[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP4284511B2 - Rolling element with solid lubricant film coating - Google Patents

Rolling element with solid lubricant film coating Download PDF

Info

Publication number
JP4284511B2
JP4284511B2 JP2003292007A JP2003292007A JP4284511B2 JP 4284511 B2 JP4284511 B2 JP 4284511B2 JP 2003292007 A JP2003292007 A JP 2003292007A JP 2003292007 A JP2003292007 A JP 2003292007A JP 4284511 B2 JP4284511 B2 JP 4284511B2
Authority
JP
Japan
Prior art keywords
film
density
rolling element
solid lubricating
lubricating film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003292007A
Other languages
Japanese (ja)
Other versions
JP2005061518A (en
Inventor
賢治 砂原
満昭 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2003292007A priority Critical patent/JP4284511B2/en
Publication of JP2005061518A publication Critical patent/JP2005061518A/en
Application granted granted Critical
Publication of JP4284511B2 publication Critical patent/JP4284511B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Rolling Contact Bearings (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、真空環境下で使用される半導体製造装置や宇宙機器などに適用するすべり又は転がり軸受用の固体潤滑膜被覆の転動体に関する。   The present invention relates to a rolling element with a solid lubricant film coating for a sliding or rolling bearing applied to a semiconductor manufacturing apparatus or space equipment used in a vacuum environment.

二硫化モリブデンスパッタ膜や二硫化タングステンスパッタ膜は真空中で優れた潤滑特性を有する事が知られている。これらの固体潤滑膜は転動体に被覆されて軸受が構成される。
二硫化モリブデンを例に取り、膜の作製方法を図2で説明する。真空チャンバ3の内部には、基板ホルダ4に載置された転動体2と、基板ホルダ4に対向する位置に二硫化モリブデンのターゲット6が電極5に接続して配置されている。真空チャンバ3の外部には、電極5に接続されたRF電源12と、マスフローコントローラ11を介して接続されたアルゴンガスボンベ10と、真空ポンプ8と、真空計9が配置されている。この装置の真空チャンバ3内を減圧アルゴン雰囲気にして、グロー放電を起こしプラズマを発生させる。プラズマ中でプラスに帯電したアルゴンイオンは、マイナスに帯電したターゲット6に衝突し、モリブデン原子と硫黄原子を叩き出す。叩き出されたモリブデン原子と硫黄原子は基板2に堆積し固体潤滑膜となる(例えば、特許文献1)。
特開平6−272715号公報
It is known that a sputtered molybdenum disulfide film or a sputtered tungsten disulfide film has excellent lubrication characteristics in a vacuum. These solid lubricating films are covered with rolling elements to form a bearing.
Taking molybdenum disulfide as an example, a method for forming a film will be described with reference to FIGS. Inside the vacuum chamber 3, a rolling element 2 placed on the substrate holder 4 and a target 6 made of molybdenum disulfide are connected to the electrode 5 at a position facing the substrate holder 4. Outside the vacuum chamber 3, an RF power source 12 connected to the electrode 5, an argon gas cylinder 10 connected via a mass flow controller 11, a vacuum pump 8, and a vacuum gauge 9 are arranged. The inside of the vacuum chamber 3 of this apparatus is set to a reduced pressure argon atmosphere to cause glow discharge and generate plasma. Argon ions charged positively in the plasma collide with the target 6 charged negatively and knock out molybdenum atoms and sulfur atoms. The struck molybdenum atoms and sulfur atoms are deposited on the substrate 2 to form a solid lubricating film (for example, Patent Document 1).
JP-A-6-272715

固体潤滑膜を被覆した転動体で構成される軸受を組込んだ真空ロボットや真空搬送装置は、製作後大気中で慣らし運転や初期故障検出のための運転を行った後、出荷され客先で真空槽内に設置後再び運転される。従って、固体潤滑膜の適用軸受に対する要求としては大気中でも寿命の長い膜が要求されている。しかしながら、従来法で作製した膜の場合、大気中で運転すると湿度の影響を受けて比較的短時間で寿命になる。この原因について調べたところ膜の密度が関係していることが分った。図2に示した作製法の場合、ターゲットからスパッタされた原子(Mo、S)はアルゴンガスと殆ど衝突なしで転動体2(転がり軸受用玉、ローラなど)に到達し付着するものもあれば数多く衝突を繰り返しながら粒子状になり転動体2に付着するものもある。後者が多い場合膜中にマイクロ隙間が増えて密度が低下する。このようなマイクロ隙間の多い固体潤滑膜を大気中で寿命評価してみると、寿命が極めて短いという問題があった。原因としては、固体潤滑膜のマイクロ隙間から水分が侵入し腐食が急速に進むためである事を予想した。この考え方に基づき詳細に腐食のメカニズムを調べたところ、下地である鉄系材料の転動体が固体潤滑膜との間で接触腐食を起こし、腐食された鉄が固体潤滑膜の中に混入する現象が生じていることが分った。固体潤滑膜中に鉄が混入すると摩擦係数が急増するので潤滑寿命が低下するのである。
一方、密度が高い固体潤滑膜は大気中での寿命は長いが真空中での寿命は比較的短い、また密度が低い固体潤滑膜は真空中での寿命は非常に長いが大気中の寿命は非常に短い、という密度と寿命の関係があることによることが分かった。密度が低い膜の寿命が大気中で短い理由は前述のとおりである。一方、密度が高い膜の寿命が大気中で長い理由はマイクロ空隙が少ないので水分が膜中に侵入しない。従って、鉄系材料からなる転動体との間で接触腐食が生じないためである。下地である鉄の腐食を抑える事が出来れば低密度膜は大気中でも長寿命になる。
以上のことから本発明者らは真空中、大気中および両環境で寿命が長い固体潤滑膜を提供する目的で特許出願を行った(特願2003-40739)。これは固体潤滑膜が密度の異なる二層以上の膜からなり水分の侵入を防ぐ意味で表面に近い方の膜を高密度にするものである。
Vacuum robots and vacuum transfer devices incorporating bearings composed of rolling elements coated with a solid lubricant film are shipped after being conditioned in the atmosphere and operated for initial failure detection. It is operated again after installation in the vacuum chamber. Therefore, a film having a long life in the atmosphere is required as a bearing for the application bearing of the solid lubricating film. However, in the case of a film manufactured by the conventional method, when it is operated in the atmosphere, it has a life in a relatively short time due to the influence of humidity. When this cause was investigated, it was found that the density of the film was related. In the case of the manufacturing method shown in FIG. 2, atoms sputtered from the target (Mo, S) may reach and adhere to the rolling element 2 (rolling bearing balls, rollers, etc.) with almost no collision with the argon gas. Some of them become particulate while adhering to a large number of collisions and adhere to the rolling element 2. When the latter is large, micro gaps increase in the film and the density decreases. When the lifetime of such a solid lubricating film with many micro gaps was evaluated in the atmosphere, there was a problem that the lifetime was extremely short. As a cause, it was predicted that the moisture entered from the micro gaps of the solid lubricant film and the corrosion progressed rapidly. When the mechanism of corrosion was investigated in detail based on this concept, the rolling element of the iron-based material as the base caused contact corrosion with the solid lubricating film, and the corroded iron mixed into the solid lubricating film It has been found that has occurred. If iron is mixed in the solid lubricating film, the friction coefficient increases rapidly, so that the lubrication life is shortened.
On the other hand, a solid lubricant film with high density has a long life in the atmosphere, but a relatively short life in vacuum. A solid lubricant film with low density has a very long life in vacuum but has a long life in the atmosphere. It was found that there is a relationship between the density and the lifetime, which is very short. The reason why the lifetime of the low density film is short in the atmosphere is as described above. On the other hand, the reason why the film having a high density has a long life in the atmosphere is that there are few micro voids, so that moisture does not enter the film. Therefore, contact corrosion does not occur between the rolling elements made of an iron-based material. If the corrosion of the underlying iron can be suppressed, the low-density film will have a long life even in the atmosphere.
Based on the above, the present inventors have filed a patent application for the purpose of providing a solid lubricating film having a long life in vacuum, in the atmosphere, and in both environments (Japanese Patent Application 2003-40739). This is because the solid lubricating film is composed of two or more layers having different densities, and the film closer to the surface is made dense in order to prevent moisture from entering.

ところが、この構成の固体潤滑膜だと真空ロボットに組込んで、ある期間使用した後に、真空ロボットや真空搬送装置のメンテナンスのために大気にさらされた場合、再び使用すると寿命が極端に短くなると言う問題を生じた。大気中の水分の侵入を防いでいた高密度膜がある期間使用したことで磨耗して無くなっている場合に問題を生じるのである。
そこで、本発明はこのような問題点に鑑みてなされたものであり、真空中、大気、および両環境で寿命が長い固体潤滑膜被覆の転動体を提供することを目的としたもので、使用期間中に大気に複数回さらされても長寿命を有する固体潤滑膜被覆の転動体を提供するものである。
However, if the solid lubricant film of this configuration is incorporated into a vacuum robot and used for a certain period of time, then it will be exposed to the atmosphere for maintenance of the vacuum robot or vacuum transfer device, the life will become extremely short if used again. It caused a problem to say. A problem arises when the high-density film that has prevented the intrusion of moisture in the atmosphere has been worn away after being used for a certain period of time.
Therefore, the present invention has been made in view of such problems, and is intended to provide a rolling element coated with a solid lubricant film that has a long life in vacuum, air, and both environments. It is intended to provide a rolling element having a solid lubricating film coating that has a long life even when exposed to the atmosphere several times during the period.

上記問題を解決するため、本発明は、次のように構成したものである。
請求項1に記載の固体潤滑膜被覆の転動体は、鉄系部材の表面に二硫化モリブデンがスパッタによって被覆された固体潤滑膜を有する転動体において、前記固体潤滑膜は異なる密度からなる少なくとも2層以上の多層膜で構成されており、前記鉄系部材に近い層の膜の密度を3.0〜4.8g/cmとし、表面に近い層の密度を2.3〜2.8g/cmとしたものである。
請求項1記載の固体潤滑膜被覆の転動体によれば、水分を通過させない高密度二硫化モリブデン膜を鉄系転動体に接するように被覆しているので接触腐食が起こさない。また、使用期間の途中で大気にさらしても高密度膜は消失していなくて残存しているので接触腐食による寿命の低下は無い。水分を通さない膜の密度は3.0〜4.8g/cmである。一方、表面に近いほうに長寿命低密度膜を配置しているので膜全体の寿命は長い。密度2.3〜2.8g/cmの膜は寿命が長い。
請求項2に記載の固体潤滑膜被覆の転動体は、鉄系部材の表面に二硫化タングステンがスパッタによって被覆された固体潤滑膜を有する転動体において、前記固体潤滑膜は異なる密度からなる少なくとも2層以上の多層膜で構成されており、前記鉄系部材に近い層の膜密度を4.5〜7.5g/cmとし、表面に近い層の密度を3.6〜4.2g/cmとしたものである。
請求項2記載の固体潤滑膜被覆の転動体によれば、水分を通過させない高密度二硫化タングステン膜を鉄系転動体に接するように被覆しているので接触腐食が起こさない。また、ある期間使用したあとで大気にさらしても高密度膜は消失していなくて残存しているので接触腐食による寿命の低下は無い。水分を通さない膜の密度は4.5〜7.5g/cmである。一方、表面に近いほうに長寿命低密度膜を配置しているので膜全体の寿命は長い。密度3.6〜4.2g/cmの膜は寿命が長い。
In order to solve the above problems, the present invention is configured as follows.
The rolling element according to claim 1, wherein the rolling element has a solid lubricating film in which molybdenum disulfide is coated on the surface of an iron-based member by sputtering, and the solid lubricating film has at least two different densities. It is composed of multiple layers of layers, the density of the layer close to the iron-based member is 3.0 to 4.8 g / cm 3, and the density of the layer close to the surface is 2.3 to 2.8 g / cm 3 is there.
According to the rolling element covered with the solid lubricating film according to claim 1, since the high-density molybdenum disulfide film that does not allow moisture to pass through is coated so as to be in contact with the iron-based rolling element, contact corrosion does not occur. Further, even when exposed to the air during the period of use, the high-density film does not disappear and remains, so there is no decrease in life due to contact corrosion. The density of the film impermeable to moisture is 3.0 to 4.8 g / cm 3 . On the other hand, since the long-life low-density film is arranged closer to the surface, the life of the entire film is long. A film having a density of 2.3 to 2.8 g / cm 3 has a long lifetime.
The rolling element having a solid lubricating film coated according to claim 2, wherein the rolling element has a solid lubricating film in which tungsten disulfide is coated on the surface of an iron-based member by sputtering, and the solid lubricating film has at least two different densities. The layer density is 4.5 to 7.5 g / cm 3, and the layer density near the surface is 3.6 to 4.2 g / cm 3. .
According to the rolling element covered with the solid lubricating film according to claim 2, since the high-density tungsten disulfide film that does not allow moisture to pass through is coated so as to be in contact with the iron-based rolling element, contact corrosion does not occur. Moreover, even if it is exposed to the atmosphere after being used for a certain period of time, the high-density film does not disappear and remains, so there is no decrease in life due to contact corrosion. The density of the film impermeable to moisture is 4.5 to 7.5 g / cm 3 . On the other hand, since the long-life low-density film is arranged closer to the surface, the life of the entire film is long. A film having a density of 3.6 to 4.2 g / cm 3 has a long lifetime.

本発明の固体潤滑膜被覆の転動体によれば、つぎの効果がある。
異なる密度で2層以上の多層構造とし、転動体表面に近い層を水分を透過させない高密度膜とし、表面に近い層の膜を真空中で長寿命の低密度膜としたので、大気中での慣らし運転期間はもとより使用途中での大気開放にかかわらず長寿命を維持することができる。
The rolling element covered with the solid lubricating film of the present invention has the following effects.
Since it has a multilayer structure of two or more layers with different densities, a layer close to the surface of the rolling element is a high-density film that does not allow moisture to permeate, and a film close to the surface is a low-density film with a long life in a vacuum. It is possible to maintain a long service life regardless of the running-in period and the release of the atmosphere during use.

以下、本発明の具体的実施例を図に基づいて説明する。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の第1の実施形態を示す固体潤滑膜の断面模式図である。1は二硫化モリブデンのスパッタによる固体潤滑膜、2は転動体である。固体潤滑膜1は、高密度膜1a(3.0〜4.8g/cm)および低密度膜1b(2.3〜2.8g/cm)からなる。転動体2はSUS440Cまたは軸受鋼等の鉄系材料で構成されている。
この固体潤滑膜は図2に示すスパッタ装置で形成した。真空チャンバ3の内部には、基板ホルダ4に載置された基板2と、基板ホルダ4に対向する位置に二硫化モリブデンのターゲット6が電極5に接続して配置されている。真空チャンバ3の外部には、電極5に接続されたRF電源12と、マスフローコントローラ11を介して接続されたアルゴンガスボンベ10と、真空ポンプ8と、真空計9が配置されている。固体潤滑膜1の密度は、アルゴンガスの分圧を2〜10Paの範囲で変化させることにより調整した。
固体潤滑膜の形成手順は以下のとおりである。
(1)真空チャンバ3内を真空ポンプ8で8×10−7Torrまで真空引きする。
(2)真空引きを継続しながら、マスフローコントローラ11を開き、アルゴンガスを真空チャンバ3内に導入し、真空計9をモニタしながら真空チャンバ3内を所定の圧力にする。
(3)ターゲット6にRF電源12を印加しグロー放電を発生させ、固体潤滑膜を形成する。Arイオンによってターゲット6の表面をスパッタし、二硫化モリブデンからなるターゲット6を構成する原子、すなわち硫黄とモリブデンを叩き出し、対向する位置に置いた基板2の表面に硫黄とモリブデン原子を堆積させる。
アルゴンガス圧が高いと、ターゲット6から叩き出された硫黄とモリブデン原子が基板2に到達するまでにアルゴン原子と衝突する回数が必然的に多くなる。その結果、硫黄とモリブデン原子は粒子状になり基盤に堆積し、固体潤滑膜の密度は低くなる。逆に、アルゴンガス圧が低いとアルゴン原子と殆ど衝突することなしに基板2に順序良く堆積するため、固体潤滑膜の密度は高くなる。
従って、本実施形態の固体潤滑膜は、最初にアルゴンガス圧を低くして下層に密度が高い固体潤滑膜1aを形成し、続けてアルゴンガス圧を高くして上層に密度が低い固体潤滑膜1bを作製する方法で、表1に示したような上層と下層の膜密度がそれぞれ異なる試料を作製した。下層の膜厚は0.1μm、上層は0.5μmとした。なお、比較のため、従来の方法による例として、高密度膜の厚さ0.1μm、低密度膜の厚さ0.5μmのものも加えた。
寿命は相対湿度40%の大気中で一定時間試験した後、相対湿度60%の大気中に2日間保持して再び相対湿度40%の大気中で測定した。使用した試験機はボールオンディスク式である。寿命は転動体の種類に影響されなかった。
従来の固体潤滑膜被覆の転動体(下層が低密度膜、上層が高密度膜)に比べて本発明はいずれも長寿命である事が分る。
FIG. 1 is a schematic cross-sectional view of a solid lubricating film showing a first embodiment of the present invention. Reference numeral 1 is a solid lubricating film formed by sputtering of molybdenum disulfide, and 2 is a rolling element. The solid lubricating film 1 includes a high density film 1a (3.0 to 4.8 g / cm 3 ) and a low density film 1b (2.3 to 2.8 g / cm 3 ). The rolling element 2 is made of a ferrous material such as SUS440C or bearing steel.
This solid lubricating film was formed by the sputtering apparatus shown in FIG. Inside the vacuum chamber 3, a substrate 2 placed on the substrate holder 4 and a target 6 made of molybdenum disulfide are connected to the electrode 5 at a position facing the substrate holder 4. Outside the vacuum chamber 3, an RF power source 12 connected to the electrode 5, an argon gas cylinder 10 connected via a mass flow controller 11, a vacuum pump 8, and a vacuum gauge 9 are arranged. The density of the solid lubricating film 1 was adjusted by changing the partial pressure of the argon gas in the range of 2 to 10 Pa.
The procedure for forming the solid lubricating film is as follows.
(1) The vacuum chamber 3 is evacuated to 8 × 10 −7 Torr with the vacuum pump 8.
(2) While continuing to evacuate, the mass flow controller 11 is opened, argon gas is introduced into the vacuum chamber 3, and the inside of the vacuum chamber 3 is brought to a predetermined pressure while monitoring the vacuum gauge 9.
(3) An RF power source 12 is applied to the target 6 to generate glow discharge, thereby forming a solid lubricating film. The surface of the target 6 is sputtered with Ar ions, and atoms constituting the target 6 made of molybdenum disulfide, that is, sulfur and molybdenum are knocked out, and sulfur and molybdenum atoms are deposited on the surface of the substrate 2 placed at the opposed positions.
When the argon gas pressure is high, the number of times the sulfur and molybdenum atoms struck from the target 6 collide with the argon atoms before reaching the substrate 2 inevitably increases. As a result, sulfur and molybdenum atoms become particles and accumulate on the substrate, and the density of the solid lubricating film is lowered. On the contrary, when the argon gas pressure is low, the solid lubricant film is deposited on the substrate 2 in order without almost colliding with the argon atoms, so that the density of the solid lubricating film is increased.
Therefore, in the solid lubricant film of this embodiment, first, the argon gas pressure is lowered to form the solid lubricant film 1a having a high density in the lower layer, and then the argon gas pressure is raised to lower the solid lubricant film in the upper layer. Samples having different upper layer and lower layer film densities as shown in Table 1 were prepared by the method 1b. The film thickness of the lower layer was 0.1 μm, and the upper layer was 0.5 μm. For comparison, a high-density film having a thickness of 0.1 μm and a low-density film having a thickness of 0.5 μm were also added as an example of a conventional method.
The lifetime was measured for a certain period of time in an atmosphere with a relative humidity of 40%, then kept in an atmosphere with a relative humidity of 60% for 2 days and again measured in an atmosphere with a relative humidity of 40%. The testing machine used is a ball-on-disk type. The service life was not affected by the type of rolling element.
It can be seen that all of the present inventions have a longer life than conventional rolling elements coated with a solid lubricating film (the lower layer is a low-density film and the upper layer is a high-density film).

実施例は、二硫化タングステンについて、第一の実施例と同様の実験を行った。異なる点はターゲット材に二硫化タングステンを使用したことである。
寿命の結果を表2に示すように、従来例より本発明は優れている事が分った。
なお、本実施例では2層の例しか述べていないが、転動体に近い部分に高密度膜さえ配置する構成であれば、3層以上でも傾斜密度を有するものでも同じ効果が得られる事は明らかである。
In the example, an experiment similar to that in the first example was performed on tungsten disulfide. The difference is that tungsten disulfide was used as the target material.
As shown in Table 2, the results of the lifetime were found to be superior to the conventional example.
Although only two layers are described in this embodiment, the same effect can be obtained with three or more layers or a gradient density as long as a high-density film is arranged in a portion close to the rolling element. it is obvious.

本発明は、転動体に被覆する固体潤滑膜を低密度膜と高密度膜の多層にすることによって、真空環境で使用される軸受用の部材に適用できる。   The present invention can be applied to a bearing member used in a vacuum environment by forming a solid lubricating film covering a rolling element into a multilayer of a low density film and a high density film.

本発明の実施形態を示す固体潤滑膜の断面の模式図である。It is a schematic diagram of the cross section of the solid lubricating film which shows embodiment of this invention. 本発明の固体潤滑膜の作製に用いたスパッタ装置の断面図である。It is sectional drawing of the sputtering device used for preparation of the solid lubricating film of this invention.

符号の説明Explanation of symbols

1 固体潤滑膜
2 転動体
3 真空チャンバ
4 基板ホルダ
5 電極
6 ターゲット
7 筒
8 真空ポンプ
9 真空計
10 アルゴンボンベ
11 マスフローコントローラ
12 RF電源
DESCRIPTION OF SYMBOLS 1 Solid lubricating film 2 Rolling body 3 Vacuum chamber 4 Substrate holder 5 Electrode 6 Target 7 Cylinder 8 Vacuum pump 9 Vacuum gauge 10 Argon cylinder 11 Mass flow controller 12 RF power supply

Claims (2)

鉄系部材の表面に二硫化モリブデンがスパッタによって被覆された固体潤滑膜を有する転動体において、
前記固体潤滑膜は異なる密度からなる少なくとも2層以上の多層膜で構成されており、かつ、前記鉄系部材に隣接する層の膜の密度が3.0〜4.8g/cmで、前記隣接する層と反対側の最表面の層の密度が2.3〜2.8g/cmであることを特徴とする固体潤滑膜被覆の転動体。
In a rolling element having a solid lubricating film in which molybdenum disulfide is coated by sputtering on the surface of an iron-based member,
The solid lubricating film is composed of at least two or more layers of the multilayer film of different density, and the density of the film layer adjacent to the iron-based member by 3.0~4.8g / cm 3, the adjacent A solid lubricating film-coated rolling element, wherein the density of the outermost layer on the side opposite to the layer is 2.3 to 2.8 g / cm 3 .
鉄系部材の表面に二硫化タングステンがスパッタによって被覆された固体潤滑膜を有する転動体において、
前記固体潤滑膜は異なる密度からなる少なくとも2層以上の多層膜で構成されており、かつ、前記鉄系部材に隣接する層の膜密度が4.5〜7.5g/cmで、前記隣接する層と反対側の最表面の層の密度が3.6〜4.2g/cmであることを特徴とする固体潤滑膜被覆の転動体。
In a rolling element having a solid lubricating film in which tungsten disulfide is coated by sputtering on the surface of an iron-based member,
The solid lubricating film is composed of at least two or more layers of the multilayer film of different density, and a film density of 4.5~7.5g / cm 3 layer adjacent said ferrous member, said adjacent layers A rolling element with a solid lubricating film coating, wherein the density of the outermost layer on the opposite side of the surface is 3.6 to 4.2 g / cm 3 .
JP2003292007A 2003-08-12 2003-08-12 Rolling element with solid lubricant film coating Expired - Fee Related JP4284511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003292007A JP4284511B2 (en) 2003-08-12 2003-08-12 Rolling element with solid lubricant film coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003292007A JP4284511B2 (en) 2003-08-12 2003-08-12 Rolling element with solid lubricant film coating

Publications (2)

Publication Number Publication Date
JP2005061518A JP2005061518A (en) 2005-03-10
JP4284511B2 true JP4284511B2 (en) 2009-06-24

Family

ID=34369496

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003292007A Expired - Fee Related JP4284511B2 (en) 2003-08-12 2003-08-12 Rolling element with solid lubricant film coating

Country Status (1)

Country Link
JP (1) JP4284511B2 (en)

Also Published As

Publication number Publication date
JP2005061518A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
WO2017029771A1 (en) Sputtering apparatus and method for determining state thereof
US7052182B2 (en) Hydrostatic gas bearing, hydrostatic gas bearing device for use in vacuum environment, and gas recovering method for the hydrostatic gas bearing device
JP4284511B2 (en) Rolling element with solid lubricant film coating
CN107868936B (en) Sliding member and method for manufacturing same
Polcar et al. Self‐Lubricating W–S–C Nanocomposite Coatings
JPH06300130A (en) Hard coating material, sliding member coated with it, and its manufacture
JP4228388B2 (en) Solid lubricating film and bearing using the same
JP6481798B2 (en) Rolling bearing
US7059607B2 (en) Positioning apparatus
JP2007063362A (en) Solid lubricating film and solid lubricating bearing
TW202129042A (en) Magnetron sputtering film forming device
JP2008050696A (en) Coating apparatus and sputtering film forming method
JP2007063452A (en) Solid lubricating film and solid lubricating bearing
JP4430157B2 (en) Static pressure gas bearing
JP2005321017A (en) Rolling element
JP2003222137A (en) Rolling element
JP2005315342A (en) Rolling element
JP2005249066A (en) Rolling element
Li et al. Effects of annealing on microstructure of osmium-ruthenium thin films
JP2002227848A (en) Cage for rolling bearing
JP2000283163A (en) Static pressure gas bearing structure
JP3006632B2 (en) Solid lubricated rolling bearing
JPH0988975A (en) Bearing
US20240093113A1 (en) Substrate coated with a lubricant coating
JP2701384B2 (en) Magnetic recording media

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees