[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3898096B2 - Wavelength multiplex transmission equipment - Google Patents

Wavelength multiplex transmission equipment Download PDF

Info

Publication number
JP3898096B2
JP3898096B2 JP2002184920A JP2002184920A JP3898096B2 JP 3898096 B2 JP3898096 B2 JP 3898096B2 JP 2002184920 A JP2002184920 A JP 2002184920A JP 2002184920 A JP2002184920 A JP 2002184920A JP 3898096 B2 JP3898096 B2 JP 3898096B2
Authority
JP
Japan
Prior art keywords
wavelength
transmission means
switching
system transmission
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002184920A
Other languages
Japanese (ja)
Other versions
JP2004032306A (en
Inventor
幹夫 南雲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002184920A priority Critical patent/JP3898096B2/en
Publication of JP2004032306A publication Critical patent/JP2004032306A/en
Application granted granted Critical
Publication of JP3898096B2 publication Critical patent/JP3898096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Communication System (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、現用系、予備系のプロテクション切替制御を行う波長多重伝送装置に関するものである。
【0002】
【従来の技術】
図4は従来の波長多重伝送装置の構成を示すブロック図である。
図4において、101は0系および1系の冗長化された伝送路に接続された波長多重伝送装置、102は0系波長変換部1〜n,103は1系波長変換部1〜n,104は0系波長光を合波する0系光合波部、105は0系多重光を分波する0系光分波部、106は1系波長光を合成する1系光合波部、107は1系多重光を分波する1系光分波部、108は0系多重光を光増幅し0系伝送路112へ出力する0系光増幅部、109は0系伝送路113から入力された多重光を光増幅し0系光分波部105へ出力する0系光増幅部、110は1系多重光を増幅し1系伝送路114へ出力する1系光増幅部、111は1系伝送路115から入力された多重光を光増幅し1系光分波部107へ出力する1系光増幅部である。
【0003】
また、図4において、112は波長多重伝送装置101から他の波長多重伝送装置への0系伝送路、113は他の波長多重伝送装置から波長多重伝送装置101への0系伝送路、114は波長多重伝送装置101から他の波長多重伝送装置への1系伝送路、115は他の波長多重伝送装置から波長多重伝送装置101への1系伝送路である。
【0004】
さらに、図4において、116は冗長している波長変換部のプロテクション切替を行うプロテクション制御部、124aはプロテクション制御部116から0系波長変換部102へ現用系/予備系切替コマンドを送る0系制御信号、124bは0系波長変換部102からプロテクション制御部116への切替要因発生通知を行う0系状態信号、125aはプロテクション制御部116から1系波長変換部103へ現用系/予備系切替コマンドを送る1系制御信号、125bは1系波長変換部103からプロテクション制御部116への切替要因発生通知を行う1系状態信号、119は外部装置からの光信号を0系波長変換部102および1系波長変換部103へ分配し、かつ0系波長変換部102および1系波長変換部103からの光信号を合成する光カプラ部である。
【0005】
次に動作について説明する。
外部装置からの光信号は、光カプラ部119で分配され、0系波長変換部102および1系波長変換部103へ入力される。0系波長変換部102により変換されたn個の波長光は、0系光合波部104で合波された後、0系光増幅部108で増幅され、0系伝送路112を介して、波長多重伝送装置101から他の波長多重伝送装置へ伝送される。また、0系伝送路113を介して他の波長多重伝送装置から波長多重伝送装置101へ伝送されてきた波長多重光は、0系光増幅部109で増幅され、0系光分波部105でn個の波長光へ分波される。各波長光は、0系波長変換部102で波長変換され、光カプラ部119を介して外部装置へ出力される。
【0006】
同様に、1系波長変換部103により変換されたn個の波長光は、1系光合波部106で合波された後、1系光増幅部110で増幅され、1系伝送路114を介して、波長多重伝送装置101から他の波長多重伝送装置へ伝送される。また同様に、1系伝送路115を介して他の波長多重伝送装置から波長多重伝送装置101へ伝送されてきた波長多重光は、1系光増幅部111で増幅され、1系光分波部107でn個の波長光へ分波される。各波長光は、1系波長変換部103で波長変換され、光カプラ部119を介して外部装置へ出力される。
【0007】
0系波長変換部102および1系波長変換部103から光カプラ部119への光信号は同じ信号であり、いずれかの信号のみ出力される。プロテクション制御部116は、0系波長変換部102および1系波長変換部103からの0系状態信号124b,1系状態信号125bにより、伝送路障害、故障等の切替発生要因の有無を監視し、0系制御信号124a,1系制御信号125aによって、切替要因が有る系へ予備系切替コマンドを、切替要因が無い系へ現用系切替コマンドを0系波長変換部102および1系波長変換部103へ送出する。予備系切替コマンドを受信した波長変換部は、光カプラ部119への光出力のシャットダウンを実行する。逆に、現用系切替コマンドを受信した波長変換部は、光カプラ部119への光出力シャットダウンを解除する。
【0008】
【発明が解決しようとする課題】
従来の波長多重伝送装置は以上のように構成されているので、装置立ち上がり時に両系の切替要因発生通知が無い場合には例えば0系が現用系となり、プロテクション制御部の交換等で一度抜いてから活線挿入したときに0系が現用系である場合には問題無いが、1系が現用系であるときには0系への不要な切替が発生してしまうという課題があった。
【0009】
例えば図4において、0系が予備系、1系が現用系で運用、いずれも障害なしの場合を考える。交換用のプロテクション制御部116の初期設定が0系⇒現用系、1系⇒予備系となっていると、古いプロテクション制御部116を抜去して新しいプロテクション制御部116を挿入した際に、0系が予備系から現用系に、1系が現用系から予備系に切り替わって、データの瞬断が発生してしまうことになる。逆に、0系が現用系、1系が予備系で運用、いずれも障害なしの場合であっても、交換用のプロテクション制御部116の初期設定が0系⇒予備系、1系⇒現用系となっていれば、同様の結果に陥る。
【0010】
この発明は上記のような課題を解決するためになされたもので、プロテクション制御部の交換等で抜去後に活線挿入したときに、0系、1系いずれが現用系であっても不要な切替の発生を回避する波長多重伝送装置を得ることを目的とする。
【0011】
【課題を解決するための手段】
この発明に係る波長多重伝送装置は、プロテクション制御手段が、0系伝送手段および1系伝送手段へ現用系/予備系切替コマンドを送出するとともに、0系伝送手段および1系伝送手段からの現用系/予備系切替コマンド情報と切替要因発生通知とに応じてプロテクション切替を決定し、0系伝送手段および1系伝送手段が、切替要因発生通知とともに、プロテクション制御手段から受けた現用系/予備系切替コマンドを現用系/予備系切替コマンド情報としてプロテクション制御手段へ送り返し続けるようにしたものである。
【0012】
この発明に係る波長多重伝送装置は、プロテクション制御手段が、現用系/予備系切替コマンドにCRCコードを付加して、0系伝送手段および1系伝送手段へ送出するとともに、0系伝送手段および1系伝送手段が、切替要因発生通知、現用系/予備系切替コマンド情報およびCRCコードをプロテクション制御手段へ送り返すようにしたものである。
【0013】
この発明に係る波長多重伝送装置は、0系伝送手段および1系伝送手段が、2つ以上の切替要因発生通知と、現用系/予備系切替コマンド情報およびCRCコードとをプロテクション制御手段へ送り返すようにしたものである。
【0014】
【発明の実施の形態】
以下、この発明の実施の一形態を説明する。
実施の形態1.
図1はこの発明の実施の形態1による波長多重伝送装置の構成を示すブロック図である。
図1において、1は0系および1系の冗長化された伝送路に接続された波長多重伝送装置、2は0系波長変換部1〜n(0系伝送手段)、3は1系波長変換部1〜n(1系伝送手段)、4は0系波長光を合波する0系光合波部(0系伝送手段)、5は0系多重光を分波する0系光分波部(0系伝送手段)、6は1系波長光を合成する1系光合波部(1系伝送手段)、7は1系多重光を分波する1系光分波部(1系伝送手段)、8は0系多重光を光増幅し0系伝送路12へ出力する0系光増幅部(0系伝送手段)、9は0系伝送路13から入力された多重光を光増幅し0系光分波部5へ出力する0系光増幅部(0系伝送手段)、10は1系多重光を増幅し1系伝送路14へ出力する1系光増幅部(1系伝送手段)、11は1系伝送路15から入力された多重光を光増幅し1系光分波部7へ出力する1系光増幅部(1系伝送手段)である。
【0015】
また、図1において、12は波長多重伝送装置1から他の波長多重伝送装置への0系伝送路、13は他の波長多重伝送装置から波長多重伝送装置1への0系伝送路、14は波長多重伝送装置1から他の波長多重伝送装置への1系伝送路、15は他の波長多重伝送装置から波長多重伝送装置1への1系伝送路である。
【0016】
さらに、図1において、16は冗長している波長変換部のプロテクション切替を行うプロテクション制御部(プロテクション制御手段)、17aはプロテクション制御部16から0系波長変換部2へ現用系/予備系切替コマンドを送る0系制御信号、17bは0系波長変換部2からプロテクション制御部16への切替要因発生通知および現用系/予備系切替コマンド情報を送る0系状態信号、18aはプロテクション制御部16から1系波長変換部3へ現用系/予備系切替コマンドを送る1系制御信号、18bは1系波長変換部3からプロテクション制御部16への切替要因発生通知および現用系/予備系切替コマンド情報を送る1系状態信号である。そして、19は外部装置からの光信号を0系波長変換部2および1系波長変換部3へ分配し、かつ0系波長変換部2および1系波長変換部3からの光信号を合成する光カプラ部である。
【0017】
プロテクション制御の動作について次に説明する。
プロテクション制御部16は、0系波長変換部2および1系波長変換部3からの切替要因発生通知とともに、0系波長変換部2および1系波長変換部3がプロテクション制御部16から現用系/予備系切替コマンドを受信して送り返した現用系/予備系切替コマンド情報(各系における現用系/予備系の運用系を表す情報)を、0系状態信号17b,1系状態信号18bを介して監視している。0系、1系いずれかの系で伝送路障害、故障等が発生すると、0系波長変換部2または1系波長変換部3は、切替要因発生通知をプロテクション制御部16へ送出する。プロテクション制御部16は、切替要因発生通知を送出した系に予備系切替コマンドを、切替要因発生通知の無い系に現用系切替コマンドを、0系制御信号17a,1系制御信号18aを介して出力する。0系波長変換部2および1系波長変換部3は、受信した現用系/予備系切替コマンドを現用系/予備系切替コマンド情報として0系状態信号17b,1系状態信号18bを介してプロテクション制御部16へ送り返す。
【0018】
例えば0系が予備系、1系が現用系で運用、いずれも障害なしの場合を考える。交換前のプロテクション制御部16は、0系の波長変換部2へ予備系切替コマンドを、1系の波長変換部3へ現用系切替コマンドを送出している。両系とも障害無しなので、両系の各波長変換部2,3は、切替要因発生通知無しをプロテクション制御部16へ送信している。さらに、この切替要因発生通知無しに加えて、0系波長変換部2は、プロテクション制御部16からの予備系切替コマンドを予備系切替コマンド情報としてプロテクション制御部16へ送り返し、1系波長変換部3は、プロテクション制御部16からの現用系切替コマンドを現用系切替コマンド情報としてプロテクション制御部16へ送り返している。
【0019】
0系波長変換部2,1系波長変換部3は、プロテクション制御部16を交換する際にも、この交換時に受信している現用系/予備系切替コマンド情報を保持して送り返し続ける。従来と異なり、交換用のプロテクション制御部16の初期設定は、両系の波長変換部から送り返し続けられている現用系/予備系切替コマンド情報によって決定されるようになっている。したがって、抜去・挿入後の新しいプロテクション制御部16は、0系波長変換部2からの予備系切替コマンド情報を受けて0系をそのまま予備系に設定し、同様に、1系波長変換部3からの現用系切替コマンド情報を受けて1系を現用系にそのまま設定する。したがって、交換前後で現用・予備両系の不要な切替が発生せず、データの瞬断を回避できる。
【0020】
以上のように、この実施の形態1によれば、プロテクション制御部16が、0系波長変換部2および1系波長変換部3へ0系制御信号17a,1系制御信号18aによって現用系/予備系切替コマンドを送出するとともに、0系波長変換部2および1系波長変換部3からの現用系/予備系切替コマンド情報と切替要因発生通知とに応じてプロテクション切替を決定し、0系波長変換部2および1系波長変換部3が、切替要因発生通知とともに、プロテクション制御部16から受けた現用系/予備系切替コマンドを現用系/予備系切替コマンド情報として0系状態信号17b,1系状態信号18bによってプロテクション制御部16へ送り返し続けるようにしたので、0系、1系いずれの系が現用系であっても不要な切替を発生することなく、プロテクション制御部交換時の活線抜去、挿入を行うことができるという効果が得られる。
【0021】
実施の形態2.
実施の形態1では、0系制御信号17a,1系制御信号18aに現用系/予備系切替コマンドを、0系状態信号17b,1系状態信号18bに切替要因発生通知および現用系/予備系切替コマンド情報を送出したが、これらにCRC(“Cyclic Redundancy Check”,巡回冗長検査)コードを付加しても良く、プロテクション制御部および波長変換部の活線での抜去、挿入時のデータ誤りによる不要な切替を回避するためのデータの保護回路を無くし、遅延時間を削減することができる。
【0022】
図2はこの発明の実施の形態2による波長多重伝送装置の構成を示すブロック図であり、0系波長変換部2,1系波長変換部3,プロテクション制御部16だけを特に図示している。図2(a)において、20aは0系制御信号、20bは0系状態信号、21aは1系制御信号、21bは1系状態信号である。
【0023】
図2(b)に示すように、0系制御信号20a,1系制御信号21aには、現用系/予備系切替コマンドおよびCRCコードが、0系状態信号20b,1系状態信号21bには、切替要因発生通知、現用系/予備系切替コマンド情報およびCRCコードが伝送されており、上述の遅延時間の削減が可能になっている。なお、図2(b)中のBLANKは必ずしも必要ではない。
【0024】
以上のように、この実施の形態2によれば、プロテクション制御部16が、現用系/予備系切替コマンドにCRCコードを付加して、0系制御信号20aおよび1系制御信号21aによって0系波長変換部2および1系波長変換部3へ送出するとともに、0系波長変換部2および1系波長変換部3が、切替要因発生通知、現用系/予備系切替コマンド情報およびCRCコードを0系状態信号20bおよび1系状態信号21bによってプロテクション制御部16へ送り返すようにしたので、プロテクション制御部16の抜去、挿入時のデータ誤りを回避するための保護回路を無くし、切替遅延時間を削減できるという効果が得られる。
【0025】
実施の形態3.
実施の形態2では、0系状態信号20b,1系状態信号21bに切替要因発生通知、現用系/予備系切替コマンド情報、CRCコードを送出したが、切替要因発生通知を優先度に応じて2種類以上のコードを送出しても良く、両系に障害が発生しているような場合に、より細かくプロテクション切替制御を行うことができる。
【0026】
図3はこの発明の実施の形態3による波長多重伝送装置の構成を示すブロック図であり、0系波長変換部2,1系波長変換部3,プロテクション制御部16だけを特に図示している。図3(a)において、22aは0系制御信号、22bは0系状態信号、23aは1系制御信号、23bは1系状態信号である。
【0027】
図3(b)に示すように、0系制御信号22a,1系制御信号23aには、現用系/予備系切替コマンドおよびCRCコードが、0系状態信号22b,1系状態信号23bには、切替要因発生通知1,切替要因発生通知2,現用系/予備系切替コマンド情報およびCRCコードが伝送される。例えば、0系波長変換部2および1系波長変換部3には複数チャネルが多重されており、0系波長変換部2には1つのチャネルの障害が発生した場合には、1系波長変換部3を現用系とするが、その後1系波長変換部3に全チャネルの障害が発生した場合には、0系波長変換部2に切り戻す等が可能である。なお、図3(b)中のBLANKは必ずしも必要ではない。
【0028】
以上のように、この実施の形態3によれば、0系波長変換部2および1系波長変換部3が、2つ以上の切替要因発生通知と、現用系/予備系切替コマンド情報およびCRCコードとを0系状態信号22bおよび1系状態信号23bによってプロテクション制御部16へ送り返すようにしたので、波長変換部が複数チャネルを多重している場合に、例えば1チャネルの障害と全チャネルの障害とで優先度をつけたプロテクション切替が制御できるという効果が得られる。
【0029】
【発明の効果】
以上のように、この発明によれば、プロテクション制御手段が、0系伝送手段および1系伝送手段へ現用系/予備系切替コマンドを送出するとともに、0系伝送手段および1系伝送手段からの現用系/予備系切替コマンド情報と切替要因発生通知とに応じてプロテクション切替を決定し、0系伝送手段および1系伝送手段が、切替要因発生通知とともに、プロテクション制御手段から受けた現用系/予備系切替コマンドを現用系/予備系切替コマンド情報としてプロテクション制御手段へ送り返し続けるようにしたので、0系、1系いずれの系が現用系であっても不要な切替を発生することなく、プロテクション制御部交換時の活線抜去、挿入を行うことができるという効果が得られる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による波長多重伝送装置の構成を示すブロック図である。
【図2】 この発明の実施の形態2による波長多重伝送装置の構成を示すブロック図である。
【図3】 この発明の実施の形態3による波長多重伝送装置の構成を示すブロック図である。
【図4】 従来の波長多重伝送装置の構成を示すブロック図である。
【符号の説明】
1 波長多重伝送装置、2 0系波長変換部1〜n(0系伝送手段)、3 1系波長変換部1〜n(1系伝送手段)、4 0系光合波部(0系伝送手段)、50系光分波部(0系伝送手段)、6 1系光合波部(1系伝送手段)、7 1系光分波部(1系伝送手段)、8 0系光増幅部(0系伝送手段)、9 0系光増幅部(0系伝送手段)、10 1系光増幅部(1系伝送手段)、11 1系光増幅部(1系伝送手段)、12 0系伝送路、13 0系伝送路、14 1系伝送路、15 1系伝送路、16 プロテクション制御部(プロテクション制御手段)、17a 0系制御信号、17b 0系状態信号、18a 1系制御信号、18b 1系状態信号、19 光カプラ部、20a 0系制御信号、20b 0系状態信号、21a 1系制御信号、21b 1系状態信号、22a 0系制御信号、22b 0系状態信号、23a 1系制御信号、23b 1系状態信号。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wavelength division multiplex transmission apparatus that performs protection switching control between an active system and a standby system.
[0002]
[Prior art]
FIG. 4 is a block diagram showing a configuration of a conventional wavelength division multiplexing transmission apparatus.
In FIG. 4, reference numeral 101 denotes a wavelength multiplexing transmission device connected to the redundant transmission lines of the 0 system and 1 system, 102 denotes the 0 system wavelength conversion units 1 to n, and 103 denotes the 1 system wavelength conversion units 1 to n, 104. Is a 0-system optical multiplexing unit for multiplexing 0-system wavelength light, 105 is a 0-system optical demultiplexing unit for demultiplexing 0-system multiplexed light, 106 is a 1-system optical multiplexing unit for combining 1-system wavelength light, and 107 is 1 A 1-system optical demultiplexing unit that demultiplexes system-multiplexed light, 108 is a 0-system optical amplification unit that optically amplifies 0-system multiplexed light and outputs it to the 0-system transmission line 112, and 109 is a multiplexing input from the 0-system transmission line 113. A 0-system optical amplifier that amplifies light and outputs it to the 0-system optical demultiplexing unit 105, 110 is a 1-system optical amplifier that amplifies 1-system multiplexed light and outputs it to the 1-system transmission line 114, and 111 is a 1-system transmission line 1 is a 1-system optical amplification unit that optically amplifies the multiplexed light input from 115 and outputs the amplified light to the 1-system optical demultiplexing unit 107.
[0003]
In FIG. 4, reference numeral 112 denotes a 0-system transmission path from the wavelength multiplexing transmission apparatus 101 to another wavelength multiplexing transmission apparatus, 113 denotes a 0-system transmission path from another wavelength multiplexing transmission apparatus to the wavelength multiplexing transmission apparatus 101, and 114 denotes A system 1 transmission line from the wavelength division multiplex transmission apparatus 101 to another wavelength multiplex transmission apparatus, and 115 is a system 1 transmission line from the other wavelength multiplex transmission apparatus 101 to the wavelength multiplex transmission apparatus 101.
[0004]
In FIG. 4, reference numeral 116 denotes a protection control unit that performs protection switching of redundant wavelength conversion units, and reference numeral 124a denotes a 0-system control that sends a working / standby switching command from the protection control unit 116 to the 0-system wavelength conversion unit 102. A signal 124b is a 0-system state signal for notifying the occurrence of a switching factor from the 0-system wavelength converter 102 to the protection controller 116, and 125a is an active / standby system switch command from the protection controller 116 to the 1-system wavelength converter 103. 1-system control signal to be sent, 125b is a 1-system status signal for notifying occurrence of switching factors from the 1-system wavelength converter 103 to the protection controller 116, 119 is an optical signal from an external device, and the 0-system wavelength converters 102 and 1 Optical signals from the 0-system wavelength converter 102 and the 1-system wavelength converter 103 are distributed to the wavelength converter 103. An optical coupler unit that formed.
[0005]
Next, the operation will be described.
The optical signal from the external device is distributed by the optical coupler unit 119 and input to the 0-system wavelength conversion unit 102 and the 1-system wavelength conversion unit 103. The n wavelengths of light converted by the 0-system wavelength converter 102 are combined by the 0-system optical combiner 104, amplified by the 0-system optical amplifier 108, and then transmitted through the 0-system transmission path 112. The data is transmitted from the multiplex transmission apparatus 101 to another wavelength multiplex transmission apparatus. Also, the wavelength multiplexed light transmitted from the other wavelength multiplexing transmission apparatus 101 to the wavelength multiplexing transmission apparatus 101 via the 0 system transmission path 113 is amplified by the 0 system optical amplifying unit 109 and is transmitted by the 0 system optical demultiplexing unit 105. It is demultiplexed into n wavelength lights. Each wavelength light is wavelength-converted by the 0-system wavelength conversion unit 102 and output to an external device via the optical coupler unit 119.
[0006]
Similarly, n wavelength lights converted by the 1-system wavelength converter 103 are combined by the 1-system optical combiner 106, amplified by the 1-system optical amplifier 110, and then passed through the 1-system transmission path 114. Thus, the signal is transmitted from the wavelength multiplexing transmission apparatus 101 to another wavelength multiplexing transmission apparatus. Similarly, the wavelength multiplexed light transmitted from the other wavelength multiplexing transmission apparatus 101 to the wavelength multiplexing transmission apparatus 101 via the system 1 transmission path 115 is amplified by the system 1 optical amplifying unit 111, and the system 1 optical demultiplexing unit. In 107, the light is demultiplexed into light of n wavelengths. Each wavelength light is wavelength-converted by the 1-system wavelength conversion unit 103 and output to an external device via the optical coupler unit 119.
[0007]
The optical signals from the 0-system wavelength conversion unit 102 and the 1-system wavelength conversion unit 103 to the optical coupler unit 119 are the same signal, and only one of the signals is output. The protection control unit 116 monitors the presence / absence of a switching occurrence factor such as a transmission path failure and a failure by the 0 system state signal 124b and the 1 system state signal 125b from the 0 system wavelength conversion unit 102 and the 1 system wavelength conversion unit 103, Based on the 0-system control signal 124a and the 1-system control signal 125a, the standby system switching command is sent to the system having the switching factor, and the working system switching command is sent to the system having no switching factor to the 0-system wavelength conversion unit 102 and the 1-system wavelength conversion unit 103. Send it out. The wavelength conversion unit that has received the standby system switching command executes shutdown of the optical output to the optical coupler unit 119. Conversely, the wavelength conversion unit that has received the active system switching command cancels the optical output shutdown to the optical coupler unit 119.
[0008]
[Problems to be solved by the invention]
Since the conventional wavelength division multiplexing transmission apparatus is configured as described above, when there is no notification of occurrence of switching factors of both systems when the apparatus starts up, for example, system 0 becomes the active system, and is removed once by replacing the protection control unit, etc. There is no problem when the 0 system is the active system when the hot line is inserted from 1 to 4, but there is a problem that unnecessary switching to the 0 system occurs when the 1 system is the active system.
[0009]
For example, in FIG. 4, a case is considered where the 0 system is a standby system and the 1 system is operated in the active system, and there is no failure. If the initial setting of the replacement protection control unit 116 is 0 system → active system, 1 system → standby system, when the old protection control unit 116 is removed and a new protection control unit 116 is inserted, the 0 system Is switched from the standby system to the active system, and the first system is switched from the active system to the standby system, resulting in an instantaneous data interruption. On the other hand, the initial setting of the protection control unit 116 for replacement is 0 system-> standby system, 1 system-> active system, even if 0 system is the active system, 1 system is operating in the standby system, and there are no failures If it is, it will fall into the same result.
[0010]
The present invention has been made to solve the above-described problems. When the hot line is inserted after removal by replacement of the protection control unit or the like, unnecessary switching is performed regardless of whether the 0 system or the 1 system is the active system. An object of the present invention is to obtain a wavelength division multiplex transmission apparatus that avoids the occurrence of the above.
[0011]
[Means for Solving the Problems]
In the wavelength division multiplexing transmission apparatus according to the present invention, the protection control means sends an active / standby system switch command to the 0-system transmission means and the 1-system transmission means, and the active system from the 0-system transmission means and the 1-system transmission means. / Protection system switching command information and switching factor occurrence notification determine protection switching, and the 0-system transmission means and 1-system transmission means receive the switching factor occurrence notification from the protection control means and switch the working system / protection system The command is continuously sent back to the protection control means as active / standby switching command information.
[0012]
In the wavelength division multiplexing transmission apparatus according to the present invention, the protection control means adds a CRC code to the active / standby switching command and sends it to the 0-system transmission means and the 1-system transmission means. The system transmission means sends back the switching factor occurrence notification, the active / standby system switching command information, and the CRC code to the protection control means.
[0013]
In the wavelength division multiplex transmission apparatus according to the present invention, the 0-system transmission means and the 1-system transmission means send back two or more switching factor occurrence notifications, the active / standby system switching command information, and the CRC code to the protection control means. It is a thing.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the present invention will be described below.
Embodiment 1 FIG.
1 is a block diagram showing the configuration of a wavelength division multiplexing transmission apparatus according to Embodiment 1 of the present invention.
In FIG. 1, 1 is a wavelength division multiplexing transmission device connected to 0-system and 1-system redundant transmission lines, 2 is a 0-system wavelength converter 1 to n (0-system transmission means), and 3 is a 1-system wavelength converter. 1 to n (1 system transmission means), 4 is a 0 system optical multiplexing section (0 system transmission means) for multiplexing 0 system wavelength light, and 5 is a 0 system optical demultiplexing section (for demultiplexing 0 system multiplexed light). (System 0 transmission means), 6 is a system 1 optical multiplexing section (system 1 transmission means) for synthesizing system 1 wavelength light, 7 is a system 1 optical demultiplexing section (system 1 transmission means) for demultiplexing system 1 multiplexed light, Reference numeral 8 denotes a 0-system optical amplifying unit (0-system transmission means) that optically amplifies 0-system multiplexed light and outputs it to the 0-system transmission path 12, and 9 optically amplifies the multiplexed light input from the 0-system transmission path 13 A 0-system optical amplifying section (0-system transmission means) that outputs to the demultiplexing section 5, a 1-system optical amplification section (1-system transmission means) that amplifies 1-system multiplexed light and outputs it to the 1-system transmission path 14, 11 Enter from 1-system transmission line 15 It has been a 1-system optical amplifying section for outputting the multiplexed light to the optical amplifier 1 based optical demultiplexing section 7 (1-system transmission means).
[0015]
In FIG. 1, reference numeral 12 denotes a 0-system transmission path from the wavelength multiplexing transmission apparatus 1 to another wavelength multiplexing transmission apparatus, 13 denotes a 0-system transmission path from another wavelength multiplexing transmission apparatus to the wavelength multiplexing transmission apparatus 1, and 14 denotes A 1-system transmission line from the wavelength multiplexing transmission apparatus 1 to another wavelength multiplexing transmission apparatus, and 15 is a 1-system transmission path from the other wavelength multiplexing transmission apparatus to the wavelength multiplexing transmission apparatus 1.
[0016]
Further, in FIG. 1, 16 is a protection control unit (protection control means) for performing protection switching of redundant wavelength conversion units, and 17a is an active / standby system switching command from the protection control unit 16 to the 0-system wavelength conversion unit 2. 0 system control signal 17b, 17b is a 0 system status signal for transmitting a switch factor generation notification from the 0 system wavelength conversion unit 2 to the protection control unit 16 and active / standby system switch command information, and 18a is 1 from the protection control unit 16. A 1-system control signal for sending an active / standby system switch command to the system wavelength converter 3, 18 b sends a switch factor generation notification and active / standby system switch command information from the 1-system wavelength converter 3 to the protection controller 16. 1 system state signal. Reference numeral 19 denotes a light for distributing the optical signal from the external device to the 0-system wavelength converter 2 and the 1-system wavelength converter 3 and combining the optical signals from the 0-system wavelength converter 2 and the 1-system wavelength converter 3. It is a coupler part.
[0017]
The operation of protection control will be described next.
The protection control unit 16 sends the switching factor generation notification from the 0-system wavelength conversion unit 2 and the 1-system wavelength conversion unit 3, and the 0-system wavelength conversion unit 2 and the 1-system wavelength conversion unit 3 from the protection control unit 16 to the active / standby system. The active / standby switching command information (information indicating the working / standby operating system in each system) received and sent back by the system switching command is monitored via the 0 system status signal 17b and the 1 system status signal 18b. is doing. When a transmission line failure or failure occurs in either the 0-system or the 1-system, the 0-system wavelength conversion unit 2 or the 1-system wavelength conversion unit 3 sends a switching factor generation notification to the protection control unit 16. The protection control unit 16 outputs the standby system switching command to the system that has sent the switching factor occurrence notification and the active system switching command to the system that has no switching factor occurrence notification via the 0-system control signal 17a and the 1-system control signal 18a. To do. The 0-system wavelength conversion unit 2 and the 1-system wavelength conversion unit 3 perform protection control via the 0-system state signal 17b and the 1-system state signal 18b using the received active / protection system switch command as active / protection system switch command information. Send back to section 16.
[0018]
For example, let us consider a case where the 0 system is a standby system and the 1 system is operated as an active system, and there is no failure. The protection control unit 16 before replacement sends a standby system switch command to the 0-system wavelength converter 2 and an active system switch command to the 1-system wavelength converter 3. Since there is no failure in both systems, the wavelength conversion units 2 and 3 in both systems transmit no switching factor occurrence notification to the protection control unit 16. Further, in addition to the notification of the occurrence of the switching factor, the 0-system wavelength converter 2 sends back the protection system switching command from the protection controller 16 to the protection controller 16 as protection system switching command information, and the 1-system wavelength converter 3 Sends the active system switch command from the protection control unit 16 back to the protection control unit 16 as active system switch command information.
[0019]
When the protection control unit 16 is replaced, the 0-system wavelength conversion unit 2 and the 1-system wavelength conversion unit 3 hold and send back the active / standby system switching command information received at the time of the replacement. Unlike the prior art, the initial setting of the replacement protection control unit 16 is determined by the active / standby switching command information that is continuously sent back from the wavelength converters of both systems. Therefore, the new protection control unit 16 after removal / insertion receives the standby system switching command information from the 0-system wavelength conversion unit 2 and sets the 0-system as it is as the standby system. Similarly, from the 1-system wavelength conversion unit 3 1 system is set as the active system as it is. Therefore, unnecessary switching between the active and standby systems does not occur before and after replacement, and data interruption can be avoided.
[0020]
As described above, according to the first embodiment, the protection control unit 16 sends the 0-system wavelength conversion unit 2 and the 1-system wavelength conversion unit 3 to the active / standby system using the 0-system control signal 17a and the 1-system control signal 18a. A system switching command is sent, and protection switching is determined according to the active / standby switching command information from the 0-system wavelength converter 2 and 1-system wavelength converter 3 and the switch factor occurrence notification, and 0-system wavelength conversion is performed. The system 2 and the 1-system wavelength conversion section 3 use the working system / standby system switching command received from the protection control unit 16 together with the switching factor occurrence notification as the working system / standby system switching command information. Since the signal 18b continues to be sent back to the protection control unit 16, no unnecessary switching occurs even if either the 0 system or the 1 system is the active system, Rotekushon controller hot-removal at the time of replacement, the effect is obtained that can be inserted.
[0021]
Embodiment 2. FIG.
In the first embodiment, the active / standby switching command is used for the 0-system control signal 17a and the 1-system control signal 18a, the switching factor occurrence notification and the active / standby switching are performed for the 0-system status signal 17b and the 1-system status signal 18b. Command information is sent, but CRC (“Cyclic Redundancy Check”) code may be added to them, and it is not necessary due to data removal during insertion or insertion of the protection control unit and wavelength conversion unit Therefore, it is possible to eliminate a data protection circuit for avoiding a serious switching and reduce a delay time.
[0022]
FIG. 2 is a block diagram showing the configuration of the wavelength division multiplexing transmission apparatus according to Embodiment 2 of the present invention, and specifically shows only the 0-system wavelength converter 2, the 1-system wavelength converter 3, and the protection controller 16. In FIG. 2A, 20a is a 0 system control signal, 20b is a 0 system state signal, 21a is a 1 system control signal, and 21b is a 1 system state signal.
[0023]
As shown in FIG. 2 (b), the 0-system control signal 20a and 1-system control signal 21a have an active / standby system switch command and CRC code, and the 0-system status signal 20b and 1-system status signal 21b have The switching factor occurrence notification, the active / standby switching command information, and the CRC code are transmitted, and the above-described delay time can be reduced. Note that BLANK in FIG. 2B is not necessarily required.
[0024]
As described above, according to the second embodiment, the protection control unit 16 adds a CRC code to the working / standby switching command, and the 0-system wavelength is determined by the 0-system control signal 20a and the 1-system control signal 21a. The 0-system wavelength converter 2 and the 1-system wavelength converter 3 send the switching factor occurrence notification, the active / standby system switch command information, and the CRC code to the 0-system state. Since the signal 20b and the 1-system state signal 21b are sent back to the protection control unit 16, the protection circuit for avoiding a data error during removal or insertion of the protection control unit 16 is eliminated, and the switching delay time can be reduced. Is obtained.
[0025]
Embodiment 3 FIG.
In the second embodiment, the switching factor occurrence notification, the active / standby switching command information, and the CRC code are sent to the 0-system status signal 20b and the 1-system status signal 21b. More than one type of code may be sent out, and when there is a failure in both systems, more detailed protection switching control can be performed.
[0026]
FIG. 3 is a block diagram showing a configuration of a wavelength division multiplexing transmission apparatus according to Embodiment 3 of the present invention, and particularly shows only the 0-system wavelength converter 2, the 1-system wavelength converter 3, and the protection controller 16. In FIG. 3A, 22a is a 0-system control signal, 22b is a 0-system state signal, 23a is a 1-system control signal, and 23b is a 1-system state signal.
[0027]
As shown in FIG. 3B, the 0-system control signal 22a and the 1-system control signal 23a have an active / standby system switching command and a CRC code, and the 0-system status signal 22b and the 1-system status signal 23b have The switching factor occurrence notification 1, the switching factor occurrence notification 2, the active / standby switching command information, and the CRC code are transmitted. For example, when a plurality of channels are multiplexed in the 0-system wavelength conversion unit 2 and the 1-system wavelength conversion unit 3 and a failure of one channel occurs in the 0-system wavelength conversion unit 2, the 1-system wavelength conversion unit 3 is the active system, but if all channels fail in the 1-system wavelength conversion unit 3 after that, it is possible to switch back to the 0-system wavelength conversion unit 2. Note that BLANK in FIG. 3B is not necessarily required.
[0028]
As described above, according to the third embodiment, the 0-system wavelength conversion unit 2 and the 1-system wavelength conversion unit 3 have two or more switching factor occurrence notifications, working / standby system switching command information, and CRC codes. Are sent back to the protection control unit 16 by the 0-system state signal 22b and the 1-system state signal 23b, so that when the wavelength conversion unit multiplexes a plurality of channels, for example, the failure of one channel and the failure of all channels The effect that the protection switching with priority can be controlled can be obtained.
[0029]
【The invention's effect】
As described above, according to the present invention, the protection control means sends the active / standby switching command to the 0-system transmission means and the 1-system transmission means, and the active control from the 0-system transmission means and the 1-system transmission means. The protection switching is determined according to the system / standby system switch command information and the switching factor occurrence notification, and the 0-system transmission means and the 1-system transmission means receive the switching factor occurrence notification from the protection control means and the active / spare system Since the switching command is continuously sent back to the protection control means as the active / standby switching command information, the protection control unit does not cause unnecessary switching regardless of whether the 0 system or the 1 system is the active system. The effect that the hot wire removal and insertion at the time of replacement | exchange can be performed is acquired.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a wavelength division multiplexing transmission apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a block diagram showing a configuration of a wavelength division multiplexing transmission apparatus according to Embodiment 2 of the present invention.
FIG. 3 is a block diagram showing a configuration of a wavelength division multiplexing transmission apparatus according to Embodiment 3 of the present invention.
FIG. 4 is a block diagram showing a configuration of a conventional wavelength division multiplexing transmission apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Wavelength multiplexing transmission apparatus, 20 system wavelength conversion part 1-n (0 system transmission means), 3 1 system wavelength conversion part 1-n (1 system transmission means), 40 system optical multiplexing part (0 system transmission means) , 50 system optical demultiplexing unit (0 system transmission means), 6 system 1 optical multiplexing unit (1 system transmission means), 7 system 1 optical demultiplexing unit (1 system transmission means), 80 system optical amplification unit (system 0) Transmission system), 90 system optical amplification section (system 0 transmission means), 10 system 1 optical amplification section (system 1 transmission means), system 11 system optical amplification section (system 1 transmission means), system 120 transmission line, 13 0 system transmission path, 14 1 system transmission path, 15 1 system transmission path, 16 protection control unit (protection control means), 17a 0 system control signal, 17b 0 system status signal, 18a 1 system control signal, 18b 1 system status signal , 19 Optical coupler unit, 20a 0 system control signal, 20b 0 system status signal, 21a 1 system control signal, 21b 1 system status signal 22a 0 based control signals, 22b 0 system status signals, 23a 1 system control signals, 23b 1 system status signals.

Claims (3)

各波長光を0系波長多重光に光合波して0系伝送路へ送出するとともに、上記0系伝送路を介して伝送された0系波長多重光を上記各波長光に光分波する0系伝送手段と、上記各波長光を1系波長多重光に光合波して1系伝送路へ送出するとともに、上記1系伝送路を介して伝送された1系波長多重光を上記各波長光に光分波する1系伝送手段と、上記0系伝送手段および上記1系伝送手段からの切替要因発生通知の有無に応じて、上記0系伝送手段および上記1系伝送手段の現用系/予備系のプロテクション切替を行うプロテクション制御手段とを備えた波長多重伝送装置において、
上記プロテクション制御手段は、上記0系伝送手段および上記1系伝送手段へ現用系/予備系切替コマンドを送出するとともに、上記0系伝送手段および上記1系伝送手段からの現用系/予備系切替コマンド情報と上記切替要因発生通知とに応じて上記プロテクション切替を決定し、
上記0系伝送手段および上記1系伝送手段は、上記切替要因発生通知とともに、上記プロテクション制御手段から受けた上記現用系/予備系切替コマンドを現用系/予備系切替コマンド情報として上記プロテクション制御手段へ送り返し続けることを特徴とする波長多重伝送装置。
Each wavelength light is optically multiplexed with 0-system wavelength multiplexed light and transmitted to the 0-system transmission path, and 0-system wavelength multiplexed light transmitted through the 0-system transmission path is optically demultiplexed into each wavelength light. System transmission means, and optically multiplexes each wavelength light into 1-system wavelength multiplexed light and sends it to the 1-system transmission path, and transmits the 1-system wavelength multiplexed light transmitted through the 1-system transmission path to each wavelength light. 1-system transmission means for optically demultiplexing, and the 0-system transmission means and the 1-system transmission means according to the presence / absence of a switch factor occurrence notification from the 0-system transmission means and the 1-system transmission means. In a wavelength division multiplexing transmission apparatus equipped with protection control means for switching protection of the system,
The protection control means sends an active / standby system switching command to the 0-system transmission means and the 1-system transmission means, and an active / standby system switching command from the 0-system transmission means and the 1-system transmission means. The protection switching is determined according to the information and the switching factor occurrence notification,
The 0-system transmission means and the 1-system transmission means, together with the switching factor occurrence notification, receive the working / protection system switching command received from the protection control means as working system / protection system switching command information to the protection control means. A wavelength division multiplexing transmission device characterized by continuing to send back.
プロテクション制御手段は、現用系/予備系切替コマンドにCRCコードを付加して、0系伝送手段および1系伝送手段へ送出するとともに、
上記0系伝送手段および上記1系伝送手段は、切替要因発生通知、現用系/予備系切替コマンド情報および上記CRCコードを上記プロテクション制御手段へ送り返すことを特徴とする請求項1記載の波長多重伝送装置。
The protection control means adds a CRC code to the active / standby switching command and sends it to the 0-system transmission means and the 1-system transmission means.
2. The wavelength division multiplexing transmission according to claim 1, wherein said 0-system transmission means and said 1-system transmission means send back a switching factor occurrence notification, active / standby system switching command information, and said CRC code to said protection control means. apparatus.
0系伝送手段および1系伝送手段は、2つ以上の切替要因発生通知と、現用系/予備系切替コマンド情報およびCRCコードとをプロテクション制御手段へ送り返すことを特徴とする請求項2記載の波長多重伝送装置。3. The wavelength transmission system according to claim 2, wherein the 0-system transmission means and the 1-system transmission means send back two or more switching factor occurrence notifications, working / standby system switching command information, and CRC codes to the protection control means. Multiplex transmission equipment.
JP2002184920A 2002-06-25 2002-06-25 Wavelength multiplex transmission equipment Expired - Fee Related JP3898096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002184920A JP3898096B2 (en) 2002-06-25 2002-06-25 Wavelength multiplex transmission equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002184920A JP3898096B2 (en) 2002-06-25 2002-06-25 Wavelength multiplex transmission equipment

Publications (2)

Publication Number Publication Date
JP2004032306A JP2004032306A (en) 2004-01-29
JP3898096B2 true JP3898096B2 (en) 2007-03-28

Family

ID=31180716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002184920A Expired - Fee Related JP3898096B2 (en) 2002-06-25 2002-06-25 Wavelength multiplex transmission equipment

Country Status (1)

Country Link
JP (1) JP3898096B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006279355A (en) 2005-03-28 2006-10-12 Nec Corp Wavelength division multiplex transmission system, wavelength division multiplex transmission device, and method of controlling the same
JP5821182B2 (en) * 2010-12-14 2015-11-24 日本電気株式会社 Optical wavelength division multiplexing equipment
JP6684031B2 (en) * 2017-02-20 2020-04-22 日本電信電話株式会社 Optical transmission system and optical transmission method

Also Published As

Publication number Publication date
JP2004032306A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
US7447398B2 (en) Optical crossconnect apparatus
JP3320452B2 (en) Monitoring and control method for optical repeaters
US6288809B1 (en) Optical subscriber network system
JP3060994B2 (en) Output port switching device in N-WDM system
JP3068018B2 (en) Optical wavelength division multiplex ring system
JP5267191B2 (en) Optical ring network system and optical transmission device
JP3976771B2 (en) Transmission route switching control method and optical transmission apparatus
JP5206211B2 (en) WDM network and node equipment
JP3693020B2 (en) Wavelength division multiplexing optical transmission apparatus and communication system using the apparatus
US11063684B2 (en) Optical transmission system, optical transmission apparatus and transmission method
US7146102B2 (en) Optical cross-connect device
US7206475B2 (en) Optical switching apparatus, optical transmission system and method of setting up for optical signal route
JP2011199789A (en) Optical transmission apparatus, optical relay apparatus, optical wavelength multiplex transmission apparatus, optical switch and optical transmission method
JP3898096B2 (en) Wavelength multiplex transmission equipment
JP7452637B2 (en) Fault detection device, optical transmission system, and fault detection method
JP2011130078A (en) Wavelength multiplex transmission apparatus
JP6537285B2 (en) Optical transmission apparatus, method of determining normality of optical transmission line, and wavelength multiplexing optical communication system
JP3725731B2 (en) Optical cross-connect device
JP4177928B2 (en) Optical transmission system and monitoring method thereof
JP2014165818A (en) Optical transmission system
JP4999759B2 (en) Optical path switching device
JP2015095690A (en) Wavelength multiplex optical communication system, wavelength multiplex optical communication method, transmitting device, and receiving device
JPH11298408A (en) Optical transmission equipment, end terminals and optical repeaters
JP2001024589A (en) Optical communication monitor system
JP3424640B2 (en) Wireless base station device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061220

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3898096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees