JP4344791B2 - 海底ケーブルシステム及び海底給電分岐装置 - Google Patents
海底ケーブルシステム及び海底給電分岐装置 Download PDFInfo
- Publication number
- JP4344791B2 JP4344791B2 JP2002305918A JP2002305918A JP4344791B2 JP 4344791 B2 JP4344791 B2 JP 4344791B2 JP 2002305918 A JP2002305918 A JP 2002305918A JP 2002305918 A JP2002305918 A JP 2002305918A JP 4344791 B2 JP4344791 B2 JP 4344791B2
- Authority
- JP
- Japan
- Prior art keywords
- submarine
- constant current
- power supply
- output terminal
- current
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J4/00—Circuit arrangements for mains or distribution networks not specified as ac or dc
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L53/00—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
- B60L53/20—Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/12—Electric charging stations
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T90/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02T90/10—Technologies relating to charging of electric vehicles
- Y02T90/14—Plug-in electric vehicles
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Electric Cable Installation (AREA)
- Laying Of Electric Cables Or Lines Outside (AREA)
Description
【発明の属する技術分野】
本発明は、海底給電分岐装置及び海底給電システムに関し、特に海底ケーブルをメッシュ状に施設するのに適した海底給電分岐装置及び海底給電システムに関する。
【0002】
【従来の技術】
海底地震発生機構の研究や海洋環境などの研究分野では、海底に地震計や津波計、温度計、流向流速計など、多数の観測機器を二次元的に配置し、そこからデータを取得したいという要望が有る。このような要望を実現する方法として、海底に設置された観測機器に海底ケーブルを接続し、観測機器に連続的に電力を供給するとともに連続的なデータ収集(通信)を行う観測システムを構築することが考えられる。
【0003】
二次元的に配置された多数の観測機器に対して、個別に海底ケーブルを接続して給電及び通信を行うことは現実的ではない。また、1本の海底ケーブルに多数の観測機器を接続した場合は、海底ケーブルに障害が発生した場合に、その障害発生地点より端部側にある観測機器との給電及び通信が不可能となるため、信頼性に欠ける。従って、多数の観測機器を二次元的に配置した信頼性の高い海洋観測システムを構築するためには、メッシュ状の海底ケーブルシステム(給電システム)が必要である。しかしながら、このようなメッシュ状の海底ケーブルシステムは未だ実現されていない。
【0004】
従来の海底ケーブルシステムとしては、通信用海底ケーブルシステムがよく知られている。
【0005】
長尺の通信用海底ケーブルは、海底ケーブルの途中に挿入する中継器に電力を供給するための給電線を内部に含んでいる。海底ケーブルの細径化とコスト低減のため、給電線は1芯とし、電流の帰路には海水を用いている。また、陸揚げ局から行う給電は、中継器内の回路間の絶縁を容易にするとともに、海底ケーブルの短絡障害に対する耐久性を高めるために、定電流給電方式が採用されている。
【0006】
仮に、中継器に対して定電圧給電を行うならば、中継器内の電子回路にはアースを組み込む必要がある。その結果、中継器内の電子回路に高電圧部と低電圧部が混在し、高電圧に耐えうる高価な電子部品が必要となる。また、回路と海水との間の絶縁の信頼性を保つために、回路の寸法も大型化する。
【0007】
これに対し、定電流給電方式では、中継器内の電子回路にアースを組み込む必要がなく、回路内部の電位差が少ないため、高電位差に耐える高価な電子部品を使う必要がない。また、電子回路全体を絶縁体で覆うことにより海水からの絶縁が容易にできる。さらに、海底ケーブルに短絡障害が発生し、海底ケーブルの電位が低下した場合、定電圧給電方式は大きな影響を受けるが、定電流給電方式では短絡地点と陸揚げ局間の給電には大きな影響はない。
【0008】
通信用海底ケーブルシステムのなかには、図13に示すように海中分岐装置を用いて海底ケーブルを分岐させたものがある。このようなシステムは、海洋観測システムに応用できるように思える。しかしながら、図13の海底ケーブルシステムでは、分岐した海底ケーブル41b及び41cの各々の一端は、陸上の給電装置に接続しなければならず、また、それらの他端は、海中分岐装置40a及び40b内の接地回路を介して海水に接地しなければならない。それゆえ、このような通信用海底ケーブルで用いられている給電システムでは、櫛形の海底ケーブルネットワークを構築することはできるが、メッシュ状の海底ケーブルネットワークを構築することはできない。
【0009】
以上のような通信用海底ケーブルを参考にして提案された、従来の海底ケーブル給電システムを図14に示す。
【0010】
図14の給電システムは、陸上に設置にされた陸上観測装置50と、海中に設置された分岐装置51及び海底観測装置52とを有している。ここで、陸上観測装置50は陸上給電装置53を含み、分岐装置51は電流リミッタを含んでいる。
【0011】
陸上給電装置53は、幹線系給電ライン55に定電流給電を行なう。この定電流給電を受けた各分岐装置51は、電流リミッタ54を用いて分岐給電ライン56、即ち、海底観測装置52に定電流給電を行う。
【0012】
ここで、電流リミッタ54は、例えば、図15に示すように構成されている。図15では、幹線系給電ライン55の給電電流を1Aとし、各分岐系給電ライン56の分岐電流を0.1Aとしているが、分岐電流の電流値は、可変抵抗器RVにより決定される。即ち、トランジスタTRのエミッタ電流は、ツェナーダイオードRC1のツェナー電圧と可変抵抗器RVの抵抗値とで決定される。そして、ツェナー電圧は安定化されているので、トランジスタTRのエミッタ電流は定電流化される(例えば、特許文献1参照。)。
【0013】
【特許文献1】
特開2001−309553号公報
【0014】
【発明が解決しようとする課題】
しかしながら、上述した従来の給電システムでは、次のような問題がある。
【0015】
第1の問題点は、櫛形のケーブルシステムが構築可能であるが、2つの電流リミッタを分岐系給電ラインの両端に設け、同時に給電する機能がないため、メッシュ状の海底ケーブルシステムを構築することが困難なことである。
【0016】
その理由は、分岐系給電ラインの両端に対向しておかれた2つの電流リミッタを同時に働かせ、電力を均等に分担させるためには、その電流値は精密に一致させる必要があるが、その電流制御が容易でないためである。
【0017】
第2の問題点は、敷設後に新たに、分岐装置を追加したり、削除することが容易でないことである。
【0018】
その理由は、分岐装置は定電流を分配しているだけなので、負荷が変わった場合には、海底に設置してある分岐装置内の電流リミッタの電流を制御する可変抵抗RVを調整する必要があるためである。
【0019】
第3の問題点は、幹線系給電ライン短絡障害を起こした場合、システムが停止してしまうことである。
【0020】
その理由は、分岐給電装置は、幹線系給電ラインに対して並列に接続されているため、ケーブルが短絡障害を起こした場合、保護回路もないため、幹線系給電ラインの電位はほとんど0Vになり、各分岐装置は動作しなくなるためである。
【0021】
第4の問題点は、電流の制限を抵抗で行なっているため、分岐装置の効率が悪いということである。
【0022】
その理由は、分岐した電力の一部が、抵抗で消費されてしまうためである。消費された電力は熱に変わるため、放熱も考慮する必要がある。そのため、システム全体の電圧と電流の設計に大きな制約を受ける。
【0023】
第5の問題点は、基幹系給電ラインと分岐系給電ラインに流れる電流の大きさが異なることである。そのため、複数の給電電流値に対応した海底中継器を用意する必要がある。
【0024】
第6の問題点は、分岐装置の入力側と出力側が絶縁されていないため、その電位差は内部の電子部品の耐電圧により制限されることである。そのため、ケーブルシステム構成の設計に大きな制約を受け、柔軟な設計が困難となっている。
【0025】
本発明は、以上のような問題点を解決し、下記の海底給電分岐装置及び給電システムを提供することを目的とする。
【0026】
(1)メッシュ状に海底ケーブルが接続される給電システム。
(2)海底給電分岐装置の追加、削除が容易にできる給電システム。
(3)幹線系給電ラインに短絡障害が生じた場合であっても全体が停止状態とならない給電システム。
(4)効率良く分岐系給電ラインに給電を行える海底給電分岐装置。
(5)基幹系給電ラインと分岐系給電ラインに流れる電流の大きさを等しくすることができる海底給電分岐装置。
(6)入力側と出力側が絶縁されている海底給電分岐装置。
【0027】
【課題を解決するための手段】
本発明によれば、複数の陸揚げ局内にそれぞれ置かれた複数の定電流給電装置と、該複数の定電流給電装置にそれぞれ接続され、接続された定電流給電装置からそれぞれ第1の定電流の給電を受ける複数の基幹海底ケーブルと、該複数の基幹海底ケーブルの各々に2つ以上挿入接続される複数の海底給電分岐装置と、該複数の海底給電分岐装置に接続される複数の副基幹海底ケーブルと、を備え、前記複数の海底給電分岐装置の各々は、入力端子、第1の出力端子、第2の出力端子及び接地端子を備えた定電流/定電流変換器を有するとともに、当該海底給電分岐装置が挿入接続される前記基幹海底ケーブルに隣接する他の基幹海底ケーブルに挿入接続される他の海底給電分岐装置と対をなし、対をなす前記海底給電分岐装置のうち一方の前記定電流/定電流変換器は、前記基幹海底ケーブルの上流側から前記入力端子に供給される前記第1の定電流を前記第1の出力端子を介して前記基幹海底ケーブルの下流側へ供給するとともに、前記第1の定電流を利用して前記接地端子から前記第2の出力端子へ向かう第2の定電流を生成し、他方の海底給電分岐装置の定電流/定電流変換器は、前記基幹海底ケーブルの上流側から前記入力端子に供給される前記第1の定電流を前記第1の出力端子を介して前記基幹海底ケーブルの下流側へ供給するとともに、前記第1の定電流を利用して前記第2の出力端子から前記接地端子へ向かう第2の定電流を生成し、前記複数の副基幹海底ケーブルの各々は、対をなす前記海底給電分岐装置の一方の前記第2の出力端子と他方の前記第2の出力端子との間に接続されている、ことを特徴とする海底給電システムが得られる。
【0028】
具体的には、この海底給電分岐装置においては、前記定電流/定電流変換器が、一対の入力端子及び一対の出力端子と、これら一対の入力端子と一対の出力端子とを絶縁するためのトランスと、前記一対の入力端子と前記トランスの一次巻線との間に設けられ、前記制御回路によってオン/オフ制御され、前記第1の定電流を方形波に変換して前記トランスの一次側巻線に供給する一対のスイッチと、前記一対の入力端子間に接続された第1のコンデンサと、前記トランスの二次巻線と前記一対の出力端子との間に設けられ、当該トランスの二次巻線に流れる方形波を整流して前記第2の定電流を生成する一対のダイオード及び第2のコンデンサと、を有している。
【0029】
上記海底給電分岐装置は、前記一対のスイッチを互いに独立してオン/オフ制御することにより、前記トランスの一次巻線に供給される前記方形波のデューティー比を制御し、これによって、前記第2の定電流を制御する。
【0030】
また、上記海底給電分岐装置は、前記バイパス回路が、前記一対の入力端子間の電圧を検出し、所定値以上の場合に前記定電流/定電流変換器をバイパスさせる。
【0031】
また、上記海底給電分岐装置は、前記一対の出力端子間に接続され、対向する海底給電分岐装置からの過剰な電流をバイパスするバイパス用ダイオードを有してよい。
【0032】
さらに、上記海底給電分岐装置は、前記一対の出力端子間に接続され、傾斜抵抗値を変更するための抵抗を有してよい。
【0033】
【発明の実施の形態】
次に、本発明の実施の形態について図面を参照して詳細に説明する。
【0034】
図1は、本発明の第1の実施の形態に係る給電システムの構成をブロック図である。この給電システムは、互いに離れた位置に設けられた複数(ここでは3個)の陸揚げ局(図示せず)にそれぞれ設置された定電流給電装置1,1a及び1bを有している。
【0035】
各定電流給電装置1,1a及び1bには、それぞれ基幹海底ケーブル2,2a及び2bが接続されている。各基幹海底ケーブル2,2a及び2bの途中には、複数の海底給電分岐装置10及び10aが挿入接続されている。
【0036】
海底給電分岐装置10及び10aの構成については後述するが、これらは基本的構成は同じで、海底給電分岐装置10が、内部から出力端子へ向かって流れる定電流を生成し、海底給電分岐装置10aが、出力端子から内部へ向かって流れる定電流を生成するよう構成されている点で異なっている。
【0037】
海底給電分岐装置10及び10aの各々は、それが挿入接続されている基幹海底ケーブルとは異なる別の基幹海底ケーブルに挿入接続されている海底給電分岐装置10a及び10と対をなす。互いに対をなす2つの海底給電分岐装置10と10aとの間には、副基幹海底ケーブル3,3a,3b又は3cが接続される。例えば、基幹海底ケーブル2aに挿入接続されている海底給電分岐装置10aは、図の左側に位置する基幹海底ケーブル2に挿入接続されている海底給電分岐装置10と対をなす。また、基幹海底ケーブル2aに挿入接続されている海底給電分岐装置10は、図の右側に位置する基幹海底ケーブル2bに挿入接続されている海底給電分岐装置10aと対をなす。
【0038】
副基幹海底ケーブル3,3a,3b及び3cの各々には、観測部5が夫々接続された海底中継器20が複数接続されている。
【0039】
以上のような構成において、定電流給電装置1,1a及び1bは、各々に接続された基幹海底ケーブル2,2a及び2bを通じて海底給電分岐装置10,10aに定電流を供給(給電)する。
【0040】
定電流給電装置1,1a及び1bからの給電を受けた海底給電分岐装置10は、それぞれ副基幹海底ケーブル3,3a,3b又は3cに定電流を送り出す。一方、各海底給電分岐装置10と対をなす海底給電分岐装置10aは、対をなす海底給電分岐装置10から給電される定電流を吸い込む。なお、基幹海底ケーブル2,2a及び2bに流れる電流の帰路と、副基幹海底ケーブル3,3a,3b及び3cに流れる電流の帰路には、海水を利用している。
【0041】
副基幹海底ケーブル3,3a,3b及び3cに挿入されている海底中継器20は、海底給電分岐装置10及び10aによって給電される定電流から、定電圧を作成し、観測装置5に定電圧給電する。
【0042】
観測装置5は、海底中継器20からの給電を受けて、所定の観測動作を行い、観測データを作成する。作成された観測データは、海底中継装置20、副基幹海底ケーブル及び基幹海底ケーブルを介して所定の陸揚げ局に設けられた陸上観測装置へと送られる。
【0043】
なお、海底中継器20及び観測装置5は、公知のものが利用できる。
【0044】
本実施の形態に係る給電システムでは、基幹海底ケーブル2,2a及び2bへの給電に定電流給電方式を用いているため、これら基幹海底ケーブル2,2a,2bに複数の海底給電分岐装置10及び/又は10aを直列に接続することができる。そのため、基幹海底ケーブルの延長、海底給電分岐装置10及び10aの増設が容易であり、基幹海底ケーブルに海底中継器20と観測部5を設けることも容易である。その結果、図1に示すようなメッシュ状の海底ケーブルシステムを広範囲に建設することができる。
【0045】
また、本実施の形態に係る給電システムでは、副基幹海底ケーブル3,3a,3b,3cへの給電についても定電流給電を用いているため、副基幹海底ケーブル3,3a,3b,3cのそれぞれに海底中継器20(及び観測装置5)を挿入したり増設したりすることが容易にできる。
【0046】
また、本実施の形態に係る給電システムでは、各海底中継器に対し、それぞれ異なる基幹海底ケーブルに接続された2つの海底給電分岐装置から給電を行うように構成されているので、基幹海底ケーブル及び副基幹海底ケーブルの短絡障害に対して高い耐性を有している。原理的には、短絡障害が1個所であれば、全ての(副基幹海底ケーブルに接続された)海底中継器に対して給電が可能である。
【0047】
次に、図1の給電システムに用いられる海底給電分岐装置10について詳細に説明する。
【0048】
図2に、海底給電分岐装置10の内部構成を示す。この海底給電分岐装置10は、定電流/定電流変換器17、スイッチ制御回路14、通信装置16、バイパス回路11を有し、図示していない耐圧容器に収容されている。
【0049】
定電流/定電流変換器17の一対の入力端子は、海底給電分岐装置10の入力端子101及び第1の出力端子102に接続されている。また、定電流/定電流変換器17の一対の出力端子は、海底給電分岐装置10の第2出力端子103及び接地端子104として使用される。
【0050】
定電流/定電流変換器17は、入力端子101と第1の出力端子102との間に接続されたコンデンサC1、第1の出力端子に接続された一対のスイッチS1及びS2、一次巻線の中点に入力端子101が接続され、一次巻線の両端にスイッチS1及びS2がそれぞれ接続されたトランスT1、トランスT1の二次巻線の両端にそれぞれ接続されるとともに第2の出力端子103に接続されたダイオードD1及びD2、一方の端子が第2の出力端子103に接続され、他方の端子がトランスT1の二次巻線の中点及び接地端子104に接続されたコンデンサC2、及び第2の出力端子103と接地端子104との間に接続されたバイパス用ダイオード15とを有している。
【0051】
スイッチ制御回路14は、スイッチS1及びS2のオン/オフを制御する。スイッチS1をオン、スイッチS2をオフすると、入力端子101に供給された電流が、トランスT1の一次巻線を実線矢印N1で示す方向に流れる。また、スイッチS1をオフ、スイッチS2をオンすると、入力端子101に供給された電流が、トランスT1の一次巻線を破線矢印N1で示す方向に流れる。即ち、スイッチ制御回路14は、スイッチS1及びS2を制御することにより、トランスT1の一次巻線に流れる電流を方形波にする。
【0052】
バイパス回路11は、スイッチ回路13とそれを制御する電圧検出回路12とを備えている。スイッチ回路13は、通常オフ状態である。電圧検出回路12は、入力端子101と第1の出力端子102との間の電位差を検出し、所定値以上の場合にスイッチ回路13をオン状態にする。
【0053】
通信装置16は、図示しない陸揚げ局の地上観測装置等からの制御信号(コマンド)を受け、電圧検出回路12及びスイッチ制御回路14へ受信したコマンドを送る。また、通信装置16は、この海底給電分岐装置10内の各部の電圧・電流の測定結果を陸揚げ局に伝送する。通信装置16と地上観測装置とを結ぶ信号伝送路としては、たとえば基幹海底ケーブルおよび副基幹海底ケーブル内の光ファイバが利用できる。
【0054】
以下、この海底給電分岐装置10の動作について説明する。
【0055】
基幹海底ケーブル2から入力端子101に与えられた定電流は、コンデンサーC1及びトランスT1の一次側中点に入力される。トランスT1の一次側巻線に流れる電流は、スイッチS1及びS2のオン/オフを交互に繰り返すことにより方形波になる。なお、スイッチS1及びS2は、MOSFET、バイポーラトランジスタ等の半導体スイッチである。
【0056】
スイッチ制御回路14は、後述するように、スイッチS1及びS2のオン/オフ制御を行い。トランスT1の一次側巻線に流れる電流を方形波にする。
【0057】
コンデンサC1は、スイッチS1及びS2が同時にオフした場合に基幹海底ケーブル2に流れる定電流を吸収し、入力端子101に異常な高電圧が発生するのを防止する。また、コンデンサC1は、スイッチS1及びS2のスイッチング動作により発生する雑音が、基幹海底ケーブル2に伝搬するのを防止する役目も担っている。
【0058】
トランスT1は、基幹海底ケーブル2と副基幹海底ケーブル3との間を絶縁した状態で、一次側(入力側ともいう)の電力を二次側(出力側ともいう)に供給する。トランスT1は、その一次巻線に方形波の電流が流れると、二次側巻線に同じく方形波の電流を発生させる。
【0059】
ダイオードD1,D2及びコンデンサC2は、トランスT1の二次側巻線に発生する方形波の電流を整流し、平滑する。整流平滑された電流は、第2の出力端子へ供給され、副基幹海底ケーブル3へ出力される。
【0060】
バイパス用ダイオード15は、このバイパス用ダイオード15を除く海底給電分岐装置10のいずれかに故障が発生して二次側に出力がない場合、及びこの海底給電分岐装置10の出力電流が、対向して接続されている海底給電分岐装置10aの出力電流より小さい場合に、海底給電分岐装置10aから供給される(余剰の)電流をバイパスする。バイパス用ダイオード15の極性は、副基幹海底ケーブル3側がカソードになる。海底給電分岐装置10aでは、バイパス用ダイオード15の極性は、海底給電分岐装置10とは逆に副基幹海底ケーブル3側がアノードになる。
【0061】
一方、バイパス回路11は、トランスT1の二次側のラインが開放になった場合や、スイッチS1及びS2又はスイッチ制御回路14が故障した場合などに発生する入力端子101の過電圧を検出し、入力端子101に供給される定電流を、定電流/定電流変換器17をバイパスさせて、第1の出力端子へ供給する。定電流/定電流変換器17をバイパスさせることにより、この海底給電分岐装置10に過大な電圧が加わるのを防止する。
【0062】
電圧検出回路12は、この入力端子101の過電圧を検出し、スイッチ回路13を制御する。電圧検出回路12は、入力端子101の過電圧を検出すると、正常時開放のスイッチ回路13に信号を送り、スイッチ回路13を導通状態とする。こうして、定電流/定電流変換器17がバイパスされる。
【0063】
なお、電圧検出回路12は、一旦過電圧を検知すると、それ以後、スイッチ回路13の導通状態を保持する。これは、スイッチ回路13にチャタリングが発生するのを防止するためである。電圧検出回路12は、通信制御回路16を介して陸揚げ局から送られてくるコマンドを受け取ると、スイッチ回路13を解放状態に戻す。
【0064】
次にスイッチS1及びS2の動作について、図3,図4のタイミングチャートを参照して説明する。
【0065】
図3は、スイッチS1及びS2のデューティ比が50%の時のタイミングチャートである。この場合、トランスT1の一次側と二次側の巻線比をN1/N2とすると、二次側の電流は、次式で求められるIoutを振幅とする矩形波となる。
【0066】
【数1】
Iout=N1/N2×Iin
海底給電分岐装置10は、この方形波の電流をダイオードD1及びD2と、コンデンサC2で整流、平滑して、振幅Ioutの直流定電流に変換し、出力する。なお、ここで言うデューティ比は、
【数2】
デューティ比=(Ton/T)×100 [%]
とする。
【0067】
図4は、デューティ比が50%以下の時のタイミングチャートである。ここでは、スイッチS1とS2のデューティ比が等しくなるよう制御されている。
【0068】
入力端子101には、スイッチS1及びS2のオン・オフに無関係に、常に振幅Iinの定電流が供給されている。従って、スイッチS1及びS2がともにオフとなる期間中は、コンデンサC1は定電流Iinで充電される。コンデンサC1に蓄積された電荷は、スイッチS1またはS2がオンした時にトランスT1に供給される。この時、トランスT1に供給される電流の振幅は、I1は、
【数3】
I1=T/(2Ton)×Iin
で表される。このとき、二次側の出力電流は、
【数4】
I2=N1/N2×I1
=N1/N2×T/(2Ton)×Iin
と表される。また、二次側出力電流の平均値Ioutは、
【数5】
Iout=(2Ton)/T×I2
=N1/N2×Iin
で表される。
【0069】
ここで、数式5は、数式1と同一であることから、トランスTの一次巻線に流れる方形波のデューティ比を変化させても、第2の出力端子103に供給される平均出力電流に変化がないことが分かる。そして、このことは、スイッチS1とS2とが同時にオンする状態を回避できることを意味する。仮に、スイッチS1とS2とが同時にオンしたとすると、トランスT1の一次巻線がショート状態になり、コンデンサC1に貯まっている電荷が急激に流れ出し、トランスT1やコンデンサC1にストレスを加える恐れがある。従って、一次巻線に流れる方形波のデューティ比を50%よりわずかに小さくすることにより、この問題を解消することができる。
【0070】
図1に示す給電システムのように、対をなす海底給電分岐装置10及び10aを用いて副期間海底ケーブル3の両端からほぼ均等な電力を分担するよう給電を行うには、これら対を成す海底給電分岐装置10及び10aの出力電流値を同一に調整でき、且つその状態で安定することが必要である。以下に、図2の海底給電分岐装置10が、この2つの必要条件を満たしていることを説明する。
【0071】
まず、図2の海底給電分岐装置10の出力電流値を調整する方法について説明する。
【0072】
図5は、スイッチS1及びS2によってトランスT1の一次巻線に流れる電流のデューティ比を変えたときのタイミングチャートとトランスT1の二次巻線に流れる電流の波形を示した図である。
【0073】
ここで、スイッチS1のデューティ比をd1=Ton1/T、スイッチS2のデューティ比をd2=Ton2/Tとする。また、
【数6】
Ton1+Ton2=T
すなわち、
【数7】
d1+d2=1
とする。
【0074】
さて、Ton1に対応する二次側電流の振幅をIout1、Ton2に対応する二次側電流の振幅をIout2とし、二次側出力電流の振幅(Peak to Peak値)をIoutp-pとすると、
【数8】
Ioutp-p=Iout1+Iout2
【数9】
Ioutp-p=2×N1/N2×Iin
と表される。
【0075】
さらに、トランスの二次側電流には直流は伝達されないことから、次式が成立する。
【0076】
【数10】
Ton1×Iout1=Ton2×Iout2
また、整流後の二次側出力電流Ioutは、
【数11】
Iout=(Ton1×Iout1+Ton2×Iout2)/T
で表される。
【0077】
数式6から数式11までを整理すると、次式が得られる。
【0078】
【数12】
Iout=4d1(1−d1)×N1/N2×Iin
この式から、デューティ比d1と出力電流Ioutと入力電流Iinの比Iout/Iinとの関係を求めると図6に示すようになる。
【0079】
図6から分かるように、デューティ比d1が0.5の場合に二次側電流Ioutは最大値N1/N2×Iinとなり、デューティ比d1が0または1の場合に二次側出力電流は0となる。したがって、デューティ比d1とd2を変えることにより、二次側出力電流Ioutを制御することができる。
【0080】
次に、副基幹海底ケーブル3の両端に配置した2台の海底給電分岐装置10,10aの出力電流値を同一に調整したときに、その状態で安定することを説明する。
【0081】
図7は、電流/電流コンバータの出力電圧電流特性の実測例である。この測定には、図8に示すような回路を用いた。図8に示すように、電流/電流コンバータの入力には定電流源を用い、出力には可変抵抗を接続し、この可変抵抗の抵抗値を変えることにより、電流/電流コンバータの出力電圧電流特性を測定した。
【0082】
図7を見ると、出力電圧が0.3Vから41.1Vまで(=40.8V)変化するのに応じて、出力電流も609.8mAから602.5mAまで(=7.3mA)変化していることが分かる。これは、出力電流が増加するのにつれて、トランスの出力インピーダンスによる電圧降下が生じているためである。ここで、出力電圧変動値(△V=40.8V)と出力電流変動値(△I=7.3mA)との比(Rout=DV/DI=5.6kΩ)を傾斜抵抗Routと呼ぶことにする。この傾斜抵抗Routの働きにより、副基幹海底ケーブル3の両端に配置した2台の海底給電分岐装置の出力電流値が等しくなるよう調整したときに、その状態で安定する。
【0083】
図9は、副基幹海底ケーブル3の両端に配置した2台の海底給電分岐装置の出力電圧電流特性とその動作電圧電流を説明する図である。図9では、説明を簡単化するために、副基幹海底ケーブル3の導体抵抗と副基幹海底ケーブル3に挿入されている中継器の電気抵抗とを合わせて、負荷抵抗Rとしている。また、2台の海底給電分岐装置の出力電圧電流特性は、それぞれ海底給電分岐装置−1の特性、海底給電分岐装置−2の特性、として表されている。さらに、それぞれの海底給電分岐装置の出力電圧が規定の値を超えないように、電圧制限が設けられている。また、2台の海底給電分岐装置10と10aとは直列に接続されているので、その出力電流値は常に同一の値を取る。
【0084】
ここで、出力電流をIout、2台の海底給電分岐装置の出力電圧をそれぞれVout1、Vout2とすると、2台の海底給電分岐装置を合成した海底給電分岐装置の出力電圧と電流はそれぞれVout、Ioutとなる。ここで、
【数13】
Vout=Vout1+Vout2
であるから、Ioutをパラメータとして、合成した出力電圧電流特性を描くと、図9の「合成した海底給電分岐装置の特性」を描くことができる。また、負荷抵抗Rを考慮すると、図9に負荷特性
【数14】
Vout=R×Iout
を描くことができる。全体回路の動作点はこの負荷特性と合成した海底給電分岐装置の特性の交点となる。また、2台の海底給電分岐装置10及び10aの動作電圧は、それぞれVoutop1、Voutop2となる。このように動作点は2つの特性の交点として求められるので、安定な動作点となる。なお、動作電流は、Ioutopで表されている。
【0085】
以上述べたように、安定な動作点を求めることができるのは、海底給電分岐装置に傾斜抵抗があるためである。仮に、海底給電分岐装置が理想的な定電流源となり、傾斜抵抗値が無限大となった場合には、2台の海底給電分岐装置で電力を分担しながら給電することができない。この場合、出力電流が大きい方の海底給電分岐装置がすべての電力を分担し、他方の海底給電分岐装置の出力電圧は0Vとなる。
【0086】
このように、図2の海底給電分岐装置10及び同様に構成された海底給電分岐装置10aとを用いることにより、図1に示す海底給電システムを構成することができる。つまり、陸上に設置する定電流給電装置1,1a及び1bは基幹海底ケーブル2,2a又は2bを通じて定電流を海底給電分岐装置10及び10aに給電する。海底給電分岐装置10と10aは、定電流給電装置から供給される定電流を電源として、副基幹海底ケーブル3を介して海底中継器20に定電流給電を行う。海底給電分岐装置10と10aが行う給電は、その電流の向きが互いに逆で、その値は同じである。また、海底給電分岐装置10と10aとは、ほぼ均等に電力を分担する。さらに基幹海底ケーブル2,2a,2bには複数の海底給電分岐装置10,10aを配置することが可能で、副基幹海底ケーブル3,3a,3b,3cと海底中継器20(および観測部5)をメッシュ状に展開することができる。
【0087】
図2の海底給電分岐装置は、大きな電力損失を発生する部品がないので、効率良く第2の定電流を生成することができる。
【0088】
また、この海底給電分岐装置は、入力側と出力側とが絶縁されているので、基幹海底ケーブルと副基幹海底ケーブルとの間の電位差を許容することができ、柔軟な給電システムの構築を可能にする。
【0089】
さらに、この海底給電分岐装置は、基幹海底ケーブルと副基幹海底ケーブルに同じ値を持つ定電流を供給することが可能なので、基幹海底ケーブルと副基幹海底ケーブルとに対して同一構成の海底中継器を挿入接続することを可能にする。
【0090】
次に、図10を参照して、本発明の第2の実施の形態に係る海底給電分岐装置10−2について説明する。
【0091】
図10の海底給電分岐装置10−2は、抵抗器18を有している点で、図2のものと異なっている。
【0092】
抵抗器18は、第2の出力端子103と接地端子104との間に接続されている。この抵抗器18は、海底給電分岐装置10−2の傾斜抵抗値Rを海底給電分岐装置10のものより小さくする。その結果、対向して設置される2台の海底給電分岐装置の電流設定値の許容範囲を拡大することが可能となる。
【0093】
次に、図11を参照して、本発明の第3の実施の形態に係る海底給電分岐装置10−3について説明する。
【0094】
図11の海底給電分岐装置10−3は、図2の海底給電分岐装置10を2個用意し、互いに接続したものである。即ち、一方の海底給電分岐装置10の第1の出力端子102と他方の海底給電分岐装置10の入力端子101とを接続するとともに、一方の海底給電分岐装置10の接地端子104と他方の海底給電分岐装置10の第2の出力端子103とを接続している。
【0095】
図11の海底給電分岐装置10−3を正常に動作させるためには、2個の海底給電分岐装置10にそれぞれ含まれている2つの定電流/定電流変換器17の出力電流を一致させる必要がある。これは、各定電流/定電流変換器17におけるスイッチS1及びS2のデューティ比を制御することにより実現できる。即ち、各定電流/定電流変換器17におけるスイッチS1及びS2のデューティ比を制御すれば、その出力電流を制御することができ、傾斜抵抗の働きによって、2つの定電流/定電流変換器17の出力電流は一致した状態で安定する。
【0096】
図11の海底給電分岐装置10−3は、図2の海底給電分岐装置10に比べて、その出力電圧を高くすることができるので、副基幹海底ケーブル3に対して、より大きい電力を供給することができる。
【0097】
なお、本実施の形態においては、2個の海底給電分岐装置10を直列に接続する場合について説明したが、3個以上の海底給電分岐装置10を直列に接続することも可能である。
【0098】
次に、図12を参照して、本発明の第4の実施の形態について説明する。
【0099】
図12の海底給電分岐装置10−4は、トランスT1の一次巻線に設けられた複数のタップ105,106が設けられた一次巻線を有するトランスT2を有している。また、トランスT2の一次巻線の両端及びタップ105,106に接続されたスイッチS3,S4,S5及びS6を有している。
【0100】
スイッチS3,S4,S5及びS6は、スイッチ制御回路14によって、オン/オフ制御される。スイッチ制御回路14は、陸揚げ局からの制御信号を通信装置16を介して受け、その制御信号に従って、スイッチS3,S4,S5及びS6のオン/オフを制御する。
【0101】
スイッチS3,S4,S5及びS6のうちの2つを選択的にオンさせると、トランスT2の一次巻線の有効長(実際に電流が流れる経路の長さ)が決る。即ち、スイッチS3,S4,S5及びS6のオン/オフ制御により、トランスT2の一次巻線の有効長を変更することができる。これにより、トランスT1の巻き線比N2/N1を変更することができ、その出力電流の可変範囲を、図2の海底給電分岐装置よりも拡大することができる。
【0102】
以上、本発明について実施の形態に基いて説明したが、本発明は上記実施の形態に限定されるものではない。例えば、上記実施の形態では、海底中継器が副基幹海底ケーブルにのみ挿入接続されている場合について説明したが、海底中継器は、基幹海底ケーブルにも挿入接続することができる。また、図10や図12に示す海底給電分岐装置を図11に示すように直列に接続するようにしてもよい。また、図12の海底給電分岐装置に図10に示す抵抗器18を接続するようにしてもよい。
【0103】
【発明の効果】
本発明によれば、海底給電分岐装置に、入力側と出力側とを絶縁した状態で第1の定電流から第2の定電流を生成する定電流/定電流変換器と、第2の定電流を制御するために定電流/定電流変換器を制御する制御回路と、定電流/定電流変換器をバイパスするバイパス回路とを備えたことで、メッシュ状の給電システムを構築することができる。
【0104】
そして、このメッシュ状の給電システムでは、海底ケーブルの延長、海底給電分岐装置の増設及び削除、海底中継器の増設及び削除が容易にできる。また、このメッシュ状給電システムは、障害に対する耐性が高い。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る給電システムのブロック図である。
【図2】図1の給電システムに使用される海底給電分岐装置の構成を示す回路図である。
【図3】図2の海底給電分岐装置の動作を説明するためのタイミングチャートであって、スイッチS1及びS2のデューティ比が50%の場合を示すタイミングチャートである。
【図4】図2の海底給電分岐装置の動作を説明するためのタイミングチャートであって、スイッチS1及びS2のデューティ比が50%以下の場合を示すタイミングチャートである。
【図5】図2の海底給電分岐装置のスイッチS1及びS2のデューティ比が互いに異なる場合のタイミングチャートと出力電流波形を示す図である。
【図6】図2の海底給電分岐装置のスイッチS1及びS2のデューティ比と出力電流との関係を示すグラフである。
【図7】電流/電流変換器の出力電圧電流特性を実測した結果を示すグラフである。
【図8】図7に示す特性の測定に用いた測定回路の回路図である。
【図9】対をなす海底給電分岐装置の動作点を説明するためのグラフである。
【図10】本発明の第2の実施の形態に係る海底給電分岐装置の回路図である。
【図11】本発明の第3の実施の形態に係る海底給電分岐装置の回路図である。
【図12】本発明の第4の実施の形態に係る海底給電分岐装置の回路図である。
【図13】従来の通信用海底ケーブルシステムの一例を示す図である。
【図14】従来の海底ケーブル給電システムを示す図である。
【図15】図14の海底ケーブル給電システムに用いられる電流リミッタの回路図である。
【符号の説明】
1,1a,1b 定電流給電装置
2,2a,2b 基幹海底ケーブル
3,3a,3b,3c 副基幹海底ケーブル
5 観測装置
10,10a 海底給電分岐装置
10−2,10−3,10−4 海底給電分岐装置
101 入力端子
102 第1の出力端子
103 第2の出力端子
104 接地端子
11 バイパス回路
12 電圧検出回路
13 スイッチ回路
14 スイッチ制御回路
15 バイパス用ダイオード
16 通信装置
17 定電流/定電流変換器
18 抵抗器
20 海底中継器
40a,40b 海中分岐装置
41a,41b,41c.41d,41e 海底ケーブル
42a,42b,42c,42d 給電装置
50 陸上観測装置
51 分岐装置
52 海底観測装置
53 陸上給電装置
54 電流リミッタ
55 幹線系給電ライン
56 分岐系給電ライン
Claims (4)
- 複数の陸揚げ局内にそれぞれ置かれた複数の定電流給電装置と、
該複数の定電流給電装置にそれぞれ接続され、接続された定電流給電装置からそれぞれ第1の定電流の給電を受ける複数の基幹海底ケーブルと、
該複数の基幹海底ケーブルの各々に2つ以上挿入接続される複数の海底給電分岐装置と、
該複数の海底給電分岐装置に接続される複数の副基幹海底ケーブルと、を備え、
前記複数の海底給電分岐装置の各々は、入力端子、第1の出力端子、第2の出力端子及び接地端子を備えた定電流/定電流変換器を有するとともに、当該海底給電分岐装置が挿入接続される前記基幹海底ケーブルに隣接する他の基幹海底ケーブルに挿入接続される他の海底給電分岐装置と対をなし、
対をなす前記海底給電分岐装置のうち一方の前記定電流/定電流変換器は、前記基幹海底ケーブルの上流側から前記入力端子に供給される前記第1の定電流を前記第1の出力端子を介して前記基幹海底ケーブルの下流側へ供給するとともに、前記第1の定電流を利用して前記接地端子から前記第2の出力端子へ向かう第2の定電流を生成し、他方の海底給電分岐装置の定電流/定電流変換器は、前記基幹海底ケーブルの上流側から前記入力端子に供給される前記第1の定電流を前記第1の出力端子を介して前記基幹海底ケーブルの下流側へ供給するとともに、前記第1の定電流を利用して前記第2の出力端子から前記接地端子へ向かう第2の定電流を生成し、
前記複数の副基幹海底ケーブルの各々は、対をなす前記海底給電分岐装置の一方の前記第2の出力端子と他方の前記第2の出力端子との間に接続されている、
ことを特徴とする海底給電システム。 - 請求項1に記載された海底給電システムにおいて、
前記複数の海底給電分岐装置の各々は、前記定電流/定電流変換器を制御して前記第2の定電流を制御する制御回路をさらに備え、
前記定電流/定電流変換器は、
前記入力端子及び前記第1の出力端子側と、前記第2の出力端子及び前記接地端子側とを絶縁するためのトランスと、
前記トランスの一次巻線の両端の各々と前記第1の出力端子との間に接続され、前記制御回路の制御により交互にオンして、前記入力端子から前記トランスの一次巻線の中点に供給される前記第1の定電流を前記第1の出力端子へ供給する一対のスイッチと、
前記入力端子と前記第1の出力端子との間に接続された第1のコンデンサと、
前記トランスの二次巻線の両端の各々と前記第2の出力端子との間に接続され、前記接地端子に接続された前記トランスの二次巻線の中点を境とする両側の部分に生じる電流を整流する一対のダイオードと、
前記第2の出力端子と前記接地端子との間に接続された第2のコンデンサとを、
有していることを特徴とする海底給電システム。 - 請求項2に記載された海底給電システムにおいて、
前記制御回路は、
前記一対のスイッチを交互にオンするように制御することによって、前記第1の入力端子に供給される第一の定電流を前記第1の出力端子へ供給するとともに、前記接地端子及び前記第2の出力端子の間に一方から他方へ向かう第2の定電流を制御することを特徴とする海底給電システム。 - 請求項3に記載された海底給電システムにおいて、前記海底給電分岐装置が、前記入力端子と前記第1の出力端子間の電圧が所定電圧以上の場合に前記入力端子に供給される前記第1の定電流を前記第1の出力端子へバイパスさせるバイパス回路、をさらに備えたことを特徴とする海底給電システム。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002305918A JP4344791B2 (ja) | 2002-10-21 | 2002-10-21 | 海底ケーブルシステム及び海底給電分岐装置 |
US10/687,931 US7166933B2 (en) | 2002-10-21 | 2003-10-20 | Submarine power feeding branching device for submarine power feeding system having submarine feeding cables arranged in mesh pattern |
US11/605,299 US7276811B2 (en) | 2002-10-21 | 2006-11-29 | Submarine power feeding system having submarine feeding cables and power feeding branching devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002305918A JP4344791B2 (ja) | 2002-10-21 | 2002-10-21 | 海底ケーブルシステム及び海底給電分岐装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004140981A JP2004140981A (ja) | 2004-05-13 |
JP4344791B2 true JP4344791B2 (ja) | 2009-10-14 |
Family
ID=32452874
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002305918A Expired - Lifetime JP4344791B2 (ja) | 2002-10-21 | 2002-10-21 | 海底ケーブルシステム及び海底給電分岐装置 |
Country Status (2)
Country | Link |
---|---|
US (2) | US7166933B2 (ja) |
JP (1) | JP4344791B2 (ja) |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4876624B2 (ja) * | 2006-02-22 | 2012-02-15 | 富士通セミコンダクター株式会社 | 電源装置の制御回路、電源装置及びその制御方法 |
US8044537B2 (en) * | 2006-06-28 | 2011-10-25 | Abb Technology Ltd. | Modular HVDC converter |
JP4858695B2 (ja) * | 2006-07-31 | 2012-01-18 | 日本電気株式会社 | 定電流/定電流変換器用出力電流制御回路及びそれを備えた出力電流制御機能付き定電流/定電流変換器 |
EP2160845B1 (en) * | 2007-05-30 | 2018-10-03 | OneSubsea IP UK Limited | Power and signal distribution system |
NO327370B1 (no) * | 2007-07-03 | 2009-06-15 | Vetco Gray Scandinavia As | Innretning tilpasset for en undersjoisk applikasjon |
JP5176152B2 (ja) * | 2009-12-25 | 2013-04-03 | 日本電気株式会社 | 平衡型直流定電流入力/直流定電流分配出力装置およびその放熱構造 |
EP2393221B1 (en) * | 2010-06-03 | 2015-07-22 | Alcatel Lucent | Undersea power distribution system |
EP2393220B1 (en) * | 2010-06-03 | 2015-07-08 | Alcatel Lucent | Undersea optical and electrical distribution apparatus |
EP2393222B1 (en) | 2010-06-03 | 2014-10-01 | Alcatel Lucent | System and method for transporting electric power and providing optical fiber communications under sea water |
US10110321B2 (en) * | 2017-03-16 | 2018-10-23 | Tyco Electronics Subsea Communications Llc | Techniques for providing adaptive power distribution using a multi-node network of power feed branching units (PFBUs) and an undersea optical communication system using same |
US10141854B1 (en) * | 2017-08-29 | 2018-11-27 | Diversified Technologies, Inc. | Isolated power supply system and method for an undersea communication cable |
US10461852B1 (en) * | 2018-08-07 | 2019-10-29 | Facebook, Inc. | Submarine cable network architecture |
US10777336B1 (en) * | 2019-04-12 | 2020-09-15 | Subcom, Llc | Branching unit for power distribution |
US11491935B2 (en) | 2019-10-25 | 2022-11-08 | Sea Clear Power Inc. | Systems and methods for distribution of power in a marine vessel, ATVS, and vehicles |
US11487063B2 (en) * | 2020-03-31 | 2022-11-01 | Subcom, Llc | Pair routing between three undersea fiber optic cables |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5168709A (ja) | 1974-12-11 | 1976-06-14 | Fujitsu Ltd | Bunsankyudenhoshiki |
JPS5826215B2 (ja) | 1975-05-15 | 1983-06-01 | 日本電気株式会社 | チユウケイキカイロ |
JPS5435820A (en) | 1977-08-26 | 1979-03-16 | Kureha Chemical Ind Co Ltd | Selffhardening composition for mold |
JPS5730430A (en) | 1980-07-30 | 1982-02-18 | Nec Corp | Submarine relay device |
JPS63204824A (ja) | 1987-02-20 | 1988-08-24 | Nippon Telegr & Teleph Corp <Ntt> | 海底給電方式 |
US5841205A (en) * | 1994-03-05 | 1998-11-24 | Stc Submarine Systems Limited | Branching unit for underwater telecommunications systems |
US7176589B2 (en) * | 1995-09-22 | 2007-02-13 | Input/Output, Inc. | Electrical power distribution and communication system for an underwater cable |
JP3407613B2 (ja) | 1997-08-19 | 2003-05-19 | 株式会社タツノ・メカトロニクス | 懸垂式給油装置のホースリールの回動装置 |
JP3629912B2 (ja) | 1997-08-26 | 2005-03-16 | ローム株式会社 | Dc/dcコンバータ及びそれを用いた通信装置 |
JPH11155135A (ja) | 1997-11-20 | 1999-06-08 | Miharu Tsushin Kk | Catv用電源供給装置 |
JP2000023365A (ja) | 1998-07-07 | 2000-01-21 | Toshiba Corp | 発電システム |
GB9820643D0 (en) * | 1998-09-22 | 1998-11-18 | Cit Alcatel | A power feed for a submarine communications system |
JP3063755B1 (ja) | 1999-04-08 | 2000-07-12 | 株式会社村田製作所 | 圧電トランスインバ―タ |
GB9921373D0 (en) * | 1999-09-10 | 1999-11-10 | Alpha Thames Limited | Modular sea-bed system |
JP3596372B2 (ja) | 1999-09-14 | 2004-12-02 | 富士ゼロックス株式会社 | 電源装置 |
JP3574599B2 (ja) | 1999-09-24 | 2004-10-06 | デンセイ・ラムダ株式会社 | 入力過電圧制限機能を備えた突入電流防止回路 |
JP2001309553A (ja) | 2000-04-25 | 2001-11-02 | Nec Ocean Eng Ltd | 海底観測システムの給電方法および分岐給電装置 |
JP4335430B2 (ja) | 2000-11-24 | 2009-09-30 | 独立行政法人海洋研究開発機構 | 海底給電方式 |
JP4025553B2 (ja) * | 2002-02-14 | 2007-12-19 | 日本電気株式会社 | 海底ケーブル給電システム |
GB0208485D0 (en) * | 2002-04-12 | 2002-05-22 | Cit Alcatel | Power feed |
-
2002
- 2002-10-21 JP JP2002305918A patent/JP4344791B2/ja not_active Expired - Lifetime
-
2003
- 2003-10-20 US US10/687,931 patent/US7166933B2/en not_active Expired - Lifetime
-
2006
- 2006-11-29 US US11/605,299 patent/US7276811B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
US20070069588A1 (en) | 2007-03-29 |
US20040130215A1 (en) | 2004-07-08 |
US7166933B2 (en) | 2007-01-23 |
JP2004140981A (ja) | 2004-05-13 |
US7276811B2 (en) | 2007-10-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4344791B2 (ja) | 海底ケーブルシステム及び海底給電分岐装置 | |
US11273721B2 (en) | Vessel with electric power connectors | |
CN104297627B (zh) | 用于控制和保护直流海底电力系统的方法和系统 | |
US8860242B1 (en) | Power-line communication coupling | |
US6838865B2 (en) | Method and apparatus for branching a single wire power distribution system | |
EP2393220A1 (en) | Undersea optical and electrical distribution apparatus | |
CA2057657C (en) | Power feeding system for an optical transmission system | |
US7863772B2 (en) | Balancing current drawn from multiple power supply inputs using multiple-input inductors | |
US11038373B2 (en) | Power transmission system including power transmitter apparatus, power receiver apparatus, or power transmitter and receiver apparatus easily attachable and detachable to/from transmission path | |
US5412716A (en) | System for efficiently powering repeaters in small diameter cables | |
US20180131451A1 (en) | A powering unit of reverse power feed type for digital communication appliances and related method for generating a supply voltage in reverse power feed mode | |
EP2270967B1 (en) | System and method for providing electric power to a submerged load | |
US6633493B2 (en) | Inherently short-circuit resistant power distribution system | |
CN115800748A (zh) | 一种恒流输出电源及控制方法 | |
EP2874324B1 (en) | Power supply for a submarine branching unit | |
US10120402B2 (en) | Large scale sub-sea high voltage distributed DC power infrastructure using series adaptive clamping | |
JP3687073B2 (ja) | 海底分岐装置 | |
EP1437840B1 (en) | Submarine cable branching unit | |
JP2024044279A (ja) | 分岐装置、光海底ケーブルシステム及び給電方法 | |
CA2994098C (en) | Power supply system and dummy load device | |
Yeago et al. | Advances in Undersea Power Distribution | |
EP1213812A3 (en) | An electro-opto-electronic system for the directional detection of earth faults and of short-circuit faults in medium-voltage electrical networks | |
CN112202572A (zh) | 一种poe电源传输装置、poe交换机和poe系统 | |
JP2006303886A (ja) | 給電路を二重化した海底ケーブル通信システム | |
JPH08256230A (ja) | 給電方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20041201 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20050207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20050207 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20051003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20051130 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060130 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20060712 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060911 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20060919 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20061110 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081205 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090413 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090603 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4344791 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120724 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120724 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130724 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term |