[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3937030B2 - Catalyst support and method for producing the same - Google Patents

Catalyst support and method for producing the same Download PDF

Info

Publication number
JP3937030B2
JP3937030B2 JP03343297A JP3343297A JP3937030B2 JP 3937030 B2 JP3937030 B2 JP 3937030B2 JP 03343297 A JP03343297 A JP 03343297A JP 3343297 A JP3343297 A JP 3343297A JP 3937030 B2 JP3937030 B2 JP 3937030B2
Authority
JP
Japan
Prior art keywords
silica
ceria
specific surface
cerium
surface area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03343297A
Other languages
Japanese (ja)
Other versions
JPH10230162A (en
Inventor
正毅 春田
安行 松村
謙吉 香川
禎一 宇佐見
政宣 川添
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Daikin Industries Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Daikin Industries Ltd
Priority to JP03343297A priority Critical patent/JP3937030B2/en
Publication of JPH10230162A publication Critical patent/JPH10230162A/en
Application granted granted Critical
Publication of JP3937030B2 publication Critical patent/JP3937030B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、セリアが触媒金属を担持させる担持材となっているセリア系触媒担体及びその製造方法に関する。
【0002】
【従来の技術】
セリアを触媒担体(ないしは助触媒)として利用することについては、従来より研究・開発が進められている。例えば、特開平8−229394号公報には、セリアとジルコニアとが助触媒としてアルミナに担持された触媒担体について記載されている。その担持方法は、セリウム及びジルコニウムの硝酸塩溶液にアルミナを混合し、これにアンモニア水を滴下することによって、溶液のpHをpH1からpH7へ数分以内で急速に変化させてセリウム及びジルコニウムの酸化物前駆体をアルミナ上に沈澱させ、しかる後、焼成を行なうことによってジルコニア−セリア固溶体をアルミナに担持させる、というものである。これは、触媒担体の比表面積を低下させずに、上記酸化物固溶体を高分散に担持させることをねらいとするものである。
【0003】
一般に触媒担体の比表面積を高くすると、結果的に触媒の比表面積が高くなってその活性が向上し、特に低温で触媒反応を行なわせる場合に有利になることは知られており、セリア自体に関してもその比表面積を高めるための研究・開発が進められている。
【0004】
【発明が解決しようとする課題】
しかし、従来のセリアでは、比表面積が高いものでもその値はBET比表面積で100m/g程度であり、例えばメタノールの分解に用いるような低温で触媒反応を進行させる触媒の担体としては、不充分であった。また、上記ジルコニア−セリア固溶体をアルミナに担持させた触媒担体は、アルミナ自体の比表面積が200m/g以下であり、得られる触媒担体の比表面積もそれ以下になる。特に上記固溶体を得るべくジルコニア前駆体とセリア前駆体とを同時に急速に沈澱させる必要があるため、アルミナに担持されているジルコニア−セリア固溶体の粒径が大きくなり易く、上記比表面積を高めることは難しい。しかも、この触媒担体の場合は、アルミナには酸点があるため、自動車の排気ガスの浄化のような特殊な用途に限定される。
【0005】
【課題を解決するための手段】
本発明者は、このような課題に対して、種々の実験、研究を進めた結果、セリアの前駆体を高比表面積になるようシリカ上に所定の条件で沈殿させ焼成することによって、高比表面積のセリアを有する触媒担体が得られることを見い出し、本発明を完成するに至ったものである。
【0006】
すなわち、この出願の発明に係る触媒担体は、シリカの上(シリカの表面及び細孔内)に平均粒径4nm以下のセリア粒子が分散担持されていて、セリアの担持量が30〜90wt%であることを特徴とし、その比表面積200m/g以上にすることが可能になる。これは、高比表面積のシリカ上にセリアが微粒子となってアモルファス状に分散担持されているためであり、該セリア粒子の微細化によりセリア自体の比表面積が大きくなっているものと考えられる。
【0007】
従って、このような触媒担体に例えば遷移金属を担持させてメタノール接触分解用触媒として利用すると、200℃前後での低温活性が高くなり、且つ選択性が高なる(水素及び一酸化炭素への転化率が高く、副生成物が少なくなる)。
【0008】
上記触媒担体におけるセリアの担持量が30wt%以下では、担体表面におけるシリカの露出が大きくなり、高比表面積のセリア系触媒担体を得るという発明本来の目的にそぐわない。一方、セリア担持量が90wt%を越えると、セリアの比表面積の減少が大きくなってしまう。
【0009】
この出願の他の発明は、上述の如き高比表面積の触媒担体を製造する方法であって、セリウムを溶媒に溶かしてなるセリウム溶液とシリカとの混合溶液を攪拌しながらこれにアルカリ溶液を滴下していくことによって、該混合溶液のpHをセリウムが水酸化物としてシリカ上にだけ沈澱し始めるpHまで変化させ、さらに、該混合溶液を撹拌しながらこれにアルカリ溶液を上記セリウムの沈澱に応じて且つ上記pHが6.5を越えないように滴下していくことによって、上記セリウムの沈澱をシリカ上で進めていき、得られた沈澱生成物を焼成することによってセリウムを酸化物としてシリカに担持させることを特徴とする。
【0010】
すなわち、上記混合溶液は酸性であり、これを撹拌しながらそこにアルカリ溶液を滴下していくと、該混合溶液のpHが5.5又はそれよりも少し高い値になった時点で、セリウムが水酸化物としてシリカ上に沈澱(析出)し始める。この操作は混合溶液を撹拌しながら行なうが、これは、上記アルカリ溶液の滴下によって混合溶液中に局部的にpHの高い場所を生じてセリウムの水酸化物がシリカ上ではなく液相中に析出しまうことを避けるためである。従って、上記アルカリ溶液の滴下によるpHの急激な変化は避け、当該滴下を徐々に行なってpH変化をゆっくりしたものにすることが好適である。
【0011】
上記セリウムの沈澱が始まったら、該混合溶液を攪拌しながらさらにアルカリ溶液を滴下していくことによって、pHを所定の範囲に保持する。すなわち、上記沈澱があると、それに伴って混合溶液のpHが酸性側に若干変化するから、セリウムが水酸化物としてシリカ上に沈澱するpHを保つべく、該沈澱に応じてアルカリ溶液を滴下するものである。その際、pHが高くなり過ぎるとセリウム水酸化物が液相でも生じ易くなるから、該pHは6.5を越えないようにしなければならない、従って、この場合も、pHが局部的に高い部分を生じないように混合溶液を撹拌しながら当該滴下を徐々に行なって行くことが好ましい。
【0012】
このように、混合溶液をpHが6.5を越えないようにしながら、上記セリウムの沈澱に応じてアルカリ溶液を滴下していくと、該セリウム水酸化物の急激な析出を避けて、該セリウム水酸化物をシリカの外表面だけでなく、その細孔内にも微細に分散させて析出させることができる。このため、その後の焼成によって得られる触媒担体では、セリアが4nm以下という微粒子になり易く、その比表面積が高いものになる。
【0013】
上記シリカとしては、その比表面積が100m/g程度のものでもよいが、該シリカの比表面積が高いほど上記セリア粒子の分散及び微細化が図れるため、高比表面積のシリカを用いることが好適であり、例えば200m/g以上、さらには、280m/g以上が好適であり、1000m/g程度であってもよい。但し、シリカの比表面積が高すぎると、それだけ細孔径が小さくなるから、上記セリウムの水酸化物が該細孔内に析出しにくくなり、該細孔を塞ぐ結果となってかえって比表面積が低下するきらいがある。
【0014】
上記製造方法に使用するアルカリ溶液としては、特に限定するわけではないが、水酸化ナトリウムが好適であり、炭酸ナトリウム、水酸化カリウムなど他のアルカリ溶液であってもよい。
【0015】
セリウム溶液を生成するためのセリウム源としては、セリウムの硝酸塩、酢酸塩などが適用可能である。
【0016】
上記混合溶液の温度は、0℃から100℃の範囲であれば良いが、通常50〜90℃程度にすることが好適である。また、上記焼成の温度は300〜1000℃程度が好適である。焼成温度が300℃未満では焼成が不充分になり易く酸化セリウムになり難いためであり、1000℃を越えるとセリア粒子のシンタリングを招き易くなり、比表面積の高いものが得られなくなるためである。
【0017】
【発明の効果】
従って、この出願の発明に係る触媒担体は、シリカの上に平均粒径4nm以下のセリア粒子が分散担持されているから、その比表面積が高く、触媒活性の向上に有利になる。
【0018】
また、上記触媒担体におけるセリアの担持量を30〜90wt%にしたから、シリカ表面が微細セリア粒子で覆われた触媒担体を得ることができ、しかも該触媒担体の比表面積が低いものになることを避けることができる
【0019】
この出願の発明に係る触媒担体の製造方法は、セリウムを溶媒に溶かしてなるセリウム溶液とシリカとの混合溶液を攪拌しながらこれにアルカリ溶液を滴下していくことによって、該混合溶液のpHをセリウムが水酸化物としてシリカ上にだけ沈澱し始めるpHまで変化させ、さらに、該混合溶液を撹拌しながらこれにアルカリ溶液を上記セリウムの沈澱に応じて且つ上記pHが6.5を越えないように滴下していくことによって、上記セリウムの沈澱をシリカ上で進めていき、得られた沈澱生成物を焼成することによってセリウムを酸化物としてシリカに担持させる、というものであるから、上述のシリカが微細セリアで覆われてなる触媒担体を得ることができ、しかも、セリアをシリカの表面だけでなく細孔内にも担持させることができるから、セリアないしは触媒担体の比表面積を高いものにするうえで有利になる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に基づいて説明する。
【0021】
触媒担体の調製
参考例
セリウム源として、酢酸セリウム六水和物10.09gをひょう量し、これを2Lの蒸留水と比表面積280m/gのシリカ16gの混合溶液に溶解させて70℃に加熱した。この混合溶液を撹拌しながらこれに1Nの水酸化ナトリウムを1mLずつ徐々に加えていってそのpHを「6」にし、さらに該pHを「6」にコントロールしながら水酸化ナトリウムの滴下を2時間にわたって続けることによって、シリカ上にセリアの水酸化物を沈殿させた。このようにして得られた沈殿物を十分に水洗して乾燥し、500℃×5時間の焼成を行った。得られた触媒担体は、シリカ上にセリアが高分散に担持されたものであり、セリアの担持量はセリアとシリカの合計量の20wt%である。
【0022】
実施例1
上記セリアの担持量をセリアとシリカの合計量の30wt%とする他は参考例と同様の方法によって、シリカ上にセリアを高分散に担持させてなる触媒担体を調製した。
【0023】
実施例2
上記セリアの担持量をセリアとシリカの合計量の40wt%とする他は参考例と同様の方法によって、シリカ上にセリアを高分散に担持させてなる触媒担体を調製した。
【0024】
実施例3
上記セリアの担持量をセリアとシリカの合計量の50wt%とする他は参考例と同様の方法によって、シリカ上にセリアを高分散に担持させてなる触媒担体を調製した。
【0025】
実施例4
上記セリアの担持量をセリアとシリカの合計量の60wt%とする他は参考例と同様の方法によって、シリカ上にセリアを高分散に担持させてなる触媒担体を調製した。
【0026】
実施例5
上記セリアの担持量をセリアとシリカの合計量の70wt%とする他は参考例と同様の方法によって、シリカ上にセリアを高分散に担持させてなる触媒担体を調製した。
【0027】
実施例6
上記セリアの担持量をセリアとシリカの合計量の80wt%とする他は参考例と同様の方法によって、シリカ上にセリアを高分散に担持させてなる触媒担体を調製した。
【0028】
実施例7
上記セリアの担持量をセリアとシリカの合計量の90wt%とする他は参考例と同様の方法によって、シリカ上にセリアを高分散に担持させてなる触媒担体を調製した。
【0029】
(実施例8
上記シリカとして比表面積380m/gのものを用いる他は参考例と同様の方法によって、シリカ上にセリアを高分散に担持させてなる触媒担体を調製し、且つ上記セリアの担持量はセリアとシリカの合計量の30wt%とした。
【0030】
実施例9
上記シリカとして比表面積380m/gのものを用いる他は参考例と同様の方法によって、シリカ上にセリアを高分散に担持させてなる触媒担体を調製し、且つ上記セリアの担持量はセリアとシリカの合計量の40wt%とした。
【0031】
実施例10
上記シリカとして比表面積380m/gのものを用いる他は参考例と同様の方法によって、シリカ上にセリアを高分散に担持させてなる触媒担体を調製し、且つ上記セリアの担持量はセリアとシリカの合計量の50wt%とした。
【0032】
実施例11
上記シリカとして比表面積380m/gのものを用いる他は参考例と同様の方法によって、シリカ上にセリアを高分散に担持させてなる触媒担体を調製し、且つ上記セリアの担持量はセリアとシリカの合計量の60wt%とした。
【0033】
実施例12
上記シリカとして比表面積380m/gのものを用いる他は参考例と同様の方法によって、シリカ上にセリアを高分散に担持させてなる触媒担体を調製し、且つ上記セリアの担持量はセリアとシリカの合計量の70wt%とした。
【0034】
実施例13
上記シリカとして比表面積380m/gのものを用いる他は参考例と同様の方法によって、シリカ上にセリアを高分散に担持させてなる触媒担体を調製し、且つ上記セリアの担持量はセリアとシリカの合計量の80wt%とした。
【0035】
実施例14
上記シリカとして比表面積380m/gのものを用いる他は参考例と同様の方法によって、シリカ上にセリアを高分散に担持させてなる触媒担体を調製し、且つ上記セリアの担持量はセリアとシリカの合計量の90wt%とした。
【0036】
(比較例)
市販の触媒担体用セリア(第一稀元素工業(株)製のもの)を比較例とした。
【0037】
触媒担体の性能評価上記の実施例1〜14及び比較例の触媒担体について、窒素の吸着によるBET比表面積の測定とXRDの半値幅によるセリア粒子径(平均粒径)の測定を行なった。さらに、シリカの比表面積と、当該触媒担体の比表面積と、セリアの担持量とに基づいて該セリアの比表面積を求めた。参考例及び実施例1〜7の結果を表1に比較例と共に示し、実施例8〜14の結果を表2に比較例と共に示す。
【0038】
【表1】

Figure 0003937030
【0039】
【表2】
Figure 0003937030
【0040】
まず、表1の比表面積280m/gのシリカを用いた実施例1〜7と触媒担体用セリア単独の比較例の比表面積を比較すると、実施例1〜7の触媒担体の方が比較例のそれよりも高比表面積を有している。これは、各実施例のセリアの粒子径は4nm以下であって、比較例のそれよりも格段に小さく、この微細なセリア粒子がシリカに高分散に担持されているためと認められる。従って、セリアの比表面積も高くなっている。
【0041】
また、表2の比表面積380m/gのシリカを用いた実施例8〜14をみると、該シリカの比表面積が高くなっていることに対応して各触媒担体の比表面積が高くなっている。セリア粒子径も実施例1〜7のものに比べると小さくなる傾向にある。但し、実施例8〜13のセリアの比表面積は実施例1〜6のそれよりも数値的には低い結果となっている。しかし、これは、実施例8〜14に用いた比表面積380m/gのシリカの方が実施例1〜7に用いた比表面積280m/gのシリカよりも熱安定性が低く、焼成によってシリカ自体の比表面積が低下したためであって、セリアの実際の比表面積が低くなったものではない。
【0042】
以上のことから、本発明のように、高比表面積のシリカを土台としてこれにセリアを微細に分散担持させれば、従来では実現できなかった高比表面積を有するセリア系の触媒担体を得ることができ、これにより触媒の低温活性を飛躍的に向上させ得ることが期待できる。実際、当該触媒担体に遷移金属を担持させてメタノールの接触分解用触媒を調製したところ、高い選択性と低温活性を実現することができた。
【0043】
上記実施例では比表面積が280m/g及び380m/gの各シリカを土台として触媒担体の調製を行ない、上記のような性能が得られたが、さらに比表面積の大きなシリカを土台とした場合も同様に高比表面積の触媒担体ないしはセリアが得られる。
【0044】
なお、セリウムの出発原料、沈殿剤、シリカの種類を変更した場合でも高比表面積を有する触媒担体が得られた。よって、本発明が上記実施例に限定されるものでないことはもちろんである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ceria-based catalyst carrier in which ceria is a support material for supporting a catalyst metal and a method for producing the same.
[0002]
[Prior art]
The use of ceria as a catalyst carrier (or co-catalyst) has been researched and developed conventionally. For example, JP-A-8-229394 describes a catalyst carrier in which ceria and zirconia are supported on alumina as a cocatalyst. The supporting method is as follows. Alumina is mixed with a cerium and zirconium nitrate solution, and aqueous ammonia is added dropwise thereto, whereby the pH of the solution is rapidly changed from pH 1 to pH 7 within a few minutes to cerium and zirconium oxides. The precursor is precipitated on alumina, and then calcined to support the zirconia-ceria solid solution on alumina. This is intended to support the oxide solid solution in a highly dispersed manner without reducing the specific surface area of the catalyst support.
[0003]
In general, it is known that increasing the specific surface area of the catalyst carrier results in an increase in the specific surface area of the catalyst and improves its activity, and is particularly advantageous when the catalytic reaction is carried out at a low temperature. Research and development are underway to increase the specific surface area.
[0004]
[Problems to be solved by the invention]
However, with conventional ceria, even if the specific surface area is high, the value is about 100 m 2 / g in terms of BET specific surface area. For example, it is not suitable as a catalyst carrier that promotes the catalytic reaction at a low temperature as used in the decomposition of methanol. It was enough. Further, the catalyst support in which the above zirconia-ceria solid solution is supported on alumina has a specific surface area of alumina itself of 200 m 2 / g or less, and the specific surface area of the resulting catalyst support is also less than that. In particular, since it is necessary to rapidly precipitate the zirconia precursor and the ceria precursor at the same time in order to obtain the above solid solution, the particle size of the zirconia-ceria solid solution supported on alumina tends to increase, and the above specific surface area is increased. difficult. In addition, in the case of this catalyst carrier, since alumina has an acid point, it is limited to special applications such as purification of automobile exhaust gas.
[0005]
[Means for Solving the Problems]
The present inventor conducted various experiments and researches on such problems, and as a result, the ceria precursor was precipitated on silica under a predetermined condition so as to have a high specific surface area, and calcined. It has been found that a catalyst carrier having ceria having a surface area can be obtained, and the present invention has been completed.
[0006]
That is, the catalyst carrier according to the invention of this application has ceria particles having an average particle diameter of 4 nm or less dispersed and supported on silica (in the surface and pores of silica), and the amount of ceria supported is 30 to 90 wt%. and wherein there, it is possible to make the specific surface area 200 meters 2 / g or more. This is because ceria is dispersed and supported in the form of fine particles on silica having a high specific surface area, and it is considered that the specific surface area of ceria itself is increased due to the refinement of the ceria particles.
[0007]
Therefore, when, for example, a transition metal is supported on such a catalyst carrier and used as a catalyst for methanol catalytic cracking, the low-temperature activity at around 200 ° C. becomes high and the selectivity becomes high (conversion to hydrogen and carbon monoxide). Rate is high and there are fewer by-products).
[0008]
When the amount of ceria supported on the catalyst carrier is 30 wt% or less, the silica is exposed on the surface of the carrier, which is not suitable for the original object of the invention to obtain a ceria-based catalyst carrier having a high specific surface area. On the other hand, when the amount of ceria supported exceeds 90 wt%, the reduction in the specific surface area of ceria becomes large.
[0009]
Another invention of this application is a method for producing a catalyst carrier having a high specific surface area as described above, wherein an alkaline solution is dropped into a stirring solution of a mixed solution of cerium solution and silica obtained by dissolving cerium in a solvent. Then, the pH of the mixed solution is changed to a pH at which cerium begins to precipitate only on silica as a hydroxide, and an alkaline solution is added to the mixed solution according to the precipitation of cerium while stirring the mixed solution. In addition, by dropping the solution so that the pH does not exceed 6.5, the precipitation of the cerium proceeds on the silica, and the resulting precipitated product is calcined to convert cerium into an oxide as silica. It is characterized by being carried.
[0010]
That is, the above mixed solution is acidic, and when an alkaline solution is added dropwise thereto while stirring the cerium, when the pH of the mixed solution becomes 5.5 or a little higher than that, It begins to precipitate on silica as a hydroxide. This operation is carried out while stirring the mixed solution. This is because the alkaline solution is dripped to create a locally high pH location in the mixed solution, so that the cerium hydroxide precipitates in the liquid phase, not on the silica. This is to avoid that. Accordingly, it is preferable to avoid a sudden change in pH due to the dropping of the alkaline solution, and to gradually reduce the pH change by gradually performing the dropping.
[0011]
When the precipitation of the cerium starts, the pH is kept within a predetermined range by further dropping an alkaline solution while stirring the mixed solution. That is, if there is the above precipitation, the pH of the mixed solution slightly changes to the acid side accordingly, so in order to maintain the pH at which cerium precipitates on silica as a hydroxide, an alkaline solution is dropped according to the precipitation. Is. At that time, if the pH becomes too high, cerium hydroxide is liable to be generated even in the liquid phase, so that the pH must not exceed 6.5. Therefore, also in this case, the portion where the pH is locally high It is preferable to gradually drop the solution while stirring the mixed solution so as not to cause the problem.
[0012]
As described above, when the alkaline solution is dropped according to the precipitation of the cerium while keeping the pH of the mixed solution not exceeding 6.5, the cerium hydroxide is avoided from abrupt precipitation. The hydroxide can be finely dispersed and deposited not only on the outer surface of the silica but also in the pores. For this reason, in the catalyst support obtained by subsequent calcination, ceria tends to be fine particles having a size of 4 nm or less, and the specific surface area is high.
[0013]
The silica may have a specific surface area of about 100 m 2 / g, but the higher the specific surface area of the silica, the more the ceria particles can be dispersed and refined. Therefore, it is preferable to use a silica with a high specific surface area. For example, it is preferably 200 m 2 / g or more, more preferably 280 m 2 / g or more, and may be about 1000 m 2 / g. However, if the specific surface area of silica is too high, the pore diameter will be reduced accordingly, so that the hydroxide of cerium will be difficult to precipitate in the pores, resulting in blocking the pores, and the specific surface area will decrease. I have a will to do.
[0014]
Although it does not necessarily limit as an alkaline solution used for the said manufacturing method, Sodium hydroxide is suitable and other alkaline solutions, such as sodium carbonate and potassium hydroxide, may be sufficient.
[0015]
As a cerium source for producing a cerium solution, cerium nitrate, acetate, and the like are applicable.
[0016]
Although the temperature of the said mixed solution should just be the range of 0 to 100 degreeC, it is suitable to set it as about 50-90 degreeC normally. The baking temperature is preferably about 300 to 1000 ° C. This is because if the firing temperature is less than 300 ° C., the firing tends to be insufficient and it is difficult to become cerium oxide, and if it exceeds 1000 ° C., sintering of the ceria particles is likely to occur, and a high specific surface area cannot be obtained. .
[0017]
【The invention's effect】
Therefore, the catalyst carrier according to the invention of this application has ceria particles having an average particle size of 4 nm or less dispersed on silica, and thus has a high specific surface area, which is advantageous for improving the catalyst activity.
[0018]
Further, since the amount of supported ceria in the catalyst carrier 30 90 wt%, the silica surface can be obtained catalyst carrier covered with fine ceria particles, yet to become a specific surface area of the catalyst support is less Can be avoided .
[0019]
In the method for producing a catalyst carrier according to the invention of this application, the pH of the mixed solution is adjusted by dropping an alkali solution while stirring a mixed solution of a cerium solution obtained by dissolving cerium in a solvent and silica. The pH is changed to a pH at which cerium begins to precipitate only on silica as a hydroxide. Further, while the mixed solution is stirred, an alkaline solution is added to the cerium according to the precipitation of the cerium and the pH does not exceed 6.5. The above cerium precipitation is advanced on the silica by dropping it onto the silica, and the resulting precipitated product is baked to support the cerium on the silica as an oxide. Can be obtained, and the catalyst carrier can be supported not only on the silica surface but also in the pores. From, which is advantageous in terms of the higher specific surface area ceria or catalyst support.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples.
[0021]
Preparation of catalyst carrier ( reference example )
As a cerium source, 10.09 g of cerium acetate hexahydrate was weighed and dissolved in a mixed solution of 2 L of distilled water and 16 g of silica having a specific surface area of 280 m 2 / g and heated to 70 ° C. While stirring this mixed solution, 1 mL of 1N sodium hydroxide was gradually added to it to adjust its pH to “6”, and sodium hydroxide was added dropwise for 2 hours while controlling this pH to “6”. The ceria hydroxide was precipitated on the silica. The precipitate thus obtained was sufficiently washed with water and dried, and baked at 500 ° C. for 5 hours. The obtained catalyst carrier is one in which ceria is supported on silica in a highly dispersed state, and the amount of ceria supported is 20 wt% of the total amount of ceria and silica.
[0022]
( Example 1 )
A catalyst carrier in which ceria was supported on silica in a highly dispersed manner was prepared in the same manner as in the Reference Example except that the amount of ceria supported was 30 wt% of the total amount of ceria and silica.
[0023]
( Example 2 )
A catalyst carrier in which ceria was supported on silica in a highly dispersed manner was prepared in the same manner as in the reference example except that the amount of ceria supported was 40 wt% of the total amount of ceria and silica.
[0024]
( Example 3 )
A catalyst carrier in which ceria was supported on silica in a highly dispersed manner was prepared in the same manner as in the Reference Example except that the amount of ceria supported was 50 wt% of the total amount of ceria and silica.
[0025]
( Example 4 )
A catalyst carrier in which ceria was supported on silica in a highly dispersed manner was prepared in the same manner as in the reference example except that the amount of ceria supported was 60 wt% of the total amount of ceria and silica.
[0026]
( Example 5 )
A catalyst carrier in which ceria was supported on silica in a highly dispersed manner was prepared by the same method as in the Reference Example except that the amount of ceria supported was 70 wt% of the total amount of ceria and silica.
[0027]
( Example 6 )
A catalyst carrier in which ceria was supported on silica in a highly dispersed manner was prepared in the same manner as in the reference example except that the amount of ceria supported was 80 wt% of the total amount of ceria and silica.
[0028]
( Example 7 )
A catalyst carrier in which ceria was supported on silica in a highly dispersed manner was prepared in the same manner as in the Reference Example except that the amount of ceria supported was 90 wt% of the total amount of ceria and silica.
[0029]
(Example 8 )
A catalyst carrier in which ceria is supported on silica in a highly dispersed manner is prepared by the same method as in the Reference Example except that the silica has a specific surface area of 380 m 2 / g. The amount of ceria supported is ceria and It was 30 wt% of the total amount of silica.
[0030]
( Example 9 )
A catalyst carrier in which ceria is supported on silica in a highly dispersed manner is prepared by the same method as in the Reference Example except that the silica has a specific surface area of 380 m 2 / g. The amount of ceria supported is ceria and The total amount of silica was 40 wt%.
[0031]
( Example 10 )
A catalyst carrier in which ceria is supported on silica in a highly dispersed manner is prepared by the same method as in the Reference Example except that the silica has a specific surface area of 380 m 2 / g. The amount of ceria supported is ceria and The total amount of silica was 50 wt%.
[0032]
( Example 11 )
A catalyst carrier in which ceria is supported on silica in a highly dispersed manner is prepared by the same method as in the Reference Example except that the silica has a specific surface area of 380 m 2 / g. The amount of ceria supported is ceria and The total amount of silica was 60 wt%.
[0033]
( Example 12 )
A catalyst carrier in which ceria is supported on silica in a highly dispersed manner is prepared by the same method as in the Reference Example except that the silica has a specific surface area of 380 m 2 / g. The amount of ceria supported is ceria and The total amount of silica was 70 wt%.
[0034]
( Example 13 )
A catalyst carrier in which ceria is supported on silica in a highly dispersed manner is prepared by the same method as in the Reference Example except that the silica has a specific surface area of 380 m 2 / g. The amount of ceria supported is ceria and The total amount of silica was 80 wt%.
[0035]
( Example 14 )
A catalyst carrier in which ceria is supported on silica in a highly dispersed manner is prepared by the same method as in the Reference Example except that the silica has a specific surface area of 380 m 2 / g. The amount of ceria supported is ceria and It was 90 wt% of the total amount of silica.
[0036]
(Comparative example)
A commercially available ceria for catalyst support (manufactured by Daiichi Rare Element Industry Co., Ltd.) was used as a comparative example.
[0037]
Performance Evaluation of Catalyst Carriers For the above catalyst carriers of Examples 1 to 14 and Comparative Example, the BET specific surface area was measured by nitrogen adsorption and the ceria particle diameter (average particle diameter) was measured by the XRD half width. Furthermore, the specific surface area of the ceria was determined based on the specific surface area of the silica, the specific surface area of the catalyst support, and the supported amount of ceria. The results of Reference Examples and Examples 1 to 7 are shown in Table 1 together with Comparative Examples, and the results of Examples 8 to 14 are shown in Table 2 together with Comparative Examples.
[0038]
[Table 1]
Figure 0003937030
[0039]
[Table 2]
Figure 0003937030
[0040]
First, when comparing the specific surface areas of Examples 1 to 7 using a silica having a specific surface area of 280 m 2 / g in Table 1 and a comparative example of ceria alone for the catalyst carrier, the catalyst carriers of Examples 1 to 7 are comparative examples. It has a higher specific surface area than that. This is because the particle diameter of the ceria of each example is 4 nm or less, which is much smaller than that of the comparative example, and this fine ceria particle is supported on silica in a highly dispersed state. Therefore, the specific surface area of ceria is also high.
[0041]
In addition, when Examples 8 to 14 using silica with a specific surface area of 380 m 2 / g in Table 2 are seen, the specific surface area of each catalyst carrier is increased corresponding to the increased specific surface area of the silica. Yes. The ceria particle size also tends to be smaller than those of Examples 1-7 . However, the specific surface areas of the ceria of Examples 8 to 13 are numerically lower than those of Examples 1 to 6 . However, this is because the silica having a specific surface area of 380 m 2 / g used in Examples 8 to 14 is lower in thermal stability than the silica having a specific surface area of 280 m 2 / g used in Examples 1 to 7, and the result is that by firing. This is because the specific surface area of the silica itself has decreased, and the actual specific surface area of ceria has not decreased.
[0042]
From the above, as in the present invention, if ceria is finely dispersed and supported on a silica having a high specific surface area, a ceria-based catalyst carrier having a high specific surface area that could not be realized in the past can be obtained. Thus, it can be expected that the low-temperature activity of the catalyst can be dramatically improved. In fact, when a catalyst for catalytic cracking of methanol was prepared by supporting a transition metal on the catalyst carrier, high selectivity and low temperature activity could be realized.
[0043]
In the above examples, the catalyst support was prepared by using each silica having specific surface areas of 280 m 2 / g and 380 m 2 / g as the foundation, and the above performance was obtained. However, silica having a larger specific surface area was used as the foundation. In this case as well, a catalyst carrier or ceria having a high specific surface area can be obtained.
[0044]
A catalyst carrier having a high specific surface area was obtained even when the starting material of cerium, the precipitant, and the type of silica were changed. Therefore, it is needless to say that the present invention is not limited to the above embodiment.

Claims (2)

シリカの上に平均粒径4nm以下のセリア粒子が分散担持され
上記セリアの担持量が30〜90wt%であることを特徴とする触媒担体。
Ceria particles having an average particle size of 4 nm or less are dispersed and supported on silica ,
A catalyst carrier, wherein the supported amount of ceria is 30 to 90 wt% .
請求項1に記載されている触媒担体の製造方法であって、
セリウムを溶媒に溶かしてなるセリウム溶液とシリカとの混合溶液を攪拌しながらこれにアルカリ溶液を滴下していくことによって、該混合溶液のpHをセリウムが水酸化物としてシリカ上にだけ沈澱し始めるpHまで変化させ、さらに、該混合溶液を撹拌しながらこれにアルカリ溶液を上記セリウムの沈澱に応じて且つ上記pHが6.5を越えないように滴下していくことによって、上記セリウムの沈澱をシリカ上で進めていき、得られた沈澱生成物を焼成することによってセリウムを酸化物としてシリカに担持させることを特徴とする触媒担体の製造方法。
A method for producing a catalyst carrier according to claim 1 ,
While stirring a mixed solution of a cerium solution obtained by dissolving cerium in a solvent and silica, an alkaline solution is added dropwise to the mixture so that the pH of the mixed solution starts to precipitate only on silica as a hydroxide. The mixture was stirred until the pH of the cerium precipitated was decreased by adding the alkaline solution dropwise to the cerium according to the precipitation of the cerium and not to exceed 6.5. A process for producing a catalyst carrier, characterized in that cerium is supported on silica as an oxide by proceeding on silica and calcining the resulting precipitated product.
JP03343297A 1997-02-18 1997-02-18 Catalyst support and method for producing the same Expired - Lifetime JP3937030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03343297A JP3937030B2 (en) 1997-02-18 1997-02-18 Catalyst support and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03343297A JP3937030B2 (en) 1997-02-18 1997-02-18 Catalyst support and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10230162A JPH10230162A (en) 1998-09-02
JP3937030B2 true JP3937030B2 (en) 2007-06-27

Family

ID=12386392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03343297A Expired - Lifetime JP3937030B2 (en) 1997-02-18 1997-02-18 Catalyst support and method for producing the same

Country Status (1)

Country Link
JP (1) JP3937030B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2505262T3 (en) 2009-11-25 2020-08-24 Solvay Special Chem Japan, Ltd. Complex oxide, method for producing same and exhaust gas purifying catalyst
WO2024132985A1 (en) 2022-12-19 2024-06-27 Solvay Specialty Polymers Italy S.P.A. Sio2 supported ceo2 as radical scavenger

Also Published As

Publication number Publication date
JPH10230162A (en) 1998-09-02

Similar Documents

Publication Publication Date Title
US5134109A (en) Catalyst for reforming hydrocarbon with steam
JP5326001B2 (en) Compositions comprising lanthanum perovskite on an alumina or aluminum oxyhydroxide substrate, process for preparation and use in catalysts
CA1120909A (en) High temperature-stable catalyst composition
EP0718028B1 (en) Heat-resistant support for catalysts and the production thereof
JP3749391B2 (en) Exhaust gas purification catalyst and method for producing the same
US20220305465A1 (en) Highly active metal oxide supported atomically dispersed platinum group metal catalysts
JP3118565B2 (en) Catalyst for synthesizing methanol and method for synthesizing methanol
JP2005170774A (en) Compound oxide, method for producing the same, and exhaust gas cleaning catalyst
JP6499683B2 (en) Core-shell type oxide material, manufacturing method thereof, exhaust gas purification catalyst using the same, and exhaust gas purification method
JP2005313029A (en) Metal oxide particle, its manufacturing method and exhaust gas cleaning catalyst
JP5010547B2 (en) Highly active catalyst and method for producing the same
US6204219B1 (en) Thermally stable support material and method for making the same
JP2003073123A (en) Compound oxide and method for producing the same, and auxiliary catalyst for cleaning flue gas
JP5168527B2 (en) Oxide powder and production method thereof
JP3937030B2 (en) Catalyst support and method for producing the same
JP2004209408A (en) Catalyst for reforming hydrocarbon and method for reforming hydrocarbon
JP4016100B2 (en) Catalyst for water gas shift reaction
JP2002219361A (en) Carrier of catalyst for cleaning exhaust gas, its preparing method and catalyst
JPH0929097A (en) Steam reforming catalyst of hydrocarbon
JP2559715B2 (en) Heat resistant catalyst for catalytic combustion reaction and method for producing the same
JPH06134305A (en) Heat resistant catalyst and method for using the same
JP4120862B2 (en) Catalyst for CO shift reaction
JP2001129399A (en) Catalyst for cleaning exhaust gas
JPH0848502A (en) Steam reforming of hydrocarbon
JP2001276620A (en) Catalyst for reforming hydrocarbon

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term