[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3887846B2 - High-purity ethylenediaminedioltohydroxyphenylacetic acid and surface treatment composition using the same - Google Patents

High-purity ethylenediaminedioltohydroxyphenylacetic acid and surface treatment composition using the same Download PDF

Info

Publication number
JP3887846B2
JP3887846B2 JP17489296A JP17489296A JP3887846B2 JP 3887846 B2 JP3887846 B2 JP 3887846B2 JP 17489296 A JP17489296 A JP 17489296A JP 17489296 A JP17489296 A JP 17489296A JP 3887846 B2 JP3887846 B2 JP 3887846B2
Authority
JP
Japan
Prior art keywords
eddha
acid
cleaning
purity
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17489296A
Other languages
Japanese (ja)
Other versions
JPH1017533A (en
Inventor
均 森永
昌也 藤末
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP17489296A priority Critical patent/JP3887846B2/en
Publication of JPH1017533A publication Critical patent/JPH1017533A/en
Application granted granted Critical
Publication of JP3887846B2 publication Critical patent/JP3887846B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Detergent Compositions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高純度エチレンジアミンジオルトヒドロキシフェニル酢酸[エチレンジアミン−N,N’−ビス(オルトヒドロキシフェニル酢酸)]またはそのアンモニウム塩に関し、より詳細には基体の表面処理剤に添加され、該表面処理剤から基体表面への金属不純物の汚染を長時間にわたって防止し、安定的に極めて清浄な基板表面を達成する事ができる金属元素の含有量が少ないエチレンジアミンジオルトヒドロキシフェニル酢酸またはそのアンモニウム塩とその精製方法、及びそれを用いた表面処理組成物に関するものである。
【0002】
【従来の技術】
超LSIや、TFT液晶等に代表される各種デバイスの高集積化に伴い、基板表面の清浄化への要求は益々厳しいものになっている。清浄化を妨げるものとして各種汚染物質があり、汚染物質の中でも、特に金属汚染はデバイスの電気的特性を劣化させるものであり、かかる劣化を防止するためにはデバイスが形成される基板表面における金属不純物の濃度を極力低下させる必要がある。そのため、基板表面を洗浄剤により洗浄する事が一般に行われる。
【0003】
従来より、この種の洗浄剤には、酸、アルカリ、酸化剤、界面活性剤等の水溶液、水、電解イオン水、有機溶媒等が一般に使用されている。洗浄剤には優れた洗浄性能と共に、洗浄剤から基板への金属不純物の逆汚染を防止するため、洗浄剤中の不純物濃度が極めて低いレベルである事が要求されている。かかる要求を満足するため、半導体用薬品の高純度化が推進され、精製直後の薬品に含まれる金属不純物濃度は、現在の分析技術では検出が難しいレベルにまで達している。
【0004】
このように、洗浄剤中の不純物が検出困難なレベルにまで達しているにもかかわらず、いまだ高清浄な表面の達成が難しいのは、洗浄槽において、基板から除去された金属不純物が、洗浄剤を汚染する事が避けられないためである。すなわち、表面から一旦脱離した金属不純物が洗浄剤中に混入し洗浄剤を汚染する。そして、汚染された洗浄剤から金属不純物が基板に付着(逆汚染)してしまうためである。
【0005】
半導体洗浄工程においては、[アンモニア+過酸化水素+水]洗浄(APM洗浄、またはSC−1洗浄)(RCA Review, p.187-206, June(1970)等)が、広く用いられている。本洗浄は通常、室温〜90℃で行われ、組成比としては通常(30重量%アンモニア水):(31重量%過酸化水素水):(水)=(0.05〜1):(0.05〜1):5程度で使用に供される。しかし、本洗浄法は高いパーティクル除去能力や有機物除去能力を持つ反面、金属汚染の除去能力はほとんど持たず、それどころか、溶液中にFeやAl、Zn、Ni等の金属が極微量存在すると、基板表面に付着して逆汚染してしまうという問題があった。このため、半導体洗浄工程においては、通常、[アンモニア+過酸化水素+水]洗浄の後に、[塩酸+過酸化水素+水]洗浄(HPM洗浄、またはSC−2洗浄)等の酸性洗浄剤による洗浄を行い、基板表面の金属汚染を除去している。
【0006】
それ故、洗浄工程において、高清浄な表面を効率よく、安定的に得るために、かかる逆汚染を防止する技術が求められていた。
更に、液中の金属不純物が基板表面に付着する問題は、洗浄工程のみならず、シリコン基板のアルカリエッチングや、シリコン酸化膜の希フッ酸によるエッチング工程等の、溶液を使用した基板表面処理工程全般において大きな問題となっている。希フッ酸エッチング工程では、液中にCuやAu等の貴金属不純物があると、シリコン表面に付着して、キャリアライフタイム等のデバイスの電気的特性を著しく劣化させる。また、アルカリエッチング工程では、液中にFeやAl等の微量金属不純物があると、基板表面に容易に付着してしまい、品質に悪影響を及ぼす。そこで、溶液による表面処理工程におけるかかる汚染を防止する技術も強く求められている。
【0007】
これらの問題を解決するために、表面処理剤にキレート剤等の錯化剤を添加し、液中の金属不純物を安定な水溶性錯体として捕捉し、基板表面への付着を防止する方法が提案されている(特開平3−219000号公報、特開平5−275405号公報等)。
しかし、従来から提案されていた錯化剤を添加した場合、特定の金属(例えば、Fe)に関しては付着防止、あるいは除去に顕著な効果が見られたものの、処理液や基板を汚染しやすい他の金属(例えば、Al)については上記特許に記載の錯化剤の効果が極めて小さく、大量の錯化剤を添加しても十分な効果が得られないという問題があった。
【0008】
本発明者らは、上記課題を解決するために特願平7−191504号において、表面処理組成物中に金属付着防止剤としてエチレンジアミンジオルトヒドロキシフェニル酢酸〔通称:EDDHA〕等の特定の錯化剤を添加含有せしめることにより、FeだけでなくAl等の他の金属不純物に対しても基体への処理液からの付着防止効果が著しく向上するという発明を提案した。
【0009】
しかし、EDDHAを金属付着防止剤として添加した表面処理組成物を使用した場合、初期には極めて優れた金属付着防止性能が得られたものの、長時間使用時に大幅な性能劣化が見られた。とくにシリコンウェハの洗浄剤としてよく用いられる、アンモニア/過酸化水素水にこれを添加した場合、数時間で金属付着防止能が低下し、実用上、大きな問題となっていた。
【0010】
【発明が解決しようとする課題】
上記のように、表面処理剤から基体表面への金属不純物汚染が深刻な問題となっているが、それを長時間に渡って、安定的に防止する技術は、いまだ不十分である。
本発明は上記問題を解決するためになされたものであり、表面処理液から基体表面への金属不純物の汚染を長時間に渡って防止し、安定的に極めて清浄な基体表面を達成する事ができる基体の表面処理方法及び表面処理組成物を提供する事を目的とするものである。
【0011】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために、EDDHAの金属付着防止効果が長時間維持されない原因について解析を重ねた結果、(1)長時間使用すると表面処理液中でEDDHAの分解が起こる事、(2)EDDHA−金属キレートとなって安定化されていた金属は、この分解によってEDDHAから離れて、基板表面に付着してしまう事、(3)液中にFeなどの金属不純物が多量に含まれた場合にEDDHAの分解が促進される事、(4)表面処理液中の金属不純物量の多くが添加剤であるEDDHAに由来していた事、を見いだした。
【0012】
従来のEDDHA中には、数〜数千ppm程度のFe等の金属不純物が含有されていた。これらの金属は、EDDHA溶液中では、初期には安定なEDDHA−金属キレートとして存在して基体表面には付着しないが、洗浄液等の表面処理液として長時間使用された場合、EDDHAの分解によって、EDDHAから離れ、基体表面に付着していた。さらに、これらの金属は、液中でEDDHAの分解をも促進していたのである。
【0013】
本発明者らは以上の事から、EDDHA中の金属不純物濃度を低下させる事により、EDDHAを添加含有せしめたときの表面処理液から基体への金属不純物の付着防止効果が長時間に渡って持続する事を見いだし、本発明に到達した。
すなわち本発明の要旨は、基体の表面処理組成物に添加され、該表面処理組成物から基体表面への金属不純物の汚染を長時間にわたって防止し、安定的に極めて清浄な基板表面を達成する事ができる、Fe、Al、Znの内の少なくとも1つの金属元素の含有量が5ppm以下である事を特徴とする高純度エチレンジアミンジオルトヒドロキシフェニル酢酸またはそのアンモニウム塩、及びその精製方法にある。
【0014】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明は、EDDHAまたはそのアンモニウム塩中のFe、Al、Znの内の少なくとも1つの金属元素の含有量がEDDHAに対する重量比で5ppm以下である事を特徴とする。半導体基板に付着した場合、半導体デバイスの電気的特性を劣化させる可能性のあるものとしては、Ag、Al、As、Au、Ba、Ca、Cd、Co、Cr、Cu、Fe、Ga、Ge、K、Li、Mg、Mn、Mn、Mo、Na、Ni、Pb、Si、Sn、Sr、Ti、Zn等が挙げられる。我々はEDDHAを含有する表面処理液を長時間使用した際に、基板表面に付着する金属種を解析した結果、上記金属種の中でも、特にFe、Al、Znが多く付着している事を見いだした。これらの金属はEDDHA中に含有されているものであった。特にFeは、アルカリ液中で基板表面に付着し易いばかりか、[アンモニア+過酸化水素+水]洗浄液中では過酸化水素の酸化反応の触媒として働き、EDDHAの分解を促進する。また、Al、Znはアルカリ液中で極めて基板表面に付着し易い。これらの金属はEDDHAに対して5ppm以下、好ましくは2ppm以下にする必要がある。
【0015】
本発明における表面処理組成物とは、基体の洗浄、エッチング、研磨、成膜等を目的として用いられる表面処理剤の総称である。
主成分となる液体としては、特に限定されないが、通常、酸、アルカリ、酸化剤、界面活性剤等の水溶液、水、電解イオン水、有機溶媒、さらにはこれらの混合溶液が用いられる。特に、半導体基板の洗浄やエッチングに用いられるアルカリ性水溶液においては、溶液中の金属不純物が基体表面に極めて付着し易いため、本発明が好ましく用いられる。本発明におけるアルカリ性水溶液とは、そのpHが7よりも大きい水溶液の総称である。アルカリ性成分としては、特に限定されないが、代表的なものとしてアンモニアが挙げられる。また、水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリ金属またはアルカリ土類金属の水酸化物、炭酸水素ナトリウム、炭酸水素アンモニウム等のアルカリ性塩類、あるいは、テトラメチルアンモニウムヒドロキシド[通称:TMAH]、トリメチル−2−ヒドロキシエチルアンモニウムヒドロキシド、コリン等の第4級アンモニウム塩ヒドロキシドなども用いられる。これらのアルカリは、2種以上添加しても何等差し支えなく、通常、表面処理組成物の全溶液中での全濃度が0.01〜30重量%になるように用いられる。また、水の電気分解によって得られるアルカリ電解イオン水にも好ましく用いられる。さらに、このようなアルカリ性水溶液中には過酸化水素等の酸化剤が適宜配合されていても良い。半導体ウェハ洗浄工程において、ベア(酸化膜のない)シリコンを洗浄する際には、酸化剤の配合により、ウェハのエッチングや表面荒れを抑える事ができる。本発明のアルカリ性水溶液に過酸化水素を配合する場合には、通常、表面処理組成物の全溶液中での過酸化水素濃度が0.01〜30重量%の濃度範囲になるように用いられる。
【0016】
金属付着防止剤として加えられるEDDHAの添加量は、付着防止対象である液中の金属不純物の種類と量、基板表面に要求せれる清浄度レベルによって異なるので一概には決められないが、表面処理組成物中の総添加量として、通常10-7〜5重量%、好ましくは10-6〜0.1重量%である。上記添加量より少なすぎると金属付着防止効果が発現し難く、一方、多すぎてもそれ以上の効果は得られず、また、基体表面に金属付着防止剤である錯化剤が付着する危険性が高くなるので好ましくない。
【0017】
本発明に係わるEDDHAを表面処理組成物に配合する方法は特に限定されない。表面処理組成物を構成している成分(例えば、アンモニア水、過酸化水素水、水等)の内、いずれか一成分、あるいは複数成分にあらかじめ配合し、後にこれらの成分を混合して使用しても良いし、当該成分を混合した後に該混合液にこれを配合して使用しても良い。ただし、[アンモニア水+過酸化水素水+水]洗浄に用いる場合には、過酸化水素水や水に比べアンモニア水に対するEDDHAの溶解度が高い事、EDDHAの経時安定性が過酸化水素水中に比べアンモニア水中の方が優れている事から、特に配合後、数週間以上保管して用いる場合には、アンモニア水に添加して用いる方が良い。アンモニアに添加して用いる場合には、アンモニア濃度は通常0.1〜35重量%、好ましくは5〜32重量%であり、EDDHA濃度は10-7〜5重量%、好ましくは10-6〜1重量%である。また、この場合のアンモニア水溶液中のFe、Al、Znの内の少なくとも1つの金属元素の含有量は通常5ppb以下、好ましくは1ppb以下である。
【0018】
本発明の表面処理組成物には、表面処理の目的に応じて界面活性剤、酸化剤、還元剤、錯化剤、pH調整用の酸成分、研磨砥粒等の添加剤を加えても良い。
特に以下に示すようなEDDHA以外の錯化剤を添加し、錯化剤の種類を2種以上にすると、金属付着防止効果がより向上するので好ましい。この様な錯化剤としては、次のようなものが例示できる。なお、化合物名の後の[]内は化合物の通称・略称である。
【0019】
エチレンジアミン、8−キノリノール、o−フェナントロリン等のアミン類、グリシン等のアミノ酸類、イミノ2酢酸、ニトリロ3酢酸、エチレンジアミン4酢酸[EDTA]、トランス−1,2−ジアミノシクロヘキサン4酢酸[CyDTA]、ジエチレントリアミン5酢酸[DTPA]、トリエチレンテトラミン6酢酸[TTHA]等のイミノカルボン酸類、エチレンジアミンテトラキス(メチレンホスホン酸)[EDTPO]、ニトリロトリス(メチレンホスホン酸)[NTPO]、プロピレンジアミンテトラ(メチレンホスホン酸)[PDTMP]等のイミノホスホン酸類、ギ酸、酢酸、シュウ酸酒石酸等のカルボン酸類、フッ化水素酸、塩酸、臭化水素、ヨウ化水素等のハロゲン化水素またはそれらの塩、硫酸、リン酸、縮合リン酸、ホウ酸、ケイ酸、炭酸、硝酸、亜硝酸、過塩素酸、塩素酸、亜塩素酸、次亜塩素酸等のオキソ酸類またはそれらの塩など。
【0020】
本発明の表面処理組成物は基体の金属不純物汚染が問題となる半導体、金属、ガラス、セラミックス、プラスチック、磁性体、超伝導体等の基体の、洗浄、エッチング、研磨、成膜等の表面処理に用いられる。特に、高清浄な基体表面が要求される半導体基板の洗浄、エッチングには本発明が好適に使用される。半導体基板の洗浄の中でも特に[アンモニア+過酸化水素+水]洗浄等のアルカリ洗浄に本発明を適用すると、該洗浄法の問題点であった基板への金属不純物付着の問題が改善され、これにより該洗浄によって、パーティクル、有機物汚染と共に、金属汚染のない高清浄な基板表面が達成されるため、極めて好適である。
【0021】
本発明を洗浄に用いる場合には、液を直接、基体に接触させる方法が用いられる。このような洗浄方法としては、洗浄槽に洗浄液を満たして基板を浸漬させるディップ式クリーニング、基板に液を噴霧して洗浄するスプレー式クリーニング、基板上に洗浄液を滴下して高速回転させるスピン式クリーニング等が挙げられる。本発明においては、上記洗浄方法の内、適当なものが用いられるが、好ましくはディップ式クリーニングが用いられる。洗浄時間については、適当な時間洗浄されるが、好ましくは10秒〜30分、より好ましくは30秒〜15分である。時間が短すぎると洗浄効果が十分でなく、長すぎるとスループットが悪くなるだけで、洗浄効果は上がらず意味がない。洗浄は常温で行っても良いが、洗浄効果を向上させる目的で、加温して行う事もできる。温度は通常室温〜90℃であるが、高温での使用の場合、EDDHAの劣化が促進されるので、70℃以下での使用が好ましい。また、洗浄の際には、物理力による洗浄方法と併用させても良い。このような物理力による洗浄方法としては、たとえば、メガソニック洗浄等の超音波洗浄、洗浄ブラシ、電磁波を用いた洗浄法などが挙げられる。さらに、本発明の洗浄前後において、基板表面の汚染をより完全に除去する目的で、公知の他の洗浄法を用いる事もできる。この様な洗浄方法としては、[硫酸+過酸化水素+水]洗浄、[塩酸+過酸化水素+水]洗浄、[フッ酸+過酸化水素+水]洗浄、希フッ酸洗浄、オゾン超純水洗浄、超純水洗浄、電解イオン水洗浄等が挙げられる。
【0022】
本発明の高純度EDDHAまたはそのアンモニウム塩は、従来のEDDHAを精製する事によって得る事ができる。精製の方法としては、高純度なものが得られる点で溶解再晶析による方法が好ましい。
EDDHAは酸性、またはアルカリ性水溶液中に数〜数十重量%溶解する。この溶液を中和し、中性水溶液とするとEDDHAはほとんど溶解しないで析出する。一方、EDDHA中の金属不純物はEDDHAと水溶性のEDDHA−金属キレートを作り、中性水溶液中でも安定に溶解している。このため、析出したEDDHAの結晶を液から分離すれば、金属不純物の少ない高純度EDDHAを得る事ができる。ただし、不溶性の不純物は上記方法では分離できない。そこで、EDDHAを酸性、またはアルカリ性水溶液中に溶解した際に、溶液をろ過する事により、該不溶性不純物をろ過分離して取り除く事ができる。EDDHAを溶解する酸性水溶液の酸成分としては、特に限定されないが、代表的なものとして、硫酸、硝酸、塩酸が挙げられる。これらの酸成分は、通常、酸性水溶液中の酸濃度が0.1〜50重量%、好ましくは1〜20重量%となるように用いられる。また、アルカリ性水溶液のアルカリ成分としては、特に限定されないが、代表的なものとして、アンモニアが挙げられる。アルカリ成分は、通常、アルカリ性水溶液中のアルカリ濃度が0.1〜50重量%、好ましくは1〜20重量%となるように用いられる。中和時のpHは通常4〜9、好ましくは5〜8である。得られた結晶と液とを分離する方法は、特に限定されないが、通常はフィルターによるろ過または遠心分離による方法が用いられる。
【0023】
上記の精製操作を一回以上行う事により、本発明の高純度EDDHAを得る事ができる。特に精製前のEDDHA中の不純物量が多い場合には、上記精製操作を数回以上繰り返す事により、高清浄なEDDHAを得る事ができる。
【0024】
【実施例】
次に実施例を用いて、本発明の具体的態様を説明するが、本発明はその要旨を越えない限り以下の実施例により何ら限定されるものではない。
実施例1及び比較例1、2
市販のEDDHA(米国、SIGMA CHEMICAl COMPANY 社製、CATALOG #: E4135、Lot No.85H5041)に対し、7重量%の硝酸水溶液をEDDHA1gにつき10ml加え、EDDHAを溶解した。このEDDHA硝酸水溶液を開口径0.1μmのテフロンフィルター(PTFE製)でろ過する事により、不溶性の不純物をろ過によって分離した。得られたろ液に6重量%のアンモニア水溶液を溶液のpHが8になるまで添加し、EDDHAの結晶を析出させた。これを開口径5μmのフィルターでろ過する事により、EDDHAの結晶を得た。さらに、得られた結晶をフィルター上で純水により洗浄した。
【0025】
上記の操作を8回繰り返した後、精製されたEDDHAの結晶を乾燥機中で乾燥させて本発明の高純度EDDHAを得た。
EDDHA中の金属不純物量は以下に示す方法で湿式分解した後、分析した。洗浄した石英フラスコにEDDHA1gをサンプリングした後、硫酸5mlを添加し、加熱炭化後、硝酸及び過酸化水素水を添加して、加熱しながら酸化分解した。さらに加熱して硫酸以外を蒸発させた後、純水で50mlにメスアップした。この様にして、サンプルを湿式分解した後、金属不純物量をICP−AES法及び原子吸光法で分析した。
【0026】
表−1に上記操作によって得られた高純度EDDHAの分析値を示す。また、比較のために未精製のEDDHA(米国、SIGMA CHEMICAl COMPANY 社製、Lot No.85H5041:比較例1、Lot No.117F50221:比較例2)の分析値も表−1に示した。
【0027】
【表1】
表−1

Figure 0003887846
【0028】
表−1に示したように従来のEDDHA中には各々数〜数千ppm程度の金属不純物が含有されているが、本発明の精製法により、これを5ppm以下に低減する事が可能である。
【0029】
実施例2
市販のEDDHA(米国、SIGMA CHEMICAl COMPANY 社製、CATALOG #: E4135、Lot No.117F50221:比較例2)に対し、3重量%のアンモニア水溶液をEDDHA1gにつき10ml加え、EDDHAを溶解した。このEDDHA硝酸水溶液を開口径0.1μmのテフロンフィルター(PTFE製)でろ過する事により、不溶性の不純物をろ過によって分離した。得られたろ液に23重量%の硝酸水溶液を溶液のpHが6になるまで添加し、EDDHAの結晶を析出させた。これを、開口径5μmのテフロンフィルター(PTFE製)でろ過する事により、EDDHAの結晶を得た。さらに、得られた結晶をフィルター上で純水により洗浄した。
【0030】
上記の操作を7回繰り返した後、精製されたEDDHAの結晶を乾燥機中で乾燥させて本発明の高純度EDDHAを得た。得られた高純度EDDHAを実施例1と同様の方法で分析した結果を表−2に示す。
【0031】
【表2】
表−2
Figure 0003887846
【0032】
実施例3
実施例2により得られた高純度EDDHAを高純度アンモニア水溶液(30重量%)に240ppm添加して溶解し、本発明のEDDHA添加アンモニア水溶液を得た。得られたEDDHA添加アンモニア水溶液の金属不純物分析結果を表2に示す。金属不純物はICP−MS法及び原子吸光法により分析した。金属不純物分析結果を表−3に示す。
【0033】
【表3】
表−3
Figure 0003887846
【0034】
表−3に示されるように、本発明の高純度EDDHAを用いる事により、金属元素の含有量を各1ppb以下に低減する事が可能である(EDDHA添加量240ppmの場合)。
【0035】
実施例4、5及び比較例3〜6
アンモニア水(30重量%)、過酸化水素水(31重量%)及び水を1:1:10の容量比で混合し、得られた水性溶媒に、金属付着防止剤として、表−4に示す様にEDDHAを所定量添加して表面処理組成物を調製した。EDDHAには実施例1で得られた高純度EDDHAを用いた。なお、比較のために市販のEDDHA(米国、SIGMA CHEMICAl COMPANY 社製、CATALOG #: E4135、Lot No.117F50221:比較例2のもの)をそのまま用いたものも調製した。なお、EDDHAの添加量は該水性溶媒に対する重量比(ppm)で示した。また、比較のために、該水性溶媒にEDDHAを添加しないものも調製した。表面処理組成物の全容量は2.8リットルであり、容量6リットルの蓋のない石英槽に入れた。液の温度は、加温して55〜65℃に保持した。
【0036】
こうして調製した表面処理液を、55〜65℃に保持したまま一定時間放置した。一定時間放置後、Al、Feを1ppbずつ添加し、清浄なシリコンウェハ(p型、CZ、面方位(100))を10分間浸漬した。浸漬後のウェハは、超純水で10分間オーバーフローリンスした後、窒素ブローにより乾燥し、ウェハ表面に付着したAl、Feを定量した。シリコンウェハ上に付着したAl、Feはフッ酸0.1重量%と過酸化水素1重量%の混合液で回収し、フレームレス原子吸光法により該金属量を測定し、基板表面濃度(atoms/cm2)に換算した。結果を表−4に示す。なお、比較のために、表面処理液を放置しない場合の実験結果も表−4に示した。
【0037】
【表4】
表−4
Figure 0003887846
【0038】
表−4に示したように、高純度EDDHAを用いた場合には、表面処理液を60℃程度で長時間放置した後でも、基板表面への金属付着防止効果が維持される。一方、市販のEDDHAを用いた場合、添加直後は効果があるものの、長時間使用すると付着防止効果が低下する。特に、Feの付着量は錯化剤無添加の場合より、多くなっている。これは、従来のEDDHA中に含まれていた多量のFeが、EDDHAの分解によってEDDHAから離れて、基板表面に付着したためと推測される。
【0039】
実施例6〜8及び比較例7、8
アンモニア水(30重量%)、過酸化水素水(31重量%)及び水を1:1:10の容量比で混合し、得られた水性溶媒に、金属付着防止剤として、表−5に記載の2種の錯化剤を所定量添加し、本発明の表面処理組成物を調整した。EDDHAには実施例1で得られた高純度EDDHAを用いた。なお、比較のために市販のEDDHA(米国、SIGMA CHEMICAl COMPANY 社製、CATALOG #: E4135、Lot No.117F50221:比較例2のもの)を用いたものも調整した。酢酸及びo-フェナントロリン中の金属元素量は各1ppm以下であった。この液を55〜65℃に保持して、一定時間放置した後、実施例1と同じ方法で、基板表面への金属付着性を評価した。この他の実験条件は全て実施例4と同様とした。実験結果を表−5に示す。
【0040】
【表5】
表−5
Figure 0003887846
【0041】
【発明の効果】
本発明の表面処理方法を用いれば、表面処理組成物から基体表面へのAl、Fe等の金属不純物汚染を防止し、安定的に極めて清浄な基体表面を長時間にわたって達成する事ができる。
特に、[アンモニア+過酸化水素+水]洗浄等に代表される半導体基板のアルカリ洗浄に本発明を適用すると、該洗浄法の問題点であった基板への金属不純物付着の問題が改善され、これにより該洗浄によって、パーティクル、有機物汚染と共に、金属汚染のない高清浄な基板表面が達成される。このため、従来、該洗浄の後に用いられてきた、[塩酸+過酸化水素+水]洗浄等の酸洗浄が省略でき、洗浄コスト、及び排気設備等のクリーンルームのコストの大幅な低減が可能となるため、半導体集積回路の工業生産上利するところ大である。
半導体、液晶等の製造する際、エッチングや洗浄等のウェットプロセスには、基板表面への金属不純物付着を防止するため、金属不純物濃度が0.1ppb以下の超純水及び超高純度薬品が用いられている。さらに、これらの薬液は、使用中に金属不純物が混入するため頻繁に交換する必要がある。しかし、本発明を用いれば、液中に多量の金属不純物が存在していても付着防止が可能なため、超高純度の薬液を使う必要がなく、また、薬液が使用中に金属不純物で汚染されても頻繁に交換する必要はないため、薬液およびその管理のコストの大幅な低減が可能である。
また、金属が表面に存在する基板のエッチングや洗浄の際には、処理される金属よりイオン化傾向の高い金属が不純物として液中に存在すると基板表面に電気化学的に付着するが、本発明を用いれば金属不純物は安定な水溶性金属錯体となるので、これを防止する事が出来る。
以上のように、本発明の表面処理剤の波及的効果は絶大であり、工業的に非常に有用である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to high-purity ethylenediaminedioltohydroxyphenylacetic acid [ethylenediamine-N, N′-bis (orthohydroxyphenylacetic acid)] or an ammonium salt thereof, and more specifically, added to a surface treatment agent for a substrate. Ethylenediaminediortoxyphenylacetic acid or its ammonium salt with a low content of metal elements which can prevent contamination of metal impurities from the agent to the substrate surface over a long period of time and achieve a stable and extremely clean substrate surface and its salt The present invention relates to a purification method and a surface treatment composition using the same.
[0002]
[Prior art]
With the high integration of various devices typified by VLSI and TFT liquid crystal, the requirement for cleaning the substrate surface has become increasingly severe. There are various types of contaminants that hinder cleaning. Among contaminants, metal contamination in particular degrades the electrical characteristics of the device. To prevent such degradation, metal on the substrate surface on which the device is formed is used. It is necessary to reduce the concentration of impurities as much as possible. Therefore, the substrate surface is generally cleaned with a cleaning agent.
[0003]
Conventionally, acids, alkalis, oxidizing agents, surfactants and other aqueous solutions, water, electrolytic ionic water, organic solvents and the like are generally used for this type of cleaning agent. In addition to excellent cleaning performance, the cleaning agent is required to have a very low impurity concentration in the cleaning agent in order to prevent back-contamination of metal impurities from the cleaning agent to the substrate. In order to satisfy such a demand, high-purity semiconductor chemicals have been promoted, and the concentration of metal impurities contained in the chemicals immediately after purification has reached a level that is difficult to detect with current analytical techniques.
[0004]
In this way, despite the fact that the impurities in the cleaning agent have reached a level where it is difficult to detect, it is still difficult to achieve a highly clean surface. This is because it is inevitable that the agent is contaminated. That is, metal impurities once desorbed from the surface are mixed in the cleaning agent and contaminate the cleaning agent. This is because metal impurities adhere to the substrate (reverse contamination) from the contaminated cleaning agent.
[0005]
In the semiconductor cleaning process, [ammonia + hydrogen peroxide + water] cleaning (APM cleaning or SC-1 cleaning) (RCA Review, p.187-206, June (1970), etc.) is widely used. The main cleaning is usually performed at room temperature to 90 ° C., and the composition ratio is usually (30 wt% ammonia water) :( 31 wt% hydrogen peroxide water) :( water) = (0.05-1) :( 0 .05 to 1): Used for about 5. However, this cleaning method has high particle removal ability and organic matter removal ability, but has little ability to remove metal contamination. On the contrary, if a very small amount of metal such as Fe, Al, Zn, Ni is present in the solution, There was a problem of adhering to the surface and back-contamination. For this reason, in the semiconductor cleaning process, usually, after cleaning with [ammonia + hydrogen peroxide + water], an acidic cleaning agent such as [hydrochloric acid + hydrogen peroxide + water] cleaning (HPM cleaning or SC-2 cleaning) is used. Cleaning is performed to remove metal contamination on the substrate surface.
[0006]
Therefore, in order to obtain a highly clean surface efficiently and stably in the cleaning process, a technique for preventing such back contamination has been demanded.
Furthermore, the problem that metal impurities in the liquid adhere to the substrate surface is not only a cleaning process, but also a substrate surface treatment process using a solution such as an alkali etching of a silicon substrate or an etching process of a silicon oxide film with dilute hydrofluoric acid It is a big problem in general. In the dilute hydrofluoric acid etching step, if there are noble metal impurities such as Cu and Au in the solution, they adhere to the silicon surface and significantly deteriorate the electrical characteristics of the device such as carrier lifetime. Further, in the alkaline etching process, if there are trace metal impurities such as Fe and Al in the solution, they easily adhere to the substrate surface, which adversely affects the quality. Therefore, a technique for preventing such contamination in the surface treatment process with a solution is also strongly demanded.
[0007]
In order to solve these problems, a method has been proposed in which a complexing agent such as a chelating agent is added to the surface treatment agent to capture metal impurities in the liquid as a stable water-soluble complex and prevent adhesion to the substrate surface. (JP-A-3-219000, JP-A-5-275405, etc.).
However, when a conventionally proposed complexing agent is added, a specific metal (for example, Fe) has a remarkable effect in preventing adhesion or removal, but it easily contaminates the processing solution and the substrate. The metal (for example, Al) has a problem that the effect of the complexing agent described in the above patent is extremely small, and a sufficient effect cannot be obtained even if a large amount of the complexing agent is added.
[0008]
In order to solve the above-mentioned problems, the present inventors have disclosed in Japanese Patent Application No. 7-191504 a specific complex such as ethylenediaminedioltohydroxyphenylacetic acid [common name: EDDHA] as a metal adhesion inhibitor in the surface treatment composition. By adding and adding an agent, an invention has been proposed in which the effect of preventing adhesion of the substrate to the treatment liquid from not only Fe but also other metal impurities such as Al is remarkably improved.
[0009]
However, when a surface treatment composition to which EDDHA was added as a metal adhesion inhibitor was used, extremely excellent metal adhesion prevention performance was obtained in the initial stage, but significant performance deterioration was observed during long-time use. In particular, when this was added to ammonia / hydrogen peroxide solution, which is often used as a cleaning agent for silicon wafers, the ability to prevent metal adhesion decreased in a few hours, which was a big problem in practical use.
[0010]
[Problems to be solved by the invention]
As described above, metal impurity contamination from the surface treatment agent to the substrate surface is a serious problem, but the technology for stably preventing it over a long time is still insufficient.
The present invention has been made to solve the above-mentioned problems, and it is possible to prevent contamination of metal impurities from the surface treatment solution to the substrate surface over a long period of time, and to achieve a stable and extremely clean substrate surface. An object of the present invention is to provide a surface treatment method and a surface treatment composition for a substrate.
[0011]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors have repeatedly analyzed the cause of the fact that the metal adhesion prevention effect of EDDHA is not maintained for a long time. (1) When used for a long time, decomposition of EDDHA occurs in the surface treatment liquid. (2) The metal that has been stabilized as an EDDHA-metal chelate is separated from the EDDHA by this decomposition and adheres to the substrate surface. (3) A large amount of metal impurities such as Fe in the solution. It was found that decomposition of EDDHA was promoted when it was contained in (4), and that a large amount of metal impurities in the surface treatment liquid was derived from EDDHA as an additive.
[0012]
Conventional EDDHA contains metal impurities such as Fe of several to several thousand ppm. In the EDDHA solution, these metals are initially present as stable EDDHA-metal chelates and do not adhere to the substrate surface, but when used as a surface treatment solution such as a cleaning solution for a long time, the decomposition of EDDHA It separated from EDDHA and adhered to the substrate surface. Furthermore, these metals also promoted the decomposition of EDDHA in the liquid.
[0013]
From the above, the present inventors have maintained the effect of preventing the adhesion of metal impurities from the surface treatment solution to the substrate when EDDHA is added and contained by reducing the metal impurity concentration in EDDHA. I found out what to do and reached the present invention.
That is, the gist of the present invention is that it is added to the surface treatment composition of the substrate, prevents contamination of metal impurities from the surface treatment composition to the substrate surface for a long time, and achieves a stable and extremely clean substrate surface. The high purity ethylenediaminedioltohydroxyphenylacetic acid or its ammonium salt, and its purification method, characterized in that the content of at least one metal element of Fe, Al and Zn is 5 ppm or less.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The present invention is characterized in that the content of at least one metal element of Fe, Al, and Zn in EDDHA or an ammonium salt thereof is 5 ppm or less by weight with respect to EDDHA. When it adheres to the semiconductor substrate, there is a possibility of deteriorating the electrical characteristics of the semiconductor device. Ag, Al, As, Au, Ba, Ca, Cd, Co, Cr, Cu, Fe, Ga, Ge, Examples thereof include K, Li, Mg, Mn, Mn, Mo, Na, Ni, Pb, Si, Sn, Sr, Ti, and Zn. As a result of analyzing the metal species adhering to the substrate surface when a surface treatment solution containing EDDHA is used for a long time, we found that among the above metal species, especially Fe, Al, and Zn are adhering in large amounts. It was. These metals were contained in EDDHA. In particular, Fe not only easily adheres to the substrate surface in an alkaline solution, but also acts as a catalyst for the oxidation reaction of hydrogen peroxide in an [ammonia + hydrogen peroxide + water] cleaning solution, and promotes the decomposition of EDDHA. Moreover, Al and Zn are very easy to adhere to the substrate surface in an alkaline solution. These metals need to be 5 ppm or less, preferably 2 ppm or less with respect to EDDHA.
[0015]
The surface treatment composition in the present invention is a general term for surface treatment agents used for the purpose of cleaning, etching, polishing, film formation and the like of a substrate.
Although it does not specifically limit as a liquid used as a main component, Usually, aqueous solutions, such as an acid, an alkali, an oxidizing agent, surfactant, water, electrolytic ion water, an organic solvent, and these mixed solutions are used. In particular, in an alkaline aqueous solution used for cleaning or etching of a semiconductor substrate, the present invention is preferably used because metal impurities in the solution are very likely to adhere to the substrate surface. The alkaline aqueous solution in the present invention is a general term for an aqueous solution having a pH higher than 7. Although it does not specifically limit as an alkaline component, Ammonia is mentioned as a typical thing. Further, hydroxides of alkali metals or alkaline earth metals such as sodium hydroxide, potassium hydroxide and calcium hydroxide, alkaline salts such as sodium hydrogen carbonate and ammonium hydrogen carbonate, or tetramethylammonium hydroxide [common name: TMAH ], Quaternary ammonium salt hydroxides such as trimethyl-2-hydroxyethylammonium hydroxide and choline are also used. These alkalis may be added in two or more types, and are usually used so that the total concentration of the surface treatment composition in the total solution is 0.01 to 30% by weight. It is also preferably used for alkaline electrolytic ionic water obtained by electrolysis of water. Furthermore, an oxidizing agent such as hydrogen peroxide may be appropriately blended in such an alkaline aqueous solution. When cleaning bare (no oxide film) silicon in the semiconductor wafer cleaning process, the etching and surface roughness of the wafer can be suppressed by blending the oxidizing agent. When hydrogen peroxide is blended in the alkaline aqueous solution of the present invention, it is usually used so that the hydrogen peroxide concentration in the total solution of the surface treatment composition is in a concentration range of 0.01 to 30% by weight.
[0016]
The amount of EDDHA added as a metal adhesion preventive agent cannot be determined unconditionally because it varies depending on the type and amount of metal impurities in the liquid to be prevented from adhesion and the cleanliness level required for the substrate surface. The total amount added in the composition is usually 10 -7 ~ 5% by weight, preferably 10 -6 ~ 0.1 wt%. If the amount added is too small, the metal adhesion preventing effect is hardly exhibited. On the other hand, if the amount is too large, no further effect is obtained, and there is a risk that the complexing agent, which is a metal adhesion preventing agent, adheres to the substrate surface. Is unfavorable because of the high.
[0017]
The method for blending EDDHA according to the present invention into the surface treatment composition is not particularly limited. Pre-blend to any one or more of the components (for example, aqueous ammonia, hydrogen peroxide, water, etc.) that make up the surface treatment composition, and then mix and use these components. Or after mixing the said component, you may mix | blend and use this for this liquid mixture. However, when used for cleaning [ammonia water + hydrogen peroxide water + water], the solubility of EDDHA in ammonia water is higher than that of hydrogen peroxide water and water, and the stability of EDDHA over time is higher than that of hydrogen peroxide water. Since ammonia water is superior, it is better to use it by adding it to ammonia water, especially when stored for several weeks or more after blending. When used by adding to ammonia, the ammonia concentration is usually 0.1 to 35% by weight, preferably 5 to 32% by weight, and the EDDHA concentration is 10%. -7 ~ 5% by weight, preferably 10 -6 ˜1% by weight. In this case, the content of at least one metal element of Fe, Al, and Zn in the aqueous ammonia solution is usually 5 ppb or less, preferably 1 ppb or less.
[0018]
Depending on the purpose of the surface treatment, additives such as a surfactant, an oxidizing agent, a reducing agent, a complexing agent, an acid component for pH adjustment, and abrasive grains may be added to the surface treatment composition of the present invention. .
In particular, it is preferable to add a complexing agent other than EDDHA as shown below and to use two or more types of complexing agents because the metal adhesion preventing effect is further improved. The following can be illustrated as such a complexing agent. In addition, [] inside the compound name is a common name or abbreviation of the compound.
[0019]
Amines such as ethylenediamine, 8-quinolinol, o-phenanthroline, amino acids such as glycine, iminodiacetic acid, nitrilotriacetic acid, ethylenediaminetetraacetic acid [EDTA], trans-1,2-diaminocyclohexanetetraacetic acid [CyDTA], diethylenetriamine Iminocarboxylic acids such as pentaacetic acid [DTPA], triethylenetetramine hexaacetic acid [TTHA], ethylenediaminetetrakis (methylenephosphonic acid) [EDTPO], nitrilotris (methylenephosphonic acid) [NTPO], propylenediaminetetra (methylenephosphonic acid) Iminophosphonic acids such as [PDTMP], carboxylic acids such as formic acid, acetic acid and oxalic acid tartaric acid, hydrogen halides such as hydrofluoric acid, hydrochloric acid, hydrogen bromide and hydrogen iodide, or salts thereof, sulfuric acid, phosphoric acid, condensation Rin , Boric acid, silicic acid, carbonic acid, nitric acid, nitrous acid, perchloric acid, chloric acid, chlorous acid, such as oxo acids or their salts such as hypochlorous acid.
[0020]
The surface treatment composition of the present invention is a surface treatment such as cleaning, etching, polishing, and film formation of a substrate such as a semiconductor, metal, glass, ceramics, plastic, magnetic material or superconductor in which contamination of metal impurities of the substrate is a problem. Used for. In particular, the present invention is suitably used for cleaning and etching of a semiconductor substrate that requires a highly clean substrate surface. When the present invention is applied to alkali cleaning such as [ammonia + hydrogen peroxide + water] cleaning among semiconductor substrate cleaning, the problem of adhesion of metal impurities to the substrate, which has been a problem of the cleaning method, is improved. Therefore, the cleaning achieves a highly clean substrate surface free from metal contamination as well as particle and organic contamination, which is extremely suitable.
[0021]
When the present invention is used for cleaning, a method of directly contacting the liquid with the substrate is used. Such cleaning methods include dip-type cleaning in which the cleaning tank is filled with a cleaning solution and the substrate is immersed, spray-type cleaning that sprays the solution on the substrate for cleaning, and spin-type cleaning that drops the cleaning solution on the substrate and rotates it at high speed. Etc. In the present invention, a suitable one of the above-described cleaning methods is used, but dip cleaning is preferably used. About washing | cleaning time, although it wash | cleans for a suitable time, Preferably it is 10 second-30 minutes, More preferably, it is 30 second-15 minutes. If the time is too short, the cleaning effect is not sufficient, and if it is too long, the throughput only deteriorates, and the cleaning effect does not increase and is meaningless. Cleaning may be performed at room temperature, but may be performed with heating for the purpose of improving the cleaning effect. The temperature is usually from room temperature to 90 ° C., but when used at a high temperature, the deterioration of EDDHA is promoted, so use at 70 ° C. or lower is preferable. Further, when cleaning, a cleaning method using physical force may be used in combination. Examples of such a cleaning method using physical force include ultrasonic cleaning such as megasonic cleaning, a cleaning brush, and a cleaning method using electromagnetic waves. Furthermore, before and after the cleaning of the present invention, other known cleaning methods can be used for the purpose of more completely removing the contamination on the substrate surface. Such cleaning methods include [sulfuric acid + hydrogen peroxide + water] cleaning, [hydrochloric acid + hydrogen peroxide + water] cleaning, [hydrofluoric acid + hydrogen peroxide + water] cleaning, dilute hydrofluoric acid cleaning, and ozone ultrapure. Water cleaning, ultrapure water cleaning, electrolytic ion water cleaning, and the like can be given.
[0022]
The high purity EDDHA or its ammonium salt of the present invention can be obtained by purifying conventional EDDHA. As a purification method, a method by dissolution recrystallization is preferable in that a highly pure product can be obtained.
EDDHA dissolves in several to several tens of weight percent in an acidic or alkaline aqueous solution. When this solution is neutralized to give a neutral aqueous solution, EDDHA is hardly dissolved and precipitates. On the other hand, the metal impurities in EDDHA form EDDHA and a water-soluble EDDHA-metal chelate and are stably dissolved in a neutral aqueous solution. For this reason, if the precipitated EDDHA crystals are separated from the liquid, high-purity EDDHA with few metal impurities can be obtained. However, insoluble impurities cannot be separated by the above method. Therefore, when EDDHA is dissolved in an acidic or alkaline aqueous solution, the insoluble impurities can be removed by filtration by filtering the solution. Although it does not specifically limit as an acid component of the acidic aqueous solution which melt | dissolves EDDHA, A sulfuric acid, nitric acid, and hydrochloric acid are mentioned as a typical thing. These acid components are usually used so that the acid concentration in the acidic aqueous solution is 0.1 to 50% by weight, preferably 1 to 20% by weight. Moreover, the alkali component of the alkaline aqueous solution is not particularly limited, but a representative example is ammonia. The alkali component is usually used so that the alkali concentration in the alkaline aqueous solution is 0.1 to 50% by weight, preferably 1 to 20% by weight. The pH during neutralization is usually 4 to 9, preferably 5 to 8. The method for separating the obtained crystal and the liquid is not particularly limited, but usually a method using filtration with a filter or centrifugation is used.
[0023]
By performing the above purification operation one or more times, the high purity EDDHA of the present invention can be obtained. In particular, when the amount of impurities in EDDHA before purification is large, highly purified EDDHA can be obtained by repeating the above purification operation several times or more.
[0024]
【Example】
EXAMPLES Next, specific embodiments of the present invention will be described using examples, but the present invention is not limited to the following examples unless it exceeds the gist.
Example 1 and Comparative Examples 1 and 2
To a commercially available EDDHA (US, SIGMA CHEMICAl COMPANY, CATALOG #: E4135, Lot No. 85H5041), 10 ml of a 7 wt% nitric acid aqueous solution was added per 1 g of EDDHA to dissolve EDDHA. The EDDHA nitric acid aqueous solution was filtered with a Teflon filter (manufactured by PTFE) having an opening diameter of 0.1 μm to separate insoluble impurities by filtration. To the obtained filtrate, a 6% by weight aqueous ammonia solution was added until the pH of the solution reached 8, to precipitate EDDHA crystals. By filtering this with a filter having an opening diameter of 5 μm, an EDDHA crystal was obtained. Furthermore, the obtained crystal was washed with pure water on the filter.
[0025]
After the above operation was repeated 8 times, the purified EDDHA crystals were dried in a dryer to obtain the high purity EDDHA of the present invention.
The amount of metal impurities in EDDHA was analyzed after wet decomposition by the method shown below. After sampling 1 g of EDDHA in the washed quartz flask, 5 ml of sulfuric acid was added, and after heating carbonization, nitric acid and hydrogen peroxide were added, and oxidative decomposition was performed while heating. After heating to evaporate other than sulfuric acid, the volume was made up to 50 ml with pure water. In this manner, after the sample was wet-decomposed, the amount of metal impurities was analyzed by ICP-AES method and atomic absorption method.
[0026]
Table 1 shows analytical values of the high purity EDDHA obtained by the above operation. For comparison, the analytical values of unpurified EDDHA (manufactured by SIGMA CHEMICAl COMPANY, USA, Lot No. 85H5041: Comparative Example 1, Lot No. 117F50221: Comparative Example 2) are also shown in Table 1.
[0027]
[Table 1]
Table-1
Figure 0003887846
[0028]
As shown in Table 1, the conventional EDDHA contains several to several thousand ppm of metal impurities, which can be reduced to 5 ppm or less by the purification method of the present invention. .
[0029]
Example 2
To a commercially available EDDHA (manufactured by SIGMA CHEMICAl COMPANY, USA, CATALOG #: E4135, Lot No. 117F50221: Comparative Example 2), 10 ml of 3 wt% aqueous ammonia solution per 1 g of EDDHA was added to dissolve EDDHA. The EDDHA nitric acid aqueous solution was filtered with a Teflon filter (manufactured by PTFE) having an opening diameter of 0.1 μm to separate insoluble impurities by filtration. A 23 wt% aqueous nitric acid solution was added to the obtained filtrate until the pH of the solution reached 6, to precipitate EDDHA crystals. This was filtered through a Teflon filter (manufactured by PTFE) having an opening diameter of 5 μm to obtain an EDDHA crystal. Furthermore, the obtained crystal was washed with pure water on the filter.
[0030]
After the above operation was repeated seven times, the purified EDDHA crystals were dried in a dryer to obtain the high purity EDDHA of the present invention. The results of analyzing the obtained high purity EDDHA by the same method as in Example 1 are shown in Table 2.
[0031]
[Table 2]
Table-2
Figure 0003887846
[0032]
Example 3
The high-purity EDDHA obtained in Example 2 was dissolved by adding 240 ppm to a high-purity ammonia aqueous solution (30% by weight) to obtain an EDDHA-added ammonia aqueous solution of the present invention. Table 2 shows the metal impurity analysis results of the obtained EDDHA-added aqueous ammonia solution. Metal impurities were analyzed by ICP-MS method and atomic absorption method. The metal impurity analysis results are shown in Table-3.
[0033]
[Table 3]
Table-3
Figure 0003887846
[0034]
As shown in Table 3, by using the high-purity EDDHA of the present invention, it is possible to reduce the content of metal elements to 1 ppb or less (in the case of an EDDHA addition amount of 240 ppm).
[0035]
Examples 4 and 5 and Comparative Examples 3 to 6
Ammonia water (30 wt%), hydrogen peroxide water (31 wt%) and water were mixed at a volume ratio of 1: 1: 10, and the obtained aqueous solvent was shown in Table 4 as a metal adhesion inhibitor. Similarly, a predetermined amount of EDDHA was added to prepare a surface treatment composition. The high purity EDDHA obtained in Example 1 was used for EDDHA. For comparison, a commercially available EDDHA (manufactured by SIGMA CHEMICAl COMPANY, USA, CATALOG #: E4135, Lot No. 117F50221: Comparative Example 2) was also prepared. In addition, the addition amount of EDDHA was shown by the weight ratio (ppm) with respect to this aqueous solvent. For comparison, a solution in which EDDHA was not added to the aqueous solvent was also prepared. The total volume of the surface treatment composition was 2.8 liters, and was placed in a quartz tank without a lid with a capacity of 6 liters. The temperature of the liquid was heated and maintained at 55 to 65 ° C.
[0036]
The surface treatment solution thus prepared was left for a certain period of time while being maintained at 55 to 65 ° C. After standing for a certain time, 1 ppb of Al and Fe were added, and a clean silicon wafer (p-type, CZ, plane orientation (100)) was immersed for 10 minutes. The wafer after immersion was rinsed with ultrapure water for 10 minutes and then dried by nitrogen blowing to quantify Al and Fe adhering to the wafer surface. Al and Fe adhering to the silicon wafer are collected in a mixed solution of 0.1% by weight of hydrofluoric acid and 1% by weight of hydrogen peroxide, the amount of the metal is measured by flameless atomic absorption, and the substrate surface concentration (atoms / cm 2 ). The results are shown in Table-4. For comparison, Table 4 also shows the experimental results when the surface treatment liquid is not left.
[0037]
[Table 4]
Table-4
Figure 0003887846
[0038]
As shown in Table 4, when high-purity EDDHA is used, the effect of preventing metal adhesion to the substrate surface is maintained even after the surface treatment liquid is left at about 60 ° C. for a long time. On the other hand, when commercially available EDDHA is used, it is effective immediately after the addition, but the adhesion preventing effect is lowered when used for a long time. In particular, the amount of Fe deposited is greater than when no complexing agent is added. This is presumably because a large amount of Fe contained in the conventional EDDHA was separated from EDDHA due to decomposition of EDDHA and adhered to the substrate surface.
[0039]
Examples 6 to 8 and Comparative Examples 7 and 8
Ammonia water (30 wt%), hydrogen peroxide water (31 wt%) and water were mixed at a volume ratio of 1: 1: 10, and the obtained aqueous solvent was listed in Table-5 as a metal adhesion inhibitor. A predetermined amount of these two complexing agents was added to prepare the surface treatment composition of the present invention. The high purity EDDHA obtained in Example 1 was used for EDDHA. For comparison, a commercially available EDDHA (manufactured by SIGMA CHEMICAl COMPANY, USA, CATALOG #: E4135, Lot No. 117F50221: Comparative Example 2) was also adjusted. The amounts of metal elements in acetic acid and o-phenanthroline were each 1 ppm or less. The liquid was maintained at 55 to 65 ° C. and allowed to stand for a certain period of time, and then the metal adhesion to the substrate surface was evaluated in the same manner as in Example 1. All other experimental conditions were the same as in Example 4. The experimental results are shown in Table-5.
[0040]
[Table 5]
Table-5
Figure 0003887846
[0041]
【The invention's effect】
By using the surface treatment method of the present invention, contamination of metal impurities such as Al and Fe from the surface treatment composition to the substrate surface can be prevented, and a stable and extremely clean substrate surface can be achieved over a long period of time.
In particular, when the present invention is applied to alkali cleaning of a semiconductor substrate typified by [ammonia + hydrogen peroxide + water] cleaning, the problem of metal impurity adhesion to the substrate, which was a problem of the cleaning method, is improved. Thus, the cleaning achieves a highly clean substrate surface free from metal contamination as well as particle and organic contamination. For this reason, the acid cleaning such as [hydrochloric acid + hydrogen peroxide + water] cleaning, which has been used after the cleaning, can be omitted, and the cleaning cost and the cost of the clean room such as the exhaust equipment can be greatly reduced. Therefore, it is great in terms of industrial production of semiconductor integrated circuits.
When manufacturing semiconductors, liquid crystals, etc., wet processes such as etching and cleaning use ultrapure water and ultrapure chemicals with a metal impurity concentration of 0.1 ppb or less to prevent adhesion of metal impurities to the substrate surface. It has been. Further, these chemical solutions need to be frequently replaced because metal impurities are mixed during use. However, if the present invention is used, it is possible to prevent adhesion even if a large amount of metal impurities are present in the liquid, so there is no need to use an ultra-high-purity chemical liquid, and the chemical liquid is contaminated with metal impurities during use. However, since it is not necessary to change frequently, the cost of the chemical solution and its management can be greatly reduced.
In addition, when etching or cleaning a substrate having a metal on the surface, if a metal having a higher ionization tendency than the metal to be processed is present as an impurity in the liquid, it adheres electrochemically to the substrate surface. If used, the metal impurity becomes a stable water-soluble metal complex, which can be prevented.
As described above, the ripple effect of the surface treatment agent of the present invention is tremendous and is very useful industrially.

Claims (7)

Fe、Al、Znの内の少なくとも1つの金属元素の含有量が5ppm以下である事を特徴とする高純度エチレンジアミンジオルトヒドロキシフェニル酢酸またはそのアンモニウム塩。  A high-purity ethylenediaminedioltohydroxyphenylacetic acid or an ammonium salt thereof, wherein the content of at least one metal element of Fe, Al, and Zn is 5 ppm or less. Fe含有量が5ppm以下、Al含有量が2ppm以下、Zn含有量が2ppm以下である事を特徴とする高純度エチレンジアミンジオルトヒドロキシフェニル酢酸またはそのアンモニウム塩。  A high-purity ethylenediaminedioltohydroxyphenylacetic acid or an ammonium salt thereof, wherein the Fe content is 5 ppm or less, the Al content is 2 ppm or less, and the Zn content is 2 ppm or less. 請求項1または2に記載の高純度エチレンジアミンジオルトヒドロキシフェニル酢酸またはそのアンモニウム塩を含有する半導体基板洗浄またはエッチング用組成物。A composition for cleaning or etching a semiconductor substrate , comprising the high-purity ethylenediaminediorthydroxyphenylacetic acid or an ammonium salt thereof according to claim 1 or 2. 請求項1または2に記載の高純度エチレンジアミンジオルトヒドロキシフェニル酢酸またはそのアンモニウム塩を含有したアルカリ性水溶液。  An alkaline aqueous solution containing the high-purity ethylenediaminediorthydroxyphenylacetic acid or ammonium salt thereof according to claim 1 or 2. 請求項4に記載のアルカリ水溶液であって、アンモニア濃度が0.1〜35重量%、高純度エチレンジアミンジオルトヒドロキシフェニル酢酸の濃度が10−7〜5重量%であるアルカリ水溶液。5. The alkaline aqueous solution according to claim 4, wherein the ammonia concentration is 0.1 to 35% by weight and the concentration of high purity ethylenediaminedioltohydroxyphenylacetic acid is 10 −7 to 5% by weight. 酸性またはアルカリ性溶液にエチレンジアミンジオルトヒドロキシフェニル酢酸またはその塩を溶解した後、不溶性不純物をろ過分離して取り除き、再び中和して、エチレンジアミンジオルトヒドロキシフェニル酢酸の結晶を析出させ、該結晶を液と分離して得る事を特徴とする高純度エチレンジアミンジオルトヒドロキシフェニル酢酸またはその塩の製造方法。  After dissolving ethylenediaminediorthydroxyphenylacetic acid or a salt thereof in an acidic or alkaline solution, insoluble impurities are separated by filtration and neutralized again to precipitate ethylenediaminediorthydroxyphenylacetic acid crystals. A method for producing high-purity ethylenediaminedioltohydroxyphenylacetic acid or a salt thereof, characterized by being obtained by separating from 請求項6の精製方法において、不溶性不純物のろ過分離が開口径0.5μm以下のフィルターによっておこなわれる高純度エチレンジアミンジオルトヒドロキシフェニル酢酸またはその塩の製造方法。  The method for producing high-purity ethylenediaminediorthydroxyphenylacetic acid or a salt thereof, wherein the insoluble impurities are separated by filtration using a filter having an opening diameter of 0.5 µm or less.
JP17489296A 1996-07-04 1996-07-04 High-purity ethylenediaminedioltohydroxyphenylacetic acid and surface treatment composition using the same Expired - Fee Related JP3887846B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17489296A JP3887846B2 (en) 1996-07-04 1996-07-04 High-purity ethylenediaminedioltohydroxyphenylacetic acid and surface treatment composition using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17489296A JP3887846B2 (en) 1996-07-04 1996-07-04 High-purity ethylenediaminedioltohydroxyphenylacetic acid and surface treatment composition using the same

Publications (2)

Publication Number Publication Date
JPH1017533A JPH1017533A (en) 1998-01-20
JP3887846B2 true JP3887846B2 (en) 2007-02-28

Family

ID=15986515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17489296A Expired - Fee Related JP3887846B2 (en) 1996-07-04 1996-07-04 High-purity ethylenediaminedioltohydroxyphenylacetic acid and surface treatment composition using the same

Country Status (1)

Country Link
JP (1) JP3887846B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100497835B1 (en) * 1997-01-27 2005-09-08 미쓰비시 가가꾸 가부시키가이샤 Surface treatment composition and method for treating surface of substrate by using rhe same
JP2002356464A (en) * 2001-05-30 2002-12-13 Showa Denko Kk High-purity aminopolycarboxylic acid, its salt, and method for producing the same
JP4507486B2 (en) * 2002-09-02 2010-07-21 エア・ウォーター株式会社 Purification method of carboxylic acid
JP2007186715A (en) * 2007-03-30 2007-07-26 Nippon Shokubai Co Ltd Detergent for electronic component
WO2010125827A1 (en) 2009-04-30 2010-11-04 ライオン株式会社 Method for cleaning of semiconductor substrate and acidic solution
DE112020004477T5 (en) * 2019-09-19 2022-06-30 Unilever Global Ip Limited DETERGENT COMPOSITIONS

Also Published As

Publication number Publication date
JPH1017533A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
EP0789071B1 (en) Method for treating surface of substrate and surface treatment composition therefor
KR101166002B1 (en) Substrate cleaning liquid for semiconductor device and cleaning method
KR100913557B1 (en) Liquid detergent for semiconductor device substrate and method of cleaning
KR100340274B1 (en) Cleaning Method of Semiconductor Substrate
JP4304988B2 (en) Semiconductor device substrate cleaning method
KR100974034B1 (en) Cleaning composition and method of cleaning therewith
JP3075290B2 (en) Cleaning liquid for semiconductor substrates
KR100533194B1 (en) Cleaning solution
EP1389496A1 (en) Method for cleaning surface of substrate
US6143706A (en) Surface treatment composition and method for treating surface of substrate by using the same
JP3165801B2 (en) Cleaning solution
JP3887846B2 (en) High-purity ethylenediaminedioltohydroxyphenylacetic acid and surface treatment composition using the same
RU2329298C2 (en) Treatment of semiconductor surfaces and mixture used in process
JP2003068696A (en) Method for cleaning substrate surface
JP3228211B2 (en) Surface treatment composition and substrate surface treatment method using the same
JP2003088817A (en) Method for cleaning surface of substrate
JP3198878B2 (en) Surface treatment composition and substrate surface treatment method using the same
JP3449474B2 (en) Composition for surface treatment of semiconductor substrate and surface treatment method
JP4179098B2 (en) Semiconductor wafer cleaning method
JP3749567B2 (en) Semiconductor substrate cleaning method
JP4026384B2 (en) Semiconductor substrate cleaning method
JP2002114744A (en) Surface treatment composition and method for surface treatment of substrate using the same
JPH11274129A (en) Cleaning of semiconductor substrate
JPH10321590A (en) Surface treatment method and treatment agent

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061120

LAPS Cancellation because of no payment of annual fees