JP4105839B2 - 連続鋳造における鋳型内鋳造異常検出方法 - Google Patents
連続鋳造における鋳型内鋳造異常検出方法 Download PDFInfo
- Publication number
- JP4105839B2 JP4105839B2 JP2000051521A JP2000051521A JP4105839B2 JP 4105839 B2 JP4105839 B2 JP 4105839B2 JP 2000051521 A JP2000051521 A JP 2000051521A JP 2000051521 A JP2000051521 A JP 2000051521A JP 4105839 B2 JP4105839 B2 JP 4105839B2
- Authority
- JP
- Japan
- Prior art keywords
- mold
- temperature
- heat flux
- casting
- slab
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Continuous Casting (AREA)
Description
【発明の属する技術分野】
本発明は連続鋳造における鋳造異常、特に鋳型内の鋳片に発生したブレークアウト、表面欠陥、溶融金属流動の異常などをオンラインで検出する方法に関する。
【0002】
【従来の技術】
連続鋳造機の鋳型内にある溶融金属の凝固状態を鋳造中に知ることは、凝固シェルの不均一生成に起因する鋳片表面欠陥発生のオンライン検出やブレークアウト、場面振動等の操業異常の予知を行う上での必要条件であり、連続鋳造操業および品質管理上、重要である。したがって、従来多くの鋳型内鋳造異常検出方法が提案されている。
【0003】
溶融金属の凝固厚みと凝固シェルの温度プロフイールを知るには鋳型内面の熱流束を知る必要があり、従来、溶融金属の鋳型内の熱流束を2つの熱電対を鋳型の抜熱方向の異なる位置に配置し、鋳型材質の熱伝導率λ、2点の熱電対の距離dと熱電対による温度計測値から得られる温度差ΔTから、熱流束qを、
q=(λ/d)・ΔT
の式により求めようとする試みはあった。しかし、鋳型内面と水冷溝間の狭い空間内に2点の熱電対を配置し、維持・管理をすることが困難であるという問題があった。さらに、この方法で導出される熱流束は、鋳型内温度分布が定常状態にあることが前提となっており、非定常状態の程度が大きくなるにつれ、実際の熱流束値に対する推定誤差が大きくなるという問題がある。
【0004】
また、特願平9−273745号公報「連続鋳造設備における鋳型内異常判定方法」では、鋳型の銅板表面に熱電対の先端を露出し、鋳型の銅板表面の鋳造側となる温度を測定して鋳型内の溶融金属の凝固状態およびパウダー潤滑状態を求め、鋳造時の異常を判定する。これにより、溶融金属の流出等による鋳造中断事故(ブレークアウト)、鋳片表面欠陥の発生を最小に抑えて歩留まりの向上を図る。この鋳型内異常判定方法では、鋳片内の熱流束を求めるものではないので、鋳型内の凝固状態や凝固シェルの厚さを知ることはできない。このために、表面欠陥、溶融金属流動の異常などをオンラインで検出することはできない。また、多数の熱電対をこれの先端を鋳型表面に露出させて鋳型に取り付ける必要がある。
【0005】
【発明が解決しようとする課題】
本発明は、鋳型内面と水冷溝間に配置した鋳型温度計測値から定常状態だけでなく非定常状態にある溶融金属鋳型表面の熱流束を推定し、これに基づき高い精度でブレークアウト、表面欠陥、または溶融金属流動異常などの鋳型内鋳造異常を検出する方法を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明の連続鋳造における鋳型内鋳造異常検出方法は、鋳造方向に間隔をおいて鋳型の複数箇所に埋設した温度計測手段で鋳型温度を計測し、鋳型温度計測値に基づいて各計測点における鋳型内面での熱流束を、伝熱逆問題手法を用いて非定常伝熱方程式の数値解よりそれぞれ推定する。そして、前記推定した熱流束の経過時間変化から、鋳型内鋳片の任意の点が2箇所の計測点を通過する経過時間またはその近くで熱流束推定値がそれぞれの計測点についてあらかじめ設定した限界値以下にかつ計測点順に低下したことによりブレークアウト又は縦割れを検出する。
【0007】
ブレークアウトは、鋳型と鋳片の間に噛み込んだ異物や鋳片の割れ等で部分的に鋳片凝固層厚みが薄くなった部位が破損し溶融金属が流出することで発生する。ブレークアウトにつながるような凝固層が鋳型を通過する際は、その原因となる異物または割れの影響で凝固層から鋳型への熱移動が妨げられ、熱流束の低下が起こる。したがって、上記方法で求めた各計測点における熱流束の減少量により、ブレークアウトの発生を検知することができる。
【0012】
【発明の実施の形態】
スラブの連続鋳造を例として、本発明の実施の形態を説明する。図1は、鋳型および鋳型内鋳片(溶融金属および凝固シェルからなっている)をスラブ幅方向に沿う縦断面で模式的に示している。
【0013】
図1に示すように、鋳型11内に水冷溝13が形成されており、水冷溝13には冷却水温度を計測する冷却水温度計測手段15が設けられている。冷却水量は、流量計14で計測される。水冷溝13を通過する冷却水で鋳型11を冷却し、鋳型内鋳片1より抜熱する。第1鋳型温度計測手段16および第2鋳型温度計測手段17が、鋳型内面12と水冷溝13との間に上下(鋳造)方向に間隔dをおいて埋設されている。熱流束、鋳型温度分布その他を精度よく求めるために、第1鋳型温度計測手段16は溶融スラグ液相部分7、または凝固開始点もしくはこの近くに配置することが望ましく、第2鋳型温度計測手段17は凝固シェル5の部分に配置する。両温度計測手段16,17の間隔dは、鋳造条件、鋳片寸法などに応じて操業実績に基づき鋳造異常検出に適した間隔とする。図1では、上下方向に2個の鋳型温度計測手段を配置しているが、必要に応じて上下方向に例えば3〜5個配置してもよい。熱流束および鋳型表面温度の鋳造方向の分布は、鋳型温度計測手段(温度計測点)の数を増すとそれだけ高精度で求めることができる。また、上下で対となった鋳型温度計測手段16,17を、鋳片1の幅に従い鋳片幅方向に例えば2〜6組配置するようにしてもよい。なお、鋳造方向に対し直角方向に関しては、温度計測手段は1個でよい。上記冷却水温度計測手段15、および鋳型温度計測手段16,17として、例えば熱電対、サーミスターなどを用いる。温度計測値および流量計測値は、コンピュータ19に送信する。コンピューター19には、あらかじめ鋳造条件、鋳型材質の熱伝導度、温度計測点の鋳型内面からの距離その他熱流束、温度分布、対流伝熱量などの演算に必要なデータおよび演算プログラムが入力されている。
【0014】
本発明は、鋳造方向に間隔dをおいて鋳型11の複数箇所に埋設した温度計測手段16,17で鋳型温度を計測し、鋳型温度計測値に基づいて各計測点における鋳型内面12での熱流束を伝熱逆問題手法を用いてそれぞれ推定する。熱流束の推定方法は、温度分布などの推定とともに後でまとめて説明する。
【0015】
鋳型内鋳片1の任意の点が2箇所の計測点を通過する経過時間またはその近くで熱流束推定値がそれぞれの計測点についてあらかじめ設定した限界値以下にかつ計測点順に低下したことによりブレークアウトを検出する。上記経過時間またはその近くの時間τは、次の式で示される。
d/vc≦τ≦(1+α)d/vc
ここで、dは上下温度計測点の間隔であり、vcは鋳造速度である。αは余裕係数で、0.01〜0.1程度である。余裕係数αは、鋳型内鋳片の異物噛み込み部の移動が第1計測点から第2計測点に至る間で遅れた場合、遅れ時間を考慮した係数である。限界値は、鋳造条件、鋳片寸法などに応じて操業実績に基づいて設定する。
【0016】
図2(a)は鋳造経過時間と熱電対により計測した鋳型温度との関係を、図2(b)は鋳造経過時間と鋳型計測温度より推測した熱流束との関係をそれぞれ示している。第1温度計測点は鋳型上面から180mm、第2温度計測点は340mmである。これらの図から、熱流束の変化が鋳型温度の変化より細かく、かつシャープであり、明確となっていることがわかる。したがって、熱流束の変化によるブレークアウトの検出が鋳型温度の変化に比べて、より高い信頼度でより小さなブレークアウトを検出できる。
【0017】
図2(b)において、第1計測点の熱流束推定値が限界値a以下に低下し、続いて前記経過時間内に第1計測点の熱流束推定値が限界値b以下に低下すると、ブレークアウトが発生したと判定する。なお、図2(b)で円で囲んだ部分で示すように、異物噛込みも検出可能である。
【0018】
参考形態は、上記熱流束に基づいて縦割れなどの表面欠陥を検出する。鋳片の割れは上記ブレークアウトの程度の小さいものとみなせる。したがって、上述のブレークアウト判定の前記限界値a、bを変更することで、大きな割れは検知可能であるが、割れの大きさが小さくなるにつれ、外乱等の影響で判定が困難になる。
【0019】
図3(a)は、縦割れが生じた場合の鋳造経過時間と熱電対により計測した鋳型温度との関係を示している。図3(b)は、上記と同じ場合の鋳造経過時間と鋳型計測温度より推定した熱流束との関係を示している。温度計測手段から鋳型内面までの伝熱抵抗による伝熱遅れのために、図3(a)に示すように鋳型内面における伝熱変化が鈍った状態でしか検出できない。図2で説明したと同様に、図3(b)では熱流束の変化は鋳型温度の変化より細かく、かつシャープであり、明確となっていることがわかる。しかし、上述のように割れが小さくなると、図3(b)により小さな割れを検出することは困難である。
【0020】
参考形態では、図3(b)に示す熱流束推定値の経時変化をウエーブレット解析することにより小さな割れを検出する。図4(a)〜(d)および図5(a)〜(d)は、ウエーブレット解析によるそれぞれ熱流束の周期8秒、16秒、32秒および64秒変動結果を示している。図4は鋳片に縦割れがある場合、図5は健全な鋳片の場合である。図4(d)の下に鋳片の縦割れ手入れ率つまり縦割れの発生率を示している。これらのウエーブレット解析結果から、健全鋳片と比較して縦割れ発生スラブは8秒から32秒周期帯域の熱流束変動の乱れが大きくなっていることがわかる。これらの変動量の大きさ(振幅)と頻度とが縦割れ手入れ率の程度とよく対応しており、これら周期帯の熱流束変動量を管理することで縦割れ検出が可能となる。縦割れの大きさは上記振幅により、鋳片長さ方向の位置は鋳造経過時間で決定することができる。縦割れ発生鋳片は、64秒周期帯の上下熱流束挙動が一致しており、鋳片の鋳型からの浮き上がり挙動を表わしているものと考えられ、縦割れ原因系検出の可能性を示している。
【0021】
図4では、計測点が上部熱電対位置と下部熱電対位置との2箇所であった。1箇所で計測した熱流束変動量により縦割れなどの表面欠陥を検出することもできるが、2箇所で計測した方が欠陥検出精度は高くなる。2箇所で計測の場合、欠陥の有無、大きさ、および鋳片長さ方向の位置は、熱流束変動量の振幅が大きい方で判断する。
【0023】
前述のように、本発明および参考形態では、鋳型内面と水冷溝との間に埋設した温度計測手段により計測した鋳型温度から鋳型内表面の熱流束を推定し、ブレークアウトまたは表面欠陥を検出する。以下、鋳型温度計測値に基づき、これら熱流束および対流熱伝達量を求める方法について説明する。
【0024】
鋳型内表面の熱流束は、James.V.BECKの非線形逆伝熱問題の手法[Int.J.Mass s Transfer,vol.13,pp703-716(1970)]を適用し、非定常伝熱方程式の数値解より、鋳型表面と水冷溝との間に埋設した1点の鋳型温度計測値を最も良く説明できる熱流束を時系列的に逐次求める。また、熱流束と非定常伝熱差分方程式の解として求められる鋳型内面温度を同時に決定する。
【0025】
図6は、鋳型内面12と鋳型水冷溝13間の熱移動を表す概念図である。溶融金属2から鋳型11へ流入する熱流束が鋳型11内を通過し、鋳型水冷溝13を流れる冷却水wにより抜熱される。熱流束を検出するために鋳型内面12から鋳型水冷溝への垂直方向距離Eの位置に熱電対16が設置されている。
【0026】
図6において、鋳型厚み方向の1次元方向伝熱のみを考えると、鋳型内面から鋳型水冷溝間の熱移動を支配する方程式は以下の式で表される。
ρcp∂T/∂t=−∂(λ∂T/∂x)/∂x (1)
T(E,t)=Y(t) (2)
λ∂T(F,t)/∂x=hw(T(F,t)−Tw) (3)
T(x,0)=T0(x) (4)
ここで、ρは鋳型材料の密度、cpは鋳型材料の比熱、xは鋳型内面から水冷溝への任意の位置における垂直方向距離、Eは鋳型内面から鋳型熱電対設置点までの垂直方向距離、Yはその計測値を示す。Fは鋳型内面12から鋳型水冷溝13までの垂直方向距離を、hw,Twは各々、水側冷却の総括熱伝達係数、水温を示す。T0(x)は鋳型内面12から鋳型水冷溝13間の垂直方向の初期温度分布を示し、鋳造開始直前にすべて室温に設定する。
【0027】
(1)、(3)、(4)式より計算した熱電対計測点に於ける鋳型温度T(E,t)と計測温度Y(t)の2乗誤差を以下の(5)式で定義し、これが最小となるような熱流束q(t,0)≡λ∂T/∂xx=0を(6)式より決定する。
F(q)=(T(E,t)−Y(t))2 (5)
∂F(q)/∂q=0 (6)
【0028】
以上の説明では、図6で上側温度計測点(温度計測手段16の位置)について熱流束を求めたが、下側温度計測点(図1で温度17の位置)または計測点が3箇所以上ある場合でも同様にして計測点の熱流束を求めることができる。これら求めた熱流束により内外挿して、鋳造方向の熱流束分布を求める。熱流束は鋳造方向位置および時間の関数であるが、以下簡単にqmで表す。
【0029】
つぎに、上記熱流束に基づいて凝固シェル厚み、凝固シェル内温度分布および凝固シェル表面温度を求める。
【0030】
図7は、溶融金属内の熱移動を示す概念図である。溶融金属プール内の溶融金属2は、メニスカス3から鋳造速度に対応した速度で下方に引き抜かれる際に、鋳型11により熱流束で冷却され、凝固シェル5を形成する。メニスカス3における溶融金属温度を初期条件とし、上で求めた鋳型表面熱流束を境界条件にして溶融金属2のx方向一次元非定常伝熱計算を行う。計算の便宜のために、x方向は図6とは逆方向にとってある。ここで、パウダー層の熱慣性が小さいため、凝固シェル・鋳型表面間のパウダー層内伝熱は擬定常状態が成立すると仮定し、鋳型表面熱流束が凝固シェル表面熱流束に等しいとしている。
Csρs∂T/∂tmeni=∂(−λs∂T/∂x)/∂x (7)
T=T0 ただし、tmeni=0 (8)
−λs∂T/∂x=qm ただし、x=0 (9)
T=TL ただし、x=δ (10)
−λs∂T/∂x=ρsL(dδ/dt) ただし、x=0 (11)
ここでtmeniはメニスカスからの経過時間、xは鋳型表面から凝固シェル内の任意の位置における距離、δは凝固シェル厚み、Lは凝固潜熱、λsは凝固シェルの熱伝導度、Csは凝固シェルの比熱、TLは凝固温度を示す。
【0031】
(7)〜(11)式を解くことにより、凝固シェル厚みと同時に凝固シェル内温度分布が求まり、メニスカスから鋳造方向の任意の位置における凝固シェル表面温度が決定できる。
【0032】
つぎに、凝固シェル表面熱流束を推定し、熱対流(溶融金属流動)起因の熱流束を求める方法について説明する。前記と同様、J.V.BECKの非線形逆伝熱問題の手法を使う。
【0033】
図7に示すような凝固シェル厚み方向の一次元方向伝熱のみを考えると、支配方程式は以下の式で表わせる。
ρsCs∂T/∂t=−∂(λs∂T/∂x)/∂x (12)
T(0,t)=Y(t) (13)
λs∂T(0,t)/∂t=qm (14)
T(x,0)=Ti(x) (15)
ここで、tは任意の時刻を表し、メニスカスからの経過時刻を示すtmeniとは別物である。
【0034】
ある凝固シェル厚みを仮定し、上の(12)〜(15)式を解くと、仮定した凝固シェル内表面上の熱流束と温度が求まる。この凝固シェル厚みを適切な値に設定することにより、計算で求めた凝固シェル内表面温度と溶融金属凝固温度を一致させることができ、このときの熱流束が凝固シェル内表面上の熱流束qmとなる。熱流束qmは溶融金属の熱対流起因の熱流束と凝固シェルヘ熱伝導で移動する熱流束および溶融金属の凝固潜熱として使われた熱量で構成され、これらの関係は以下の(16)式で表される。
ここで、αは溶融金属対流による熱伝達係数、Txは凝固シェル内表面からΔxの距離における凝固シェル温度、Tbは溶融金属のバルク温度を示す。
(16)式より
が熱対流起因の熱流束である。
【0035】
上記熱流束などを求める演算は、図1に示すコンピューター19により図8に示すフローチャートの命令に従って実行される。
【0036】
ステップ1で時間tにゼロを設定し、ステップ2で時間tに微小時間間隔Δtを加算し、時間を更新する。ステップ3にて鋳造方向に鋳型内設置された熱電対の計測値をコンピューター19に読み込み、ステップ4にてステップ3で読み込んだ熱電対の計測値に基づき、鋳型表面の熱流束と鋳型内表面温度Tmsを計算する。
【0037】
具体的には、前述の(4)式を初期条件、(2)式および(3)式を境界条件にして(1)式を離散化して解く。(1)〜(4)式より計算した熱電対計測点に於ける鋳型温度T(E,t)と計測温度Y(t)の2乗誤差を以下の前述の(5)式により計算する。
【0038】
前述の(6)式に示すように2乗誤差F(q)の熱流束qに関する偏微分係数がゼロに近づくように、仮定した熱流束値q0を以下の手順にしたがって修正する。
【0039】
仮定した熱流束q0を境界条件にして計算した鋳型温度計測点における鋳型温度計算値をT(E,t)0、修正した熱流束q1を境界条件にして計算した鋳型温度計測点における鋳型温度計算値をT(E,t)1とすると、T(E,t)1をΔq≡q1−q0に関してテーラー展開すると以下のようになる。
T(E,t)1=T(E,t)0+(∂T(E,t)0/∂q0)
・(q1−q0) (18)
ここで、感度係数β0を次式のように定義する。
β0≡∂T(E,t)0/∂q0
=(T(E,t)1−T(E,t)0)/εq0 (19)
ここで、εはqの最適値を探索するために設定する微小値であり、例えば、0.001とする。(18)式と(19)式を(6)式に代入し、q1に関して整理すると、
q1=q0+(T(E,t)0−Y(t))/β0 (20)
q1とq 0 を比較し、下記の収束判定式を満足すればq1が求める熱流束である。
(q1−q0)/q0<0.001 (21)
【0040】
(21)式を満足しない場合は、q1を基準に上と同様の手順で以下の(22)式に従ってqiの計算を行い、(23)式を満足するまで、計算を繰り返し、熱流束qを決定し、同時に鋳型内表面温度T(0,t)が計算される。
【0041】
ステップ5では、(7)〜(11)式を使って凝固シェル厚みδおよび凝固シェル表面温度TLを求める。その際、(9)式に使用する熱流束値qmは、熱電対計測値から逆問題で求めた熱流束値の鋳造方向内外挿値を使用する。
【0042】
ステップ6では、(12)〜(15)式により凝固シェル内表面熱流束を求める。その際、(13)式のY(t)は各熱電対位置におけるステップS5で求めた鋳片表面温度を使用し、(14)式のqmはステップS4で逆問題を解いて求めた鋳型内面熱流束値を使用する。
【0043】
ステップ7で上記凝固シェル内表面熱流束により溶融金属流動に起因する対流熱伝達量を(17)式より求める。
【0044】
以上説明した発明の実施の形態では鋳片がスラブであったが、本発明はこれに限られるものではない。例えば、鋳片がビレット、厚板材、丸棒材などであってもよく、また水平連続鋳造にも適用することができる。
【0045】
【発明の効果】
本発明方法では、鋳型内面と水冷溝間に配置した鋳型温度計測値から定常状態だけでなく非定常状態にある溶融金属鋳型表面または凝固シェル表面の熱流束を求め、鋳型表面温度その他を推定するので、溶融金属鋳型内の凝固状態を明確に検知することができる。この結果、オンラインかつ高い精度で鋳型内鋳造異常を検出でき、健全な凝固状態が得られるような鋳造操業方法を管理することが可能となる。また、鋳型表面温度を得るために、熱電対などの温度計測手段の先端を鋳型表面に露出する必要はない。
【図面の簡単な説明】
【図1】本発明方法を実施する際の装置構成図である。
【図2】(a)はブレイクアウトが発生した鋳片の熱電対温度変化の経時変化を示し、(b)は同鋳片の熱流束の経時変化を示す線図である。
【図3】(a)は縦割れが発生した鋳片の熱電対温度変化の経時変化を示し、(b)は同鋳片の熱流束の経時変化を示す線図である。
【図4】縦割れが発生した鋳片について、熱流束のウエーブレット解析結果を示す線図である。
【図5】健全な鋳片について、熱流束のウエーブレット解析結果を示す線図である。
【図6】鋳型内面と鋳型水冷溝間の熱移動を表す概念図である。
【図7】溶融金属内の熱移動を表す概念図である。
【図8】本発明に基づく演算フロー図である。
【符号の説明】
1:鋳片
2:溶融金属
3:メニスカス
5:凝固シェル
7:溶融スラグ
11:鋳型
12:鋳型内表面
13:水冷溝
14:流量計
15:冷却水温度計測手段
16:第1鋳型温度計測手段
17:第2鋳型温度計測手段
19:コンピューター
Claims (1)
- 鋳型に埋設した複数の温度計測手段で鋳型温度を計測し、鋳型温度計測値に基づき鋳型内鋳造異常を検出する方法において、鋳造方向に間隔をおいて鋳型の複数箇所に埋設した温度計測手段で鋳型温度を計測し、鋳型温度計測値に基づいて各計測点における鋳型内面での熱流束を、伝熱逆問題手法を用いて非定常伝熱方程式の数値解よりそれぞれ推定し、前記推定した熱流束の経過時間変化から、鋳型内鋳片の任意の点が2箇所の計測点を通過する経過時間またはその近くで熱流束推定値がそれぞれの計測点についてあらかじめ設定した限界値以下にかつ計測点順に低下したことによりブレークアウト又は縦割れを検出することを特徴とする連続鋳造における鋳型内鋳造異常検出方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000051521A JP4105839B2 (ja) | 2000-02-28 | 2000-02-28 | 連続鋳造における鋳型内鋳造異常検出方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000051521A JP4105839B2 (ja) | 2000-02-28 | 2000-02-28 | 連続鋳造における鋳型内鋳造異常検出方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001239353A JP2001239353A (ja) | 2001-09-04 |
JP4105839B2 true JP4105839B2 (ja) | 2008-06-25 |
Family
ID=18573166
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000051521A Expired - Fee Related JP4105839B2 (ja) | 2000-02-28 | 2000-02-28 | 連続鋳造における鋳型内鋳造異常検出方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4105839B2 (ja) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4041279B2 (ja) * | 2000-11-10 | 2008-01-30 | 新日本製鐵株式会社 | 鋳型内鋳片の状態検知装置、方法、及びコンピュータ読み取り可能な記憶媒体 |
JP4074443B2 (ja) * | 2001-05-18 | 2008-04-09 | 新日本製鐵株式会社 | 鋳型内鋳片の状態評価装置、方法、コンピュータプログラム、及びコンピュータ読み取り可能な記憶媒体 |
JP3978090B2 (ja) * | 2002-06-21 | 2007-09-19 | 新日本製鐵株式会社 | 湯面位置検知方法、コンピュータプログラム、及びコンピュータ読み取り可能な記憶媒体 |
JP4579820B2 (ja) * | 2005-12-19 | 2010-11-10 | 新日本製鐵株式会社 | 鋳型または金型の稼動面の操業状態判定装置および判定方法、鋳型または金型の操業方法、コンピュータプログラム、並びにコンピュータ読み取り可能な記録媒体。 |
JP5092631B2 (ja) * | 2007-09-06 | 2012-12-05 | Jfeスチール株式会社 | 連続鋳造におけるブレークアウト検出方法及び装置、該装置を用いた鋼の連続鋳造方法、ブレークアウト防止装置 |
JP5412872B2 (ja) * | 2008-02-28 | 2014-02-12 | Jfeスチール株式会社 | 連続鋳造におけるブレークアウト検出方法及び装置、該装置を用いた鋼の連続鋳造方法、ブレークアウト防止装置 |
JP6274226B2 (ja) | 2014-01-31 | 2018-02-07 | 新日鐵住金株式会社 | 連続鋳造における鋳造状態の判定方法、装置及びプログラム |
ES2743813T3 (es) * | 2014-10-15 | 2020-02-20 | Nippon Steel Corp | Aparato, método y programa para detectar el nivel de la superficie de metal fundido en un molde de fundición continua |
JP6428419B2 (ja) * | 2015-03-20 | 2018-11-28 | 新日鐵住金株式会社 | 連続鋳造鋳型内の溶鋼流量制御方法、装置及びプログラム |
JP6428418B2 (ja) * | 2015-03-20 | 2018-11-28 | 新日鐵住金株式会社 | 連続鋳造鋳型内の偏流検知方法及び偏流制御方法、湯面変動検知方法及び湯面変動制御方法、偏流検知装置及び湯面変動検知装置、並びにプログラム |
JP6607215B2 (ja) * | 2016-03-02 | 2019-11-20 | Jfeスチール株式会社 | 溶鋼の流動状態推定方法、流動状態推定装置、溶鋼の流動状態のオンライン表示装置および鋼の連続鋳造方法 |
CN107096899B (zh) * | 2017-05-17 | 2018-09-11 | 安徽工业大学 | 一种基于逻辑判断的结晶器漏钢预报系统 |
-
2000
- 2000-02-28 JP JP2000051521A patent/JP4105839B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001239353A (ja) | 2001-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4105839B2 (ja) | 連続鋳造における鋳型内鋳造異常検出方法 | |
JP5387508B2 (ja) | 連続鋳造方法、連続鋳造の制御装置及びプログラム | |
Bakken et al. | Heat transfer measurements during DC casting of aluminium part i: Measurement technique | |
JP2020157333A (ja) | 学習モデル作成装置、鋳片品質推定装置、学習モデル作成方法、鋳片品質推定方法、およびプログラム | |
JP2020011255A (ja) | 鋳造状態判定装置、鋳造状態判定方法、およびプログラム | |
JPS6353903B2 (ja) | ||
JP3230513B2 (ja) | 連続鋳造用鋳型内における溶鋼流速の推定方法、鋼の連続鋳造における品質管理方法及び鋼の連続鋳造方法 | |
JP4112783B2 (ja) | 連続鋳造設備におけるブレークアウト検出方法 | |
JP4579820B2 (ja) | 鋳型または金型の稼動面の操業状態判定装置および判定方法、鋳型または金型の操業方法、コンピュータプログラム、並びにコンピュータ読み取り可能な記録媒体。 | |
JP3598078B2 (ja) | 連続鋳造鋳型内の流速ベクトル分布の推定方法及び可視化方法、並びにそれらの装置。 | |
JP5408040B2 (ja) | 連続鋳造方法、連続鋳造の制御装置及びプログラム | |
JPS6353904B2 (ja) | ||
JP2000317594A (ja) | 溶融金属鋳型内の凝固シェル厚み及びパウダー流入厚み予測方法 | |
JP3537625B2 (ja) | 連続鋳造における凝固シェル厚測定方法およびその装置 | |
JP2000317595A (ja) | 連続鋳造鋳片の表面疵予知方法 | |
JP5387507B2 (ja) | 連続鋳造方法、連続鋳造の制御装置及びプログラム | |
JP6859919B2 (ja) | ブレークアウト予知方法 | |
JPH01210160A (ja) | 連続鋳造における縦割れ予知方法 | |
JP3607882B2 (ja) | 連続鋳造鋳型内全域の凝固シェル厚、溶鋼流速、鋳片品質センシング方法及びその装置。 | |
JP2000263203A (ja) | 連続鋳造鋳片の縦割れ予知方法 | |
JP2005007460A (ja) | 連続鋳造鋼片の表面欠陥検知方法 | |
JP2004291060A (ja) | 連続鋳造鋳型内溶鋼流速の幅方向分布検出方法 | |
JP4828366B2 (ja) | 鋳型の熱流束に基づく縦割検知方法及び連続鋳造方法 | |
JP4501892B2 (ja) | 連続鋳造の鋳型内溶湯温度の推定方法及び装置 | |
JP7135728B2 (ja) | 鋳片品質推定方法、鋼材の製造方法、鋳片品質推定装置、およびプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040902 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050511 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070724 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070925 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20071106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20071228 |
|
A911 | Transfer of reconsideration by examiner before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20080227 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080325 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080328 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4105839 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110404 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120404 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130404 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130404 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130404 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130404 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130404 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140404 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |