[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3555204B2 - Thin film magnetic head - Google Patents

Thin film magnetic head Download PDF

Info

Publication number
JP3555204B2
JP3555204B2 JP31551994A JP31551994A JP3555204B2 JP 3555204 B2 JP3555204 B2 JP 3555204B2 JP 31551994 A JP31551994 A JP 31551994A JP 31551994 A JP31551994 A JP 31551994A JP 3555204 B2 JP3555204 B2 JP 3555204B2
Authority
JP
Japan
Prior art keywords
magnetic
core
cores
gap
intermediate core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31551994A
Other languages
Japanese (ja)
Other versions
JPH08147625A (en
Inventor
渉 藤沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Victor Company of Japan Ltd
Original Assignee
Victor Company of Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Victor Company of Japan Ltd filed Critical Victor Company of Japan Ltd
Priority to JP31551994A priority Critical patent/JP3555204B2/en
Publication of JPH08147625A publication Critical patent/JPH08147625A/en
Application granted granted Critical
Publication of JP3555204B2 publication Critical patent/JP3555204B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Heads (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、薄膜磁気ヘッドにかかり、更に具体的には、上下コア及び中間コアによって磁気回路が構成されており、高密度磁気記録に適した薄膜磁気ヘッドの改良に関する。
【0002】
【背景技術】
従来の薄膜磁気ヘッドとしては、例えば図8(A)に主要部を示すものがある。この例では、平坦な下コアの上に巻線を積み、この巻線部を跨ぐように上コアが配置された構成となっている。同図において、基板800の主面に形成された下コア802上には、非磁性層による磁気ギャップ804,絶縁層806,808が形成されている。絶縁層808にはコイル810が形成されており、その上に上コア812,保護膜814が形成されている。
【0003】
これに対し、特開平3−58308号には、図8(B)に示すように、巻線部を挟んだ平坦な上下コアを平坦な中間コアパターンで接続した構造の薄膜磁気ヘッドが開示されている。同図において、基板800上には絶縁膜(図示せず)を介して下コア802が形成されている。この下コア802上には、前部中間コア820,822,後部中間コア824,826がそれぞれ形成されている。
【0004】
そして、前部中間コア820,822の間には絶縁膜による磁気ギャップ828が形成されており、更に後部中間コア824,826を巻回するようにコイル810が形成されている。前部中間コア822,後部中間コア826上には絶縁膜(図示せず)中に上コア830が形成されている。また、上コア830上には、保護膜814が形成されている。
【0005】
この例によれば、前記図8(A)の例と比較して、▲1▼磁性膜を全て平坦に成膜できるため、磁性膜パターンの特性劣化がない,▲2▼フォトリソグラフィ工程が平坦面上で行えるため、微細なパターン形成及び加工が可能となる,などのメリットがある。しかし、同時に、▲1▼磁路が完全な短形となるため、磁束がスムーズにギャップ先端に導入されない,▲2▼中間コア厚みに対してギャップ深さが小さくなった場合、中間コア部で磁路断面積が小さくなるため磁気飽和し易い,などのデメリットもある。
【0006】
この問題点を改良するものとして、特願平3−183791号,特願平5−127822号として出願されたものがある。これらは、ギャップ層を挟んで相対する前部中間コアを、ギャップ深さ方向に伸延しつつその間にスペーサと呼ばれる非磁性層を挟み込んで形成したもので、ギャップ深さ0位置以後で対向する相互の磁気コア間隔を広げ、その部位での漏洩磁束を軽減させたものである。
【0007】
図9(A)には、特願平5−127822号に開示された薄膜磁気ヘッドの主要部断面が示されている。同図において、基板50上には絶縁層52,下コア54が平坦に形成されており、それらの上には前部中間コア902,後部中間コア58,絶縁膜60がそれぞれ平坦に形成されている。また、前部中間コア902,絶縁膜60には、金属などの非磁性材料によってスペーサ900,コイル68が形成されている。
【0008】
次に、基板50の主面上であって、後部中間コアの形成領域を除いた部分には、絶縁材料による磁気ギャップ70が形成されており、この上に前部中間コア904,後部中間コア74,及び絶縁膜76が形成されている。絶縁膜76には、2層目のコイル78が形成されている。前部中間コア904から後部中間コア74に至る部分に上コア82が形成されるとともに、その他の部分に絶縁膜80が形成されている。また、絶縁膜80にコイル68,78に接続するためのリード線84が形成されている。
【0009】
以上のように、この例によれば、非磁性材料によるスペーサ900が、前部中間コア902内に埋め込み形成されている。他の前部中間コア904は、平坦面上に形成される。これにより、磁性膜が段差上に形成されることによって生ずる磁気特性の劣化,特に磁気コア先端部分における特性の劣化が良好に防止される。また、スペーサ900の材料として、コイル68の材料と同様の導電体が用いられている。このため、磁気ギャップ70を挟む前部中間コア902,904間の磁気シールド効果が増大して磁束漏洩を減少させることができる。更に、スペーサ900の前端部が傾斜したテーパ形状となっている。これによって、磁気ギャップ70近傍におけるコア部分の磁気飽和を抑えることが可能となる。
【0010】
【発明が解決しようとする課題】
しかしながら、以上のような背景技術には次のような不都合がある。
(1)特願平3−183791号として出願されたものは、スペーサによって生ずる段差部分上に磁性層が形成されるので、その磁性層の磁気特性が劣化するという不都合が生ずる。
【0011】
(2)特願平5−127822号として出願されたものは、スペーサを埋め込み形成して平坦化しているために段差は生じない。このため、上述したような段差に基づく磁気コアの特性劣化という問題は解決される。しかし、埋め込み形成のため、スペーサの厚みは、必然的に埋め込まれる下部磁性層の厚みより薄くならざるを得ない。また、スペーサを埋め込み形成するための微少で深い穴を加工するプロセスも困難であるため、漏れ磁束を防ぐべき間隔をあまり広くとることができず、結果的に大幅な改善効果を期待できない。すなわち、図9(B)に示すように、スペーサ900の厚み(深さ)Δdが小さいため、スペーサ900中を磁束が漏洩して通るようになる。従って、ギャップ70の先端に出るべき磁束が低下してしまう。なお、同図中、Lは寿命寸法(ギャップ深さ)を示す。
【0012】
この発明は、これらの点に着目したもので、磁気ギャップ先端近傍における磁束の漏洩を抑制して、磁束を効果的にギャップ先端に導入し、集中させることができる、高密度記録に好適な薄膜磁気ヘッド及びその製造方法を提供することを、その目的とするものである。
【0013】
【課題を解決するための手段と作用】
上述の問題点を解決するために本発明は、少なくとも上下コアと、前記上下コア間に形成された前部中間コア及び後部中間コアとによって磁気回路を構成する各層が平坦に形成されており、前記上下コアと前記中間コアの積層部のいずれかに磁気ギャップが形成された薄膜磁気ヘッドであって、前記磁気ギャップは、前記前部中間コアの積層部の中央部に形成され、かつ前記前部中間コアの積層部は、前記前部中間コアのギャップ深さ0の位置よりも後側が、前記上下コアから前記磁気ギャップに向かって、前記磁気ギャップに対して対称的、かつ段階的に幅を狭くした複数の中間コアから構成されていることを特徴とする薄膜磁気ヘッドを提供するものである。このため、特に記録時におけるギャップ近傍の漏洩磁束が抑制され、磁束を効果的にギャップ先端に導入集中することが可能となる。この発明の前記及び他の目的,特徴,利点は、次の詳細な説明及び添付図面から明瞭になろう。
【0014】
【好ましい実施例の説明】
この発明には数多くの実施例が有り得るが、ここでは適切な数の実施例を示し、詳細に説明する。
【0015】
<実施例1>
最初に、図1〜図4を参照しながら実施例1について説明する。この実施例1の薄膜磁気ヘッドは、図1(A)に断面を示すように、巻線部を挟むように配置された上下コア間に4層の中間コアが階段状に形成された構造となっている。
まず、図2〜図4を参照しながら、実施例1の薄膜磁気ヘッドの製造方法について順に説明する。基板50上に絶縁層52,下コア54を所定の厚みに形成し、表面を平坦化する(図2(A)参照)。この工程を具体的に示すと、図4(A)〜(D),あるいは同図(X)〜(Z)のようになる。
【0016】
第1番目の方法から説明すると、基板50上に軟磁性膜53を形成するとともに(図4(A)参照)、これをエッチングなどによりコア形状のパターンの下コア54とする(図4(B)参照)。次に、下コア54を含む基板50の主面上に絶縁膜51を所定の厚みに形成し(図4(C)参照)、コアパターン54上に堆積した絶縁膜51を研磨により除去して表面を平坦化する(図4(D)参照)。これによって、絶縁膜52と下コア54を得る。
【0017】
次に、第2番目の方法について説明すると、基板50上に絶縁膜51を形成するとともに(図4(X)参照)、これにコア形状の溝55を形成する(図4(Y)参照)。そして、この溝55を含む基板50の主面上に軟磁性膜53を形成するとともに(図4(Z)参照)、絶縁膜52上に堆積した軟磁性膜53を研磨により除去して表面を平坦化する(図4(D)参照)。これによって、溝55中に残った軟磁性膜53を下コア54とする。
【0018】
次に、図2に戻って、絶縁膜52,下コア54の上に、前記図4と同様の方法で前部中間コア56,後部中間コア58,絶縁膜60がそれぞれ形成される(図2(B)参照)。そして更に、同様の手法を繰り返すことで、同図(C)に示すように、中間コア62,58A,絶縁膜60Aが形成される。これらのうち、前部中間コア62は、その下層の前部中間コア56よりもギャップ深さ方向の幅が狭く、全体として階段状の形状となっている。中間コア58Aは中間コア58と連続して一体となり、絶縁膜60Aは絶縁膜60と連続して一体となるので、以後、両者を同一の符号で表わすこととする。
【0019】
このような埋め込みと研磨による手法を用いることで、磁性膜の特性劣化もなく、かつ漏洩磁束を抑制する磁気コア間隔(厚み)を容易に広くとることができる。
【0020】
次に、絶縁膜60に、コイルを埋め込み形成するための多数の溝64をエッチングにより形成する(同図(D)参照)。以上のようにして形成した溝64に、Cuなどの金属材料を埋め込むとともに、主面を平坦となるように研磨除去してコイル68を形成する(図2(E)参照)。
【0021】
次に、基板50の主面上であって、後部中間コアの形成領域を除いた部分に絶縁材料によるギャップ材70を所定の厚さだけ形成する(図2(F)参照)。また、図2(B)と同様の方法で、前部中間コア71,72,後部中間コア74,及び絶縁膜76を主面上にそれぞれ形成する(図3(G)参照)。前部中間コア71は、前部中間コア72よりもギャップ深さ方向の幅が狭く、全体として階段状の形状となっている。なお、この場合も、後部中間コア74及び絶縁膜76は2層となっているが、いずれも連続して一体となるので、同一の符号で表わしている。その後、図2(D),(E)と同様の方法で、絶縁膜76中に2層目のコイル78が形成される(図3(H)参照)。
【0022】
次に、前部中間コア72と後部中間コア74の形成領域を除いた部分に絶縁膜80を所定の厚さ形成するとともに、図2(A)と同様の方法で上コア82を形成する(図3(I)参照)。また、コイル78に接続するリード線84を、絶縁膜80に形成する(図3(J)参照)。そして、基板上に多数形成された各磁気ヘッド素子のチップを切断し、所定のギャップ深さ(寿命寸法)となるように研磨などの方法で媒体対向面を加工して、図1(A)に示す実施例1の薄膜磁気ヘッドを得る。
【0023】
次に、以上のようにして製造された薄膜磁気ヘッドの作用について説明する。図1(A)に示すように、コイル68,78を挟むように上下コア54,82が配置されており、上下コアの前部は4層の前部中間コア56,62,71,72で接合されている。また、上下コアの後部は、各々2層の後部中間コア58,74で接合されている。
【0024】
そして、磁気ギャップ70から上下コア54,82に至るまでの前部中間コア56,62,71,72は、ギャップ深さL=0の位置(同図(B)参照)よりも後部で階段状となっている。このような形状とすると、同図(B)に拡大して示すように、磁気漏洩部の厚みΔdを大きくすることができ、中間コア56,62,71,72が上下コア54,82の巻線部分(磁界発生部)から段階的に磁気ギャップ70に近接する構造となる。別言すれば、磁気ギャップ付近で最も幅が狭く、これから離れるに従って幅が増大する構造となっている。このため、コイル68,78への通電によって生ずる磁束は、図1(B)に破線で示すようになり、特に記録時に発生する磁気ギャップ70の近傍における漏洩磁束が良好に抑制でき、かつ磁束を効果的にギャップ先端に導いて集中させることが可能となる。
【0025】
<実施例2>
次に、図5を参照しながら実施例2について説明する。なお、上述した実施例に対応する構成部分には、同一の符号を用いることとする(以下の実施例でも同様である)。図5(A)に示す実施例は、上下コア54,82の前部が、前部中間コア72,100によって接合されており、これら前部中間コア72,100は階段状となっている。そして、前部中間コア100と下コア54の間に磁気ギャップ70が設けられている。
【0026】
他方、同図(B)に示す実施例は、上下コア54,82の前部が、前部中間コア56,102によって接合されており、これら前部中間コア56,102は階段状となっている。そして、前部中間コア102と上コア82の間に磁気ギャップ70が設けられている。
【0027】
いずれの例においても磁気ギャップ70に向かって磁路が狭くなるような階段形状となっており、前記実施例と同様にΔdの大きさを確保して磁束を磁気ギャップに集中できる。
【0028】
<実施例3>
次に、図6を参照しながら実施例3について説明する。この実施例3は、中間コア及びコイルが3層構造となっており、コイル68,78,110を含んでいる。そして、図6(A)に示す実施例は、上下コア54,82が、3層の前部中間コア56,72,112、及び3層の後部中間コア58,74,114によって接合されている。これらのうち、前部中間コア56,72,112は階段状となっており、前部中間コア72と112の間に磁気ギャップ70が設けられている。なお、磁気ギャップ70を、前部中間コア56と112の間に形成するようにしてもよい。
【0029】
同図(B)に示す実施例は、上下コア54,82が、3層の前部中間コア56,120,122、及び3層の後部中間コア58,74,114によって接合されている。これらのうち、前部中間コア56,120,122は階段状となっており、上コア82と前部中間コア122の間に磁気ギャップ70が設けられている。なお、前部中間コア56,120,122の階段形状を逆とするとともに、磁気ギャップ70を、下コア54と前部中間コア56の間に形成するようにしてもよい。
【0030】
この実施例によっても、前部中間コアは、磁気ギャップ70に向かって磁路が狭くなる階段形状となっており、前記実施例と同様に磁束を磁気ギャップに集中できる。
【0031】
<実施例4>
次に、図7を参照しながら実施例4について説明する。この実施例4は、中間コア及びコイルが4層構造となっており、コイル68,78,110,130を含んでいる。そして、上下コア54,82が、4層の前部中間コア56,72,132,134、及び4層の後部中間コア58,74,136,138によって接合されている。これらのうち、前部中間コア56,72,132,134は階段状となっており、前部中間コア132と134の間に磁気ギャップ70が設けられている。なお、磁気ギャップ70を、前部中間コア56と132,あるいは72と134の間に形成するようにし、それに向かって磁路が狭くなるように各中間コアを形成するようにしてもよい。
【0032】
この実施例によれば、前記実施例と比較してΔdをかなり大きくとれるため、漏れ磁束を抑制する効果も大きくなるという利点がある。
【0033】
<他の実施例>
この発明は、以上の開示に基づいて多様に改変することが可能であり、例えば、前部中間コアの積層数や階段形状の寸法は、前記実施例以外に適宜設定してよい。また、前部中間コアの積層数とコイルの段数も、一致する必要はなく、適宜設定してよい。その他の部分の形状や寸法なども、同様の作用を奏する範囲で必要に応じて適宜変更してよい。
【0034】
【発明の効果】
以上説明したように、この発明によれば、磁気ギャップを前部中間コアの積層部の中央部に形成し、かつ、前記前部中間コアの積層部は、該中間コアのギャップ深さ0の位置よりも後側が、前記上下コアから前記磁気ギャップに向かって、前記磁気ギャップに対して対称的、かつ段階的に幅を狭くした複数の中間コアから構成されるため、磁気ギャップ近傍における漏洩磁束を最小限に抑制するとともに、磁束を効果的に磁気ギャップ先端に導入して集中させることができるという効果がある。
【図面の簡単な説明】
【図1】本発明による薄膜磁気ヘッドの実施例1を示す主要部の断面図である。
【図2】前記実施例1の製造プロセスを示す説明図である。
【図3】前記実施例1の製造プロセスを示す説明図である。
【図4】前記実施例1の製造プロセスの一部を詳細に示す説明図である。
【図5】本発明の実施例2を示す主要部の断面図である。
【図6】本発明の実施例3を示す主要部の断面図である。
【図7】本発明の実施例4を示す主要部の断面図である。
【図8】従来の薄膜磁気ヘッドを示す主要部の断面図である。
【図9】従来の薄膜磁気ヘッドを示す主要部の断面図である。
【符号の説明】
50…基板
52,60,76,80…絶縁膜
54…下コア
56,62,71,72,100,102,112,120,122,132,134…前部中間コア
58,74,114,136,138…後部中間コア
64…溝
68,78,110,130…コイル
70…磁気ギャップ
82…上コア
Δd…磁気漏洩部の厚み
[0001]
[Industrial applications]
This invention relates to thin film magnetic heads, and more specifically, is constituted magnetic circuit by the upper and lower core and intermediate core relates to an improvement of a thin-film magnetic heads suitable for high-density magnetic recording.
[0002]
[Background Art]
As a conventional thin film magnetic head, for example, there is a thin film magnetic head whose main part is shown in FIG. In this example, a winding is stacked on a flat lower core, and the upper core is arranged so as to straddle the winding portion. In the figure, on a lower core 802 formed on a main surface of a substrate 800, a magnetic gap 804 of a nonmagnetic layer, insulating layers 806 and 808 are formed. A coil 810 is formed on the insulating layer 808, and an upper core 812 and a protective film 814 are formed thereon.
[0003]
On the other hand, Japanese Patent Application Laid-Open No. 3-58308 discloses a thin film magnetic head having a structure in which flat upper and lower cores sandwiching a winding portion are connected by a flat intermediate core pattern as shown in FIG. ing. In the figure, a lower core 802 is formed on a substrate 800 via an insulating film (not shown). On the lower core 802, front intermediate cores 820, 822 and rear intermediate cores 824, 826 are formed, respectively.
[0004]
A magnetic gap 828 made of an insulating film is formed between the front intermediate cores 820 and 822, and a coil 810 is formed so as to wind the rear intermediate cores 824 and 826. On the front intermediate core 822 and the rear intermediate core 826, an upper core 830 is formed in an insulating film (not shown). In addition, a protective film 814 is formed on the upper core 830.
[0005]
According to this example, as compared with the example of FIG. 8A, (1) all the magnetic films can be formed flat, so that the characteristics of the magnetic film pattern are not deteriorated. Since it can be performed on a surface, there are advantages such as fine pattern formation and processing. However, at the same time, (1) the magnetic path is completely short, so that the magnetic flux is not smoothly introduced into the gap tip. (2) If the gap depth becomes smaller than the intermediate core thickness, There are also disadvantages, such as that the magnetic path cross-sectional area is reduced and magnetic saturation is likely to occur.
[0006]
In order to improve this problem, Japanese Patent Application Nos. Hei 3-183791 and Hei 5-127822 have been filed. These are formed by interposing a non-magnetic layer called a spacer between the front intermediate cores facing each other across the gap layer while extending in the gap depth direction. In this case, the distance between the magnetic cores is widened, and the leakage magnetic flux at that portion is reduced.
[0007]
FIG. 9A shows a cross section of a main part of a thin-film magnetic head disclosed in Japanese Patent Application No. 5-127822. In the figure, an insulating layer 52 and a lower core 54 are formed flat on a substrate 50, and a front intermediate core 902, a rear intermediate core 58, and an insulating film 60 are formed flat thereon, respectively. I have. A spacer 900 and a coil 68 are formed on the front intermediate core 902 and the insulating film 60 using a nonmagnetic material such as a metal.
[0008]
Next, a magnetic gap 70 made of an insulating material is formed on the main surface of the substrate 50 except for a region where the rear intermediate core is formed, on which the front intermediate core 904 and the rear intermediate core 904 are formed. 74 and an insulating film 76 are formed. A second layer coil 78 is formed on the insulating film 76. The upper core 82 is formed in a portion from the front intermediate core 904 to the rear intermediate core 74, and the insulating film 80 is formed in other portions. Further, lead wires 84 for connecting to the coils 68 and 78 are formed on the insulating film 80.
[0009]
As described above, according to this example, the spacer 900 made of a nonmagnetic material is embedded in the front intermediate core 902. Another front intermediate core 904 is formed on a flat surface. As a result, the deterioration of the magnetic characteristics caused by the formation of the magnetic film on the step, particularly the deterioration of the characteristics at the tip of the magnetic core, can be prevented well. The same conductor as the material of the coil 68 is used as the material of the spacer 900. For this reason, the magnetic shielding effect between the front intermediate cores 902 and 904 sandwiching the magnetic gap 70 is increased, and the magnetic flux leakage can be reduced. Further, the front end of the spacer 900 has an inclined tapered shape. This makes it possible to suppress magnetic saturation of the core portion near the magnetic gap 70.
[0010]
[Problems to be solved by the invention]
However, the above background art has the following disadvantages.
(1) In the application filed as Japanese Patent Application No. 3-183791, a magnetic layer is formed on a step formed by a spacer, so that the magnetic properties of the magnetic layer deteriorate.
[0011]
(2) In the application filed as Japanese Patent Application No. 5-127822, no step occurs because the spacer is buried and flattened. Therefore, the problem of the characteristic deterioration of the magnetic core due to the step as described above is solved. However, the thickness of the spacer is inevitably smaller than the thickness of the lower magnetic layer to be buried because of the buried formation. In addition, since it is difficult to process a minute and deep hole for burying and forming the spacer, the interval for preventing the leakage magnetic flux cannot be made too large, and as a result, a significant improvement effect cannot be expected. That is, as shown in FIG. 9B, since the thickness (depth) Δd of the spacer 900 is small, the magnetic flux leaks and passes through the spacer 900. Therefore, the magnetic flux to be emitted to the tip of the gap 70 decreases. In the figure, L indicates a life dimension (gap depth).
[0012]
The present invention focuses on these points, and suppresses the leakage of magnetic flux near the tip of the magnetic gap, effectively introduces and concentrates the magnetic flux at the tip of the gap, and is suitable for high-density recording. It is an object of the present invention to provide a magnetic head and a method for manufacturing the same.
[0013]
[Means and Actions for Solving the Problems]
In order to solve the above problems, the present invention has at least upper and lower cores, a front intermediate core and a rear intermediate core formed between the upper and lower cores, each layer constituting a magnetic circuit is formed flat , A thin-film magnetic head in which a magnetic gap is formed in one of the stacked portions of the upper and lower cores and the intermediate core, wherein the magnetic gap is formed in a central portion of the stacked portion of the front intermediate core, and stacking unit parts intermediate core, said side is the rear than the position of the gap depth 0 of the front intermediate core, toward the magnetic gap from the upper and lower core, symmetrically with respect to the magnetic gap, and stepwise width A thin-film magnetic head comprising a plurality of intermediate cores having a reduced width . For this reason, particularly suppressed leakage flux gap near the time of recording, it is possible to introduce concentrate effectively gap tip flux. The above and other objects, features, and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
[0014]
Description of the preferred embodiment
While the present invention is capable of numerous embodiments, a suitable number of embodiments are shown and described in detail.
[0015]
<Example 1>
First, a first embodiment will be described with reference to FIGS. The thin film magnetic head according to the first embodiment has a structure in which four intermediate cores are formed in a step-like manner between upper and lower cores arranged so as to sandwich a winding portion as shown in a cross section in FIG. Has become.
First, a method of manufacturing the thin-film magnetic head according to the first embodiment will be sequentially described with reference to FIGS. An insulating layer 52 and a lower core 54 are formed to a predetermined thickness on the substrate 50, and the surface is flattened (see FIG. 2A). This step is specifically shown in FIGS. 4A to 4D or FIGS.
[0016]
Starting from the first method, a soft magnetic film 53 is formed on a substrate 50 (see FIG. 4A), and this is used as a lower core 54 of a core-shaped pattern by etching or the like (see FIG. 4B )reference). Next, an insulating film 51 is formed to a predetermined thickness on the main surface of the substrate 50 including the lower core 54 (see FIG. 4C), and the insulating film 51 deposited on the core pattern 54 is removed by polishing. The surface is flattened (see FIG. 4D). Thus, the insulating film 52 and the lower core 54 are obtained.
[0017]
Next, a second method will be described. An insulating film 51 is formed on a substrate 50 (see FIG. 4 (X)), and a core-shaped groove 55 is formed therein (see FIG. 4 (Y)). . Then, a soft magnetic film 53 is formed on the main surface of the substrate 50 including the groove 55 (see FIG. 4 (Z)), and the soft magnetic film 53 deposited on the insulating film 52 is removed by polishing to remove the surface. Flatten (see FIG. 4D). Thus, the soft magnetic film 53 remaining in the groove 55 is used as the lower core 54.
[0018]
Next, returning to FIG. 2, a front intermediate core 56, a rear intermediate core 58, and an insulating film 60 are formed on the insulating film 52 and the lower core 54 in the same manner as in FIG. (B)). Further, by repeating the same method, the intermediate cores 62 and 58A and the insulating film 60A are formed as shown in FIG. Among them, the front intermediate core 62 has a smaller width in the gap depth direction than the lower front intermediate core 56, and has a step-like shape as a whole. The intermediate core 58A is continuously integrated with the intermediate core 58, and the insulating film 60A is continuously integrated with the insulating film 60. Therefore, both will be denoted by the same reference numerals.
[0019]
By using such a method of embedding and polishing, it is possible to easily widen the magnetic core interval (thickness) for suppressing the leakage magnetic flux without deteriorating the characteristics of the magnetic film.
[0020]
Next, a number of grooves 64 for embedding the coil are formed in the insulating film 60 by etching (see FIG. 3D). A metal material such as Cu is buried in the groove 64 formed as described above, and the main surface is polished and removed so as to be flat, thereby forming the coil 68 (see FIG. 2E).
[0021]
Next, a gap material 70 made of an insulating material is formed on the main surface of the substrate 50 except for a region where the rear intermediate core is formed by a predetermined thickness (see FIG. 2F). Further, the front intermediate cores 71 and 72, the rear intermediate core 74, and the insulating film 76 are formed on the main surface in the same manner as in FIG. 2B (see FIG. 3G). The front intermediate core 71 has a smaller width in the gap depth direction than the front intermediate core 72, and has a step-like shape as a whole. In this case as well, the rear intermediate core 74 and the insulating film 76 have two layers, but since both are continuously integrated, they are represented by the same reference numerals. After that, a second-layer coil 78 is formed in the insulating film 76 in the same manner as in FIGS. 2D and 2E (see FIG. 3H).
[0022]
Next, an insulating film 80 is formed to a predetermined thickness except for a region where the front intermediate core 72 and the rear intermediate core 74 are formed, and an upper core 82 is formed in the same manner as in FIG. FIG. 3 (I)). Further, a lead wire 84 connected to the coil 78 is formed on the insulating film 80 (see FIG. 3J). Then, a plurality of chips of each magnetic head element formed on the substrate are cut, and the medium facing surface is processed by a method such as polishing so as to have a predetermined gap depth (lifetime dimension). 1 is obtained.
[0023]
Next, the operation of the thin-film magnetic head manufactured as described above will be described. As shown in FIG. 1A, upper and lower cores 54 and 82 are arranged so as to sandwich the coils 68 and 78, and the front portions of the upper and lower cores are four-layer front intermediate cores 56, 62, 71 and 72. Are joined. The rear portions of the upper and lower cores are joined by two layers of rear intermediate cores 58 and 74, respectively.
[0024]
The front intermediate cores 56, 62, 71, 72 from the magnetic gap 70 to the upper and lower cores 54, 82 are stepped at the rear of the position where the gap depth L = 0 (see FIG. 3B). It has become. With such a shape, the thickness Δd of the magnetic leakage portion can be increased as shown in the enlarged view of FIG. 2B, and the intermediate cores 56, 62, 71, 72 are wound around the upper and lower cores 54, 82. The structure becomes gradually closer to the magnetic gap 70 from the line portion (magnetic field generating portion). In other words, the width is narrowest near the magnetic gap, and the width increases as the distance from the gap increases. For this reason, the magnetic flux generated by energizing the coils 68 and 78 is as shown by the broken line in FIG. 1B, and the leakage magnetic flux particularly in the vicinity of the magnetic gap 70 generated at the time of recording can be suppressed well, and the magnetic flux can be reduced. It is possible to effectively guide and concentrate on the tip of the gap.
[0025]
<Example 2>
Next, a second embodiment will be described with reference to FIG. Note that the same reference numerals are used for components corresponding to the above-described embodiments (the same applies to the following embodiments). In the embodiment shown in FIG. 5A, the front portions of the upper and lower cores 54, 82 are joined by front intermediate cores 72, 100, and the front intermediate cores 72, 100 are stepped. A magnetic gap 70 is provided between the front intermediate core 100 and the lower core 54.
[0026]
On the other hand, in the embodiment shown in FIG. 3B, the front portions of the upper and lower cores 54, 82 are joined by front intermediate cores 56, 102, and the front intermediate cores 56, 102 are stepped. I have. A magnetic gap 70 is provided between the front intermediate core 102 and the upper core 82.
[0027]
In any of the examples, the magnetic path has a stepped shape in which the magnetic path becomes narrower toward the magnetic gap 70, and the magnetic flux can be concentrated on the magnetic gap by securing the magnitude of Δd as in the above-described embodiment.
[0028]
<Example 3>
Next, a third embodiment will be described with reference to FIG. In the third embodiment, the intermediate core and the coil have a three-layer structure, and include the coils 68, 78, and 110. In the embodiment shown in FIG. 6A, the upper and lower cores 54, 82 are joined by three layers of front intermediate cores 56, 72, 112 and three layers of rear intermediate cores 58, 74, 114. . Among them, the front intermediate cores 56, 72, 112 are stepped, and a magnetic gap 70 is provided between the front intermediate cores 72 and 112. The magnetic gap 70 may be formed between the front intermediate cores 56 and 112.
[0029]
In the embodiment shown in FIG. 7B, the upper and lower cores 54, 82 are joined by three layers of front intermediate cores 56, 120, 122 and three layers of rear intermediate cores 58, 74, 114. Of these, the front intermediate cores 56, 120, and 122 are stepped, and the magnetic gap 70 is provided between the upper core 82 and the front intermediate core 122. The front intermediate cores 56, 120, 122 may have the step shape reversed, and the magnetic gap 70 may be formed between the lower core 54 and the front intermediate core 56.
[0030]
Also in this embodiment, the front intermediate core has a stepped shape in which the magnetic path narrows toward the magnetic gap 70, and the magnetic flux can be concentrated on the magnetic gap as in the previous embodiment.
[0031]
<Example 4>
Next, a fourth embodiment will be described with reference to FIG. In the fourth embodiment, the intermediate core and the coil have a four-layer structure, and include coils 68, 78, 110, and 130. The upper and lower cores 54, 82 are joined by four layers of front intermediate cores 56, 72, 132, 134 and four layers of rear intermediate cores 58, 74, 136, 138. Of these, the front intermediate cores 56, 72, 132, 134 are stepped, and a magnetic gap 70 is provided between the front intermediate cores 132 and 134. The magnetic gap 70 may be formed between the front intermediate cores 56 and 132 or between 72 and 134, and each intermediate core may be formed so that the magnetic path becomes narrower toward it.
[0032]
According to this embodiment, since Δd can be considerably increased as compared with the above-described embodiment, there is an advantage that the effect of suppressing the leakage magnetic flux is increased.
[0033]
<Other embodiments>
The present invention can be variously modified based on the above disclosure. For example, the number of stacked front intermediate cores and the size of the stepped shape may be appropriately set in addition to the above-described embodiment. Also, the number of stacked front intermediate cores and the number of coil stages need not match, and may be set as appropriate. The shapes and dimensions of the other parts may be appropriately changed as needed as long as the same operation is achieved.
[0034]
【The invention's effect】
As described above, according to the present invention, the magnetic gap is formed at the center of the laminated portion of the front intermediate core, and the laminated portion of the front intermediate core has a gap depth of 0 of the intermediate core. Since the rear side of the position is composed of a plurality of intermediate cores whose widths are symmetrically and stepwise reduced with respect to the magnetic gap from the upper and lower cores toward the magnetic gap, the leakage flux near the magnetic gap Is minimized, and the magnetic flux can be effectively introduced and concentrated at the tip of the magnetic gap.
[Brief description of the drawings]
FIG. 1 is a sectional view of a main part showing a first embodiment of a thin-film magnetic head according to the present invention.
FIG. 2 is an explanatory view showing a manufacturing process of the first embodiment.
FIG. 3 is an explanatory view showing a manufacturing process of the first embodiment.
FIG. 4 is an explanatory diagram showing a part of the manufacturing process of the first embodiment in detail.
FIG. 5 is a sectional view of a main part showing a second embodiment of the present invention.
FIG. 6 is a sectional view of a main part showing a third embodiment of the present invention.
FIG. 7 is a sectional view of a main part showing a fourth embodiment of the present invention.
FIG. 8 is a sectional view of a main part showing a conventional thin film magnetic head.
FIG. 9 is a sectional view of a main part showing a conventional thin film magnetic head.
[Explanation of symbols]
50 ... substrate 52,60,76,80 ... insulating film 54 ... lower core 56,62,71,72,100,102,112,120,122,132,134 ... front middle core 58,74,114,136 , 138, rear intermediate core 64, grooves 68, 78, 110, 130, coil 70, magnetic gap 82, upper core Δd, thickness of magnetic leakage part

Claims (1)

少なくとも上下コアと、前記上下コア間に形成された前部中間コア及び後部中間コアとによって磁気回路を構成する各層が平坦に形成されており、前記上下コアと前記中間コアの積層部のいずれかに磁気ギャップが形成された薄膜磁気ヘッドであって、
前記磁気ギャップは、前記前部中間コアの積層部の中央部に形成され、かつ前記前部中間コアの積層部は、前記前部中間コアのギャップ深さ0の位置よりも後側が、前記上下コアから前記磁気ギャップに向かって、前記磁気ギャップに対して対称的、かつ段階的に幅を狭くした複数の中間コアから構成されていることを特徴とする薄膜磁気ヘッド。
At least the upper and lower cores, a front intermediate core and a rear intermediate core formed between the upper and lower cores, each layer constituting a magnetic circuit is formed flat, and any one of the stacked portions of the upper and lower cores and the intermediate core A thin film magnetic head in which a magnetic gap is formed,
The magnetic gap is formed at a central portion of the laminated portion of the front intermediate core, and the laminated portion of the front intermediate core is arranged such that the rear side of the front intermediate core at a gap depth of 0 is the vertical direction. towards the core to the magnetic gap, symmetrical, and thin-film magnetic head is characterized by being composed of a plurality of intermediate core which is narrowed stepwise width with respect to the magnetic gap.
JP31551994A 1994-11-25 1994-11-25 Thin film magnetic head Expired - Lifetime JP3555204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31551994A JP3555204B2 (en) 1994-11-25 1994-11-25 Thin film magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31551994A JP3555204B2 (en) 1994-11-25 1994-11-25 Thin film magnetic head

Publications (2)

Publication Number Publication Date
JPH08147625A JPH08147625A (en) 1996-06-07
JP3555204B2 true JP3555204B2 (en) 2004-08-18

Family

ID=18066325

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31551994A Expired - Lifetime JP3555204B2 (en) 1994-11-25 1994-11-25 Thin film magnetic head

Country Status (1)

Country Link
JP (1) JP3555204B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3373181B2 (en) * 1999-09-17 2003-02-04 ティーディーケイ株式会社 Thin film magnetic head and method of manufacturing the same
JP2001167409A (en) 1999-09-30 2001-06-22 Fujitsu Ltd Thin-film magnetic head and magnetic recording medium drive assembly
JP2002015405A (en) 2000-06-28 2002-01-18 Tdk Corp Thin film magnetic head and method of manufacture
JP2002123904A (en) 2000-10-13 2002-04-26 Tdk Corp Thin film magnetic head and manufacturing method thereof
US7688545B1 (en) 2002-09-11 2010-03-30 Seagate Technology Llc Recording head writer with high magnetic moment material at the writer gap and associated process
JP3842724B2 (en) 2002-11-29 2006-11-08 アルプス電気株式会社 Manufacturing method of magnetic head
US6950279B2 (en) 2003-01-30 2005-09-27 Headway Technologies, Inc. Thin-film magnetic head with thin-film coil of low resistance
US7307815B2 (en) 2004-05-19 2007-12-11 Headway Technologies, Inc. Method for making a perpendicular magnetic recording write head with a self aligned stitched write shield
US7440229B2 (en) * 2004-06-18 2008-10-21 Headway Technologies, Inc. Thin-film magnetic head having a write shield layer
US7463448B2 (en) * 2005-04-20 2008-12-09 Headway Technologies, Inc. Thin film magnetic head having upper and lower poles and a gap film within a trench
KR100763904B1 (en) * 2005-08-12 2007-10-05 삼성전자주식회사 Perpendicular magnetic recording head and manufacturing methof for the same
JP2008097786A (en) 2006-10-16 2008-04-24 Tdk Corp Method for manufacturing thin-film magnetic head
WO2008152696A1 (en) * 2007-06-12 2008-12-18 Fujitsu Limited Method of forming magnetic pole of thin-film magnetic head
US7933095B2 (en) * 2007-12-04 2011-04-26 Headway Technologies, Inc. Magnetic head for perpendicular magnetic recording including a stopper layer for suppressing protrusion of the front end face of a shield
KR101056751B1 (en) * 2009-05-25 2011-08-22 (주)노바마그네틱스 Non-destructive Sensor for Magnetic Leak Detection and Manufacturing Method

Also Published As

Publication number Publication date
JPH08147625A (en) 1996-06-07

Similar Documents

Publication Publication Date Title
JP3555204B2 (en) Thin film magnetic head
KR100273050B1 (en) Magnetic head
EP0031216B1 (en) A magnetic head for a perpendicular magnetic recording system
JPH05298624A (en) Composite thin film magnetic head
JPH0416245Y2 (en)
US6987644B2 (en) Thin film magnetic head including coil wound in toroidal shape and method for manufacturing the same
JPS60175208A (en) Thin film magnetic head
JPH0916904A (en) Thin-film magnetic head and its manufacture
JP2730447B2 (en) Thin film magnetic head and method of manufacturing the same
JP2986842B2 (en) Manufacturing method of magnetic head
US7286321B2 (en) Thin film magnetic head having toroidal coil and manufacturing method of the same
KR0134173B1 (en) Laminated magnetic head and method for manufacturing
KR100190489B1 (en) Magnetic head
JPH10105917A (en) Thin film magnetic head
JP2995815B2 (en) Magnetic head
JP2001014608A (en) Thin film magnetic head and its manufacture
JPH09245312A (en) Magnetic head and its production
JPH04205806A (en) Thin-film magnetic head
JPH01182908A (en) Thin film magnetic head
JPH05250614A (en) Magnetic head
JPH0944814A (en) Thin-film magnetic head for perpendicular magnetic recording and its production
JPH0231316A (en) Thin film magnetic head
JPH02287910A (en) Magnetic head
JPH0438606A (en) Laminated magnetic head and production thereof
JPH01143008A (en) Thin film magnetic head

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040503

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090521

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100521

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110521

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120521

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 9

EXPY Cancellation because of completion of term