製氷小室内には氷が徐々に成長する。前記蒸発管32に供給される冷媒は、先ず製氷室16の中央部において製氷小室16aと熱交換した後、順次外側の製氷小室16aと熱交換を行なった後に冷凍系に帰還する。すなわち、冷媒が有している大きな熱量は、製氷室16の中央部において広い範囲に亘って有効に利用される。また、蒸発管32は渦巻状に配置されているから、製氷室16の全体が略均一に冷却され、各製氷小室16aに均等に氷が効率的に生成される。   In the ice making process in the automatic ice making machine 10, the compressor 26, the fan motor FM and the pump motor PM are operated, and the circulation supply of the refrigerant to the evaporation pipe 32 and the circulation supply of the ice making water to the ice making chamber 16a are performed. The ice grows gradually in the ice making chamber. The refrigerant supplied to the evaporation pipe 32 first exchanges heat with the ice making chamber 16a in the central portion of the ice making chamber 16, then sequentially exchanges heat with the outer ice making chamber 16a, and then returns to the refrigeration system. That is, the large amount of heat possessed by the refrigerant is effectively utilized over a wide range in the central portion of the ice making chamber 16. Further, since the evaporation pipe 32 is arranged in a spiral shape, the entire ice making chamber 16 is cooled substantially uniformly, and ice is efficiently generated uniformly in each ice making chamber 16a.

前記製氷小室16aに略完全な角氷が生成され、前記サーミスタが製氷完了温度を検知すると、前記コントローラにより製氷工程から除氷工程へ移行される。すなわち、前記開閉機構24のアクチュエータモータAMが正転駆動され、水皿18は閉成位置から開放位置へ下降する。またホットガス弁HVが開弁し、前記蒸発管32にホットガスが循環供給されて製氷室16が加熱される。更に、ポンプモータPMおよびファンモータFMへの通電が遮断されて両モータPM,FMが停止する。   When substantially complete ice cubes are generated in the ice making chamber 16a and the thermistor detects the ice making completion temperature, the controller moves from the ice making process to the deicing process. That is, the actuator motor AM of the opening / closing mechanism 24 is driven to rotate forward, and the water pan 18 is lowered from the closed position to the open position. Further, the hot gas valve HV is opened, the hot gas is circulated and supplied to the evaporation pipe 32, and the ice making chamber 16 is heated. Further, the energization of the pump motor PM and the fan motor FM is cut off, and both the motors PM and FM are stopped.

前記水皿18が開放位置に到来すると、前記アクチュエータモータAMが停止し、該水皿18は開放位置に保持される。なお、水皿18の傾動中にウォータバルブWVが開弁し、その間に常温の融氷水が水皿18に供給され、該水皿18上に付着している氷片は融解される。   When the water pan 18 reaches the open position, the actuator motor AM stops and the water pan 18 is held in the open position. During the tilting of the water tray 18, the water valve WV is opened, and during that time, normal temperature melted ice water is supplied to the water tray 18, and the ice pieces adhering to the water tray 18 are melted.

前述したように、蒸発管32は、その冷媒入口部32aが製氷室16の中央部に位置するよう設定されているから、該蒸発管32に供給される大きな熱量を有しているホットガスは、製氷室16の中央部において広い範囲に亘って熱交換することができ、従来のように局所的にのみ用いられる場合に比して熱量は有効に利用される。また、ホットガスと熱交換した熱は、製氷室16に対して中央部から外側に向けて波紋状に広がるため、製氷室16の端部においても略均一に加熱される。すなわち、各製氷小室16aに生成される角氷を相互に連結して一度に落下させる構成において、全ての製氷小室16aに対する角氷との氷結部を均等に融解し得るから、角氷群の製氷室16からの円滑な離脱落下が達成される。   As described above, the evaporation pipe 32 is set so that the refrigerant inlet portion 32a is located at the center of the ice making chamber 16, so that the hot gas having a large amount of heat supplied to the evaporation pipe 32 is In the central part of the ice making chamber 16, heat can be exchanged over a wide range, and the amount of heat is effectively used as compared with the case where it is used only locally as in the prior art. Further, the heat exchanged with the hot gas spreads in a ripple shape from the center to the outside with respect to the ice making chamber 16, so that the end of the ice making chamber 16 is also heated substantially uniformly. That is, in the configuration in which the ice cubes generated in the ice making chambers 16a are connected to each other and dropped at a time, the ice formation portion with the ice cubes for all the ice making chambers 16a can be evenly melted. A smooth detachment drop from the chamber 16 is achieved.

前記蒸発管32へのホットガスの循環供給により加熱される製氷室16の製氷小室16aと角氷との氷結部が融解され、該角氷は自重により製氷小室内から離脱落下し、水皿18を介してストッカ36に貯留される。製氷室16から角氷が離脱することで該製氷室16の温度が上昇し、前記サーミスタが除氷完了温度を検知すると、前記コントローラにより除氷工程から製氷工程へ移行される。すなわち、前記アクチュエータモータAMが逆転駆動され、水皿18は開放位置から閉成位置へ上昇する。このとき、ファンモータFMが回転すると共に、前記ホットガス弁HVが閉成され、前記蒸発管32には冷媒が循環供給されて前記製氷室16の冷却が開始される。   A freezing portion of the ice making chamber 16a of the ice making chamber 16 heated by circulating supply of hot gas to the evaporation pipe 32 and the ice cube melts, and the ice cube separates from the ice making chamber by its own weight, and falls into the water dish 18. Is stored in the stocker 36. When the ice cubes are detached from the ice making chamber 16, the temperature of the ice making chamber 16 rises, and when the thermistor detects the deicing completion temperature, the controller moves from the deicing process to the ice making process. That is, the actuator motor AM is reversely driven, and the water tray 18 rises from the open position to the closed position. At this time, the fan motor FM rotates and the hot gas valve HV is closed, and the refrigerant is circulated and supplied to the evaporation pipe 32 to start cooling the ice making chamber 16.

また前記ウォータバルブWVが開弁し、前記給水管34から水皿18へ供給さる水が、前記製氷水タンク20に貯留されて次回の製氷水として使用される。なお、ウォータバルブWVは、図示しない給水タイマの設定時間の経過後に閉弁される。そして、前記水皿18が閉成位置に到来すると、前記アクチュエータモータAMが停止し、該水皿18は閉成位置に保持される。   Further, the water valve WV is opened, and the water supplied from the water supply pipe 34 to the water tray 18 is stored in the ice making water tank 20 and used as the next ice making water. The water valve WV is closed after elapse of a set time of a water supply timer (not shown). When the water tray 18 arrives at the closed position, the actuator motor AM stops and the water tray 18 is held at the closed position.

前述したように、蒸発管32の冷媒入口部(入口側)32aを製氷室16の中央部に位置するよう設定して、冷媒またはホットガスが有している大きな熱量を製氷部16の中央部において利用するから、蒸発管32における隣接する直管部32c,32cの間隔を、中央部において広く設定することができる。これにより、製氷室16全体に対する蒸発管32の接触面積、すなわち蒸発管32の長さを短くすることができ、コストを低減し得る。なお、蒸発管32における隣り合う直管部32c,32cの配設ピッチを内側と外側とで異ならせることで、冷媒またはホットガスが有している熱量に応じた範囲で製氷室16との熱交換がなされ、該製氷室16の全体を均一に冷却または加熱することができる。   As described above, the refrigerant inlet portion (inlet side) 32a of the evaporation pipe 32 is set to be positioned at the center of the ice making chamber 16, and the large amount of heat that the refrigerant or hot gas has is set at the center of the ice making portion 16. Therefore, the interval between the adjacent straight pipe portions 32c and 32c in the evaporation pipe 32 can be set wide in the central portion. Thereby, the contact area of the evaporation pipe 32 with respect to the whole ice making chamber 16, ie, the length of the evaporation pipe 32, can be shortened, and cost can be reduced. In addition, by changing the arrangement pitch of the adjacent straight pipe portions 32c and 32c in the evaporation pipe 32 between the inner side and the outer side, the heat with the ice making chamber 16 is within a range corresponding to the amount of heat that the refrigerant or hot gas has. As a result, the ice making chamber 16 can be uniformly cooled or heated.

[変更例]
実施例では、製氷小室を水皿により下方から閉成する、クローズドセルタイプの製氷機について説明したが、製氷小室を閉成することなく、製氷水を下方から供給するオープンセルタイプの製氷機であってもよい。
[Example of change]
In the embodiment, the closed cell type ice making machine has been described in which the ice making chamber is closed from below by a water dish, but the open cell type ice making machine that supplies ice making water from below without closing the ice making chamber. There may be.

本発明の好適な実施例に係る自動製氷機の製氷室および蒸発管を示す概略斜視図である。1 is a schematic perspective view showing an ice making chamber and an evaporation pipe of an automatic ice making machine according to a preferred embodiment of the present invention. 実施例に係る自動製氷機の概略構成を示す構成図である。It is a block diagram which shows schematic structure of the automatic ice making machine which concerns on an Example. 実施例に係る製氷室および蒸発管を示す平面図である。It is a top view which shows the ice making chamber and the evaporation pipe which concern on an Example.

符号の説明Explanation of symbols

16 製氷室,16a 製氷小室,32 蒸発管
16 Ice making room, 16a Ice making room, 32 Evaporating tube

Claims (1)

下方に開口する複数の製氷小室(16a)を備えた製氷室(16)の上面に、冷凍系の蒸発管(32)が密着配置され、製氷工程時には蒸発管(32)に冷媒を循環させて製氷室(16)を強制冷却すると共に、前記各製氷小室(16a)に製氷水を供給して各製氷小室(16a)中に氷塊を生成し、除氷工程時には蒸発管(32)にホットガスを循環させて製氷室(16)を加熱して各製氷小室(16a)と氷塊との氷結部を融解して該氷塊を製氷室(16)から離脱落下するよう構成し、前記蒸発管(32)は、前記冷媒およびホットガスの入口側が前記製氷室(16)の中央部に位置すると共に、前記製氷室(16)の中央部から渦巻状に配置される自動製氷機において、
前記蒸発管(32)の冷媒出口側(32b)における隣り合う直管部(32c)の配設ピッチが、外側に向かうにつれて狭くなるよう設定されている
ことを特徴とする自動製氷機。
A freezing system evaporation pipe (32) is placed in close contact with the upper surface of the ice making chamber (16) having a plurality of ice making chambers (16a) opened downward, and a refrigerant is circulated through the evaporation pipe (32) during the ice making process. The ice making chamber (16) is forcibly cooled and ice making water is supplied to each ice making chamber (16a) to generate ice blocks in each ice making chamber (16a). The ice making chamber (16) is circulated to heat the ice making compartments of the ice making chambers (16a) and ice blocks, and the ice blocks are separated from the ice making chamber (16) and fall down, and the evaporator tube (32 ), together with an inlet side of the refrigerant and the hot gas is located at the center portion of the front Symbol Freezer (16), an automatic ice making machine which is arranged in a spiral shape from the central portion of the ice making chamber (16),
The arrangement pitch of the adjacent straight pipe portions (32c) on the refrigerant outlet side (32b) of the evaporation pipe (32) is set to become narrower toward the outside.
An automatic ice making machine.
JP2004002404A 2004-01-07 2004-01-07 Automatic ice machine Expired - Fee Related JP4460898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004002404A JP4460898B2 (en) 2004-01-07 2004-01-07 Automatic ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004002404A JP4460898B2 (en) 2004-01-07 2004-01-07 Automatic ice machine

Publications (2)

Publication Number Publication Date
JP2005195259A JP2005195259A (en) 2005-07-21
JP4460898B2 true JP4460898B2 (en) 2010-05-12

Family

ID=34817625

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004002404A Expired - Fee Related JP4460898B2 (en) 2004-01-07 2004-01-07 Automatic ice machine

Country Status (1)

Country Link
JP (1) JP4460898B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5719996B2 (en) * 2010-08-27 2015-05-20 パナソニックIpマネジメント株式会社 Auger ice machine
JP5716152B2 (en) * 2010-09-16 2015-05-13 パナソニックIpマネジメント株式会社 Reverse cell ice machine
CN103017430A (en) * 2012-12-17 2013-04-03 合肥华凌股份有限公司 Ice maker and manufacturing method thereof

Also Published As

Publication number Publication date
JP2005195259A (en) 2005-07-21

Similar Documents

Publication Publication Date Title
KR100786075B1 (en) Method for controlling operation of refrigerator
EP2096384B1 (en) Method of controlling ice making assembly for refrigerator
US20080092574A1 (en) Cooler with multi-parameter cube ice maker control
JPH0532668B2 (en)
JP2018105522A (en) Automatic ice maker
JP4460898B2 (en) Automatic ice machine
KR100755840B1 (en) Ice maker and ice making method using the same
JP4532201B2 (en) How to operate an automatic ice machine
WO2018163332A1 (en) Automatic ice maker and freezer refrigerator
JP5138941B2 (en) How to operate a jet ice maker
JP2002098453A (en) Method for dealing with abnormality of automatic ice maker
WO2018033397A1 (en) A cooling device comprising a clear ice making mechanism
JP3412677B2 (en) How to operate an automatic ice maker
JP3953942B2 (en) Automatic ice maker and its operating method
JPH0551832B2 (en)
US20230272955A1 (en) Direct cooling ice maker
JP2005299982A (en) Operating method for automatic ice maker
JP2005164100A (en) Automatic ice maker
JP4846547B2 (en) How to operate an automatic ice machine
JP5512325B2 (en) Reverse cell ice machine
JPH0551831B2 (en)
JPH11264639A (en) Defrosting structure of ice-making machine
JP2009216255A (en) Inverted-cell type ice making machine
JPH01312372A (en) Control of deicing operation of automatic ice making machine
JPH1163758A (en) Reservoir type automatic ice machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090817

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100215

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees