[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3555489B2 - 3D shape manufacturing method - Google Patents

3D shape manufacturing method Download PDF

Info

Publication number
JP3555489B2
JP3555489B2 JP08230999A JP8230999A JP3555489B2 JP 3555489 B2 JP3555489 B2 JP 3555489B2 JP 08230999 A JP08230999 A JP 08230999A JP 8230999 A JP8230999 A JP 8230999A JP 3555489 B2 JP3555489 B2 JP 3555489B2
Authority
JP
Japan
Prior art keywords
sheet material
manufacturing
powder material
sheet
dimensionally shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP08230999A
Other languages
Japanese (ja)
Other versions
JP2000272018A (en
Inventor
喜万 東
徳雄 吉田
勲 不破
良幸 内野々
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP08230999A priority Critical patent/JP3555489B2/en
Priority to TW089112027A priority patent/TW509602B/en
Publication of JP2000272018A publication Critical patent/JP2000272018A/en
Application granted granted Critical
Publication of JP3555489B2 publication Critical patent/JP3555489B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Powder Metallurgy (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、粉末材料が硬化される硬化層を順次に積層形成して三次元形状の造形物を得る三次元形状物製造法に関するものである。
【0002】
【従来の技術】
従来から、図40に示す如く、粉末材料1が硬化される硬化層2を順次に積層形成して三次元形状の造形物を得る三次元形状物製造法は知られている。これは「選択的焼結によって部品を製造する方法」として特許第2620353号公報に開示されたもので、ここでは、金属等の無機質材或いは樹脂等の有機質材でなる粉末材料1が堆積され、そこにレーザや指向性エネルギービーム等の光ビーム(レーザビーム12)が照射され硬化されて硬化層2が形成され、該硬化層2が順次に積層形成されて三次元形状の造形物が得られる。
【0003】
この場合、図40(a)に示す如く、粉末材料1はホッパー29から包囲構造30内に供給され、その上から、図40(b)に示す如く、レーザビーム12が所定部位に選択的に照射され、これが繰り返されて硬化層2が積層形成される。又、レーザビーム12はレーザヘッド31から照出され、その走路がプリズム32を含む走査系33で方向変換されるように操作されて、包囲構造30内で最上層となる粉末材料1の所定部位に選択的に照射される。したがって、この場合には、複雑な形状の造形物を比較的容易に製造することができる。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の技術においては、粉末材料1の充填密度が低くて照射、硬化後の密度は100%とならず、そのため、製造される造形物の強度が材料本来の機械的強度に比して弱くなるという問題があった。又、硬化層2を形成するためにレーザビーム12を走査する工程が必要となり、しかも、造形物の輪郭線内の走査データ量が多いため造形時間が長くなるという問題があった。又、粉末材料1が硬化する際に収縮するため、硬化層2が変形して精度良く造形物を製造することができないという問題もあった。
【0005】
本発明は、上記従来の技術における問題を悉く解決するために発明されたもので、その課題は、複雑な形状でありながら高強度で高精度な造形物を容易に製造することができる三次元形状物製造法を提供することである。
【0006】
【課題を解決するための手段】
本発明の請求項1記載の三次元形状物製造法は、粉末材料が硬化される硬化層を順次に積層形成して三次元形状の造形物を得る製造法であって、埋設用部材を設置しておき、該埋設用部材の周辺に粉末材料を充填し、該粉末材料を同埋設用部材の近傍でこれと一体化されるように硬化させて、硬化層を順次に積層形成する製造法である。
【0007】
したがって、この場合、埋設用部材を高密度で強固に形成しておくことで、全体としては高強度な造形物を製造することができる。しかも、埋設用部材の周辺付近のみの粉末材料を層構成として順次に硬化させるだけで良く、その際、硬化させるためのビームを走査する走査データ量も造形物の輪郭線内で少なくなって走査時間は短くなり、複雑な形状であってもその造形時間の短縮化を図ることができる。又、硬化される粉末材料の量が少なくなることで、その硬化時の収縮による変形も防止されて、高精度な造形物を製造することができる。
【0008】
また、この場合において、埋設用部材を周壁体で囲まれたプレート上に設置し、該プレートを同周壁体の上端部から硬化層の厚みに相当する寸法分づつ順次に降下させて、同周壁体で囲まれたスペース内に粉末材料を同プレートの降下ごとに充填して硬化させてもよい
【0009】
このようにすることで、埋設用部材が硬化層の厚みに相当する寸法分づつ降下されながら、その周辺に同硬化層が順次に積層形成されるので、硬化後ごとに粉末材料を容易に充填することができ、これに照射するビームの距離設定等も容易になって、最適な製造設備となすことができる。
【0010】
また、本発明の請求項記載の三次元形状物製造法は、上記三次元形状物製造法において、シート材料を積層一体化して埋設用部材を形成することを特徴とするものである。
【0011】
したがって、この場合は特に、複雑な形状の造形物であっても、これに埋設される埋設用部材をシート材料の積層一体化により形成することによって、簡単に製造することができる。
【0012】
しかも、本発明の請求項記載の三次元形状物製造法は、上記三次元形状物製造法において、各硬化層を形成するごとにその前に各シート材料を順次に積層設置して、埋設用部材を形成することを特徴とするものである。
【0013】
したがって、この場合は特に、シート材料を予め積層一体化して形成しておく必要がなく、各硬化層を形成するごとにその前に各シート材料を順次に積層設置して、埋設用部材を簡単に形成することができ、同埋設用部材は粉末材料の充填の際に邪魔になることもない。
【0014】
本発明の請求項記載の三次元形状物製造法は、上記請求項記載の三次元形状物製造法において、積層される各シート材料に穿設された貫通孔に粉末材料を充填し、該粉末材料を硬化させることによって同各シート材料を結合させることを特徴とするものである。
【0015】
したがって、この場合は特に、貫通孔に充填される粉末材料の硬化によって各シート材料は結合されるので、シート材料間の結合強度が向上されると共に粉末材料硬化時の熱影響によるシート材料の変形も防止され、造形物の高強度化、高精度化を図ることができる。
【0016】
本発明の請求項記載の三次元形状物製造法は、上記請求項記載の三次元形状物製造法において、各シート材料の間で貫通孔を連通させることを特徴とするものである。
【0017】
したがって、この場合は特に、シート材料間で連通した貫通孔に充填される粉末材料の硬化によって各シート材料が結合されるので、各シート材料は相互に位置決めされて横ズレなく結合され、造形物の更なる高強度化、高精度化を図ることができる。
【0018】
本発明の請求項記載の三次元形状物製造法は、上記請求項記載の三次元形状物製造法において、各シート材料の厚みを埋設用部材の外側面の傾斜がきつくなる部位では厚く、同傾斜が緩くなる部位では薄くなるように変化設定することを特徴とするものである。
【0019】
したがって、この場合は特に、埋設用部材の外側面の傾斜がきつくなる部位では、シート材料の厚みが厚くなるように変化設定されて該シート材料の積層枚数は削減され、造形時間の更なる短縮化を図ることができる。逆に、埋設用部材の外側面の傾斜が緩くなる部位では、シート材料の厚みが薄くなるように変化設定されて該シート材料の端部で発生する段差は小さくなり、造形物の水平に近い表面を滑らかに仕上げることができる。
【0024】
【発明の実施の形態】
図1は、本発明の一参考例を示し、該参考例の三次元形状物製造法は、粉末材料1が硬化される硬化層2を順次に積層形成して三次元形状の造形物を得る製造法であって、埋設用部材3を設置しておき、該埋設用部材3の周辺に粉末材料1を充填し、該粉末材料1を同埋設用部材3の近傍でこれと一体化されるように硬化させて、硬化層2を順次に積層形成する製造法である。
【0025】
参考例の三次元形状物製造法においては、埋設用部材3を周壁体4で囲まれたプレート5上に設置し、該プレート5を同周壁体4の上端部6から硬化層2の厚みに相当する寸法L分づつ順次に降下させて、同周壁体4で囲まれたスペース7内に粉末材料1を同プレート5の降下ごとに充填して硬化させる。
【0026】
この場合、図1(a)に示す如く、プレート5上に埋設用部材3を予め設置しておき、図1(b)に示す如く、プレート5を硬化層2の厚みに相当する寸法Lだけ降下させ、これにより形成される周壁体4で囲まれたスペース7内に、図1(c)に示す如く、粉末材料1を充填する。ここで、プレート5の周囲には周壁体4の内面に密接状態で摺動するスライダ11が設けられており、粉末材料1の漏れ出ないスペース7が、同周壁体4の上端部6から所定の深さ(寸法L)となって確実に形成される。
【0027】
次に、図1(d)に示す如く、埋設用部材3の周辺付近の粉末材料1にのみビーム12を照射して硬化させ、その際、該粉末材料1が硬化する硬化層2を同埋設用部材3の外側面にも結合一体化させる。ここで、ビーム12としてはレーザや指向性エネルギービーム等の光ビームが照射され、粉末材料1は焼結により硬化する。粉末材料1は金属等の無機質材或いは樹脂等の有機質材でなり、前記ビーム12によって必要部分のみが選択的に焼結され効率良く確実に硬化される。又、埋設用部材3の材質は、これに粉末材料1が硬化され結合一体化されることから該粉末材料1と同質材料であることが好ましく、同埋設用部材3は高密度で高強度に形成されるが、安価で高強度に形成される別材料が採用されても良い。
【0028】
上記図1(b)〜(d)の工程が繰り返され、最終的に図1(e)に至って造形物が完成する。この場合、金属でなる粉末材料1を硬化積層させて金属部品や金型等を製造することができ、樹脂でなる粉末材料1によって樹脂部品を製造することができ、有機質材と無機質材とが混在する造形物や部品等を製造することもできる。
【0029】
したがって、該参考例の三次元形状物製造法においては、埋設用部材3を高密度で強固に形成しておくことで、全体としては高強度な造形物を製造することができる。しかも、埋設用部材3の周辺付近のみの粉末材料1を層構成として順次に硬化させるだけで良く、その際、硬化させるためのビーム12を走査する走査データ量も造形物の輪郭線内で少なくなって走査時間は短くなり、複雑な形状であってもその造形時間の短縮化を図ることができる。又、硬化される粉末材料1の量が少なくなることで、その硬化時の収縮による変形も防止されて、高精度な造形物を製造することができる。
【0030】
又、該参考例の三次元形状物製造法においては、埋設用部材3が硬化層2の厚みに相当する寸法L分づつ降下されながら、その周辺に同硬化層2が順次に積層形成されるので、硬化後ごとに粉末材料1を容易に充填することができ、これに照射するビーム12の距離設定等も容易になって、最適な製造設備となすことができる。しかも、この場合に、プレート5は周壁体4の上端部6から硬化層2の厚みに相当する寸法L分づつ降下されるので、該寸法L分の厚さ寸法となる程度に粉末材料1が正確に適量だけ充填される。
【0031】
図2は、本発明の別の参考例を示し、該参考例の三次元形状物製造法においては、シート材料8を積層一体化して埋設用部材3が形成されている。この場合、シート材料8は無機質材或いは有機質材で、予め積層一体化されてプレート5上に設置される。
【0032】
したがって、この場合は特に、複雑な形状の造形物であっても、これに埋設される埋設用部材3をシート材料8の積層一体化により形成することによって、簡単に製造することができる。なお、それ以外は、上記図1に示した参考例と同様に構成されて同様の工程となっており、同上記参考例におけると同様の作用効果が奏される。
【0033】
図3は、本発明の請求項に対応する実施形態を示し、該実施形態の三次元形状物製造法においては、各硬化層2を形成するごとにその前に各シート材料1を順次に積層設置して、埋設用部材3を形成するものである。この場合、シート材料8は所定の大きさ形状に切断され、その厚み寸法は硬化層2の厚みに相当する寸法Lに略等しく形成されており、該寸法Lだけプレート5を降下させる前に予め該プレート5上に同シート材料8は設置されているが、プレート5を降下させた後に該プレート5上に同シート材料8を設置しても良く、すなわち、図3(a)(b)の工程が入れ替わっても良い。
【0034】
したがって、この場合は特に、シート材料8を予め積層一体化して埋設用部材3を形成しておく必要がなく、各硬化層2を形成するごとにその前に各シート材料8を順次に積層設置して、埋設用部材3を簡単に形成することができ、同埋設用部材3は粉末材料1の充填の際に邪魔になることもない。又、充填された粉末材料1から埋設用部材3が上方へ突出しないので、ビーム12を照射する同粉末材料1の硬化作業の際にも支障を来すことがない。なお、それ以外は、上記図2に示した参考例と同様に構成されて同様の工程となっており、同上記参考例におけると同様の作用効果が奏される。
【0035】
又、上記各参考例、実施形態においては、図4に示す如く、下層から上層領域を除いた領域部分に粉末材料1を充填している。すなわち、シート材料8の輪郭線周辺に粉末材料1は充填されて、該粉末材料1が同シート材料8の間には介設されていない。この場合、各シート材料8の端面間の隙間が粉末材料1の硬化層2によって閉塞されると共に、強固に接着されて同端面からのシート材料8のめくれ上がり変形が防止され、しかも、接着部分が少ないため熱歪み等の影響も少なく、高精度の造形物を得ることができる。
【0036】
又、上記各参考例、実施形態において、図5に示す如く、各シート材料8の間に粉末材料1を塗布介設し、該シート材料8間の粉末材料1を溶融或いは焼結することによって、各シート材料8を相互に接合させることも可能である。この場合、図5(a)(b)に示す如く、下層のシート材料8の表面に粉末材料1を塗布して粉末接着層13を形成し、図5(c)に示す如く、同粉末接着層13上に上層のシート材料8を設置し、図5(d)に示す如く、同上層のシート材料8の上から該シート材料8を通してレーザ等のビーム12を照射し、これにより、前記粉末接着層13を溶融或いは焼結させて該粉末接着層13により上下層のシート材料8を相互に接着結合する。
【0037】
したがって、この場合は、シート材料8の相互間の接着強度が向上して、造形物の機械的強度を増強させることができる。又、この場合には、シート材料8よりも低融点の粉末材料1が用いられ、これによって、該シート材料8にはビーム12の熱影響によるダメージを与えることなく造形することができ、同シート材料8に変形を生じることなく高精度の造形物が得られる。
【0038】
図6は、本発明の請求項1、2に対応する別の実施形態を示し、該実施形態の三次元形状物製造法においては、積層される各シート材料8に穿設された貫通孔9に粉末材料1を充填し、該粉末材料1を硬化させることによって同各シート材料8を結合させるものである。この場合、図6(a)(b)に示す如く、複数の貫通孔9が穿設されたシート材料8の上から、該シート材料8の周辺と各貫通孔9内とに粉末材料1を充填し、図6(c)に示す如く、同シート材料8の上からレーザ等のビーム12を照射して、前記シート材料8の周辺及び各貫通孔9内に充填された粉末材料1を硬化させる。この図6(a)〜(c)の工程が繰り返され、最終的に図6(d)に至って造形物が完成する。
【0039】
したがって、この場合は特に、貫通孔9に充填される粉末材料1の硬化によって各シート材料8は結合されるので、各シート材料8間の結合強度が向上されると共に、粉末材料1硬化時の熱影響による各シート材料8の変形も防止され、造形物の高強度化、高精度化を図ることができる。なお、それ以外は、上記図3に示した実施形態と同様に構成されて同様の工程となっており、同上記実施形態におけると同様の作用効果が奏される。
【0040】
図7は、本発明の請求項1〜に対応する更に別の実施形態を示し、該実施形態の三次元形状物製造法においては、各シート材料8の間で貫通孔9を連通させている。この場合、全シート材料8に貫通孔9は連通しており、該連通した貫通孔9が複数個所に配設されている。
【0041】
したがって、この場合は特に、シート材料8間で連通した貫通孔9に充填される粉末材料1の硬化によって各シート材料8が結合されるので、各シート材料8は相互に位置決めされて横ズレなく結合され、造形物の更なる高強度化、高精度化を図ることができる。なお、それ以外は、上記図6に示した実施形態と同様に構成されて同様の工程となっており、同上記実施形態におけると同様の作用効果が奏される。
【0042】
又、該実施形態において、図8に示す如く、貫通孔9を傾斜して連通するように穿設することもできる。この場合、図8(a)に示す如く、シート材料8の各層ごとで貫通孔9を交互に異なる方向へ傾斜させても良く、或いは、図8(b)に示す如く、複数層のシート材料8ごとで貫通孔9を交互に異なる方向へ傾斜させても良いものである。この場合には、シート材料8の重ね合わせ方向で、各シート材料8が相互に剥がれ難くなり、造形物の更なる高強度化を図ることができる。
【0043】
又、該実施形態において、図9に示す如く、上下層のシート材料8間で連通する両貫通孔9の上側の貫通孔9bを、下側の貫通孔9aで充填硬化される粉末材料1の逃がし孔としても良い。この場合には、下側の貫通孔9aに充填された粉末材料1が硬化する際に、該粉末材料1の凝縮による盛り上がり変形は、上側の貫通孔9bで逃がされ吸収されるので、各シート材料8間での密着性を向上させることができる。
【0044】
又、該実施形態において、図10に示す如く、上下層の両シート材料8間で連通する貫通孔9b,9aと連通しない貫通孔9cとを共に配設しても良い。この場合には、連通する両貫通孔9b,9aでシート材料8間の位置決めを行うことができ、連通しない貫通孔9cでシート材料8間の接着強度を高めることができる。
【0045】
又、該実施形態において、図11に示す如く、シート材料8間で連通する貫通孔9の孔径を、各シート材料8の層間で相違させても良い。この場合、上下の貫通孔9c,9aが大径に形成され、中程の貫通孔9bが小径に形成されている。又、図12に示す如く、上下層の両シート材料8間で連通する貫通孔9b,9aの各開口端縁に各々面取り加工を施しても良い。これ等の場合には、シート材料8の重ね合わせ方向で、各シート材料8が相互により剥がれ難くなって、各シート材料8間での接着強度を向上させることができる。
【0046】
又、該実施形態において、図13に示す如く、シート材料8間で連通する各貫通孔9をテーパ孔状に形成しても良い。この場合、図13(a)に示す如く、粉末材料1が充填硬化される下側の貫通孔9aと、逃がし孔とされる上側の貫通孔9bとを、共に同じ傾斜で同じ大きさののテーパ孔状に形成しても良く、又、図13(b)に示す如く、多数層にわたって連通する各貫通孔9を、全て同じ傾斜で同じ大きさのテーパ孔状に形成しても良く、又、図13(c)に示す如く、多数層にわたって連通する各貫通孔9を、相互に傾斜が連続するよう順次その大きさを変化させてテーパ孔状に形成し、このように連通形成された複数の貫通孔9を複数組み相互に相反するテーパにして配設しても良い。これ等の場合には、シート材料8の重ね合わせ方向で、各シート材料8が相互により剥がれ難くなって、各シート材料8間での接着強度を向上させることができると共に、位置決め作業も容易となる。
【0047】
図14は、本発明の請求項1、4に対応する更に別の実施形態を示し、該実施形態の三次元形状物製造法においては、各シート材料8の厚みを埋設用部材3の外側面の傾斜Kがきつくなる部位(傾斜Kが鉛直方向に近くなる部位)では厚く、同傾斜Kが緩くなる部位(傾斜Kが水平方向に近くなる部位)では薄くなるように変化設定するものである。この場合、図15(a)に示す如く、傾斜Kが鉛直方向に近くなる部位でシート材料8を厚くすることにより、その積層数は少なくなり、又、図15(b)に示す如く、傾斜Kが水平方向に近くなる部位でシート材料8を薄くすることにより、その端部で発生する段差は小さくなる。
【0048】
したがって、この場合は特に、埋設用部材3の外側面の傾斜Kがきつくなる部位では、シート材料8の厚みが厚くなるように変化設定されて、該シート材料8の積層枚数は削減されるので、造形時間の更なる短縮化を図ることができる。逆に、埋設用部材3の外側面の傾斜Kが緩くなる部位では、シート材料8の厚みが薄くなるように変化設定されて、該シート材料8の端部で発生する段差は小さくなるので、造形物の水平に近い表面を滑らかに仕上げることができる。
【0049】
又、該実施形態の三次元形状物製造法において、図16(a)に示す如く、シート材料8を各層ごとで一体に形成しその厚みを均一としても良く、又、図16(b)に示す如く、シート材料8を特定の部位でその複数層を一体に形成しその厚みを相違させても良い。なお、それ以外は、上記図3に示した実施形態と同様に構成されて同様の工程となっており、同上記実施形態におけると同様の作用効果が奏される。
【0050】
図17は、本発明の請求項に対応する更に別の実施形態を示し、該実施形態の三次元形状物製造法においては、シート材料8の間に粉末材料1が固化される粉末固化層10を介設形成するものである。この場合、粉末固化層10はシート材料8の代わりに配設されるもので、その上下両側のシート材料8を強固に接合させる。
【0051】
したがって、この場合は特に、シート材料8による積層面が微細で複雑な形状となる場合、例えば、切り抜き形状が複雑であったり、独立した輪郭線の島が多く発生する場合に、同シート材料8に代えてその部位に粉末材料1が固化される粉末固化層10を介設形成することにより、該粉末固化層10を簡単に正確な位置に形成して、複雑な形状となる造形物の製造にも容易に対応することができる。
【0052】
又、該実施形態の三次元形状物製造法において、図18に示す如く、複数の粉末固化層10を介設してこれ等の厚みを相違させることができる。この場合、厚い粉末固化層10を得るためには、粉末材料1の塗布及び硬化を複数回繰り返して行えば良く簡単で、シート材料8の厚みを変えるに比して容易であり、特別な機構や装置も不要となる。なお、それ以外は、上記図3に示した実施形態と同様に構成されて同様の工程となっており、同上記実施形態におけると同様の作用効果が奏される。
【0053】
図19は、本発明の請求項に対応する更に別の実施形態を示し、該実施形態の三次元形状物製造法においては、埋設用部材3の外側面が各シート材料8の間で階段状となり、該階段状の凹部に粉末材料1をその上面が同階段傾斜に略沿ったテーパー状となるように充填して硬化させるものである。この場合には、図20に示す如く、段差が大きくなっていたものが、図21に示す如く、階段傾斜Kに沿って段差が小さくなる。ここで、図20、21の各(a)は全体形状を示し、各(b)はビーム12を照射して粉末材料1を硬化させる状態の要部を示し、各(c)は同粉末材料1が硬化された硬化層2を示している。
【0054】
したがって、この場合は特に、階段状となる埋設用部材3の外側面が、該階段状の凹部に充填して硬化される粉末材料1により同階段傾斜Kに略沿ったテーパー状となるので、造形物の表面を滑らかに仕上げることができる。しかも、ここで、磨き仕上げされるときには、削り取り量が削減されて仕上げ時間の短縮化を図ることができる。
【0055】
又、該実施形態の三次元形状物製造法においては、加振装置を採用することによって、階段状の凹部に粉末材料1をその上面がテーパー状となるように充填することができる。例えば、図22に示す如く、粉末材料1を充填後にプレート5を上昇させてこれに振動を付与し、不要な粉末材料1を振り落としてその上面をテーパー状となすことができる。この場合、図22(a)に示す如く、プレート5を所定位置に降下させた状態で、周壁体4で囲まれたスペース7内に粉末材料1を充填し、次に、図22(b)に示す如く、同プレート5を最上位にまで上昇させてこれを振動させ、不要な粉末材料1を振り落としてその上面をテーパー状となし、続いて、図22(c)に示す如く、同プレート5を所定位置に降下させこの状態で、最上層のシート材料8の周辺付近の粉末材料1にのみビーム12を照射して硬化層2を形成する。なお、それ以外は、上記図3に示した実施形態と同様に構成されて同様の工程となっており、同上記実施形態におけると同様の作用効果が奏される。
【0056】
又、本発明の三次元形状物製造法においては、レーザや指向性エネルギービーム等の光ビームを照射することで、粉末材料1が焼結により硬化されると共にシート材料8は所定形状に切断されるのであるが、このように、光ビームを採用することで、ピンポイント的に局部加熱を行うことができ、シート材料8に熱による悪影響を与えることなくこれを切断することができ、その際、輪郭線形状に合わせて自由に且つ正確に同光ビームを走査することができる。
【0057】
又、本発明の三次元形状物製造法において、シート材料8の切断形状は、図23に示す如く、箱形状の造形物を製作する場合、同シート材料8の端縁部分に粉末材料1が充填されるスペースが形成されるように形成する。すなわち、最下層のシート材料8は造形物に合致する形状(必要寸法A)で良いが、その上の他のシート材料8はその端縁部分に粉末材料1の充填量を考慮したスペース(充填部寸法B)が確保されるよう若干小さく切断する。この場合には、各シート材料8の端縁部分が確実に接着されて、必要寸法Aを有する所定の箱形状となる造形物を高精度で得ることができる。
【0058】
又、図24に示す如く、シート材料8による積層面に独立した輪郭線の島部14が発生する場合、該島部14とその他の部分とを結合する連結部15が備わった形状に同シート材料8を切断形成する。この場合、シート材料8の積層接合後、或いは、造形物の製作完了後に、図24(a)(d)に示す如く、前記連結部15を切断除去するものである。それ故、この場合には、切断形成したシート材料8を搬送する際、図24(b)に示す如く、島部14が連結部15でその他の部分と一体化されていて、容易に搬送することができ、又、図24(c)に示す如く、同シート材料8を積層接合する際にも、島部14が連結部15でその他の部分と一体化されていて、その位置決め作業を容易に行うことができる。
【0059】
又、本発明の三次元形状物製造法において、シート材料8の位置決めは、例えば、図25に示す如く、シート材料8をその周辺に位置決め辺部16が備わった形状に切断形成し、該位置決め辺部16を位置決めピン17に当接させることによって行うことができる。この場合、図25(b)に示す如く、シート材料8は二辺の直角に配置される位置決め辺部16が島部14と共にその他の部分と連結部15を介して結合された形状に切断形成され、図25(c)に示す如く、両位置決め辺部16を少なくとも三つの位置決めピン17に当接させることにより同シート材料8は位置決め設置されて積層接合され、最終的には、図25(a)に示す如く、全ての連結部15及び位置決め辺部16が切断除去される。なお、位置決めピン17は、例えば、プレート5上に突設される。
【0060】
又、本発明の三次元形状物製造法においては、図26に示す如く、シート材料8の位置決めを行うこともできる。すなわち、この場合には、シート材料8をその全周に位置決め辺部16が備わった形状に切断形成し、該位置決め辺部16を周壁体4の内壁面に当接させることによって、同シート材料8の位置決めを行うものである。ここでは、図26(a)に示す如く、シート材料8はその全周を包囲するように配される位置決め辺部16が島部14と共にその他の部分と連結部15を介して結合された形状に切断形成され、図26(b)に示す如く、位置決め辺部16の外側縁を周壁体4の内壁面に当接させることにより同シート材料8は位置決め設置されて積層接合される。なお、最終的には、全ての連結部15及び位置決め辺部16が切断除去される。
【0061】
上記図25、26に示した如く、シート材料8の位置決めを行うと、該位置決め作業が容易となり、粉末材料1を充填する領域が小さくなって該粉末材料1の量も少なくて済み、その結果として、高精度の造形物を得ることができる。
【0062】
又、本発明の三次元形状物製造法においては、図27に示す如く、プッシャ可動装置18から進退自在に突出されるプッシャ19を、シート材料8の外縁部分に当接させることで、同シート材料8の位置決めを行うこともできる。ここで、図27(a)は位置決め時の状態を示し、図27(b)は位置決め解除状態を示している。又、図28に示す如く、ピン可動装置装置20から進退自在に突出される可動ピン21を、各シート材料8に穿設される位置決め用孔22に挿通係合させることで、同各シート材料8の位置決めを行うこともできる。ここで、図28(a)は位置決め時の状態を示し、図28(b)は位置決め解除状態を示している。このように、シート材料8の位置決めを行うと、光ビーム照射がシート材料8の輪郭線部に沿って正確に走査され、各シート材料8間の接着が良好に行われて接着強度が向上され、造形精度の向上を期待できるようになる。
【0063】
又、本発明の三次元形状物製造法において、シート材料8の位置決めが、各シート材料8に穿設される位置決め用孔22に可動ピン21を挿通係合させることで行われる場合には、図29に示す如く、可動ピン21をプレート5上に立設してこれと共に可動されるようになしても良い。この場合、シート材料8の位置決めが容易に行われながら、図29(a)(b)に示す工程及びビーム12を粉末材料1に照射して硬化層2を形成する工程が繰り返され、最終的に図29(c)に至って造形物が完成し、その際、前記可動ピン21は埋設用部材3の一部として造形物内に埋設形成される。
【0064】
又、本発明の三次元形状物製造法において、シート材料8の位置決めが、各シート材料8に穿設される位置決め用孔22に可動ピン21を挿通係合させることで行われる場合、図30に示す如く、可動ピン21の先端部分をかしめたり(かしめ膨大部23)、図31(a)に示す如く、上層のシート材料8の位置決め用孔22に粉末材料1を充填し、これを硬化させて可動ピン21の先端部分と結合させたり(結合硬化部24)、その際、図31(b)に示す如く、同上層のシート材料8の位置決め用孔22を面取り形状に形成したり(面取り部25)することができる。この場合には、シート材料8が可動ピン21から抜け外れ難くなって、各シート材料8の積層方向における強度アップが図られる。
【0065】
又、このように、シート材料8の位置決めが、各シート材料8に穿設される位置決め用孔22に可動ピン21を挿通係合させることで行われるような場合には、図32(a)に示す如く、可動ピン21が全シート材料8に連通挿入されるようになしても、或いは、図32(b)に示す如く、複数の可動ピン21が上下の両シート材料8間ごとで挿通されるようになしても良いものである。
【0066】
又、本発明の三次元形状物製造法において、シート材料8の位置決めが、各シート材料8に穿設される位置決め用孔22に可動ピン21を挿通係合させることで行われる場合に、図33に示す如く、可動ピン21を下層のシート材料8の上面に突出形成し、同可動ピン21が上層のシート材料8の位置決め用孔22に挿入係合されるようになすこともできる。
【0067】
この場合、図33(a)に示す如く、下層のシート材料8の上面に粉末材料1を塗布し、図33(b)に示す如く、該粉末材料1の一部にビーム12をスポット状に照射し硬化させて可動ピン21を形成し、図33(c)に示す如く、未硬化で残存する粉末材料1を除去して同可動ピン21を下層のシート材料8の上面から突出させ、図33(d)に示す如く、前記下層のシート材料8の上に上層のシート材料8を積層して、その際、該上層のシート材料8の位置決め用孔22に前記可動ピン21を挿入係合させて両シート材料8を相互に位置決めし、その後は、図33(e)(f)に示す如く、別途の粉末材料1を充填し、上層のシート材料8の周辺付近の同粉末材料1にビーム12を照射して硬化層2を形成し、これ等の工程を繰り返して造形物が完成される。
【0068】
したがって、この場合には、可動ピン21を予め別途に設置形成する手間が省かれ、該可動ピン21の形状や大きさを位置決め用孔22に対応させて自由に設定することができ、シート材料8を積層する工程の中で簡単に各シート材料8の積層方向における強度アップを図ることができる。
【0069】
又、本発明の三次元形状物製造法においては、図34、35に示す如く、位置決め用リブ26を下層のシート材料8の上面に突出形成して、同位置決め用リブ26に上層のシート材料8の外辺部分を当接させることで、両シート材料8を相互に位置決めすることもできる。
【0070】
この場合、図34(a)に示す如く、下層のシート材料8の上面に粉末材料1を塗布し、図34(b)に示す如く、該粉末材料1の一部にビーム12を線状に照射し硬化させて位置決め用リブ26を形成し、図34(c)、図35(a)に示す如く、未硬化で残存する粉末材料1を除去して同位置決め用リブ26を下層のシート材料8の上面から突出させ、図34(d)、図35(b)に示す如く、前記下層のシート材料8の上に上層のシート材料8を積層して、その際、該上層のシート材料8の対向する外辺部分の一辺を前記位置決め用リブ26に当接させて両シート材料8を相互に位置決めし、その後は、図34(e)(f)、図35(c)に示す如く、別途の粉末材料1を充填し、上層のシート材料8の前記外辺部分の他辺付近の同粉末材料1にビーム12を照射して硬化層2を形成し、これ等の工程を繰り返して造形物が完成される。
【0071】
したがって、この場合にも、位置決め用リブ26を予め別途に設置形成する手間が省かれ、該位置決め用リブ26の形状や大きさを自由に設定することができ、シート材料8を積層する工程の中で簡単に各シート材料8の積層方向における強度アップを図ることができる。
【0072】
なお、本発明の三次元形状物製造法においては、図36(a)(b)に示す如く、上層のシート材料8の下面に突起27を突出形成し、該突起27を下層のシート材料8の上面に食い込み状に係合させることで、両シート材料8を相互に位置決めすることもできる。この場合、図37に示す如く、ポンチを上下昇降させる加工機28を具備し、該加工機28のポンチを上層のシート材料8上に下降押圧させることで、該上層のシート材料8の下面に突出形成される突起27が下層のシート材料8の上面に食い込み係止されるようになしても良い。
【0073】
又、本発明の三次元形状物製造法においては、図38、39に示す如く、所定の粉末材料1が全て焼結により硬化された後の最終工程として、造形物の上面に機械加工を施しても良い。この場合における全工程について、図38、図39の(a)〜(e)の工程順に説明する。
まず、図38(a)、図39(a)に示す如く、ロール状に巻き取られた金属製のシート材料8を繰り出してこれにビーム12を照射し、貫通孔9(スルーホールのような接着用の共通孔)を形成すると共に輪郭線で所定形状に切断する。次に、所定形状に切断されたシート材料8を周壁体4で囲まれたプレート5上に設置し、図38(b)〜(d)、図39(b)〜(d)に示す如く、図7に示した実施形態におけると同様に、複数の貫通孔9が穿設された前記シート材料8の上から、該シート材料8の周辺と各貫通孔9内とに粉末材料1を充填し、同シート材料8の上からビーム12を照射して、該シート材料8の周辺及び各貫通孔9内に充填された前記粉末材料1を硬化させる。これ等の工程が二回繰り返されて、二層構造の造形物が完成される。
【0074】
なお、この場合、ビーム12はレーザ照射装置Aより照射され、粉末材料1は材料供給装置Bによって供給充填され、該粉末材料1は同ビーム12が照射されることにより焼結硬化して、シート材料8の貫通孔9及び輪郭線部分を接着するものである。又、図38(e)、図39(e)に示す如く、最終工程として、造形物の上面に機械加工が施されるものであり、この場合、粉末材料1の硬化部分(貫通孔9内及び周辺の硬化層2)が造形物の上面から突出しており、該突出部分が加工装置Cによって切削除去される。
【0075】
【発明の効果】
上述の如く、本発明の請求項1記載の三次元形状物製造法によると、高強度な造形物を製造することができ、埋設用部材の周辺付近のみの粉末材料を層構成として順次に硬化させるだけで良いので、複雑な形状であってもその造形時間の短縮化を図ることができ、粉末材料の硬化時の収縮による変形も防止されて、高精度な造形物を製造することができる。
【0077】
又、本発明の請求項記載の三次元形状物製造法によると複雑な形状の造形物であっても、埋設用部材をシート材料の積層一体化により形成することで、簡単に製造することができる。
【0078】
しかも、本発明の請求項記載の三次元形状物製造法によるとシート材料を予め積層一体化して形成しておく必要がなく、埋設用部材を簡単に形成することができ、同埋設用部材は粉末材料の充填の際に邪魔になることもない。
【0079】
又、本発明の請求項記載の三次元形状物製造法によると、特に、貫通孔に充填される粉末材料の硬化によって、シート材料間の結合強度が向上されると共に粉末材料硬化時の熱影響による各シート材料の変形も防止され、造形物の高強度化、高精度化を図ることができる。
【0080】
又、本発明の請求項記載の三次元形状物製造法によると、特に、シート材料間で連通した貫通孔に充填される粉末材料の硬化によって、各シート材料は相互に位置決めされて横ズレなく結合され、造形物の更なる高強度化、高精度化を図ることができる。
【0081】
又、本発明の請求項記載の三次元形状物製造法によると、特に、埋設用部材の外側面の傾斜がきつくなる部位では、シート材料は厚くなりその積層枚数が削減されて、造形時間の更なる短縮化を図ることができ、同傾斜が緩くなる部位では、シート材料は薄くなりその端部で発生する段差が小さくなって、造形物の水平に近い表面を滑らかに仕上げることができる。
【図面の簡単な説明】
【図1】本発明の一参考例である三次元形状物製造法を示し(a)〜(e)各々その製造過程における概略断面図。
【図2】別の参考例である三次元形状物製造法を示し(a)〜(e)各々その製造過程における概略断面図。
【図3】本発明の一実施形態である三次元形状物製造法を示し(a)〜(e)各々その製造過程における概略断面図。
【図4】同実施形態である三次元形状物製造法におけるシート材料の積層方法を例示する概略断面図。
【図5】同実施形態である三次元形状物製造法におけるシート材料の別の積層方法を例示し(a)〜(d)各々その積層過程における概略断面図。
【図6】の実施形態である三次元形状物製造法を示し(a)〜(d)各々その製造過程における概略断面図。
【図7】更に別の実施形態である三次元形状物製造法を示す概略断面図。
【図8】同実施形態である三次元形状物製造法におけるシート材料の積層態様を例示する(a)(b)各々異なる積層態様の概略断面図。
【図9】本発明の三次元形状物製造法におけるシート材料の積層態様を例示する概略断面図。
【図10】本発明の三次元形状物製造法におけるシート材料の別の積層態様を例示する概略断面図。
【図11】本発明の三次元形状物製造法におけるシート材料の更に別の積層態様を例示する概略断面図。
【図12】本発明の三次元形状物製造法におけるシート材料の更に別の積層態様を例示する概略断面図。
【図13】本発明の三次元形状物製造法におけるシート材料の更に別の積層態様を例示する図面で、(a)〜(c)各々異なる積層態様の概略断面図。
【図14】更に別の実施形態である三次元形状物製造法を示す概略断面図。
【図15】同実施形態である三次元形状物製造法を説明するための(a)(b)各々概略断面図。
【図16】同実施形態である三次元形状物製造法におけるシート材料の積層態様を例示する(a)(b)各々異なる積層態様の概略断面図。
【図17】更に別の実施形態である三次元形状物製造法を示す概略断面図。
【図18】同実施形態である三次元形状物製造法におけるシート材料の別の積層態様を示す概略断面図。
【図19】更に別の実施形態である三次元形状物製造法を示す概略断面図。
【図20】同実施形態である三次元形状物製造法を説明するための比較形態を示し(a)はその概略断面図、(b)(c)はその製造過程を示す要部拡大断面図。
【図21】同実施形態である三次元形状物製造法を示し(a)はその概略断面図、(b)(c)はその製造過程を示す要部拡大断面図。
【図22】同実施形態である三次元形状物製造法における粉末材料の充填硬化方法を示し(a)〜(c)各々その充填硬化過程における概略断面図。
【図23】本発明の三次元形状物製造法におけるシート材料の切断形状を例示する概略断面図。
【図24】本発明の三次元形状物製造法におけるシート材料の別の切断形状を例示する図面で、(a)(b)はその各々異なる状態での概略平面図、(c)(d)はその各々異なる状態での概略断面図。
【図25】本発明の三次元形状物製造法におけるシート材料の位置決め方法を例示する図面で、(a)〜(c)各々その異なる状態での概略平面図。
【図26】本発明の三次元形状物製造法におけるシート材料の別の位置決め方法を例示する図面で、(a)はその概略平面図、(b)はその概略断面図。
【図27】本発明の三次元形状物製造法におけるシート材料の更に別の位置決め方法を例示する図面で、(a)(b)各々その異なる状態での概略側面図。
【図28】本発明の三次元形状物製造法におけるシート材料の更に別の位置決め方法を例示する図面で、(a)(b)各々その異なる状態での概略断面図。
【図29】本発明の三次元形状物製造法におけるシート材料の更に別の位置決め方法を例示する図面で、(a)〜(c)各々その位置決め過程における概略断面図。
【図30】本発明の三次元形状物製造法におけるシート材料の更に別の位置決め方法を例示する概略断面図。
【図31】本発明の三次元形状物製造法におけるシート材料の更に別の位置決め方法を例示する図面で、(a)(b)各々異なる方法態様の概略断面図。
【図32】本発明の三次元形状物製造法におけるシート材料の更に別の位置決め方法を例示する図面で、(a)(b)各々異なる方法態様の概略断面図。
【図33】本発明の三次元形状物製造法におけるシート材料の更に別の位置決め方法を例示する図面で、(a)〜(f)各々その位置決め過程における概略断面図。
【図34】本発明の三次元形状物製造法におけるシート材料の更に別の位置決め方法を例示する図面で、(a)〜(f)各々その位置決め過程における概略断面図。
【図35】同シート材料の位置決め方法を示す(a)〜(c)各々その位置決め過程における概略平面図。
【図36】本発明の三次元形状物製造法におけるシート材料の更に別の位置決め方法を例示する図面で、(a)(b)各々異なる形状態様の概略断面図。
【図37】同シート材料の位置決め方法における設備を例示する概略側面図。
【図38】本発明の三次元形状物製造法における最終の機械加工をも含めた全工程を例示する図面で、(a)〜(e)各々その各工程における概略断面図。
【図39】同全工程を示す(a)〜(e)各々その各工程における概略斜視図。
【図40】従来例である三次元形状物製造法を示し(a)はその全体斜視図、(b)は要部斜視図。
【符号の説明】
1 粉末材料
2 硬化層
3 埋設用部材
4 周壁体
5 プレート
6 上端部
7 スペース
8 シート材料
9 貫通孔
10 粉末固化層
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a three-dimensional object by obtaining a three-dimensional object by sequentially forming a cured layer in which a powder material is cured.
[0002]
[Prior art]
Conventionally, as shown in FIG. 40, there has been known a method for manufacturing a three-dimensional object in which a cured layer 2 in which a powder material 1 is cured is sequentially laminated to obtain a three-dimensional object. This is disclosed in Japanese Patent No. 2620353 as a "method of manufacturing parts by selective sintering", in which a powder material 1 made of an inorganic material such as a metal or an organic material such as a resin is deposited. There, a light beam (laser beam 12) such as a laser or a directional energy beam is irradiated and hardened to form a hardened layer 2, and the hardened layers 2 are sequentially laminated to form a three-dimensional shaped object. .
[0003]
In this case, as shown in FIG. 40 (a), the powder material 1 is supplied from the hopper 29 into the surrounding structure 30, and the laser beam 12 is selectively applied to a predetermined portion from above as shown in FIG. 40 (b). Irradiation is performed, and this is repeated to form the cured layer 2 in a laminated manner. The laser beam 12 is illuminated from a laser head 31, and its traveling path is operated so as to be changed in direction by a scanning system 33 including a prism 32. Is selectively irradiated. Therefore, in this case, a molded article having a complicated shape can be manufactured relatively easily.
[0004]
[Problems to be solved by the invention]
However, in the above-mentioned conventional technology, the packing density of the powder material 1 is low and the density after irradiation and curing does not reach 100%. Therefore, the strength of the manufactured modeled product is lower than the original mechanical strength of the material. There was a problem that it became weak. In addition, there is a problem that a step of scanning with the laser beam 12 is required to form the hardened layer 2, and furthermore, the amount of scanning data within the contour of the modeled object is large, so that the modeling time is prolonged. In addition, since the powder material 1 shrinks when it hardens, the hardened layer 2 is deformed, so that there is a problem that it is not possible to manufacture a molded article with high accuracy.
[0005]
The present invention has been invented in order to solve all the problems in the above-described conventional technology, and the problem is that a three-dimensional object capable of easily manufacturing a high-strength, high-precision molded object having a complicated shape. An object of the present invention is to provide a method for manufacturing a shaped article.
[0006]
[Means for Solving the Problems]
The method for producing a three-dimensional object according to claim 1 of the present invention is a method for obtaining a three-dimensional object by sequentially forming a cured layer in which a powder material is cured, in which a burying member is installed. A method of filling a powder material around the embedding member, curing the powder material in the vicinity of the embedding member so as to be integrated therewith, and sequentially forming a hardened layer by lamination It is.
[0007]
Therefore, in this case, by forming the embedding member firmly at high density, it is possible to manufacture a molded article having high strength as a whole. Moreover, it is only necessary to sequentially cure the powder material in the vicinity of the buried member only in the form of a layer, and in this case, the amount of scanning data for scanning with the beam for curing is reduced within the contour line of the modeled object, and the scanning is performed. The time is shortened, and the molding time can be shortened even for a complicated shape. In addition, since the amount of the powder material to be hardened is reduced, deformation due to shrinkage during hardening is also prevented, and a high-precision molded article can be manufactured.
[0008]
Also in this case In the above, the embedding member is placed on a plate surrounded by the peripheral wall, and the plate is sequentially lowered from the upper end of the peripheral wall by a dimension corresponding to the thickness of the hardened layer, and is surrounded by the peripheral wall. The powdered material is filled into the space at each drop of the plate and cured. May .
[0009]
By doing this As the embedded member is lowered by the dimension corresponding to the thickness of the hardened layer and the hardened layer is sequentially formed around the lower portion, the powder material can be easily filled every time after the hardening. The setting of the distance of the beam for irradiating the wafer becomes easy, and the optimum manufacturing equipment can be obtained.
[0010]
Also, Claims of the invention 1 The three-dimensional shape manufacturing method described of In the method for manufacturing a three-dimensionally shaped article, the embedding member is formed by laminating and integrating sheet materials.
[0011]
Therefore, in this case, in particular, even a shaped object having a complicated shape can be easily manufactured by forming the embedding member embedded therein by lamination and integration of the sheet material.
[0012]
Moreover, Claims of the invention 1 The three-dimensional shape manufacturing method described of In the method for manufacturing a three-dimensionally shaped object, each time a cured layer is formed, each sheet material is sequentially stacked and disposed to form an embedding member.
[0013]
Therefore, in this case, in particular, it is not necessary to laminate and integrate the sheet materials in advance, and each time each cured layer is formed, each sheet material is sequentially laminated and installed, thereby simplifying the embedding member. The embedding member does not hinder the filling of the powder material.
[0014]
Claims of the invention 2 The method for producing a three-dimensional object according to the claim 1 In the method for manufacturing a three-dimensionally shaped article described above, a powder material is filled in a through hole formed in each sheet material to be laminated, and the sheet materials are combined by curing the powder material. Things.
[0015]
Accordingly, in this case, particularly, the sheet materials are bonded by the hardening of the powder material filled in the through holes, so that the bonding strength between the sheet materials is improved, and the sheet material is deformed due to the heat effect during the hardening of the powder material. Is also prevented, and it is possible to achieve higher strength and higher accuracy of the modeled object.
[0016]
Claims of the invention 3 The method for producing a three-dimensional object according to the claim 2 In the method for manufacturing a three-dimensionally-shaped object described above, a through hole is communicated between the sheet materials.
[0017]
Therefore, in this case, in particular, since the sheet materials are combined by the curing of the powder material filled in the through-holes communicating between the sheet materials, the sheet materials are positioned with respect to each other and combined without lateral displacement, and the modeled object is formed. Can be further enhanced in strength and accuracy.
[0018]
Claims of the invention 4 The method for producing a three-dimensional object according to the claim 1 In the method for manufacturing a three-dimensionally shaped object described above, the thickness of each sheet material is changed and set so as to be thick at a portion where the inclination of the outer surface of the embedding member is steep and thin at a portion where the inclination is gentle. Things.
[0019]
Accordingly, in this case, particularly, in a portion where the inclination of the outer surface of the embedding member is steep, the thickness of the sheet material is changed and set so as to be thicker, the number of stacked sheet materials is reduced, and the molding time is further reduced. Can be achieved. Conversely, at a portion where the inclination of the outer surface of the embedding member becomes gentle, the thickness of the sheet material is changed and set so as to be thin, and the step generated at the end of the sheet material becomes small, and the shape of the molded object is almost horizontal. The surface can be finished smoothly.
[0024]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. Reference example Indicates that Reference example Is a manufacturing method of obtaining a three-dimensional shaped object by sequentially forming a cured layer 2 in which the powder material 1 is hardened to obtain a three-dimensional shaped object. A method of filling the powder material 1 around the burying member 3 and curing the powder material 1 so as to be integrated with the burying member 3 in the vicinity of the burying member 3 and sequentially forming a hardened layer 2 in a laminated manner. Is the law.
[0025]
The Reference example In the method for producing a three-dimensionally shaped object, the embedding member 3 is placed on a plate 5 surrounded by the peripheral wall body 4, and the plate 5 corresponds to the thickness of the hardened layer 2 from the upper end 6 of the peripheral wall body 4. The powder material 1 is successively lowered by the dimension L, and the space 7 surrounded by the peripheral wall 4 is filled with the powder material 1 every time the plate 5 is lowered and hardened.
[0026]
In this case, as shown in FIG. 1 (a), the embedding member 3 is previously set on the plate 5, and as shown in FIG. 1 (b), the plate 5 is moved by a dimension L corresponding to the thickness of the hardened layer 2. As shown in FIG. 1 (c), the powder material 1 is filled in the space 7 surrounded by the peripheral wall body 4 formed by this. Here, a slider 11 is provided around the plate 5 so as to slide in close contact with the inner surface of the peripheral wall 4, and a space 7 from which the powder material 1 does not leak is defined from the upper end 6 of the peripheral wall 4. (Dimension L).
[0027]
Next, as shown in FIG. 1D, only the powder material 1 in the vicinity of the embedding member 3 is irradiated with the beam 12 to be cured, and at this time, the cured layer 2 where the powder material 1 is cured is embedded. It is also integrated and integrated with the outer surface of the member 3 for use. Here, a light beam such as a laser or a directional energy beam is irradiated as the beam 12, and the powder material 1 is cured by sintering. The powder material 1 is made of an inorganic material such as a metal or an organic material such as a resin, and only necessary portions are selectively sintered by the beam 12 to be efficiently and surely hardened. The material of the burying member 3 is preferably the same material as the powder material 1 because the powder material 1 is hardened and bonded and integrated with the burying member 3, and the burying member 3 has high density and high strength. Although it is formed, another material which is inexpensive and has high strength may be employed.
[0028]
The steps of FIG. 1B to FIG. 1D are repeated, and finally a model is completed as shown in FIG. In this case, a metal part, a mold, and the like can be manufactured by curing and laminating the powder material 1 made of a metal, and a resin part can be manufactured using the powder material 1 made of a resin. Mixed shaped objects and parts can also be manufactured.
[0029]
Therefore, Reference example In the method for manufacturing a three-dimensionally shaped object described above, by forming the burying member 3 at a high density and firmly, it is possible to manufacture a molded article having high strength as a whole. In addition, it is only necessary to sequentially cure the powder material 1 in the vicinity of the burying member 3 only in a layer configuration, and at this time, the amount of scanning data for scanning the beam 12 for curing is small within the contour line of the modeled object. As a result, the scanning time is shortened, and the shaping time of a complicated shape can be reduced. In addition, since the amount of the powder material 1 to be hardened is reduced, deformation due to shrinkage during hardening is also prevented, and a highly accurate molded article can be manufactured.
[0030]
Also, Reference example In the method of manufacturing a three-dimensionally shaped article described above, the embedded member 3 is lowered by the dimension L corresponding to the thickness of the hardened layer 2 and the hardened layers 2 are sequentially laminated around the embedded member 3. Can be easily filled with the powder material 1 and the distance setting of the beam 12 irradiating the powder material 1 can be easily performed, so that optimum manufacturing equipment can be provided. Moreover, in this case, since the plate 5 is lowered from the upper end portion 6 of the peripheral wall body 4 by the dimension L corresponding to the thickness of the hardened layer 2, the powder material 1 is reduced to the thickness of the dimension L. Filled exactly the right amount.
[0031]
FIG. 2 shows another embodiment of the present invention. Reference example Indicates that Reference example In the method for producing a three-dimensionally shaped object, the sheet material 8 is laminated and integrated to form the burying member 3. In this case, the sheet material 8 is made of an inorganic material or an organic material, and is stacked and integrated in advance and placed on the plate 5.
[0032]
Therefore, in this case, in particular, even a shaped object having a complicated shape can be easily manufactured by forming the embedding member 3 embedded therein by stacking and integrating the sheet material 8. In addition, other than that is shown in FIG. Reference example And the same steps Reference example The same operation and effect as those described above are obtained.
[0033]
FIG. 3 shows the claims of the present invention. 1 Corresponding to one An embodiment is shown, and in the method for manufacturing a three-dimensionally shaped article according to the embodiment, each of the sheet materials 1 is sequentially stacked and placed before each of the cured layers 2 is formed to form the embedding member 3. It is. In this case, the sheet material 8 is cut into a predetermined size and shape, and the thickness dimension thereof is formed substantially equal to the dimension L corresponding to the thickness of the hardened layer 2. Before lowering the plate 5 by the dimension L, Although the sheet material 8 is placed on the plate 5, the sheet material 8 may be placed on the plate 5 after the plate 5 is lowered, that is, as shown in FIGS. 3 (a) and 3 (b). The steps may be interchanged.
[0034]
Therefore, in this case, in particular, it is not necessary to laminate and integrate the sheet materials 8 in advance to form the embedding member 3, and each time each of the cured layers 2 is formed, the respective sheet materials 8 are sequentially laminated and installed. Thus, the burying member 3 can be easily formed, and the burying member 3 does not hinder the filling of the powder material 1. In addition, since the burying member 3 does not protrude upward from the filled powder material 1, there is no hindrance to the work of curing the powder material 1 irradiating the beam 12. In addition, other than that is shown in FIG. Reference example And the same steps Reference example The same operation and effect as those described above are obtained.
[0035]
Also, each of the above Reference example, In the embodiment, as shown in FIG. 4, the powder material 1 is filled in a region excluding the upper region from the lower layer. That is, the powder material 1 is filled around the contour of the sheet material 8, and the powder material 1 is not interposed between the sheet materials 8. In this case, the gap between the end faces of each sheet material 8 is closed by the hardened layer 2 of the powder material 1 and firmly adhered to prevent the sheet material 8 from being turned up and deformed from the same end face. , The influence of thermal distortion and the like is small, and a high-precision molded object can be obtained.
[0036]
Also, each of the above Reference example, In the embodiment, as shown in FIG. 5, the powder material 1 is applied and interposed between the sheet materials 8, and the powder material 1 between the sheet materials 8 is melted or sintered so that the respective sheet materials 8 are interconnected. It is also possible to join them. In this case, as shown in FIGS. 5 (a) and 5 (b), the powder material 1 is applied to the surface of the lower layer sheet material 8 to form a powder adhesive layer 13, and as shown in FIG. An upper sheet material 8 is placed on the layer 13, and as shown in FIG. 5D, a beam 12 such as a laser is radiated from above the upper sheet material 8 through the sheet material 8, whereby the powder The adhesive layer 13 is melted or sintered, and the upper and lower sheet materials 8 are bonded to each other by the powder adhesive layer 13.
[0037]
Therefore, in this case, the adhesive strength between the sheet materials 8 is improved, and the mechanical strength of the modeled object can be enhanced. Further, in this case, the powder material 1 having a lower melting point than the sheet material 8 is used, whereby the sheet material 8 can be formed without being damaged by the thermal influence of the beam 12. A highly accurate model can be obtained without causing deformation of the material 8.
[0038]
FIG. 6 shows a first embodiment of the present invention. , 2 Corresponding to Another In the method for manufacturing a three-dimensionally shaped object according to the embodiment, the powder material 1 is filled into the through holes 9 formed in the respective sheet materials 8 to be laminated, and the powder material 1 is cured. The sheet materials 8 are combined with each other. In this case, as shown in FIGS. 6 (a) and 6 (b), the powder material 1 is put on the periphery of the sheet material 8 and in each through hole 9 from above the sheet material 8 in which a plurality of through holes 9 are formed. As shown in FIG. 6C, the sheet material 8 is irradiated with a beam 12 such as a laser or the like from above the sheet material 8 to cure the powder material 1 filled around the sheet material 8 and in each through hole 9. Let it. The steps of FIG. 6A to FIG. 6C are repeated, and finally the model is completed as shown in FIG.
[0039]
Therefore, in this case, in particular, since the sheet materials 8 are bonded by the curing of the powder material 1 filled in the through-holes 9, the bonding strength between the sheet materials 8 is improved, and at the same time as the powder material 1 is cured. Deformation of each sheet material 8 due to thermal influence is also prevented, and it is possible to achieve higher strength and higher precision of the modeled object. Except for this, the configuration is the same as that of the embodiment shown in FIG. 3 and the steps are the same, and the same operation and effect as in the above-described embodiment are exerted.
[0040]
FIG. 7 shows claims 1 to 5 of the present invention. 3 Is shown, and in the method for manufacturing a three-dimensionally shaped article according to this embodiment, the through holes 9 are communicated between the sheet materials 8. In this case, the through holes 9 communicate with all the sheet materials 8, and the communicated through holes 9 are provided at a plurality of locations.
[0041]
Therefore, in this case, in particular, the respective sheet materials 8 are bonded by the curing of the powder material 1 filled in the through holes 9 communicating between the sheet materials 8, so that the respective sheet materials 8 are positioned with respect to each other and do not shift laterally. By being combined, it is possible to further increase the strength and accuracy of the modeled object. Except for this, the configuration is the same as that of the embodiment shown in FIG. 6 and the steps are the same, and the same operation and effect as in the above-described embodiment are exerted.
[0042]
In this embodiment, as shown in FIG. 8, the through holes 9 can be formed so as to be inclined and communicate with each other. In this case, the through holes 9 may be alternately inclined in different directions for each layer of the sheet material 8 as shown in FIG. 8A, or a plurality of layers of the sheet material 8 as shown in FIG. The through-holes 9 may be alternately inclined in different directions every 8. In this case, the sheet materials 8 are less likely to be separated from each other in the direction in which the sheet materials 8 are superimposed, and it is possible to further increase the strength of the modeled object.
[0043]
In this embodiment, as shown in FIG. 9, the upper through-holes 9b of both through-holes 9 communicating between the upper and lower sheet materials 8 are filled with the lower through-holes 9a. An escape hole may be used. In this case, when the powder material 1 filled in the lower through-hole 9a hardens, the bulging deformation due to the condensation of the powder material 1 is released and absorbed by the upper through-hole 9b. Adhesion between the sheet materials 8 can be improved.
[0044]
In this embodiment, as shown in FIG. 10, through-holes 9b and 9a communicating between both upper and lower sheet materials 8 and through-holes 9c not communicating with each other may be provided. In this case, the positioning between the sheet materials 8 can be performed by the communicating two through holes 9b and 9a, and the bonding strength between the sheet materials 8 can be increased by the non-communicating through holes 9c.
[0045]
Further, in this embodiment, as shown in FIG. 11, the hole diameter of the through hole 9 communicating between the sheet materials 8 may be different between the layers of each sheet material 8. In this case, the upper and lower through holes 9c and 9a are formed with a large diameter, and the middle through hole 9b is formed with a small diameter. In addition, as shown in FIG. 12, chamfering may be applied to each opening edge of the through holes 9b and 9a communicating between the upper and lower sheet materials 8. In these cases, the sheet materials 8 are less likely to peel off from each other in the direction in which the sheet materials 8 are overlapped, and the adhesive strength between the sheet materials 8 can be improved.
[0046]
In this embodiment, as shown in FIG. 13, each through-hole 9 communicating between the sheet materials 8 may be formed in a tapered shape. In this case, as shown in FIG. 13 (a), the lower through-hole 9a filled and hardened with the powder material 1 and the upper through-hole 9b, which is a relief hole, have the same inclination and the same size. As shown in FIG. 13 (b), each through hole 9 communicating over multiple layers may be formed in a tapered hole shape with the same inclination and the same size. Further, as shown in FIG. 13 (c), the through holes 9 communicating with each other over a large number of layers are formed in a tapered shape by changing the size of the through holes 9 so that the inclinations are continuous with each other. Alternatively, a plurality of through-holes 9 may be provided in a mutually opposing taper. In these cases, the sheet materials 8 are less likely to peel off from each other in the direction in which the sheet materials 8 are overlapped, so that the adhesive strength between the sheet materials 8 can be improved, and the positioning operation can be facilitated. Become.
[0047]
FIG. 14 shows a first embodiment of the present invention. , 4 In the method for manufacturing a three-dimensionally shaped article according to this embodiment, the thickness of each sheet material 8 is set so that the slope K of the outer surface of the embedding member 3 is steep (the slope K is vertical). In this case, the change is set so as to be thick at a portion closer to the direction (portion closer to the horizontal direction) and to be thin at a portion where the slope K is gentler (portion where the slope K is closer to the horizontal direction). In this case, as shown in FIG. 15A, by increasing the thickness of the sheet material 8 at a position where the inclination K is close to the vertical direction, the number of layers is reduced, and as shown in FIG. By reducing the thickness of the sheet material 8 at a position where K is close to the horizontal direction, the step generated at the end portion is reduced.
[0048]
Therefore, in this case, particularly, at a portion where the inclination K of the outer surface of the embedding member 3 is steep, the thickness of the sheet material 8 is changed and set so as to increase, and the number of stacked sheet materials 8 is reduced. Further, the molding time can be further reduced. Conversely, at a portion where the inclination K of the outer surface of the burying member 3 becomes gentle, the thickness of the sheet material 8 is changed and set so as to be thin, and the step generated at the end of the sheet material 8 becomes small. The surface near the horizontal of the modeled object can be finished smoothly.
[0049]
In the method for manufacturing a three-dimensionally shaped article according to the present embodiment, as shown in FIG. 16A, the sheet material 8 may be integrally formed for each layer so as to have a uniform thickness. As shown, a plurality of layers of the sheet material 8 may be integrally formed at a specific portion and the thickness thereof may be different. Except for this, the configuration is the same as that of the embodiment shown in FIG. 3 and the steps are the same, and the same operation and effect as in the above-described embodiment are exerted.
[0050]
FIG. 17 shows the claims of the present invention. 1 In the three-dimensional shape manufacturing method according to this embodiment, a powder solidified layer 10 in which the powder material 1 is solidified is formed between the sheet materials 8. In this case, the powder solidified layer 10 is provided in place of the sheet material 8, and the upper and lower sheet materials 8 are firmly joined.
[0051]
Therefore, in this case, particularly, when the lamination surface of the sheet material 8 has a fine and complicated shape, for example, when the cutout shape is complicated or when islands with independent contour lines are generated many, the sheet material 8 has the same shape. Instead of this, a solidified powder layer 10 where the powder material 1 is solidified is formed at the site, so that the solidified powder layer 10 can be easily formed at an accurate position to produce a shaped article having a complicated shape. Can be easily handled.
[0052]
Further, in the method for manufacturing a three-dimensionally shaped article according to the present embodiment, as shown in FIG. 18, a plurality of solidified powder layers 10 can be provided to make the thicknesses different. In this case, in order to obtain a thick powder solidified layer 10, it is only necessary to repeat the application and curing of the powder material 1 a plurality of times, which is simpler than changing the thickness of the sheet material 8, and a special mechanism is used. And devices are not required. Except for this, the configuration is the same as that of the embodiment shown in FIG. 3 and the steps are the same, and the same operation and effect as in the above-described embodiment are exerted.
[0053]
FIG. 19 shows the claims of the present invention. 1 In the method of manufacturing a three-dimensional object according to this embodiment, the outer surface of the embedding member 3 has a step-like shape between the sheet materials 8, and the step-like concave portion has powder. The material 1 is filled and hardened so that the upper surface thereof has a tapered shape substantially along the same slope. In this case, the step becomes larger as shown in FIG. 20, but becomes smaller along the step slope K as shown in FIG. 21. Here, each (a) of FIGS. 20 and 21 shows the entire shape, each (b) shows a main part in a state where the powder material 1 is cured by irradiating the beam 12, and each (c) shows the same powder material. Reference numeral 1 denotes a cured layer 2 that has been cured.
[0054]
Therefore, in this case, in particular, the outer surface of the embedding member 3 having the step shape has a tapered shape substantially along the same step slope K by the powder material 1 which fills and hardens the step-shaped recess. The surface of the modeled object can be finished smoothly. In addition, when polishing is performed, the amount of shaving is reduced, and the finishing time can be shortened.
[0055]
Further, in the method for manufacturing a three-dimensionally shaped object according to the present embodiment, the stepped concave portion can be filled with the powder material 1 so that the upper surface thereof is tapered by employing the vibration device. For example, as shown in FIG. 22, after filling the powder material 1, the plate 5 is raised to apply vibration to the plate 5, and unnecessary powder material 1 is shaken off to form a tapered upper surface. In this case, as shown in FIG. 22A, with the plate 5 lowered to a predetermined position, the powder material 1 is filled in the space 7 surrounded by the peripheral wall 4, and then, FIG. As shown in FIG. 22, the plate 5 is raised to the uppermost position and vibrated, and the unnecessary powder material 1 is shaken off to form a tapered upper surface. Subsequently, as shown in FIG. The plate 5 is lowered to a predetermined position, and in this state, the beam 12 is irradiated only on the powder material 1 near the periphery of the uppermost sheet material 8 to form the hardened layer 2. Except for this, the configuration is the same as that of the embodiment shown in FIG. 3 and the steps are the same, and the same operation and effect as in the above-described embodiment are exerted.
[0056]
Further, in the method for manufacturing a three-dimensionally shaped object of the present invention, by irradiating a light beam such as a laser or a directional energy beam, the powder material 1 is hardened by sintering, and the sheet material 8 is cut into a predetermined shape. However, by employing the light beam in this way, local heating can be performed pinpointly, and the sheet material 8 can be cut without adversely affecting the sheet material 8. The light beam can be freely and accurately scanned in accordance with the contour shape.
[0057]
In the method for producing a three-dimensionally shaped object according to the present invention, the cut shape of the sheet material 8 is as shown in FIG. It is formed so that a space to be filled is formed. That is, the lowermost sheet material 8 may have a shape (required dimension A) conforming to the modeled object, but the other sheet material 8 on the lower edge layer may have a space (filling space) at its edge portion in consideration of the filling amount of the powder material 1. Cut slightly smaller to ensure the part size B). In this case, the edge portion of each sheet material 8 is securely bonded, so that a shaped article having a required dimension A and having a predetermined box shape can be obtained with high accuracy.
[0058]
Further, as shown in FIG. 24, when an island portion 14 having an independent contour line is generated on the lamination surface of the sheet material 8, the sheet is formed into a shape having a connecting portion 15 for connecting the island portion 14 and other portions. The material 8 is cut and formed. In this case, after the lamination and joining of the sheet material 8 or after the production of the modeled object is completed, as shown in FIGS. 24A and 24D, the connecting portion 15 is cut and removed. Therefore, in this case, when the cut and formed sheet material 8 is transported, as shown in FIG. 24B, the island portion 14 is integrated with the other portions at the connecting portion 15 and is easily transported. Further, as shown in FIG. 24 (c), when the sheet materials 8 are laminated and joined, the island portion 14 is integrated with the other portions at the connecting portion 15, so that the positioning operation is easy. Can be done.
[0059]
In the method for manufacturing a three-dimensionally shaped article according to the present invention, the positioning of the sheet material 8 is performed, for example, by cutting the sheet material 8 into a shape having positioning sides 16 around the sheet material 8 as shown in FIG. This can be performed by bringing the side portion 16 into contact with the positioning pin 17. In this case, as shown in FIG. 25B, the sheet material 8 is cut and formed into a shape in which the positioning sides 16 arranged at right angles to the two sides are joined to the other parts via the connecting parts 15 together with the islands 14. Then, as shown in FIG. 25 (c), the sheet material 8 is positioned and installed by laminating both the positioning side portions 16 against at least three positioning pins 17, and finally, as shown in FIG. As shown in a), all the connecting portions 15 and the positioning side portions 16 are cut and removed. The positioning pins 17 are provided, for example, on the plate 5.
[0060]
In the method for manufacturing a three-dimensionally shaped object according to the present invention, the sheet material 8 can be positioned as shown in FIG. That is, in this case, the sheet material 8 is cut into a shape having a positioning side 16 on the entire periphery thereof, and the positioning side 16 is brought into contact with the inner wall surface of the peripheral wall body 4 to thereby obtain the sheet material 8. 8 is performed. Here, as shown in FIG. 26 (a), the sheet material 8 has a shape in which the positioning side portions 16 arranged so as to surround the entire periphery thereof are joined together with the island portion 14 and other portions via the connecting portion 15. As shown in FIG. 26B, the outer edge of the positioning side 16 is brought into contact with the inner wall surface of the peripheral wall body 4 so that the sheet material 8 is positioned and installed to be laminated and joined. Finally, all the connecting portions 15 and the positioning side portions 16 are cut and removed.
[0061]
As shown in FIGS. 25 and 26, when the positioning of the sheet material 8 is performed, the positioning operation is facilitated, the area to be filled with the powder material 1 is reduced, and the amount of the powder material 1 can be reduced. As a result, a high-precision modeled object can be obtained.
[0062]
In the method for manufacturing a three-dimensionally shaped article according to the present invention, as shown in FIG. 27, a pusher 19 protruding from a pusher movable device 18 to be able to advance and retreat is brought into contact with an outer edge portion of the sheet material 8 so that the sheet The positioning of the material 8 can also be performed. Here, FIG. 27A shows a state at the time of positioning, and FIG. 27B shows a state of releasing the positioning. Further, as shown in FIG. 28, the movable pins 21 projecting and retractable from the movable pin device 20 are inserted into and engaged with the positioning holes 22 formed in the respective sheet materials 8 so that the respective sheet materials can be engaged. 8 can also be performed. Here, FIG. 28A shows a state at the time of positioning, and FIG. 28B shows a state of releasing the positioning. When the positioning of the sheet material 8 is performed as described above, the light beam irradiation is accurately scanned along the contour of the sheet material 8, the bonding between the sheet materials 8 is performed well, and the bonding strength is improved. Thus, improvement in the molding accuracy can be expected.
[0063]
Further, in the method for manufacturing a three-dimensionally shaped object of the present invention, when the positioning of the sheet material 8 is performed by inserting the movable pin 21 into the positioning hole 22 formed in each sheet material 8 and engaging the same. As shown in FIG. 29, the movable pin 21 may be erected on the plate 5 so as to be movable therewith. In this case, while the positioning of the sheet material 8 is easily performed, the steps shown in FIGS. 29A and 29B and the step of irradiating the powder material 1 with the beam 12 to form the hardened layer 2 are repeated. 29 (c), the molded object is completed. At this time, the movable pin 21 is embedded in the molded object as a part of the embedding member 3.
[0064]
In the method of manufacturing a three-dimensionally shaped article according to the present invention, when the positioning of the sheet material 8 is performed by inserting the movable pin 21 into the positioning hole 22 formed in each sheet material 8, FIG. As shown in FIG. 31, the tip of the movable pin 21 is swaged (swaging portion 23), and as shown in FIG. 31 (a), the powder material 1 is filled into the positioning holes 22 of the upper layer sheet material 8 and hardened. Then, the movable pin 21 is coupled to the tip portion (the coupling hardened portion 24). At this time, as shown in FIG. 31B, the positioning hole 22 of the sheet material 8 in the upper layer is formed into a chamfered shape ( The chamfer 25) can be performed. In this case, the sheet material 8 does not easily come off from the movable pins 21 and the strength of each sheet material 8 in the stacking direction is increased.
[0065]
When the positioning of the sheet material 8 is performed by inserting the movable pin 21 into the positioning hole 22 formed in each sheet material 8 as shown in FIG. As shown in FIG. 32, the movable pins 21 may be inserted in communication with all the sheet materials 8 or, as shown in FIG. 32B, a plurality of movable pins 21 may be inserted between the upper and lower sheet materials 8. It may be made to be done.
[0066]
Further, in the method for manufacturing a three-dimensionally shaped article according to the present invention, the positioning of the sheet material 8 is performed by inserting the movable pin 21 into the positioning hole 22 formed in each sheet material 8 so as to be engaged. As shown in FIG. 33, the movable pin 21 may be formed so as to protrude from the upper surface of the lower sheet material 8 so that the movable pin 21 is inserted into and engaged with the positioning hole 22 of the upper sheet material 8.
[0067]
In this case, as shown in FIG. 33 (a), the powder material 1 is applied to the upper surface of the lower sheet material 8, and as shown in FIG. 33 (b), the beam 12 is spotted on a part of the powder material 1. The movable pin 21 is formed by irradiating and curing, and as shown in FIG. 33C, the uncured and remaining powder material 1 is removed, and the movable pin 21 is projected from the upper surface of the sheet material 8 of the lower layer. As shown in FIG. 33 (d), the upper layer sheet material 8 is laminated on the lower layer sheet material 8, and at this time, the movable pins 21 are inserted and engaged with the positioning holes 22 of the upper layer sheet material 8. Then, both sheet materials 8 are positioned with respect to each other, and thereafter, as shown in FIGS. 33 (e) and (f), a separate powder material 1 is filled, and the same powder material 1 around the periphery of the upper layer sheet material 8 is added. The cured layer 2 is formed by irradiating the beam 12, and these steps are repeated. The shaped object is completed.
[0068]
Therefore, in this case, the work of separately setting and forming the movable pin 21 in advance is omitted, and the shape and size of the movable pin 21 can be freely set corresponding to the positioning holes 22, and the sheet material can be freely set. In the step of laminating the sheet materials 8, the strength of each sheet material 8 in the laminating direction can be easily increased.
[0069]
In the method for manufacturing a three-dimensionally shaped article according to the present invention, as shown in FIGS. 34 and 35, positioning ribs 26 are formed so as to protrude from the upper surface of the lower sheet material 8, and the upper positioning sheet 26 By contacting the outer peripheral portions of the sheet materials 8, the two sheet materials 8 can be positioned relative to each other.
[0070]
In this case, as shown in FIG. 34 (a), the powder material 1 is applied to the upper surface of the lower sheet material 8, and as shown in FIG. 34 (b), the beam 12 is linearly applied to a part of the powder material 1. Irradiation and curing are performed to form positioning ribs 26, and as shown in FIGS. 34 (c) and 35 (a), the uncured and remaining powder material 1 is removed and the positioning ribs 26 are replaced with the lower sheet material. As shown in FIGS. 34 (d) and 35 (b), an upper sheet material 8 is laminated on the lower sheet material 8, and at this time, the upper sheet material 8 is laminated. The two sides of the sheet material 8 are positioned with respect to each other by bringing one side of the outer side portion of the sheet member into contact with the positioning rib 26, and thereafter, as shown in FIGS. 34 (e), (f) and 35 (c), A separate powder material 1 is filled and the same powder near the other side of the outer side portion of the upper sheet material 8 is used. By irradiating a beam 12 to the material 1 to form a cured layer 2, the shaped object is completed by repeating this such steps.
[0071]
Therefore, also in this case, the trouble of separately installing and forming the positioning ribs 26 in advance can be omitted, the shape and size of the positioning ribs 26 can be freely set, and the step of laminating the sheet material 8 can be performed. The strength of each sheet material 8 in the laminating direction can be easily increased.
[0072]
In the method for manufacturing a three-dimensionally shaped article according to the present invention, as shown in FIGS. 36 (a) and (b), a projection 27 is formed on the lower surface of the upper sheet material 8, and the projection 27 is formed on the lower sheet material 8. The two sheet materials 8 can be positioned relative to each other by bitingly engaging the upper surface of the sheet material. In this case, as shown in FIG. 37, a processing machine 28 for vertically moving the punch up and down is provided, and the punch of the processing machine 28 is pressed down onto the upper sheet material 8 so that the lower surface of the upper sheet material 8 is formed. The protruding projection 27 may be engaged with the upper surface of the lower sheet material 8 and locked.
[0073]
In the method of manufacturing a three-dimensional object according to the present invention, as shown in FIGS. 38 and 39, as a final step after all of the predetermined powder material 1 is hardened by sintering, the upper surface of the object is machined. May be. All steps in this case will be described in the order of the steps (a) to (e) in FIGS.
First, as shown in FIGS. 38 (a) and 39 (a), a metal sheet material 8 wound up in a roll is fed out and irradiated with a beam 12, and the through hole 9 (such as a through hole) is formed. A common hole for bonding) is formed and cut into a predetermined shape along the contour line. Next, the sheet material 8 cut into a predetermined shape is placed on the plate 5 surrounded by the peripheral wall 4, and as shown in FIGS. 38 (b) to (d) and FIGS. 39 (b) to (d), As in the embodiment shown in FIG. 7, the powder material 1 is filled into the periphery of the sheet material 8 and the inside of each through hole 9 from above the sheet material 8 in which the plurality of through holes 9 are formed. A beam 12 is irradiated from above the sheet material 8 to harden the powder material 1 filled around the sheet material 8 and in the through holes 9. These steps are repeated twice to complete a two-layer structure.
[0074]
In this case, the beam 12 is irradiated from the laser irradiation device A, the powder material 1 is supplied and filled by the material supply device B, and the powder material 1 is sintered and hardened by the irradiation of the beam 12 to form a sheet. The through hole 9 of the material 8 and the contour line are bonded. As shown in FIGS. 38 (e) and 39 (e), the upper surface of the model is machined as a final step. In this case, the hardened portion of the powder material 1 (in the through hole 9) is formed. And the surrounding hardened layer 2) protrude from the upper surface of the modeled object, and the protruding portion is cut and removed by the processing device C.
[0075]
【The invention's effect】
As described above, according to the method of manufacturing a three-dimensional object according to claim 1 of the present invention, a high-strength modeled object can be manufactured, and the powder material only around the periphery of the burying member is sequentially cured as a layer structure. Since it is only necessary to perform the process, it is possible to shorten the molding time even for a complicated shape, to prevent deformation due to shrinkage of the powder material during curing, and to produce a highly accurate molded product. .
[0077]
Claims of the present invention 1 According to the described three-dimensional shape manufacturing method , Even a molded article having a complicated shape can be easily manufactured by forming the embedding member by laminating and integrating sheet materials.
[0078]
Moreover Claims of the present invention 1 According to the described three-dimensional shape manufacturing method , There is no need to laminate and integrate the sheet material in advance, and the embedding member can be easily formed, and the embedding member does not hinder the filling of the powder material.
[0079]
Claims of the present invention 2 According to the described three-dimensional shape manufacturing method, in particular, by curing the powder material filled in the through-holes, the bonding strength between the sheet materials is improved, and the deformation of each sheet material due to the thermal effect at the time of curing the powder material is also improved. Thus, the strength and accuracy of the molded object can be improved.
[0080]
Claims of the present invention 3 According to the method for manufacturing a three-dimensional object described above, the sheet materials are positioned with respect to each other and bonded without lateral displacement, particularly by hardening of the powder material filled in the through holes communicating between the sheet materials, and the shaped object is further updated. Higher strength and higher precision can be achieved.
[0081]
Claims of the present invention 4 According to the method of manufacturing a three-dimensional object described above, especially in a part where the outer surface of the burying member has a steep inclination, the sheet material is thickened and the number of stacked sheets is reduced, thereby further shortening the molding time. The sheet material becomes thinner at the portion where the inclination becomes gentle, and the step generated at the end becomes small, so that the surface near the horizontal of the modeled object can be smoothly finished.
[Brief description of the drawings]
FIG. 1 shows one embodiment of the present invention. Reference example FIGS. 3A to 3E are schematic cross-sectional views illustrating a method of manufacturing a three-dimensionally shaped object.
FIG. 2 shows another Reference example FIGS. 3A to 3E are schematic cross-sectional views illustrating a method of manufacturing a three-dimensionally shaped object.
FIG. 3 One of the present invention 3A to 3E are schematic cross-sectional views illustrating a method of manufacturing a three-dimensionally shaped object according to an embodiment, respectively.
FIG. 4 is a schematic cross-sectional view illustrating a method for laminating sheet materials in the method for manufacturing a three-dimensionally shaped object according to the embodiment.
FIGS. 5A to 5D are schematic cross-sectional views showing another example of a method of laminating sheet materials in the method of manufacturing a three-dimensionally shaped article according to the embodiment, in which FIGS.
FIG. 6 Another FIGS. 3A to 3D are schematic cross-sectional views illustrating a method of manufacturing a three-dimensionally shaped object according to the embodiment.
FIG. 7 is a schematic cross-sectional view illustrating a method of manufacturing a three-dimensionally shaped object according to still another embodiment.
FIGS. 8A and 8B are schematic cross-sectional views illustrating different lamination modes of a sheet material in the method for manufacturing a three-dimensionally shaped object according to the embodiment.
FIG. 9 is a schematic cross-sectional view illustrating a lamination mode of a sheet material in the method for manufacturing a three-dimensionally shaped article of the present invention.
FIG. 10 is a schematic cross-sectional view illustrating another laminating mode of a sheet material in the method for producing a three-dimensionally shaped article of the present invention.
FIG. 11 is a schematic cross-sectional view illustrating still another laminating aspect of a sheet material in the method for producing a three-dimensionally shaped article of the present invention.
FIG. 12 is a schematic cross-sectional view illustrating still another lamination mode of a sheet material in the method for producing a three-dimensionally shaped article of the present invention.
FIGS. 13A to 13C are diagrams illustrating still another laminating aspect of the sheet material in the method for producing a three-dimensionally shaped article according to the present invention, wherein FIGS.
FIG. 14 is a schematic cross-sectional view showing a method of manufacturing a three-dimensionally shaped object according to still another embodiment.
FIGS. 15A and 15B are schematic cross-sectional views illustrating a method for manufacturing a three-dimensionally shaped object according to the same embodiment.
16A and 16B are schematic cross-sectional views illustrating different lamination modes of the sheet material in the method of manufacturing a three-dimensionally shaped article according to the same embodiment.
FIG. 17 is a schematic cross-sectional view showing a method for manufacturing a three-dimensionally shaped object according to still another embodiment.
FIG. 18 is a schematic cross-sectional view showing another laminating mode of the sheet material in the three-dimensionally shaped article manufacturing method according to the embodiment.
FIG. 19 is a schematic cross-sectional view showing a method for manufacturing a three-dimensionally shaped object according to still another embodiment.
20A and 20B are comparative cross-sectional views illustrating a method for manufacturing a three-dimensionally shaped object according to the same embodiment, in which FIG. 20A is a schematic cross-sectional view, and FIGS. .
21 (a) is a schematic cross-sectional view showing a method for manufacturing a three-dimensionally shaped article according to the same embodiment, and FIGS. 21 (b) and (c) are enlarged cross-sectional views of essential parts showing the manufacturing process.
FIGS. 22A to 22C are schematic cross-sectional views showing a method of filling and curing a powder material in a method of manufacturing a three-dimensionally shaped article according to the same embodiment, respectively, in the filling and curing process.
FIG. 23 is a schematic cross-sectional view illustrating a cut shape of a sheet material in the method for producing a three-dimensionally shaped article of the present invention.
FIG. 24 is a view illustrating another cut shape of the sheet material in the method of manufacturing a three-dimensionally shaped article of the present invention, wherein (a) and (b) are schematic plan views in different states, respectively, and Is a schematic cross-sectional view in a different state.
FIGS. 25A to 25C are views illustrating a method of positioning a sheet material in the method for manufacturing a three-dimensionally shaped article according to the present invention, and are schematic plan views in different states of FIGS.
26A and 26B are diagrams illustrating another method of positioning a sheet material in the method for manufacturing a three-dimensionally shaped article of the present invention, wherein FIG. 26A is a schematic plan view, and FIG.
FIGS. 27A and 27B are diagrams illustrating still another method of positioning a sheet material in the method for manufacturing a three-dimensionally shaped article according to the present invention, wherein FIGS.
FIGS. 28A and 28B are diagrams illustrating still another method of positioning a sheet material in the method of manufacturing a three-dimensionally shaped article according to the present invention, wherein FIGS.
FIGS. 29A to 29C are diagrams illustrating still another method of positioning a sheet material in the method for manufacturing a three-dimensionally shaped article according to the present invention, and are schematic cross-sectional views in the respective positioning processes.
FIG. 30 is a schematic cross-sectional view illustrating still another method for positioning a sheet material in the method for producing a three-dimensionally shaped article of the present invention.
FIGS. 31A and 31B are diagrams illustrating still another method of positioning a sheet material in the method of manufacturing a three-dimensionally shaped article of the present invention, wherein FIGS.
FIGS. 32A and 32B are diagrams illustrating still another method of positioning a sheet material in the method for manufacturing a three-dimensionally shaped article according to the present invention, wherein FIGS.
FIG. 33 is a view illustrating still another method of positioning a sheet material in the method of manufacturing a three-dimensionally shaped article according to the present invention, and is a schematic cross-sectional view in the respective positioning steps (a) to (f).
FIG. 34 is a view illustrating still another method of positioning a sheet material in the method of manufacturing a three-dimensionally shaped article according to the present invention, and is a schematic cross-sectional view in each of (a) to (f) of the positioning process.
35 (a) to (c) are schematic plan views showing a positioning process of the sheet material in each positioning process.
FIG. 36 is a view illustrating still another method of positioning a sheet material in the method of manufacturing a three-dimensionally shaped article according to the present invention, wherein (a) and (b) are schematic cross-sectional views showing different shapes.
FIG. 37 is a schematic side view illustrating equipment in the sheet material positioning method.
FIGS. 38A to 38E are schematic cross-sectional views illustrating all steps including final machining in the method for manufacturing a three-dimensionally shaped article of the present invention; FIGS.
FIGS. 39A to 39E are schematic perspective views showing all the steps, in each of the steps.
FIGS. 40A and 40B show a conventional example of a method for manufacturing a three-dimensionally shaped article, wherein FIG. 40A is an overall perspective view, and FIG.
[Explanation of symbols]
1 powder materials
2 Hardened layer
3 Buried members
4 Perimeter wall
5 plates
6 Upper end
7 spaces
8 Sheet material
9 Through hole
10 Solidified powder layer

Claims (4)

粉末材料が硬化される硬化層を順次に積層形成して三次元形状の造形物を得る三次元形状物製造法であって、埋設用部材を設置しておき、該埋設用部材の周辺に粉末材料を充填し、該粉末材料を同埋設用部材の近傍でこれと一体化されるように硬化させて、硬化層を順次に積層形成する三次元形状物製造法であり、シート材料を積層一体化して埋設用部材を形成し、この場合に、各硬化層を形成するごとにその前に各シート材料を順次に積層設置して、埋設用部材を形成することを特徴とする三次元形状物製造法。A three-dimensionally shaped article manufacturing method for obtaining a three-dimensionally shaped article by sequentially forming a cured layer in which a powder material is cured to obtain a three-dimensionally shaped article, in which an embedding member is installed, and a powder is formed around the embedding member. This is a method of manufacturing a three-dimensional object in which a material is filled, the powder material is cured so as to be integrated therewith in the vicinity of the embedding member, and a cured layer is sequentially formed by lamination. Forming a burying member, and in this case, each time each of the hardened layers is formed, each sheet material is sequentially laminated and installed to form a burying member . Manufacturing method. 積層される各シート材料に穿設された貫通孔に粉末材料を充填し、該粉末材料を硬化させることによって同各シート材料を結合させることを特徴とする請求項記載の三次元形状物製造法。The powder material was filled in the through hole formed in the sheet material to be laminated, three-dimensional shaped article produced according to claim 1, wherein the coupling the same each sheet material by curing the powder material Law. 各シート材料の間で貫通孔を連通させることを特徴とする請求項記載の三次元形状物製造法。 3. The method for producing a three-dimensionally shaped article according to claim 2 , wherein the through holes communicate with each other between the sheet materials. 各シート材料の厚みを埋設用部材の外側面の傾斜がきつくなる部位では厚く、同傾斜が緩くなる部位では薄くなるように変化設定することを特徴とする請求項記載の三次元形状物製造法。Thick at the site where the slope becomes tight outer surface of the burying member the thickness of each sheet material, three-dimensional shaped article produced according to claim 1, wherein the change set to be thin at the site where the slope becomes loose Law.
JP08230999A 1999-03-25 1999-03-25 3D shape manufacturing method Expired - Lifetime JP3555489B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP08230999A JP3555489B2 (en) 1999-03-25 1999-03-25 3D shape manufacturing method
TW089112027A TW509602B (en) 1999-03-25 2000-06-19 Method of manufacturing a three dimensional object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08230999A JP3555489B2 (en) 1999-03-25 1999-03-25 3D shape manufacturing method

Publications (2)

Publication Number Publication Date
JP2000272018A JP2000272018A (en) 2000-10-03
JP3555489B2 true JP3555489B2 (en) 2004-08-18

Family

ID=13770969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08230999A Expired - Lifetime JP3555489B2 (en) 1999-03-25 1999-03-25 3D shape manufacturing method

Country Status (2)

Country Link
JP (1) JP3555489B2 (en)
TW (1) TW509602B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6585930B2 (en) * 2001-04-25 2003-07-01 Extrude Hone Corporation Method for article fabrication using carbohydrate binder
WO2007083372A1 (en) * 2006-01-18 2007-07-26 Yoshida Dental Mfg. Co., Ltd Method of producing dental ceramic material for repair and apparatus for producing ceramic construct
DE102009037815B4 (en) * 2009-08-18 2016-06-09 Sintermask Gmbh Method and device for producing a three-dimensional object
JP6145333B2 (en) * 2013-06-26 2017-06-07 矢崎総業株式会社 Anticorrosion molding method
JP6308421B2 (en) * 2014-01-16 2018-04-11 株式会社Ihi Manufacturing method of three-dimensional structure
KR101628164B1 (en) * 2014-04-18 2016-07-28 쓰리디토시스 주식회사 3d printing system using block type structure combined with fdm technology and this hybrid data generation method for 3d printing
JP6435748B2 (en) * 2014-09-25 2018-12-12 日本電気株式会社 Additive manufacturing member and manufacturing method of additive manufacturing member
JP2016088004A (en) * 2014-11-07 2016-05-23 セイコーエプソン株式会社 Three-dimensional structure manufacturing method, three-dimensional structure manufacturing apparatus, and three-dimensional structure
CN107000310A (en) * 2014-12-15 2017-08-01 惠普发展公司,有限责任合伙企业 Increasing material manufacturing
EP3265298B1 (en) * 2015-03-03 2020-04-08 Signify Holding B.V. Method for the production of a 3d-printed object and 3d-printed object
CN106313529B (en) * 2015-06-15 2018-08-31 三纬国际立体列印科技股份有限公司 Low-melting-point material printing method of 3D printer
JP6888259B2 (en) * 2016-09-20 2021-06-16 日本電気株式会社 Laminated modeling structure, laminated modeling method and laminated modeling equipment
JP6923324B2 (en) * 2017-02-01 2021-08-18 住友精密工業株式会社 Laminated objects and heat exchangers
KR101876799B1 (en) * 2017-04-21 2018-07-10 (주)센트롤 Three-dimensional printer
KR101953545B1 (en) * 2017-04-21 2019-05-17 (주)센트롤 Three-dimensional object
KR101990308B1 (en) * 2017-08-18 2019-06-18 (주)센트롤 Three-dimensional object
JPWO2019082341A1 (en) * 2017-10-26 2020-10-22 武藤工業株式会社 Modeled object and its manufacturing method
JP6874029B2 (en) * 2019-02-12 2021-05-19 ヒューレット−パッカード デベロップメント カンパニー エル.ピー.Hewlett‐Packard Development Company, L.P. Additional manufacturing
CN110202158A (en) * 2019-05-23 2019-09-06 中国人民解放军第五七一九工厂 A kind of monoblock type restorative procedure of aero-turbine rotor blade integral shroud longitudinal direction heavy break
WO2023012889A1 (en) * 2021-08-03 2023-02-09 三菱電機株式会社 Joining method, joining device and joining system

Also Published As

Publication number Publication date
TW509602B (en) 2002-11-11
JP2000272018A (en) 2000-10-03

Similar Documents

Publication Publication Date Title
JP3555489B2 (en) 3D shape manufacturing method
US6682688B1 (en) Method of manufacturing a three-dimensional object
JP3557926B2 (en) Method for producing three-dimensional shaped object and mold
CN113001964B (en) Mould manufactured by additive manufacturing technology
KR100574268B1 (en) Method of manufacturing a three dimensional object
JP3856654B2 (en) Manufacturing method of three-dimensional shaped object
US9358611B2 (en) Supporting plate for a laser sintering device and enhanced sintering method
JP6545903B2 (en) Manufacturing method of three-dimensional shape
JP2018079652A (en) Resin molding apparatus and resin molding method
JP4140973B2 (en) Method for producing molded product having liquid flow path inside and molded product
KR100270934B1 (en) Sheet deposition type rapid prototyping system minimizing post processing
JP6659660B2 (en) Additional three-dimensional object manufacturing method and apparatus
JP4982192B2 (en) Degassing member for injection mold
WO2017126094A1 (en) Laminated shaped object and device including same, and shaping method
TWI239888B (en) Method of making three-dimensional object
JP2003094440A (en) Method for manufacturing injection mold
KR100360679B1 (en) Method of Manufacturing A Three-Dimensional Object
JP2000234103A (en) Manufacture of mold by optical molding
CN117500658A (en) Method for producing objects
JPH09220639A (en) Manufacture of laminated metallic mold
JP2017154447A (en) Resin bonded product and manufacturing method thereof
KR100362738B1 (en) Lamination Manufacturing Method and Apparatus using Ultrasonic Apparatus
JP6418102B2 (en) Manufacturing method of resin fuel tank
JPH1086224A (en) Method of forming three-dimensional object
KR20170099419A (en) An Manufacturing Method of 3 Dimensional Shape

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040503

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080521

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

EXPY Cancellation because of completion of term