[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3932761B2 - Organometallic complex, infrared absorption filter using the same and filter for plasma display panel - Google Patents

Organometallic complex, infrared absorption filter using the same and filter for plasma display panel Download PDF

Info

Publication number
JP3932761B2
JP3932761B2 JP2000071475A JP2000071475A JP3932761B2 JP 3932761 B2 JP3932761 B2 JP 3932761B2 JP 2000071475 A JP2000071475 A JP 2000071475A JP 2000071475 A JP2000071475 A JP 2000071475A JP 3932761 B2 JP3932761 B2 JP 3932761B2
Authority
JP
Japan
Prior art keywords
group
organometallic complex
filter
substituent
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000071475A
Other languages
Japanese (ja)
Other versions
JP2001261991A (en
Inventor
保代 斉藤
徹郎 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2000071475A priority Critical patent/JP3932761B2/en
Publication of JP2001261991A publication Critical patent/JP2001261991A/en
Application granted granted Critical
Publication of JP3932761B2 publication Critical patent/JP3932761B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Optical Filters (AREA)
  • Heterocyclic Compounds That Contain Two Or More Ring Oxygen Atoms (AREA)
  • Heterocyclic Compounds Containing Sulfur Atoms (AREA)
  • Quinoline Compounds (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Furan Compounds (AREA)
  • Pyridine Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Nitrogen And Oxygen As The Only Ring Hetero Atoms (AREA)
  • Pyrrole Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は近赤外光域で吸収を示す新規な有機金属錯体、有機金属錯体色素、これを用いた赤外線吸収フィルター及びプラズマディスプレイパネル用フィルターに関する。具体的には、赤外線吸収フィルター用色素、熱線遮断用色素、遮光フィルム用色素、光記録材料用色素、データーコード用色素、レーザープリンタ用色素、一重項酸素クエンチャー、退色防止剤などに用いることができる赤外線吸収色素材料に関する。また、これらの色素を含む赤外線吸収フィルターに関し、近赤外線吸収性能、熱線吸収能、可視光線透過性能、耐光性に優れていることにより、赤外線を遮蔽するフィルター、具体的には、デジカメ用赤外線フィルター、プラズマディスプレイパネル等、画像表示装置のフィルターなどに好適に使用することができる赤外線吸収フィルターである。
【0002】
【従来の技術】
一般に、近赤外線吸収剤を含有した樹脂からなるプラスチック性近赤外線吸フィルターは、よく知られているものである。その用途としては、サングラス、溶接用眼鏡、ビルや自動車、飛行機の窓、あるいは情報読み取りのための光学読み取り装置等が挙げられる。
【0003】
また、最近では、大型薄型の壁掛けテレビとして注目されているプラズマディスプレイパネル(以下、「PDP」という)が、近赤外線を発生して、コードレスホン、近赤外線リモコンを使うビデオデッキ等、周辺にある電子機器に作用し誤動作を起こすことから、PDP用フィルターとしても近赤外線を吸収する赤外吸収フィルターの要求やデジカメ用赤外線フィルターの要求がある。
【0004】
この要求に対し、特公平2−4881号公報においては、ベンゼンジチオール系金属錯体を配合した熱可塑性樹脂からなる光学フィルターが提案されている。また、特公平6−38125号公報においては、アントラキノン化合物あるいは、中心に金属原子を配位するナフタロシアニン系化合物のうちの少なくとも一種を含有する近赤外線吸収フィルムあるいは板が提案されている。特開平4−174402号公報においては、アルミニウム化合物を含有する合成樹脂組成物を更に重合、硬化させた赤外線吸収フィルターが提案されている。さらに、近年、プラズマディスプレー用フィルターとして、特開平9−230134においてはジチオール系金属錯体を特開平10−78509において、フタロシアニン色素を含有するプラズマディスプレー用フィルターが提案されている。
【0005】
また、特開昭63−112592号公報には、アミノチオフェノレート系金属錯体色素が開示されており、その用途として赤外線吸収フィルター用色素の記載がある。 さらに、近年、アミノチオフェノレート系金属錯体として、久司らにより、Bull.Chem.Soc.Jpn.,70(7)(1997)1599-1606に、N原子とN原子が炭素を介してつながったタイプの配位子を有する金属錯体を報告している。
【0006】
これらのアミノチオフェノレート系金属錯体色素は、可視領域の吸収が小さく透過率が高いことが知られているが、耐光性においては、フタロシアニン系に劣っており、実用的に十分でなかった。
【0007】
【発明が解決しようとする課題】
本発明の目的は、近赤外光域に大きな吸収を有し、化学的に安定で、近赤外線吸収性能、熱線吸収能、可視光線透過性能および耐光性に優れ、成膜性のよい
赤外線吸収色素材料、およびこれを用いた赤外線吸収フィルターを提供することである。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を鑑み、鋭意検討した結果、アミノチオフェノレート系金属錯体色素において、金属に配位している窒素原子どおしを炭素鎖でつなぐことにより耐光性の低下の原因となるN−H部位をなくしたことにより安定化し、耐光性の向上が期待され、近赤外線吸収性能、熱線吸収能、可視光線透過性能および耐光性に優れる赤外線吸収フィルター提供することができることを見出し、本発明に到達した。
すなわち、本発明の要旨は、下記一般式(1)
【0009】
【化3】

Figure 0003932761
【0010】
(Xは、SまたはSeを表し、Mは、金属元素を表す。環A及び環Bは、各々独立に、ベンゼン環以外の任意の芳香族環を表し、さらに芳香族環は任意の置換基により置換されていてもよい。R1 〜R8は、各々独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアルコキシ基、ニトロ基、ハロゲン原子、アミノ基、置換アミノ基またはシアノ基を表す。)で表されることを特徴とする有機金属錯体、及び有機金属錯体からなる赤外線吸収色素に存する。
【0011】
また、本発明はこの有機金属錯体を用いた赤外線吸収フィルター及びプラズマディスプレイパネル用フィルターにも関する。
【0012】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本明細書中、Meはメチル基を、Etはエチル基を、Buはブチル基を、Prはプロピル基を、Hexはヘキシル基を、Phはフェニル基を表し、i−はイソをn−は直鎖、t−はターシャリー、c−はシクロ(環状)を表す。
【0013】
本発明の金属有機錯体は前記一般式(1)で表される化合物である。つまり、アミノチオフェノレート系等の錯体において、ベンゼン環以外の芳香族環を有しているのがその特徴である。
環A及び環Bは、各々独立にベンゼン環以外の任意の芳香族環であり、さらに芳香族環上に任意の置換基を有していても良い。このような芳香族環としては、炭化水素芳香族の多環式化合物や、炭素以外の異項原子を有する複素環系の単環式化合物または縮合環のいずれでもよい。
【0014】
このような芳香族炭化水素の縮合環としては、5〜7員環の2〜4個の縮合環、具体的には、ナフタレン、アントラセン、フェナントレン、ピレン、アズレン、インデン等が挙げられる。
また複素環としては、5〜6員環の単環式複素環や、5〜6員環の縮合系複素環が好ましく、異項原子として窒素、酸素、硫黄を含む5〜6員環が好ましい。具体的には、ピリジン、ピリミジン、ピリダジン、ピラジン、トリアジン、ピラン、チオピラン、ピロール、ピラゾール、イミダゾール、フラン、チオフェン、オキザソール、チアゾール、オキザジアゾール、トリアゾール、チアジアゾール、プリン、ピロロピロール等が挙げられる。縮合系複素環としては、ベンゼン環1〜3個と異項原子として窒素、酸素、硫黄を含む5〜6員環の複素環の縮合環が好ましく、具体的には、ベンゾフラン、ベンゾジオキシラン、ベンゾジオキソール、インドール、チオナフテン、ベンズイミダゾール、ベンゾチアゾール、ベンズオキザゾール、キノリン、イソキノリン、シノリン、キノキサジン、アクリジン、ジベンゾフラン、キサンテンカルバゾール、フェナントロリン、ベンゾシノリン、フェノチアジン、フェノキサジン等が挙げられる。
【0015】
これらの中でも、有機金属錯体の安定性の点から環Aまたは環Bがナフタレン環であるのが好ましく、また、複素環の中では、チオフェン、チオナフテン、ベンゾフラン、ベンゾジオキシラン等が好ましい。中でも、環A、環Bともにナフタレン環である場合が、その錯体としての安定性の点で最も好ましい。
そして、一般式(1)が、特に下記一般式(2)または(3)である場合、最も優れた安定性を示す赤外線吸収色素が得られる。
【0016】
【化4】
Figure 0003932761
【0017】
上記一般式(2)、(3)中、Xは、SまたはSeを表し、好ましくはSが用いられる。Mは、金属元素、金属酸化物または金属ハロゲン化物を表し、好ましくはNi、Pd、Pt、Co、Fe、Ti、Sn、 またはCu、さらに好ましくはNi,Pt、Pd、Coが用いられ、Niである場合が、好ましい。
中でも、XがSであり、MがNiである場合、性能的にも優れ、かつ経済的にも有利であることから好ましい。さらに、有機金属錯体が左右対称の化合物である場合が合成上の容易さ、安定性の面から好ましい。
【0018】
1 〜R8は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアルコキシ基、ニトロ基、ハロゲン原子、アミノ基、置換アミノ基またはシアノ基を表わし、好ましくは、水素原子、アルキル基、アリール基、アラルキル基、アルコキシ基、ニトロ基、ハロゲン原子、アミノ基、置換アミノ基またはシアン基を表し、さらに好ましくは、水素原子;メチル基、エチル基、i−ブチル基、t−ブチル基、n−ブチル基、n−ペンチル基などの炭素数1〜5のアルキル基;アリール基、ベンジル基、フェネチル基などのアラルキル基;メトキシ基、エトキシ基、t−ブトキシ基、n−ブトキシ基などの炭素数1〜5のアルコキシ基;フェノキシ基、メチルフェノキシ基などの炭素数6〜12のアリールオキシ基;ニトロ基;塩素原子、臭素原子、フッ素原子などのハロゲン原子;アミノ基;ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基などの置換アミノ基;またはシアノ基が挙げられ、特に好ましくは、水素原子が用いられる。
【0019】
1〜X28は、それぞれ独立に、水素原子、ハロゲン原子、ヒドロキシ基、アルコキシ基、ニトロ基、シアノ基、置換されていてもよいアルキル基、置換基を有していてもよいアリール基または置換基を有していてもよいアラルキル基を表す。具体的には、水素原子及びフッ素原子、塩素原子、臭素原子、ヒドロキシ基、メトキシ基、エトキシ基、t−ブトキシ基、n−ブトキシ基などの炭素数1〜5のアルコキシ基、フェノキシ基、メチルフェノキシ基などの炭素数6〜12のアリールオキシ基、ニトロ基,シアノ基,メチル基、エチル基、i−ブチル基、t−ブチル基、n−ブチル基、n−ペンチル基などの炭素数1〜5のアルキル基、トリクロロメチル基、トリフルオロメチル基等の置換アルキル基、アリール基、ベンジル基、フェネチル基などのアラキル基が挙げられ、好ましくは、水素原子及びフッ素原子、塩素原子、臭素原子、ヒドロキシ基、メトキシ基、エトキシ基、t−ブトキシ基、n−ブトキシ基などの炭素数1〜5のアルコキシ基、トリクロロメチル基、トリフルオロメチル基、フェノキシ基、メチルフェノキシ基、ニトロ基、シアノ基等の電子吸引性基が挙げらる。
【0020】
本発明の有機金属錯体としては、次のような化合物が挙げられる。
【0021】
【化5】
Figure 0003932761
【0022】
【化6】
Figure 0003932761
【0023】
【化7】
Figure 0003932761
【0024】
【化8】
Figure 0003932761
【0025】
【化9】
Figure 0003932761
【0026】
本発明に用いられる有機金属錯体は、環A、環Bがナフタレン環であり、かつXかRである場合、一般式(2)の有機金属錯体は、例えば次のようにして製造するすることができる。
【0027】
【化10】
Figure 0003932761
【0028】
すなわち、O-アミノベンゼンチオール類に、ナフチルアルデヒドを作用させ、ベンゾチアゾリンを合成し、それに錯体ソースを反応させイミノ錯体を合成する。その後、イミノ錯体を溶媒中で加熱することにより、容易に一般式(2)で表される化合物が合成できる。(式中、R1 〜R8およびX1〜X14は、一般式(2)における定義と同じである。)
一般式(3)の有機金属錯体も同様にして合成できる。
この反応で用いる錯体ソースの具体例としては、NiCl2 、NiCl2 ・6H2 O、Ni(OCOCH32 、Ni(OCOCH32 ・4H2 O、NiSO4 、PdCl2 、PdSO4 、PtCl4 、Na2 PtCl6 ・6H2 O、K2 PtCl6 ・6H2 O、CoCl2 、Co(OCOCH32 、Co(OCOCH32 ・4H2 O、CoSO4 、FeCl3 、FeSO4 、Fe2 (SO43 、TiCl3 、TiCl4 、Ti(SO42 、Sn(OCOCH32 、Sn(OCOCH34 、Sn(OMe)4 、Sn(OEt)4 、SnCl2 、SnCl2 ・2H2 O、SnCl4 、SnSO4 、Ti(OMe)4 、Ti(OEt)4 、CuCl2 、Cu(OCOCH32 、CuSO4 、CuSO4 ・4H2 O等が挙げられる。
上記の反応は、通常溶媒中で行われる。溶媒としては、例えば、テトラヒドロフラン(以下「THF」という)、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等のエーテル類、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、オクタノール等のアルコール類、1,2,3−トリクロロプロパン、テトラクロルエチレン、1,1,2,2−テトラクロロエタン、1,2−ジクロロエタン等のハロゲン化脂肪族炭化水素類、シクロヘキサン、ヘキサン、オクタン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン、メシチレン、モノクロロベンゼン、ジクロロベンゼン、ニトロベンゼン、スクアラン等の芳香族炭化水素類、N,N−ジメチルホルムアミド、N,N,N′,N′−テトラメチル尿素等のアミド類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、ジメチルスルホキシド、スルホラン等のスルホキシド類、アセトニトリル、プロパンニトリル、ベンゾニトリル等のニトリル類、酢酸エチル、プロピオン酸メチル、エナント酸メチル、リノール酸メチル、ステアリン酸メチル等のエステル類が用いられる。これらの溶媒の中で、アルコール系溶媒、エーテル系溶媒が好ましい。
【0029】
また、反応温度は、室温もしくは、0℃〜150℃で円滑に実施できる。
このようにして得られる本発明に用いる有機金属錯体は、近赤外領域に強い吸収を示し、通常ブルーの色調を示す。
本発明の有機金属錯体は、種々の機能性色素、具体的には、赤外線吸収フィルター用色素、熱線遮断用色素、遮光フィルム用色素、光記録材料用色素、データーコード用色素、レーザープリンタ用色素、一重項酸素クエンチャー、退色防止剤などとして使用できる。
【0030】
次に、本発明の赤外線吸収フィルターの製造方法について説明する。
本発明の赤外線吸収フィルターの製造方法としては、透明基板に有機金属錯体を含む塗工液をコーティングする方法、有機金属錯体を配合したフィルムなどを透明基板として用いる方法などが挙られる。
本発明の赤外線吸収フィルターを構成する透明基板としては、実質的に透明であって、吸収、散乱が大きくない基板であればよく、特に制限はない。その具体的な例としては、ガラス、ポリオレフィン系樹脂、非晶質ポリオレフィン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリ(メタ)アクリル酸エステル系樹脂、ポリスチレン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリアリレート樹脂、ポリエーテルサルホン樹脂等が挙げられる。これらの中では、特に非晶質ポリオレフィン系樹脂、ポリエステル系樹脂、ポリカーボネート系樹脂、ポリ(メタ)アクリル酸エステル系樹脂、ポリアリレート樹脂、ポリエーテルサルホン樹脂が好ましい。
【0031】
これらの樹脂は、フェノール系、燐系などの酸化防止剤、ハロゲン系、燐酸系等の難燃剤、耐熱老化防止剤、紫外線吸収剤、滑剤、帯電防止剤等の公知の添加剤を配合していもよい。
透明基板は、これらの樹脂を射出成形、Tダイ成形、カレンダー成形、圧縮成形等の方法や、有機溶剤に溶解させてキャスティングする方法などの成形方法により、フィルム状に成形して用いる。フィルム状に成形された樹脂は延伸されていても未延伸でもよい。また、異なる材料からなるフィルムが積層されていても良い。
【0032】
透明基材の厚みは、目的に応じて通常10μm〜5mmの範囲から選択される。
更に、透明基材は、コロナ放電処理、火炎処理、プラズマ処理、グロー放電処理、粗面化処理、薬品処理等の従来公知の方法による表面処理や、アンカーコート剤やプライマー等のコーティングを施してもよい。
【0033】
有機金属錯体を含む塗工液は、金属錯体をバインダー樹脂とともに溶剤中に溶解させることにより、調製することができる。このとき溶剤に溶解される有機金属錯体およびバインダー樹脂などの全固形分の濃度は、通常5〜50重量%である。また、全固形分に対する有機金属錯体の濃度は、通常1〜80重量%、好ましくは2〜70重量%である。
【0034】
また、有機金属錯体を必要に応じて分散剤を用いて、粒径を通常0.1〜3μmに微粒子化し、バインダー樹脂とともに、溶剤に分散させて調整することもできる。このとき溶剤に分散される有機金属錯体、分散剤、バインダー樹脂等の固形分の濃度は、5〜50重量%である。また、全固形分に対する有機金属錯体の濃度は、通常1〜80重量%、好ましくは5〜70重量%である。用いられる分散剤としては、ポリビニルブチラール樹脂、フェノキシ樹脂、ロジン変性フェノール樹脂、石油樹脂、硬化ロジン、ロジンエステル、マレイン化ロジン、ポリウレタン樹脂等が挙げられる。その使用量は、有機金属錯体に対して、通常0〜100重量%、好ましくは0〜70重量%である。
【0035】
バインダー樹脂としては、ポリメチルメタクレート樹脂、ポリエチルアクリレート樹脂、ポリカーボネート樹脂、エチレンービニルアルコール共重合体樹脂、ポリエステル樹脂等が挙げられる。その使用量は、有機金属錯体に対して、10〜200重量%、好ましくは30〜100重量%である。
溶剤としては、1,2,3−トリクロロプロパン、テトラクロルエチレン、1,1,2,2−テトラクロロエタン、1,2−ジクロロエタン等のハロゲン化脂肪族炭化水素類、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、オクタノール等のアルコール類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、酢酸エチル、プロピオン酸メチル、エナント酸メチル、リノール酸メチル、ステアリン酸メチル等のエステル類シクロヘキサン、ヘキサン、オクタン等の脂肪族炭化水素類、ベンゼン、トルエン、キシレン、メシチレン、モノクロロベンゼン、ジクロロベンゼン、ニトロベンゼン、スクアラン等の芳香族炭化水素類、ジメチルスルホキシド、スルホラン等のスルホキシド類、N,N−ジメチルホルムアミド、N,N,N′,N′−テトラメチル尿素等のアミド類、テトラヒドロフラン(以下「THF」という)、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル等のエーテル類あるいはこれらの混合物を用いることができる。
【0036】
また、有機金属錯体を含む塗工液には、さらに他の近赤外線吸収剤を添加してもよい。他の近赤外線吸収剤としては、有機物質であるニトロソ化合物及びその金属錯塩、シアニン系化合物、スクワリリウム系化合物、チオールニッケル錯塩系化合物、フタロシアニン化合物、ナフタロシアニン化合物、トリアリルメタン系化合物、インモニウム系化合物、ジインモニウム系化合物、ナフトキノン系化合物、アントラキノン系化合物、アミノ化合物、アミニウム塩系化合物、あるいは、無機物であるカーボンブラックや、酸化インジウムスズ、酸化アンチモンスズ、周期律表4A、5Aまたは6A族に属する金属の酸化物、もしくは炭化物、またはホウ化物などが挙げられる。
【0037】
このように、本発明の有機金属錯体の他、必要であればさらに他の近赤外線吸収剤を併用しながら、波長領域800〜1100nmの近赤外線透過率が15%以下となるように赤外線吸収フィルターを調製するのが好ましい。特に透明性と、赤外線吸収性能の面から、本発明の金属錯体とジインモニウム系化合物とを併用して用いることが好ましく、この場合には、相互作用による性能劣化の恐れがあるため、本発明の有機金属錯体とは別の層に含有させて用いた方が望ましい。
【0038】
有機金属錯体を含む塗工液の透明基材へのコーティングは、ディッピング法、フローコート法、スプレー法、バーコート法、グラビアコート法、ロールコート法、ブレードコート法、エアーナイフコート法等の公知の塗工方法で行われる。有機金属錯体を含む層は、乾燥後の膜厚が、通常0.1〜30μm、好ましくは0.5〜10μmとなるように塗布される。
【0039】
本発明の赤外線吸収フィルターは、さらに紫外線カット層を設けることにより、有機金属錯体との相乗効果によって、赤外線吸収フィルターの耐光性を著しく向上させることができる。紫外線カット層としては、400nm以下の波長の紫外線を効率よくカットできるものであり、350nmの波長の光を70%以上吸収できることが好ましい。紫外線カット層の種類については、特に制限されないが、好ましくは紫外線吸収剤を含有する樹脂フィルム(紫外線カットフィルム)が好ましい。
【0040】
紫外線カット層に用いられる紫外線吸収剤としては、300〜400nmの間に極大吸収を有し、その領域の光を効率よくカットする化合物であれば、有機系、無機系のいずれも特に限定なく用いることができる。例えば有機系紫外線吸収剤としては、ベンゾトリアゾール系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、サリチル酸エステル系紫外線吸収剤、トリアジン系紫外線吸収剤、パラアミノ安息香酸系紫外線吸収剤、ケイ皮酸系紫外線吸収剤、アクリレート系紫外線吸収剤、ヒンダードアミン系紫外線吸収剤等が挙げられ、無機系紫外線級剤としては酸化チタン系紫外線吸収剤、酸化亜鉛系紫外線吸収剤、微粒子酸化鉄系紫外線吸収剤等が挙げられるが、無機系紫外線吸収剤の場合は紫外線カット層中で微粒子状態で存在しているため、赤外線吸収フィルターの効率を損なう恐れがあることから、有機系紫外線吸収剤が好ましい。
【0041】
このような紫外線吸収剤としては、例えば、チバガイギー(株)のチヌビンP、チヌビン120、213、234、320、326、327、328、329、384、400、571、住友化学(株)のスミソーブ250、300、577、共同薬品(株)バイオソーブ582、550、591、城北化学(株)のJFー86、79、78、80、旭電化(株)のアデカスタブLA−32,LA−36,LA−34、シプロ化成(株)のシーソルブ100、101、101S、102、103、501、201、202、612NH、大塚化学(株)のRUVA93、30M、30S、BASF(株)のユービナール3039等が挙げられる。
【0042】
これらの紫外線吸収剤は、単独で用いても良いが、数種類組み合わせても良い。
また、紫外線を吸収して可視領域に波長変換するチバガイギー(株)のユービテックスOB,OB−P等の蛍光増白剤も利用できる。
紫外線吸収剤を含有する樹脂フィルム(紫外線カットフィルム)は、ポリエチレン樹脂、ポリプロピレン樹脂、ポリ塩化ビニル樹脂、ポリスチレン樹脂、ポリメタクレート樹脂、ポリアクリレート樹脂、ポリビニルブチラール樹脂、ポリカーボネート樹脂、エチレンービニルアルコール共重合体樹脂、エチレン−酢酸ビニル共重合体樹脂、ポリエステル樹脂、メラミン樹脂、ポリウレタン樹脂等の樹脂をベースに上記の紫外線吸収剤を添加して作製できる。紫外線カットフィルムの作製方法は、溶融/押し出し、溶融/押し出し/延伸法、キャスト法、カレンダー法、コーティング法等、一般的な方法が利用できる。紫外線カットフィルムの厚みは、2μm〜1mm程度である。紫外線吸収剤の添加量は、樹脂の厚み、目的の吸収強度等によって異なるが、通常、フィルムの10ppm〜30%である。
【0043】
また、紫外線カットフィルムは、市販のUVカットフィルターを使用することもでき、例えば、富士フィルム(株)のSC−38、SC−39、三菱レーヨン(株)のアクリプレン等が挙げられる。上記のUVカットフィルター、SC−39、アクリプレンは、ともに350nmの波長を99%以上吸収する紫外線カットフィルムである。
【0044】
本発明の赤外線吸収フィルターは、必要に応じて、電磁波カット層、表面への蛍光灯などの外光の写り込みを防止する反射防止層、ぎらつき防止層(ノングレア層)、紫外線カット層等を設け、PDP用フィルターとして使用することができる。
PDPフィルターについては、特にその構成、製造等限定されるものではないが、例えば、本発明の赤外線吸収フィルターを粘着層を介して透明樹脂基板に貼り合わせ、その両面に反射防止層、あるいはノングレア層を設けた構成であり、さらに赤外線吸収フィルターのPDP側には紫外線カット層を有していたり、またPDPフィルターの任意の層の間に電磁波カット層を設けていてもよい。PDPフィルターの層構成はこれに限定されるものではなく、必要に応じていずれかの層を省略したり、さらに別の層を加えたりして、PDPフィルターとしての性能が十分発揮できる範囲で適宜層構成を変えてもよい。
【0045】
また、赤外線吸収フィルターにおいて、本発明の有機金属錯体と、他の近赤外吸収剤を併用して用いる場合、本発明の同一の層に用いてもよいが、それらの相互作用による耐光性などの性能劣化の恐れがある場合には、別々の層に分けて複数の層として積層されていてもよい。
電磁波カット層とは、PDPより放出される電磁波を遮蔽するために設けられる層であり、400〜700nmの可視光線領域を70%以上透過し、表面固有抵抗値が50Ω/□以下であるのが好ましい。電磁波カット層を設けるには金属酸化物等の蒸着あるいはスパッタリング方法等が利用できる。通常は酸化インジウムスズ(ITO)が一般的であるが、誘導体層と金属層を基材上に交互にスパッタリング等で積層させることで1000nm以上の光をカットすることもできる。誘電体層としては酸化インジウム、酸化亜鉛、酸化アンチモンスズ、アルミニウム酸化亜鉛等の透明な金属酸化物等であり、金属層としては銀あるいは銀−パラジウム合金が一般的であり、通常、誘電体層より3層、5層、7層あるいは11層程度積層する。基材としては、本発明の赤外線吸収フィルターをそのまま利用しても良いし、樹脂フィルムあるいはガラス上に蒸着あるいはスパッタリングして電磁波カット層を設けた後に、本発明の赤外線吸収フィルターと貼り合わせても良い。
反射防止層は、表面の反射を抑えてフィルターの透過率を向上させるために、金属酸化物、フッ化物、ケイ化物、ホウ化物、炭化物、窒化物、硫化物等の無機物を、真空蒸着法、スパッタリング法、イオンプレーティング法、イオンビームアシスト法等で単層あるいは多層に積層させる方法、アクリル樹脂、フッ素樹脂などの屈折率の異なる樹脂を単層あるいは多層に積層させる方法等がある。また、反射防止処理を施したフィルムを該フィルター上に貼り付けることもできる。
【0046】
また、ノングレア層も設けることもできる。ノングレア層は、フィルターの視野角を広げる目的で、透過光を散乱させるために、シリカ、メラミン、アクリル等の微粉体をインキ化して、表面にコーティングする方法などを用いることができる。インキの硬化は、熱硬化あるいは光硬化を用いることができる。また、ノングレア処理したフィルムを該フィルター上に貼り付けることもできる。更に必要であれば、ハードコート層を設けることもできる。
【0047】
更に、この赤外線吸収フィルターは単独に用いられることは勿論、さらに透明のガラスや他の透明樹脂板等と貼り合わせて積層体として用いることができる。本発明により得られる赤外線吸収フィルターは、特にPDP用フィルターとして好適に用いられる他、ディスプレイ用フィルター、熱線遮断フィルム、サングラス、保護眼鏡、リモコン受光器など幅広い用途に使用することができる。
【0048】
【実施例】
以下に、実施例により本発明を説明するが、本発明はこれにより何ら制限されるものではない。
実施例1
メタノール約10mlに2−ナフチルアルデヒド 1.56g(0.01mol)を溶かし、その溶液にo−アミノベンゼンチオール1.10ml(0.01mol)を室温で、撹拌しながら加え、0.5時間、リフラックスさせた。その溶液にさらにエタノール20ml、Ni(AcO)2・4H2O 1.10g(0.0044mol)を加えると、赤茶色の固体が析出した。さらに1時間リフラックス後、減圧ろ過、エタノール懸洗数回後、ろ過物を60℃で真空乾燥し、下式に示す赤茶色の有機金属錯体2.35g(0.040mol:収率91.5%)を得た。
【0049】
【化11】
Figure 0003932761
【0050】
上記有機金属錯体1.0gにTHF100mlを加え、反応液が、青色に変化するまで、リフラックスさせた。その後、減圧ろ過により、ろ過物を除去後、ろ液を濃縮することにより、生成物が結晶化させた。その後、結晶を減圧ろ過、60℃で、真空乾燥させ、下記生成物0.91g(収率91.0%)を得た。
【0051】
【化12】
Figure 0003932761
【0052】
構造解析
(1)元素分析(C26H18Cl2N2NiS2)
Found:C,68.76;H,3.75;N,4.80;S,11.14
Calc :C,70.00;H,4.15;N,4.80;S,10.99
(2)マススペクトル:M/Z.582
(マスパターンがC34H24N2S2Niで、シュミレートしたものと一致した。)
この有機金属錯体は、テトラヒドロフラン(以下「THF」と略記する場合もある)中で、近赤外領域である830nmにε=32000の強い吸収を示した。
実施例2
メタノール約10mlに1−ナフチルアルデヒド 1.56g(0.01mol)を溶かし、その溶液にo−アミノベンゼンチオール1.10ml(0.01mol)を室温で、撹拌しながら加え、0.5時間、リフラックスさせた。その溶液にさらにエタノール20ml、Ni(AcO)2・4H2O 1.10g(0.0044mol)を加えると、赤茶色の固体が析出した。さらに1時間リフラックス後、減圧ろ過、エタノール懸洗数回後、ろ過物を60℃で真空乾燥し、下式に示す赤茶色の有機金属錯体2.22g(0.038mol:収率86.5%)を得た。
【0053】
【化13】
Figure 0003932761
【0054】
上記有機金属錯体1.0gにTHF100mlを加え、反応液が、青色に変化するまで、リフラックスさせた。その後、減圧ろ過により、ろ過物を除去後、ろ液を濃縮することにより、生成物が結晶化させた。その後、結晶を減圧ろ過、60℃で、真空乾燥させ、下記生成物0.72g(収率72.0%)を得た。
【0055】
【化14】
Figure 0003932761
【0056】
実施例3
耐光性を評価するため、実施例1で得られた有機金属錯体の5重量%THF溶液0.06gに、ポリメチルメタクリレート樹脂(商品名;ダイヤナールBR−80:三菱レイヨン株式会社製品)のTHF/トルエン(=1/1)溶液(樹脂濃度20重量%)を1.5g添加し、超音波洗浄機にて、完全に溶解させた後、この塗工液を、バーコータ#24でOHPフィルムに塗工し、乾燥することにより、近赤外吸収フィルムを得た。塗布膜厚は、約6μmであった。
【0057】
このフィルムの近赤外吸収を、日立分光光度計U−3500で測定したところ、λmaxは、835nmであった。
更にこのフィルムに、富士写真フィル製UVカットフィルター(アクリプレン+SC-39)をかぶせ、キセノンロングライフフェードメーター(FAL−25AX−HCB−EC)(スガ試験機社製品)により、400時間照射し、835nmにおける照射前後の吸収強度を測定したところ、照射後の強度は、照射前の強度の90.6%であり、耐光性が高いことを確認した。
実施例4
実施例1で得られた有機金属錯体の0.5重量%メチルエチルケトン溶液、0.8重量部に、ポリメチルメタクリレート樹脂(三菱レイヨン株式会社製品ダイヤナールBR−80)のMEK/トルエン(=1/1)溶液(20重量%溶液)1重量部、トルエン 0.2重量部を添加した塗工液を、50μmの厚みのポリエチレンテレフタレートフィルムに、厚み2μmになるようコーティングした。
上記フィルムに、表面固有抵抗5Ω/□の銀・インジウム酸化錫(ITO)の多層蒸着フィルムを貼り合わせた。
【0058】
更に、厚み4mmのポリカーボネート板と貼り合わせた後、両面にフッ素系樹脂からなる反射防止剤を100nmの厚みにコーティングして、プラズマディスプレイパネル用フィルターを得た。
得られたプラズマディスプレイパネル用フィルターは、800〜880nmの光線透過率が20%以下で、更に可視光線透過率が65%以上であった。特に400〜500nmの透過率が75%以上と高く、黄色味が少ないため、ディスプレイ前面に設置した場合に、画質を悪化させず、フィルターとして良好であった。
比較例1
エタノール約80mlにKOH1.78g(0.018mol)を溶かし、その溶液にo−アミノベンゼンチオール2.00g(0.016mol)を室温で、撹拌しながら加え、リガンド溶液とした。
【0059】
一方、エタノール20mlにニッケル(II)クロリド・6水和物1.92g(0.008mol)を溶解させ、上記リガンド溶液に撹拌しながら、滴下したところ溶液は、濃紺に変化した。
その後、濾過、H2 O、エタノールによる洗浄、アセトン不溶物除去、乾燥により、式(IV)で示されるビス(2−フェニルアミノベンゼンチオール)ニッケル錯体を単離した(収量1.721g;収率70.5%)。この錯体は、THF中で、近赤外領域である805nmにε=35400の強い吸収を示した。
【0060】
【化15】
Figure 0003932761
【0061】
耐光性を評価するため、得られたビス(2−フェニルアミノベンゼンチオール)ニッケル錯体の5重量%THF溶液0.6gに、ポリメチルメタクリレート樹脂(商品名;ダイヤナールBR−80:三菱レイヨン株式会社製品)のTHF/トルエン(=1/1)溶液(樹脂濃度20重量%)を3.0g添加し、超音波洗浄機にて、完全に溶解させた後、この塗工液を、バーコータ#24でOHPフィルムに塗工し、近赤外吸収フィルムを得た。塗布膜厚は、6μmであった。
【0062】
このフィルムの近赤外吸収を、日立分光光度計U−3500で測定したところ、λmaxは、825nmであった。
更にこのフィルムに、富士写真フィル製UVカットフィルター(SC-39)をかぶせ、キセノンロングライフフェードメーター(FAL−25AX−HCB−EC)(スガ試験機社製品)により、400時間照射し、825nmにおける照射前後の吸収強度を測定したところ、照射後の強度は、照射前の強度の81.8%であった。
【0063】
比較例2
近赤外線吸収色素として知られているフタロシアニン色素(日本触媒社製 IR−3) の1重量%MEK/トルエン(=1/1)溶液 0.8重量部に、ポリメチルメタクリレート樹脂(三菱レイヨン株式会社製品ダイヤナールBR−80)のMEK/トルエン(=1/1)溶液(20重量%溶液) 1重量部、MEK 0.1重量部、トルエン 0.1重量部を添加した塗工液を、50μmの厚みのポリエチレンテレフタレートフィルムに、厚み2μmになるようコーティングした。
【0064】
実施例4と同様に、上記フィルムに銀・ITO多層蒸着フィルムを貼り合わせ、更にポリカーボネート板と貼り合わせた後、両面に反射防止剤をコーティングし、プラズマディスプレイパネル用フィルターを得た。
得られたプラズマディスプレイパネル用フィルターは、800〜880nmの光線透過率が20%以下であったが、可視光線透過率は45%以上、400〜500nmの透過率は58%以下であり、ディスプレイ前面に設置した場合に、画面が暗くなり、フィルターとしては好ましくなかった。
【0065】
【発明の効果】
本発明によれば、近赤外領域に強い吸収を示す有機金属錯体を提供できる。また、この有機金属錯体は、有機溶媒に可溶なため、フィルム等に容易に加工でき、この近赤外線吸収層を設けた、近赤外線吸収性能、熱線吸収能、可視光線透過性能および長時間の耐光性に優れる近赤外線吸収フィルターを提供できる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a novel organometallic complex that exhibits absorption in the near-infrared light region, an organometallic complex dye, an infrared absorption filter using the same, and a filter for a plasma display panel. Specifically, it is used for dyes for infrared absorption filters, dyes for heat ray blocking, dyes for light shielding films, dyes for optical recording materials, dyes for data codes, dyes for laser printers, singlet oxygen quenchers, anti-fading agents, etc. The present invention relates to an infrared-absorbing dye material that can be used. In addition, regarding infrared absorbing filters containing these dyes, filters that shield infrared rays by being excellent in near-infrared absorbing performance, heat ray absorbing capability, visible light transmitting capability, and light resistance, specifically, infrared filters for digital cameras It is an infrared absorption filter that can be suitably used for a filter of an image display device such as a plasma display panel.
[0002]
[Prior art]
In general, a plastic near-infrared absorbing filter made of a resin containing a near-infrared absorber is well known. Applications include sunglasses, welding glasses, buildings and automobiles, airplane windows, or optical reading devices for reading information.
[0003]
Recently, a plasma display panel (hereinafter referred to as “PDP”), which has been attracting attention as a large and thin wall-mounted television, generates near infrared rays, such as a video deck using a cordless phone or a near infrared remote control. There is a demand for an infrared absorption filter that absorbs near infrared rays and a demand for an infrared filter for digital cameras as PDP filters because they act on equipment and cause malfunctions.
[0004]
In response to this requirement, Japanese Patent Publication No. 2-4881 proposes an optical filter made of a thermoplastic resin containing a benzenedithiol-based metal complex. Japanese Patent Publication No. 6-38125 proposes a near-infrared absorbing film or plate containing at least one of an anthraquinone compound or a naphthalocyanine-based compound in which a metal atom is coordinated at the center. Japanese Patent Application Laid-Open No. 4-174402 proposes an infrared absorption filter obtained by further polymerizing and curing a synthetic resin composition containing an aluminum compound. Further, in recent years, as a filter for plasma display, a filter for plasma display containing a dithiol metal complex in JP-A-9-230134 and a phthalocyanine dye in JP-A-10-78509 has been proposed.
[0005]
Japanese Patent Application Laid-Open No. 63-112292 discloses an aminothiophenolate-based metal complex dye, and describes a dye for an infrared absorption filter as its use. Further, in recent years, as an aminothiophenolate-based metal complex, Hisashi et al. Connected N. atom and N atom to Bull. Chem. Soc. Jpn., 70 (7) (1997) 1599-1606 via carbon. A metal complex with a type of ligand has been reported.
[0006]
These aminothiophenolate metal complex dyes are known to have low absorption in the visible region and high transmittance, but in terms of light resistance, they are inferior to phthalocyanines and are not practically sufficient.
[0007]
[Problems to be solved by the invention]
The object of the present invention is to have a large absorption in the near-infrared light region, chemically stable, excellent near-infrared absorption performance, heat ray absorption ability, visible light transmission performance and light resistance, and good film formability.
An infrared absorbing dye material and an infrared absorbing filter using the same are provided.
[0008]
[Means for Solving the Problems]
As a result of intensive studies in view of the above problems, the inventors of the present invention have reduced light resistance by connecting nitrogen atoms coordinated to a metal with a carbon chain in an aminothiophenolate-based metal complex dye. It is possible to provide an infrared absorption filter that is stabilized by eliminating the N—H site that is the cause, and is expected to improve light resistance, and is excellent in near infrared absorption performance, heat ray absorption performance, visible light transmission performance, and light resistance. The headline, the present invention has been reached.
That is, the gist of the present invention is the following general formula (1).
[0009]
[Chemical 3]
Figure 0003932761
[0010]
(X represents S or Se, M represents a metal element. Ring A and ring B each independently represent any aromatic ring other than a benzene ring, and the aromatic ring represents an optional substituent. May be substituted by R. 1 ~ R 8 Each independently has a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, an aralkyl group which may have a substituent, or a substituent. Represents an optionally substituted alkoxy group, nitro group, halogen atom, amino group, substituted amino group or cyano group. And an infrared-absorbing dye composed of the organometallic complex.
[0011]
The present invention also relates to an infrared absorption filter and a plasma display panel filter using the organometallic complex.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In the present specification, Me represents a methyl group, Et represents an ethyl group, Bu represents a butyl group, Pr represents a propyl group, Hex represents a hexyl group, Ph represents a phenyl group, i- represents iso, n- represents Straight chain, t- represents tertiary, and c- represents cyclo (cyclic).
[0013]
The metal organic complex of the present invention is a compound represented by the general formula (1). That is, the aminothiophenolate-based complex has an aromatic ring other than the benzene ring.
Ring A and ring B are each independently an arbitrary aromatic ring other than a benzene ring, and may further have an arbitrary substituent on the aromatic ring. Such an aromatic ring may be a hydrocarbon aromatic polycyclic compound, a heterocyclic monocyclic compound having a hetero atom other than carbon, or a condensed ring.
[0014]
Examples of such aromatic hydrocarbon condensed rings include 2 to 4 condensed rings of 5 to 7 members, specifically naphthalene, anthracene, phenanthrene, pyrene, azulene, indene and the like.
The heterocyclic ring is preferably a 5- to 6-membered monocyclic heterocyclic ring or a 5- or 6-membered condensed heterocyclic ring, and a 5- or 6-membered ring containing nitrogen, oxygen, or sulfur as a hetero atom is preferable. . Specific examples include pyridine, pyrimidine, pyridazine, pyrazine, triazine, pyran, thiopyran, pyrrole, pyrazole, imidazole, furan, thiophene, oxazole, thiazole, oxadiazole, triazole, thiadiazole, purine, pyrrolopyrrole, and the like. The condensed heterocyclic ring is preferably a condensed ring of 1 to 6 benzene rings and a 5 to 6-membered heterocyclic ring containing nitrogen, oxygen and sulfur as hetero atoms, specifically, benzofuran, benzodioxirane, Examples include benzodioxole, indole, thionaphthene, benzimidazole, benzothiazole, benzoxazole, quinoline, isoquinoline, cinnoline, quinoxazine, acridine, dibenzofuran, xanthenecarbazole, phenanthroline, benzocinoline, phenothiazine, phenoxazine and the like.
[0015]
Among these, from the viewpoint of the stability of the organometallic complex, ring A or ring B is preferably a naphthalene ring, and among the heterocyclic rings, thiophene, thionaphthene, benzofuran, benzodioxirane and the like are preferable. Among them, the case where both ring A and ring B are naphthalene rings is most preferable in terms of stability as a complex thereof.
And when general formula (1) is especially the following general formula (2) or (3), the infrared rays absorption pigment | dye which shows the most outstanding stability is obtained.
[0016]
[Formula 4]
Figure 0003932761
[0017]
In the general formulas (2) and (3), X represents S or Se, and preferably S is used. M represents a metal element, metal oxide or metal halide, preferably Ni, Pd, Pt, Co, Fe, Ti, Sn, or Cu, more preferably Ni, Pt, Pd, Co, Ni Is preferred.
Among these, it is preferable that X is S and M is Ni because it is excellent in performance and economically advantageous. Furthermore, the case where the organometallic complex is a bilaterally symmetric compound is preferable from the viewpoint of ease of synthesis and stability.
[0018]
R 1 ~ R 8 Each independently has a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, an aralkyl group which may have a substituent, or a substituent. Represents an optionally substituted alkoxy group, nitro group, halogen atom, amino group, substituted amino group or cyano group, preferably a hydrogen atom, alkyl group, aryl group, aralkyl group, alkoxy group, nitro group, halogen atom, amino group Represents a group, a substituted amino group or a cyan group, and more preferably a hydrogen atom; C 1-5 such as methyl group, ethyl group, i-butyl group, t-butyl group, n-butyl group and n-pentyl group. Alkyl groups; aralkyl groups such as aryl groups, benzyl groups, and phenethyl groups; alkoxy having 1 to 5 carbon atoms such as methoxy groups, ethoxy groups, t-butoxy groups, and n-butoxy groups An aryloxy group having 6 to 12 carbon atoms such as a phenoxy group and a methylphenoxy group; a nitro group; a halogen atom such as a chlorine atom, a bromine atom and a fluorine atom; an amino group; a dimethylamino group, a diethylamino group and a diphenylamino group; A substituted amino group; or a cyano group, particularly preferably a hydrogen atom.
[0019]
X 1 ~ X 28 Each independently has a hydrogen atom, a halogen atom, a hydroxy group, an alkoxy group, a nitro group, a cyano group, an optionally substituted alkyl group, an optionally substituted aryl group or a substituent. Represents an aralkyl group which may be present. Specifically, a hydrogen atom, a fluorine atom, a chlorine atom, a bromine atom, a hydroxy group, a methoxy group, an ethoxy group, a t-butoxy group, an n-butoxy group, etc., an alkoxy group having 1 to 5 carbon atoms, a phenoxy group, methyl Carbon number 1 such as aryloxy group having 6 to 12 carbon atoms such as phenoxy group, nitro group, cyano group, methyl group, ethyl group, i-butyl group, t-butyl group, n-butyl group and n-pentyl group -5 alkyl groups, substituted alkyl groups such as trichloromethyl group and trifluoromethyl group, aralkyl groups such as aryl group, benzyl group and phenethyl group, preferably hydrogen atom, fluorine atom, chlorine atom, bromine atom , Hydroxy group, methoxy group, ethoxy group, t-butoxy group, n-butoxy group and the like, alkoxy groups having 1 to 5 carbon atoms, trichloromethyl group, trif Oromechiru group, a phenoxy group, methylphenoxy group, a nitro group, an electron-withdrawing group such as cyano group Ageraru.
[0020]
Examples of the organometallic complex of the present invention include the following compounds.
[0021]
[Chemical formula 5]
Figure 0003932761
[0022]
[Chemical 6]
Figure 0003932761
[0023]
[Chemical 7]
Figure 0003932761
[0024]
[Chemical 8]
Figure 0003932761
[0025]
[Chemical 9]
Figure 0003932761
[0026]
When the ring A and ring B are naphthalene rings and X or R, the organometallic complex used in the present invention is produced, for example, as follows. Can do.
[0027]
[Chemical Formula 10]
Figure 0003932761
[0028]
That is, naphthylaldehyde is allowed to act on O-aminobenzenethiols to synthesize benzothiazoline, and then a complex source is reacted to synthesize an imino complex. Then, the compound represented by General formula (2) is easily compoundable by heating an imino complex in a solvent. (Wherein R 1 ~ R 8 And X 1 ~ X 14 Is the same as defined in the general formula (2). )
The organometallic complex of the general formula (3) can be synthesized in the same manner.
Specific examples of complex sources used in this reaction include NiCl. 2 NiCl 2 ・ 6H 2 O, Ni (OCOCH Three ) 2 , Ni (OCOCH Three ) 2 ・ 4H 2 O, NiSO Four , PdCl 2 , PdSO Four , PtCl Four , Na 2 PtCl 6 ・ 6H 2 O, K 2 PtCl 6 ・ 6H 2 O, CoCl 2 , Co (OCOCH Three ) 2 , Co (OCOCH Three ) 2 ・ 4H 2 O, CoSO Four , FeCl Three , FeSO Four , Fe 2 (SO Four ) Three TiCl Three TiCl Four , Ti (SO Four ) 2 , Sn (OCOCH Three ) 2 , Sn (OCOCH Three ) Four , Sn (OMe) Four , Sn (OEt) Four , SnCl 2 , SnCl 2 ・ 2H 2 O, SnCl Four , SnSO Four , Ti (OMe) Four , Ti (OEt) Four CuCl 2 , Cu (OCOCH Three ) 2 , CuSO Four , CuSO Four ・ 4H 2 O etc. are mentioned.
The above reaction is usually performed in a solvent. Examples of the solvent include ethers such as tetrahydrofuran (hereinafter referred to as “THF”), diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, methanol, ethanol, propanol, butanol, pentanol, hexanol, cyclohexanol, octanol, and the like. Alcohols, 1,2,3-trichloropropane, tetrachloroethylene, 1,1,2,2-tetrachloroethane, 1,2-dichloroethane and other halogenated aliphatic hydrocarbons, cyclohexane, hexane, octane, etc. Aliphatic hydrocarbons, aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, monochlorobenzene, dichlorobenzene, nitrobenzene, squalane, N, N-di Amides such as Tylformamide, N, N, N ′, N′-tetramethylurea, Ketones such as acetone, methyl ethyl ketone, and methyl isobutyl ketone, Sulfoxides such as dimethyl sulfoxide and sulfolane, Acetonitrile, Propanenitrile, Benzonitrile, etc. Nitriles such as ethyl acetate, methyl propionate, methyl enanthate, methyl linoleate, and methyl stearate are used. Among these solvents, alcohol solvents and ether solvents are preferable.
[0029]
Moreover, reaction temperature can be smoothly implemented at room temperature or 0 to 150 degreeC.
The organometallic complex used in the present invention thus obtained exhibits strong absorption in the near infrared region, and usually exhibits a blue color tone.
The organometallic complex of the present invention includes various functional dyes, specifically, infrared absorbing filter dyes, heat ray blocking dyes, light shielding film dyes, optical recording material dyes, data code dyes, and laser printer dyes. , Singlet oxygen quencher, anti-fading agent and the like.
[0030]
Next, the manufacturing method of the infrared absorption filter of this invention is demonstrated.
Examples of the method for producing the infrared absorption filter of the present invention include a method of coating a transparent substrate with a coating solution containing an organometallic complex, a method of using a film containing an organometallic complex as a transparent substrate, and the like.
The transparent substrate constituting the infrared absorption filter of the present invention is not particularly limited as long as it is substantially transparent and does not absorb and scatter much. Specific examples include glass, polyolefin resin, amorphous polyolefin resin, polyester resin, polycarbonate resin, poly (meth) acrylate resin, polystyrene, polyvinyl chloride, polyvinyl acetate, poly Examples include arylate resin and polyethersulfone resin. Among these, amorphous polyolefin resin, polyester resin, polycarbonate resin, poly (meth) acrylate resin, polyarylate resin, and polyethersulfone resin are particularly preferable.
[0031]
These resins are blended with known additives such as phenol-based and phosphorus-based antioxidants, halogen-based and phosphoric acid-based flame retardants, heat-resistant anti-aging agents, ultraviolet absorbers, lubricants, antistatic agents and the like. Also good.
The transparent substrate is used by forming these resins into a film shape by a molding method such as injection molding, T-die molding, calender molding, compression molding, or a method of dissolving and casting in an organic solvent. The resin formed into a film may be stretched or unstretched. Moreover, the film which consists of a different material may be laminated | stacked.
[0032]
The thickness of the transparent substrate is usually selected from the range of 10 μm to 5 mm depending on the purpose.
Furthermore, the transparent substrate is subjected to surface treatment by a conventionally known method such as corona discharge treatment, flame treatment, plasma treatment, glow discharge treatment, roughening treatment, chemical treatment, or coating with an anchor coating agent or a primer. Also good.
[0033]
The coating liquid containing the organometallic complex can be prepared by dissolving the metal complex in a solvent together with the binder resin. At this time, the concentration of the total solids such as the organometallic complex and the binder resin dissolved in the solvent is usually 5 to 50% by weight. Moreover, the density | concentration of the organometallic complex with respect to the total solid is 1-80 weight% normally, Preferably it is 2-70 weight%.
[0034]
Further, the organometallic complex can be adjusted by using a dispersant as necessary, and the particle size is usually made fine to 0.1 to 3 μm and dispersed in a solvent together with the binder resin. At this time, the concentration of solids such as the organometallic complex, the dispersant, and the binder resin dispersed in the solvent is 5 to 50% by weight. Moreover, the density | concentration of the organometallic complex with respect to the total solid is 1-80 weight% normally, Preferably it is 5-70 weight%. Examples of the dispersant used include polyvinyl butyral resin, phenoxy resin, rosin-modified phenol resin, petroleum resin, cured rosin, rosin ester, maleated rosin, and polyurethane resin. The amount of its use is 0-100 weight% normally with respect to an organometallic complex, Preferably it is 0-70 weight%.
[0035]
Examples of the binder resin include polymethyl methacrylate resin, polyethyl acrylate resin, polycarbonate resin, ethylene-vinyl alcohol copolymer resin, and polyester resin. The amount used is 10 to 200% by weight, preferably 30 to 100% by weight, based on the organometallic complex.
Solvents include 1,2,3-trichloropropane, tetrachloroethylene, 1,1,2,2-tetrachloroethane, halogenated aliphatic hydrocarbons such as 1,2-dichloroethane, methanol, ethanol, propanol, butanol , Alcohols such as pentanol, hexanol, cyclohexanol and octanol, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, esters cyclohexane such as ethyl acetate, methyl propionate, methyl enanthate, methyl linoleate and methyl stearate , Aliphatic hydrocarbons such as hexane, octane, aromatic hydrocarbons such as benzene, toluene, xylene, mesitylene, monochlorobenzene, dichlorobenzene, nitrobenzene, squalane, dimethyl sulfoxide, sulfora Sulfoxides such as N, N-dimethylformamide, amides such as N, N, N ′, N′-tetramethylurea, tetrahydrofuran (hereinafter referred to as “THF”), diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol Ethers such as dimethyl ether or a mixture thereof can be used.
[0036]
Moreover, you may add another near-infrared absorber to the coating liquid containing an organometallic complex further. Other near infrared absorbers include organic substances such as nitroso compounds and their metal complexes, cyanine compounds, squarylium compounds, thiol nickel complex compounds, phthalocyanine compounds, naphthalocyanine compounds, triallylmethane compounds, immonium compounds Compound, diimmonium compound, naphthoquinone compound, anthraquinone compound, amino compound, aminium salt compound, inorganic carbon black, indium tin oxide, antimony tin oxide, periodic table 4A, 5A or 6A group Examples thereof include metal oxides, carbides, borides, and the like.
[0037]
Thus, in addition to the organometallic complex of the present invention, an infrared absorption filter is used so that the near-infrared transmittance in the wavelength region of 800 to 1100 nm is 15% or less while further using another near-infrared absorber if necessary. Is preferably prepared. In particular, from the viewpoint of transparency and infrared absorption performance, it is preferable to use the metal complex of the present invention in combination with a diimmonium compound. In this case, there is a risk of performance deterioration due to interaction. It is desirable to use it in a separate layer from the organometallic complex.
[0038]
Coating on a transparent substrate with a coating solution containing an organometallic complex is a known method such as dipping method, flow coating method, spray method, bar coating method, gravure coating method, roll coating method, blade coating method, air knife coating method, etc. The coating method is used. The layer containing the organometallic complex is applied so that the film thickness after drying is usually 0.1 to 30 μm, preferably 0.5 to 10 μm.
[0039]
The infrared absorption filter of the present invention can significantly improve the light resistance of the infrared absorption filter due to a synergistic effect with the organometallic complex by further providing an ultraviolet cut layer. The ultraviolet cut layer is capable of efficiently cutting ultraviolet rays having a wavelength of 400 nm or less, and preferably absorbs 70% or more of light having a wavelength of 350 nm. The type of the ultraviolet cut layer is not particularly limited, but a resin film (ultraviolet cut film) containing an ultraviolet absorber is preferable.
[0040]
As an ultraviolet absorber used for the ultraviolet cut layer, any organic or inorganic compound can be used without particular limitation as long as it has a maximum absorption between 300 to 400 nm and can efficiently cut light in the region. be able to. For example, the organic UV absorbers include benzotriazole UV absorbers, benzophenone UV absorbers, salicylic acid ester UV absorbers, triazine UV absorbers, paraaminobenzoic acid UV absorbers, and cinnamic acid UV absorbers. Acrylate ultraviolet absorbers, hindered amine ultraviolet absorbers and the like, and inorganic ultraviolet grade agents include titanium oxide ultraviolet absorbers, zinc oxide ultraviolet absorbers, and particulate iron oxide ultraviolet absorbers. In the case of inorganic ultraviolet absorbers, organic ultraviolet absorbers are preferred because they exist in the form of fine particles in the ultraviolet cut layer and may impair the efficiency of the infrared absorption filter.
[0041]
Examples of such an ultraviolet absorber include Tinuvin P, Tinuvin P, Tinuvin 120, 213, 234, 320, 326, 327, 328, 329, 384, 400, 571, Sumitomo Chemical Co., Ltd. , 300, 577, Kyodo Pharmaceutical Co., Ltd. Biosorb 582, 550, 591, Johoku Chemical Co., Ltd. JF-86, 79, 78, 80, Asahi Denka Co., Ltd. Adekastab LA-32, LA-36, LA- 34, Cipro Chemical Co., Ltd. Seasolv 100, 101, 101S, 102, 103, 501, 201, 202, 612NH, Otsuka Chemical Co., Ltd. RUVA93, 30M, 30S, BASF Corporation Ubinar 3039, etc. .
[0042]
These ultraviolet absorbers may be used alone or in combination.
In addition, fluorescent whitening agents such as Ubitex OB and OB-P manufactured by Ciba Geigy Co., Ltd. that absorb ultraviolet rays and convert the wavelength into the visible region can also be used.
Resin films containing UV absorbers (UV cut films) are made of polyethylene resin, polypropylene resin, polyvinyl chloride resin, polystyrene resin, polymethacrylate resin, polyacrylate resin, polyvinyl butyral resin, polycarbonate resin, and ethylene-vinyl alcohol. It can be produced by adding the above-described ultraviolet absorber based on a resin such as a polymer resin, an ethylene-vinyl acetate copolymer resin, a polyester resin, a melamine resin, or a polyurethane resin. As a method for producing the ultraviolet cut film, general methods such as melting / extrusion, melting / extrusion / stretching method, casting method, calendering method, coating method and the like can be used. The thickness of the ultraviolet cut film is about 2 μm to 1 mm. The addition amount of the ultraviolet absorber varies depending on the thickness of the resin, the intended absorption strength, etc., but is usually 10 ppm to 30% of the film.
[0043]
In addition, as the ultraviolet cut film, a commercially available UV cut filter can be used, and examples thereof include SC-38 and SC-39 of Fuji Film Co., Ltd. and acrylene of Mitsubishi Rayon Co., Ltd. The UV cut filter, SC-39, and acrylene are both UV cut films that absorb 99% or more of the wavelength of 350 nm.
[0044]
The infrared absorption filter of the present invention includes an electromagnetic wave cut layer, an antireflection layer for preventing external light from being reflected on the surface, a glare prevention layer (non-glare layer), an ultraviolet cut layer, etc., as necessary. It can be used as a PDP filter.
The PDP filter is not particularly limited in its configuration, production, and the like. For example, the infrared absorption filter of the present invention is bonded to a transparent resin substrate via an adhesive layer, and an antireflection layer or a non-glare layer on both sides thereof. Further, an ultraviolet cut layer may be provided on the PDP side of the infrared absorption filter, or an electromagnetic wave cut layer may be provided between arbitrary layers of the PDP filter. The layer structure of the PDP filter is not limited to this, and any layer may be omitted as necessary, or another layer may be added as appropriate, as long as the performance as a PDP filter can be sufficiently exerted. The layer configuration may be changed.
[0045]
Further, in the infrared absorption filter, when the organometallic complex of the present invention and another near infrared absorber are used in combination, they may be used in the same layer of the present invention, but light resistance due to their interaction, etc. If there is a risk of performance deterioration, the layers may be divided into separate layers and laminated as a plurality of layers.
The electromagnetic wave cut layer is a layer provided to shield the electromagnetic wave emitted from the PDP, and transmits a visible light region of 400 to 700 nm by 70% or more, and has a surface resistivity of 50Ω / □ or less. preferable. In order to provide the electromagnetic wave cut layer, vapor deposition of metal oxide or the like, sputtering method or the like can be used. Usually, indium tin oxide (ITO) is common, but light of 1000 nm or more can also be cut by alternately laminating a derivative layer and a metal layer on a substrate by sputtering or the like. The dielectric layer is a transparent metal oxide such as indium oxide, zinc oxide, antimony tin oxide, and aluminum zinc oxide. The metal layer is generally silver or a silver-palladium alloy. Three, five, seven or eleven layers are stacked. As the substrate, the infrared absorption filter of the present invention may be used as it is, or after deposition or sputtering on a resin film or glass to provide an electromagnetic wave cut layer, it may be bonded to the infrared absorption filter of the present invention. good.
In order to suppress the reflection of the surface and improve the transmittance of the filter, the antireflection layer is formed by applying an inorganic substance such as a metal oxide, fluoride, silicide, boride, carbide, nitride, sulfide, etc. There are a method of laminating a single layer or a multilayer by a sputtering method, an ion plating method, an ion beam assist method, or the like, a method of laminating a resin having a different refractive index, such as an acrylic resin or a fluorine resin, in a single layer or a multilayer. Moreover, the film which gave the antireflection process can also be affixed on this filter.
[0046]
A non-glare layer can also be provided. In order to scatter the transmitted light, the non-glare layer may be formed by coating fine powders such as silica, melamine, and acrylic and coating the surface in order to scatter transmitted light. The ink can be cured by thermal curing or photocuring. Further, a non-glare-treated film can be stuck on the filter. Further, if necessary, a hard coat layer can be provided.
[0047]
Furthermore, this infrared absorption filter can be used alone, or can be used as a laminate by further bonding with transparent glass or another transparent resin plate. The infrared absorption filter obtained by the present invention can be used for a wide range of applications such as a display filter, a heat ray blocking film, sunglasses, protective glasses, and a remote control receiver, in addition to being particularly suitably used as a PDP filter.
[0048]
【Example】
Hereinafter, the present invention will be described by way of examples, but the present invention is not limited thereto.
Example 1
Dissolve 1.56 g (0.01 mol) of 2-naphthylaldehyde in about 10 ml of methanol, and add 1.10 ml (0.01 mol) of o-aminobenzenethiol to the solution at room temperature with stirring. Fluxed. Add 20 ml of ethanol and Ni (AcO) to the solution. 2 ・ 4H 2 When 1.10 g (0.0044 mol) of O was added, a reddish brown solid precipitated. Further, after refluxing for 1 hour, after filtration under reduced pressure and ethanol washing several times, the filtrate was vacuum-dried at 60 ° C., and 2.35 g (0.040 mol: yield 91.5) of a reddish brown organometallic complex represented by the following formula: %).
[0049]
Embedded image
Figure 0003932761
[0050]
100 ml of THF was added to 1.0 g of the organometallic complex and refluxed until the reaction solution turned blue. Thereafter, the filtrate was concentrated by removing the filtrate by vacuum filtration, and the product was crystallized by concentrating the filtrate. Thereafter, the crystals were filtered under reduced pressure and vacuum dried at 60 ° C. to obtain 0.91 g (yield 91.0%) of the following product.
[0051]
Embedded image
Figure 0003932761
[0052]
Structural analysis
(1) Elemental analysis (C26H18Cl2N2NiS2)
Found: C, 68.76; H, 3.75; N, 4.80; S, 11.14
Calc: C, 70.00; H, 4.15; N, 4.80; S, 10.99
(2) Mass spectrum: M / Z.582
(The mass pattern is C 34 H twenty four N 2 S 2 Matched with Ni, simulated. )
This organometallic complex exhibited a strong absorption of ε = 32000 in tetrahydrofuran (hereinafter sometimes abbreviated as “THF”) in the near infrared region of 830 nm.
Example 2
Dissolve 1.56 g (0.01 mol) of 1-naphthylaldehyde in about 10 ml of methanol, and add 1.10 ml (0.01 mol) of o-aminobenzenethiol to the solution at room temperature with stirring. Fluxed. Add 20 ml of ethanol and Ni (AcO) to the solution. 2 ・ 4H 2 When 1.10 g (0.0044 mol) of O was added, a reddish brown solid precipitated. Further, after refluxing for 1 hour, after filtration under reduced pressure and ethanol washing several times, the filtrate was vacuum-dried at 60 ° C., and 2.22 g of reddish brown organometallic complex represented by the following formula (0.038 mol: yield 86.5). %).
[0053]
Embedded image
Figure 0003932761
[0054]
100 ml of THF was added to 1.0 g of the organometallic complex and refluxed until the reaction solution turned blue. Thereafter, the filtrate was concentrated by removing the filtrate by vacuum filtration, and the product was crystallized by concentrating the filtrate. Thereafter, the crystals were filtered under reduced pressure and vacuum dried at 60 ° C. to obtain 0.72 g (yield 72.0%) of the following product.
[0055]
Embedded image
Figure 0003932761
[0056]
Example 3
In order to evaluate light resistance, 0.06 g of a 5 wt% THF solution of the organometallic complex obtained in Example 1 was added to THF of a polymethyl methacrylate resin (trade name; Dianar BR-80: product of Mitsubishi Rayon Co., Ltd.). After adding 1.5 g of / toluene (= 1/1) solution (resin concentration 20% by weight) and completely dissolving with an ultrasonic cleaner, this coating solution is applied to an OHP film with a bar coater # 24. The near-infrared absorption film was obtained by coating and drying. The coating film thickness was about 6 μm.
[0057]
When the near infrared absorption of this film was measured with Hitachi spectrophotometer U-3500, (lambda) max was 835 nm.
Further, this film was covered with a UV cut filter (Acryprene + SC-39) manufactured by Fuji Photo Film, and irradiated for 400 hours with a xenon long life fade meter (FAL-25AX-HCB-EC) (product of Suga Test Instruments Co., Ltd.) at 835 nm. When the absorption intensity before and after irradiation was measured, the intensity after irradiation was 90.6% of the intensity before irradiation, and it was confirmed that the light resistance was high.
Example 4
To 0.5 parts by weight of a 0.5 wt% methyl ethyl ketone solution of the organometallic complex obtained in Example 1, polymethyl methacrylate resin (Mitsubishi Rayon Co., Ltd. product Dainar BR-80) MEK / toluene (= 1/1 / 1) A coating solution containing 1 part by weight of a solution (20% by weight solution) and 0.2 part by weight of toluene was coated on a 50 μm thick polyethylene terephthalate film to a thickness of 2 μm.
A multilayer deposited film of silver / indium tin oxide (ITO) having a surface resistivity of 5Ω / □ was bonded to the film.
[0058]
Further, after being bonded to a polycarbonate plate having a thickness of 4 mm, an antireflection agent made of a fluororesin was coated on both sides to a thickness of 100 nm to obtain a plasma display panel filter.
The obtained filter for plasma display panel had a light transmittance of 800 to 880 nm of 20% or less and a visible light transmittance of 65% or more. In particular, the transmittance at 400 to 500 nm is as high as 75% or more and the yellow color is small. Therefore, when installed on the front of the display, the image quality is not deteriorated and the filter is good.
Comparative Example 1
1.78 g (0.018 mol) of KOH was dissolved in about 80 ml of ethanol, and 2.00 g (0.016 mol) of o-aminobenzenethiol was added to the solution with stirring at room temperature to obtain a ligand solution.
[0059]
On the other hand, 1.92 g (0.008 mol) of nickel (II) chloride hexahydrate was dissolved in 20 ml of ethanol and added dropwise with stirring to the above ligand solution, and the solution changed to dark blue.
Then filtered, H 2 The bis (2-phenylaminobenzenethiol) nickel complex represented by the formula (IV) was isolated by washing with O, ethanol, removal of insoluble acetone, and drying (yield 1.721 g; yield 70.5%). This complex exhibited a strong absorption of ε = 35400 at 805 nm in the near infrared region in THF.
[0060]
Embedded image
Figure 0003932761
[0061]
In order to evaluate the light resistance, 0.6 g of a 5 wt% THF solution of the obtained bis (2-phenylaminobenzenethiol) nickel complex was added to a polymethyl methacrylate resin (trade name; Dianal BR-80: Mitsubishi Rayon Co., Ltd.). Product) in a THF / toluene (= 1/1) solution (resin concentration: 20% by weight) was added and dissolved completely in an ultrasonic cleaner, and then the coating solution was added to bar coater # 24. Was applied to an OHP film to obtain a near-infrared absorbing film. The coating film thickness was 6 μm.
[0062]
When the near infrared absorption of this film was measured with Hitachi spectrophotometer U-3500, (lambda) max was 825 nm.
Further, this film was covered with a UV cut filter (SC-39) manufactured by Fuji Photo Film, and irradiated with a xenon long life fade meter (FAL-25AX-HCB-EC) (product of Suga Test Instruments Co., Ltd.) for 400 hours at 825 nm. When the absorption intensity before and after irradiation was measured, the intensity after irradiation was 81.8% of the intensity before irradiation.
[0063]
Comparative Example 2
A polymethyl methacrylate resin (Mitsubishi Rayon Co., Ltd.) was added to 0.8 part by weight of a 1% by weight MEK / toluene (= 1/1) solution of a phthalocyanine dye (IR-3 manufactured by Nippon Shokubai Co., Ltd.) known as a near infrared absorbing dye. Product dialnal BR-80) MEK / toluene (= 1/1) solution (20% by weight solution) 1 part by weight, MEK 0.1 part by weight, toluene added 0.1 part by weight, 50 μm A polyethylene terephthalate film having a thickness of 2 μm was coated.
[0064]
In the same manner as in Example 4, a silver / ITO multilayer deposited film was bonded to the above film and further bonded to a polycarbonate plate, and then an antireflection agent was coated on both surfaces to obtain a filter for a plasma display panel.
The obtained filter for plasma display panel had a light transmittance of 800 to 880 nm of 20% or less, but a visible light transmittance of 45% or more and a transmittance of 400 to 500 nm was 58% or less. When installed on the screen, the screen becomes dark, which is not preferable as a filter.
[0065]
【The invention's effect】
According to the present invention, an organometallic complex exhibiting strong absorption in the near infrared region can be provided. In addition, since this organometallic complex is soluble in an organic solvent, it can be easily processed into a film or the like, and provided with this near infrared absorbing layer, the near infrared absorbing performance, heat ray absorbing ability, visible light transmitting ability and long-time A near-infrared absorption filter having excellent light resistance can be provided.

Claims (13)

下記一般式(1)
Figure 0003932761
(Xは、SまたはSeを表し、Mは、金属元素を表す。環A及び環Bは、各々独立に、ベンゼン環以外の任意の芳香族環を表し、さらに芳香族環は任意の置換基により置換されていてもよい。R1 〜R8は、各々独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアルコキシ基、ニトロ基、ハロゲン原子、アミノ基、置換アミノ基またはシアノ基を表す。)で表されることを特徴とする有機金属錯体。
The following general formula (1)
Figure 0003932761
(X represents S or Se, M represents a metal element. Ring A and ring B each independently represent any aromatic ring other than a benzene ring, and the aromatic ring represents an optional substituent. R 1 to R 8 each independently have a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, or a substituent. An aralkyl group which may be substituted, an alkoxy group which may have a substituent, a nitro group, a halogen atom, an amino group, a substituted amino group or a cyano group)) Complex.
前記一般式(1)で表される有機金属錯体が下記一般式(2)または一般式(3)で表されることを特徴とする請求項1に記載の有機金属錯体。
Figure 0003932761
(R1 〜R8は、それぞれ独立に、水素原子、置換基を有していてもよいアルキル基、置換基を有していてもよいアリール基、置換基を有していてもよいアラルキル基、置換基を有していてもよいアルコキシ基、ニトロ基、ハロゲン原子、アミノ基、置換アミノ基またはシアノ基を表わし、X1〜X28は、それぞれ独立に、水素原子、ハロゲン原子、アルコキシ基、ニトロ基、シアノ基、置換されていてもよいアルキル基、置換基を有していてもよいアリール基または置換基を有していてもよいアラルキル基を表す。)で表されることを特徴とする有機金属錯体。
The organometallic complex represented by the general formula (1) is represented by the following general formula (2) or general formula (3).
Figure 0003932761
(R 1 to R 8 are each independently a hydrogen atom, an alkyl group which may have a substituent, an aryl group which may have a substituent, or an aralkyl group which may have a substituent. Represents an optionally substituted alkoxy group, nitro group, halogen atom, amino group, substituted amino group or cyano group, and X 1 to X 28 each independently represents a hydrogen atom, a halogen atom or an alkoxy group. , A nitro group, a cyano group, an optionally substituted alkyl group, an optionally substituted aryl group or an optionally substituted aralkyl group. An organometallic complex.
一般式(1)において、XがSであることを特徴とする請求項1〜2に記載の有機金属錯体。In general formula (1), X is S, The organometallic complex of Claim 1-2 characterized by the above-mentioned. 一般式(1)において、Mが、Ni、Pd、Pt、Co、Fe、TiO、Sn、またはCuであることを特徴とする請求項1〜3に記載の有機金属錯体。In general formula (1), M is Ni, Pd, Pt, Co, Fe, TiO, Sn, or Cu, The organometallic complex of Claims 1-3 characterized by the above-mentioned. 一般式(1)において、Mが、Niであることを特徴とする請求項1〜4に記載の有機金属錯体。In general formula (1), M is Ni, The organometallic complex of Claims 1-4 characterized by the above-mentioned. 請求項1〜5に記載の有機金属錯体であることを特徴とする赤外線吸収色素。An infrared absorbing dye, which is the organometallic complex according to claim 1. 請求項1〜5に記載の有機金属錯体を含有することを特徴とする赤外線吸収フィルター。An infrared absorption filter comprising the organometallic complex according to claim 1. さらに紫外線カット層を有することを特徴とする請求項7に記載の赤外線吸収フィルター。The infrared absorption filter according to claim 7, further comprising an ultraviolet cut layer. 請求項7〜8に記載の赤外線吸収フィルターを用いることを特徴とするプラズマディスプレイパネル用フィルター。A filter for a plasma display panel, wherein the infrared absorption filter according to claim 7 is used. さらに電磁波カット層を有することを特徴とする請求項9に記載のプラズマディスプレイパネル用フィルター。Furthermore, it has an electromagnetic wave cut layer, The filter for plasma display panels of Claim 9 characterized by the above-mentioned. さらに反射防止層を有することを特徴とする請求項9〜10に記載のプラズマディスプレイパネル用フィルター。The plasma display panel filter according to claim 9, further comprising an antireflection layer. さらにぎらつき防止(ノングレア)層を有することを特徴とする請求項9〜11に記載のプラズマディスプレイパネル用フィルター。The plasma display panel filter according to claim 9, further comprising a glare-preventing (non-glare) layer. さらにUVカット層を有することを特徴とする請求項9〜12に記載のプラズマディスプレイパネル用フィルター。The plasma display panel filter according to claim 9, further comprising a UV cut layer.
JP2000071475A 2000-03-15 2000-03-15 Organometallic complex, infrared absorption filter using the same and filter for plasma display panel Expired - Lifetime JP3932761B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000071475A JP3932761B2 (en) 2000-03-15 2000-03-15 Organometallic complex, infrared absorption filter using the same and filter for plasma display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000071475A JP3932761B2 (en) 2000-03-15 2000-03-15 Organometallic complex, infrared absorption filter using the same and filter for plasma display panel

Publications (2)

Publication Number Publication Date
JP2001261991A JP2001261991A (en) 2001-09-26
JP3932761B2 true JP3932761B2 (en) 2007-06-20

Family

ID=18590056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000071475A Expired - Lifetime JP3932761B2 (en) 2000-03-15 2000-03-15 Organometallic complex, infrared absorption filter using the same and filter for plasma display panel

Country Status (1)

Country Link
JP (1) JP3932761B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4798690B2 (en) * 2004-01-06 2011-10-19 株式会社エーピーアイ コーポレーション Method for producing dithiolate-based metal complex
JP4530790B2 (en) * 2004-09-30 2010-08-25 株式会社エーピーアイ コーポレーション Method for producing dithiolate-based metal complex
JP4530791B2 (en) * 2004-09-30 2010-08-25 株式会社エーピーアイ コーポレーション Method for producing dithiolate-based metal complex
JP5011759B2 (en) 2006-03-07 2012-08-29 トヨタ自動車株式会社 Fuel cell with cell voltage monitor
CN110405224B (en) * 2019-08-13 2021-10-15 大连理工大学 Method for one-step rapid synthesis of copper nanoclusters by taking amino thiophenol as ligand

Also Published As

Publication number Publication date
JP2001261991A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
EP1197528B1 (en) Organic metal complex, infrared-absorbing dye and infrared absorption filter containing the same, and filter for plasma display panel
JP2000159776A (en) Metal complex, infrared-absorbing agent and filter for plasma display
US6746629B2 (en) Squarylium compounds, filters for plasma display panels employing them, and plasma display panel devices
JP2003139946A (en) Near ir ray absorbing filter
JP3932761B2 (en) Organometallic complex, infrared absorption filter using the same and filter for plasma display panel
JP2005099755A (en) Optical filter
JP2016204536A (en) Phthalocyanine compound, and near-infrared cut filter containing the same
JP3940786B2 (en) Infrared absorption filter and filter for plasma display panel
KR20110053981A (en) Phthalocyanine compound
JP5010123B2 (en) Phthalocyanine compound and near-infrared absorbing dye comprising the same
JP5603673B2 (en) Near-infrared absorbing dye and pressure-sensitive adhesive containing near-infrared absorbing dye
JP2009249565A (en) Phthalocyanine compound
JPWO2008050725A1 (en) Near-infrared absorbing dye composition and near-infrared absorbing filter and adhesive containing the same
JP4589742B2 (en) Near infrared absorption filter
JP4149050B2 (en) Infrared absorption filter
JP3885364B2 (en) Near infrared absorption filter
JP4632930B2 (en) Near infrared absorption filter
JP2004361733A (en) Optical filter
JP3682347B2 (en) Near infrared absorption filter for plasma display
JP4798690B2 (en) Method for producing dithiolate-based metal complex
JP5539676B2 (en) Phthalocyanine compounds
JP2002139619A (en) Infrared-ray absorbing filter and filter for plasma display panel
JP4793977B2 (en) Near infrared absorption filter
WO2018186490A1 (en) Naphthalocyanine compound, method for producing same, and use thereof
JP4811904B2 (en) Compound, near infrared absorbing dye, near infrared absorbing filter and electronic display filter

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070312

R151 Written notification of patent or utility model registration

Ref document number: 3932761

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140330

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term