[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3434110B2 - Desiccant air conditioner - Google Patents

Desiccant air conditioner

Info

Publication number
JP3434110B2
JP3434110B2 JP33323495A JP33323495A JP3434110B2 JP 3434110 B2 JP3434110 B2 JP 3434110B2 JP 33323495 A JP33323495 A JP 33323495A JP 33323495 A JP33323495 A JP 33323495A JP 3434110 B2 JP3434110 B2 JP 3434110B2
Authority
JP
Japan
Prior art keywords
heat
air
pressure
low
desiccant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33323495A
Other languages
Japanese (ja)
Other versions
JPH09178291A (en
Inventor
田 健 作 前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP33323495A priority Critical patent/JP3434110B2/en
Priority to US08/768,456 priority patent/US5758509A/en
Priority to CN96113903A priority patent/CN1129753C/en
Publication of JPH09178291A publication Critical patent/JPH09178291A/en
Application granted granted Critical
Publication of JP3434110B2 publication Critical patent/JP3434110B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • F24F3/1411Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant
    • F24F3/1423Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification by absorbing or adsorbing water, e.g. using an hygroscopic desiccant with a moving bed of solid desiccants, e.g. a rotary wheel supporting solid desiccants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1016Rotary wheel combined with another type of cooling principle, e.g. compression cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1028Rotary wheel combined with a spraying device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1032Desiccant wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1056Rotary wheel comprising a reheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1068Rotary wheel comprising one rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2203/00Devices or apparatus used for air treatment
    • F24F2203/10Rotary wheel
    • F24F2203/1084Rotary wheel comprising two flow rotor segments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Central Air Conditioning (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、加熱および冷却用
の熱源として吸収ヒートポンプを使用するデシカント空
調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a desiccant air conditioner using an absorption heat pump as a heat source for heating and cooling.

【0002】[0002]

【従来の技術】デシカント空調装置は米国特許第2,7
00,537号明細書に記載されている。この公知例に
示されたデシカント式空調装置では、デシカント(吸湿
剤)の再生のための熱源として、100〜150℃程度
の温度の熱源を必要とし、もっぱら電気ヒータやボイラ
が熱源として用いられていた。最近になってデシカント
の改良により、60〜80℃の温度でもデシカントの再
生ができるデシカント空調装置が開発され、温度の低い
熱源で運転が可能になった。
2. Description of the Related Art Desiccant air conditioners are disclosed in US Pat.
No. 00,537. In the desiccant type air conditioner shown in this known example, a heat source having a temperature of about 100 to 150 ° C. is required as a heat source for regenerating the desiccant (hygroscopic agent), and an electric heater or a boiler is exclusively used as a heat source. It was Due to the recent improvement of the desiccant, a desiccant air conditioner capable of reproducing the desiccant even at a temperature of 60 to 80 ° C. has been developed and can be operated with a heat source having a low temperature.

【0003】図6はこのように改良された公知のデシカ
ント式空調装置の空調機(以下デシカント空調機と称す
る)の実施例を示し、図7は図6の実施例の空調機の運
転状態を示したモリエル線図である。図6の図中符号1
01は空調空間、102は送風機、103は処理空気お
よび再生空気と選択的に接することができるデシカント
材を内包したデシカントロータ、104は顕熱熱交換
器、105は加湿器、106は加湿器の給水配管、10
7〜111は空調空気の空気通路、130は再生空気の
送風機、120は温水と再生空気の熱交換器(加熱
器)、121は顕熱熱交換器、122、123は温水配
管、124〜129は再生空気の空気通路である。また
図中、丸で囲ったアルファベットK〜Vは、図7と対応
する空気の状態を示す記号であり、SAは給気を、RA
は還気を、OAは外気を、EXは排気を表わす。
FIG. 6 shows an embodiment of a known desiccant type air conditioner thus improved (hereinafter referred to as desiccant air conditioner), and FIG. 7 shows an operating state of the air conditioner of the embodiment of FIG. It is the Mollier diagram shown. Reference numeral 1 in FIG. 6
Reference numeral 01 is an air-conditioned space, 102 is a blower, 103 is a desiccant rotor containing a desiccant material that can selectively come into contact with treated air and regenerated air, 104 is a sensible heat exchanger, 105 is a humidifier, and 106 is a humidifier. Water supply pipe, 10
7 to 111 are air passages for conditioned air, 130 is a blower for regenerated air, 120 is a heat exchanger (heater) for hot water and regenerated air, 121 is a sensible heat exchanger, 122 and 123 are hot water pipes, and 124 to 129. Is an air passage for regenerated air Further, in the drawing, alphabets K to V surrounded by circles are symbols showing the state of air corresponding to FIG. 7, and SA is air supply and RA
Represents return air, OA represents outside air, and EX represents exhaust air.

【0004】この従来装置の作用について説明すると、
図6において、空調される室内101の空気(処理空
気)は経路107を経て送風機102に吸引され昇圧さ
れて経路108をへてデシカントロータ103に送られ
デシカントロータの吸湿剤で空気中の水分を吸着され絶
対湿度が低下する。また吸着の際、吸着熱によって空気
は温度上昇する。湿度が下がり温度上昇した空気は経路
109を経て顕熱熱交換器104に送られ外気(再生空
気)と熱交換して冷却される。冷却された空気は経路1
10を経て加湿器105に送られ水噴射または気化式加
湿によって等エンタルピ過程で温度低下し経路111を
経て空調空間101に戻される。
The operation of this conventional device will be described below.
In FIG. 6, the air in the room 101 to be air-conditioned (processed air) is sucked by the blower 102 via the path 107, is pressurized, and is sent to the desiccant rotor 103 via the path 108 to remove moisture in the air by the desiccant rotor. Adsorbed and absolute humidity decreases. During adsorption, the temperature of the air rises due to the heat of adsorption. The air whose humidity has dropped and whose temperature has risen is sent to the sensible heat exchanger 104 via the path 109 and is cooled by exchanging heat with the outside air (regenerated air). Cooled air is route 1
After being sent to the humidifier 105 via 10, the temperature is lowered in the isenthalpic process by water injection or vaporization humidification, and is returned to the air-conditioned space 101 via the path 111.

【0005】デシカントはこの過程で水分を吸着したた
め、再生が必要で、この従来例では外気を用いて次のよ
うに行われる。外気(OA)は経路124を経て送風機
130に吸引され昇圧されて顕熱熱交換器104に送ら
れ、処理空気を冷却して自らは温度上昇し経路125を
経て次の顕熱熱交換器121に流入し、再生後の高温の
空気と熱交換して温度上昇する。さらに顕熱熱交換器1
21を出た再生空気は経路126を経て温水熱交換器1
20に流入し温水によって加熱され60〜80℃まで温
度上昇し、相対湿度が低下する。相対湿度が低下した再
生空気はデシカントロータ103を通過してデシカント
ロータの水分を除去する。デシカントロータ103を通
過した再生空気は経路128を経て顕熱熱交換器121
に流入し、再生前の再生空気の余熱を行ったのち経路1
29を経て排気として外部に捨てられる。
Since the desiccant adsorbs water in this process, it needs to be regenerated. In this conventional example, it is carried out as follows using outside air. The outside air (OA) is sucked by the blower 130 via the path 124, is pressurized, and is sent to the sensible heat exchanger 104. The processed air is cooled, and the temperature of the outside air itself rises. Flows in and heat-exchanges with the hot air after regeneration to raise the temperature. Further sensible heat exchanger 1
The regenerated air exiting 21 passes through the route 126 and the hot water heat exchanger 1
20 and heated by hot water, the temperature rises to 60 to 80 ° C. and the relative humidity decreases. The regenerated air with reduced relative humidity passes through the desiccant rotor 103 to remove moisture from the desiccant rotor. The regenerated air that has passed through the desiccant rotor 103 passes through the path 128 and the sensible heat exchanger 121.
Flow into the chamber and perform residual heat of the regenerated air before regeneration, then route 1
After passing through 29, it is discharged to the outside as exhaust gas.

【0006】これまでの過程をモリエル線図を用いて説
明すると、図7において、空調される室内101の空気
(処理空気:状態K)は経路107を経て送風機102
に吸引され昇圧されて経路108をへてデシカントロー
タ103に送られデシカントロータの吸湿剤で空気中の
水分を吸着され絶対湿度が低下するとともに吸着熱によ
って空気は温度上昇する(状態L)。湿度が下がり温度
上昇した空気は経路109を経て顕熱熱交換器104に
送られ外気(再生空気)と熱交換して冷却される(状態
M)。冷却された空気は経路110を経て加湿器105
に送られ水噴射または気化式加湿によって等エンタルピ
過程で温度低下し(状態P)、経路111を経て空調空
間101に戻される。このようにして室内の還気(K)
と給気(P)との間にはエンタルピ差ΔQが生じ、これ
によって空調空間101の冷房が行われる。
The process up to this point will be described with reference to the Mollier diagram. In FIG. 7, the air in the room 101 to be conditioned (processed air: state K) passes through the path 107 and the blower 102.
Is sucked in and pressure-increased to be sent to the desiccant rotor 103 via the path 108, the moisture in the air is adsorbed by the desiccant rotor hygroscopic agent, the absolute humidity is lowered and the temperature of the air is raised by the adsorption heat (state L). The air whose humidity has dropped and whose temperature has risen is sent to the sensible heat exchanger 104 via the path 109 and is cooled by exchanging heat with the outside air (regenerated air) (state M). The cooled air passes through the path 110 and the humidifier 105.
The temperature is lowered in the isenthalpic process by water injection or vaporization-type humidification (state P) and returned to the air-conditioned space 101 via the path 111. In this way, return air (K) in the room
And the supply air (P), an enthalpy difference ΔQ is generated, whereby the air-conditioned space 101 is cooled.

【0007】デシカントの再生は次のように行われる。
外気(OA:状態Q)は経路124を経て送風機130
に吸引され昇圧されて顕熱熱交換器104に送られ、処
理空気を冷却して自らは温度上昇し(状態R)経路12
5を経て次の顕熱熱交換器121に流入し、再生後の高
温の空気と熱交換して温度上昇する(状態S)。さらに
顕熱熱交換器121を出た再生空気は経路126を経て
加熱器120に流入し温水によって加熱され60〜80
℃まで温度上昇し、相対湿度が低下する(状態T)。相
対湿度が低下した再生空気はデシカントロータ103を
通過してデシカントロータの水分を除去する(状態
U)。デシカントロータ103を通過した再生空気は経
路128を経て顕熱熱交換器121に流入し、再生前の
再生空気の余熱を行って自らは温度低下した(状態V)
のち経路129を経て排気として外部に捨てられる。こ
のようにしてデシカントの再生と処理空気の除湿、冷却
をくりかえし行うことによって、デシカントによる空調
が行われていた。
The desiccant reproduction is performed as follows.
The outside air (OA: state Q) passes through the path 124 and the blower 130.
Is sucked into and pressurized and sent to the sensible heat exchanger 104 to cool the process air and raise its temperature (state R) in the path 12
After passing through 5, it flows into the next sensible heat exchanger 121 and exchanges heat with the hot air after regeneration to raise the temperature (state S). Further, the regenerated air that has left the sensible heat exchanger 121 flows into the heater 120 through the path 126 and is heated by hot water to be 60-80.
The temperature rises to ℃ and the relative humidity decreases (state T). The regenerated air with reduced relative humidity passes through the desiccant rotor 103 to remove the moisture in the desiccant rotor (state U). The regenerated air that has passed through the desiccant rotor 103 flows into the sensible heat exchanger 121 via the path 128, and performs the residual heat of the regenerated air before the regeneration to lower the temperature itself (state V).
After that, it is discharged to the outside as exhaust gas via the route 129. In this way, the desiccant air conditioning has been performed by repeatedly performing the desiccant regeneration, the dehumidification and the cooling of the treated air.

【0008】このように構成されたデシカント空調のエ
ネルギ効率を示す動作係数(COP)は図7における冷
房効果ΔQを再生加熱量ΔHで除した値(ΔQ/ΔH)
で示されるが、従来のデシカント空調では、初期のもの
と比べて再生用空気加熱のための温水の作用温度は低下
したものの、デシカントの再生熱源にはボイラを使用
し、依然として燃料の持つ1の熱量の質の高いエネルギ
(エクセルギ)を100℃未満の低い温度で1未満の熱
量としてしか利用していなかったため、他の熱駆動の冷
凍機(例えば2重効用吸収冷凍機)を用いて空気を冷却
除湿する空調システムに比べて、動作係数(COP)が
低い欠点があった。
The coefficient of operation (COP) indicating the energy efficiency of the desiccant air-conditioning thus constructed is a value (ΔQ / ΔH) obtained by dividing the cooling effect ΔQ in FIG. 7 by the regeneration heating amount ΔH.
In the conventional desiccant air conditioning, the operating temperature of the hot water for heating the regeneration air was lower than in the initial desiccant air conditioning, but the boiler used as the desiccant regeneration heat source, and Since high-quality energy (exergy) of heat quantity was used as heat quantity of less than 1 at a low temperature of less than 100 ° C., other heat-driven refrigerators (for example, double-effect absorption refrigerator) were used to remove air. There is a drawback that the coefficient of operation (COP) is lower than that of an air conditioning system that cools and dehumidifies.

【0009】[0009]

【発明が解決しようとする課題】本発明は前述した点に
鑑みてなされたもので、ボイラの代りとなる熱源機とし
て、再生空気加熱用に外部から加えられる駆動入力熱量
と低温から汲み上げた蒸発熱とを加えた熱量が取り出せ
る80〜100℃程度の中間温度の加熱源と、デシカン
ト空調サイクル中に行われる処理空気を冷却する過程で
更に空気を冷却しうる冷却用の10℃程度の冷却源を併
せて供給できる吸収ヒートポンプ(冷凍機を含む)を熱
源として組合せすることによって、デシカント空調のエ
ネルギ効率を高め、従来からの冷凍機を用いて空気を冷
却除湿する空調システムのエネルギ効率を上回るデシカ
ント空調装置を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and as a heat source machine instead of a boiler, a drive input heat quantity added from the outside for heating regenerated air and an evaporation pumped from a low temperature. A heating source at an intermediate temperature of about 80 to 100 ° C. capable of taking out the amount of heat added with heat, and a cooling source of about 10 ° C. for cooling the air that can be further cooled in the process of cooling the process air performed during the desiccant air conditioning cycle. By combining an absorption heat pump (including a refrigerator) that can be supplied together as a heat source, the energy efficiency of desiccant air conditioning is improved, and the desiccant air conditioning system that cools and dehumidifies air using a conventional refrigerator exceeds the energy efficiency of the desiccant. The purpose is to provide an air conditioner.

【0010】[0010]

【課題を解決するための手段】本発明によれば、加熱お
よび冷却用の熱源として吸収ヒートポンプを使用するデ
シカント空調装置において、前記吸収ヒートポンプは、
低圧蒸発器と、その低圧蒸発器よりも高い圧力で作動す
る高圧蒸発器と、低圧吸収器と、その低圧吸収器よりも
高い圧力で作動する高圧吸収器と、再生器と、凝縮器と
を備え、かつ前記低圧吸収器の吸収熱で高圧蒸発器を加
熱するために低圧吸収器と高圧蒸発器とが熱交換関係を
形成する熱交換手段を有し、そして低圧蒸発器で蒸発し
た冷媒を低圧吸収器が吸収し、かつ高圧蒸発器で蒸発し
た冷媒を高圧吸収器が吸収する構成であって、デシカン
トの再生を行う加熱器が前記高圧吸収器および凝縮器と
熱交換するための温水経路を有し、かつ空調空間に供給
する処理空気の冷却器が低圧蒸発器と熱交換するための
冷水経路を有している。また、デシカントが処理空気お
よび再生空気と選択的に接することができるデシカント
ロータと、処理空気と再生空気とを熱交換媒体とする顕
熱熱交換器とを備え、前記加熱器が再生空気を加熱して
おり、前記冷却器が前記顕熱熱交換器と空調空間との間
の経路に設けられて低圧蒸発器の蒸発熱を冷却熱源とし
て処理空気の冷却を行なっている。そして、前記加熱器
は顕熱熱交換器からデシカントロータに至る途中に設け
られ、高圧吸収器の吸収熱および凝縮器の凝縮熱を加熱
源としている。
According to the present invention, in a desiccant air conditioner using an absorption heat pump as a heat source for heating and cooling, the absorption heat pump comprises:
A low pressure evaporator, a high pressure evaporator operating at a pressure higher than the low pressure evaporator, a low pressure absorber, a high pressure absorber operating at a pressure higher than the low pressure absorber, a regenerator, and a condenser. And a heat exchange means for forming a heat exchange relationship between the low-pressure absorber and the high-pressure evaporator for heating the high-pressure evaporator with the heat absorbed by the low-pressure absorber, and the refrigerant evaporated in the low-pressure evaporator is A hot water path in which the low-pressure absorber absorbs the refrigerant evaporated in the high-pressure evaporator and the high-pressure absorber absorbs the refrigerant, and the heater for desiccant regeneration exchanges heat with the high-pressure absorber and the condenser. In addition, the cooler for the process air supplied to the air-conditioned space has a cold water passage for exchanging heat with the low-pressure evaporator. Further, the desiccant includes a desiccant rotor capable of selectively contacting the treated air and the regenerated air, and a sensible heat exchanger having the treated air and the regenerated air as a heat exchange medium, and the heater heats the regenerated air. The cooling device is provided in the path between the sensible heat exchanger and the air-conditioned space to cool the process air by using the heat of evaporation of the low pressure evaporator as a cooling heat source. The heater is provided on the way from the sensible heat exchanger to the desiccant rotor, and uses the heat of absorption of the high-pressure absorber and the heat of condensation of the condenser as heating sources.

【0011】さらに本発明によれば、デシカント空調装
置の加熱および冷却熱源用のヒートポンプにおいて、低
圧蒸発器と、その低圧蒸発器よりも高い圧力で作動する
高圧蒸発器と、低圧吸収器と、その低圧吸収器よりも高
い圧力で作動する高圧吸収器と、再生器と、凝縮器とを
備え、かつ前記低圧吸収器の吸収熱で高圧蒸発器を加熱
するために低圧吸収器と高圧蒸発器とが熱交換関係を形
成する熱交換手段を有し、そして低圧蒸発器で蒸発した
冷媒を低圧吸収器が吸収し、かつ高圧蒸発器で蒸発した
冷媒を高圧吸収器が吸収する構成であって、加熱源とし
て前記高圧吸収器の吸収熱と凝縮器の凝縮熱とを取出す
温水経路を有し、冷却熱源として低圧蒸発器の蒸発熱を
取出す冷水経路を有している。
Further, according to the present invention, in a heat pump for heating and cooling heat sources of a desiccant air conditioner, a low pressure evaporator, a high pressure evaporator operating at a pressure higher than that of the low pressure evaporator, a low pressure absorber, and A high-pressure absorber operating at a higher pressure than the low-pressure absorber, a regenerator, and a condenser, and a low-pressure absorber and a high-pressure evaporator for heating the high-pressure evaporator with heat absorbed by the low-pressure absorber. Has a heat exchange means for forming a heat exchange relationship, and the low-pressure evaporator absorbs the refrigerant evaporated in the low-pressure evaporator, and the high-pressure absorber absorbs the refrigerant evaporated in the high-pressure evaporator, As a heating source, there is a hot water path for taking out the absorption heat of the high pressure absorber and the condensation heat of the condenser, and as a cooling heat source, there is a cold water path for taking out the evaporation heat of the low pressure evaporator.

【0012】デシカント空調用の熱源として、前述のよ
うに構成した本発明の吸収ヒートポンプまたは冷凍機を
組合せたデシカント空調装置によって、再生器に加えら
れる駆動入力熱量に低圧蒸発器の蒸発熱を加えた熱量に
相当する熱量の熱を、凝縮熱および高圧吸収器の吸収熱
として利用熱媒体即ちデシカント再生用の80〜100
℃程度の中間温度の加熱源として利用することができ、
さらに低圧蒸発器の蒸発熱を、デシカント空調サイクル
中に行われる空気を冷却する過程に10℃程度の冷却熱
源として利用することができるため、デシカント再生の
ために必要な1次エネルギが節約できるとともに、冷房
効果が増し、従って動作係数が高いデシカント空調シス
テムを提供することができる。
As a heat source for desiccant air conditioning, the desiccant air conditioner combined with the absorption heat pump or the refrigerator of the present invention configured as described above adds the heat of vaporization of the low pressure evaporator to the drive input heat quantity applied to the regenerator. A heat amount corresponding to the heat amount is used as heat of condensation and heat of absorption of the high-pressure absorber. Heat medium, that is, 80 to 100 for desiccant regeneration.
It can be used as a heating source at an intermediate temperature of about ℃,
Furthermore, the heat of vaporization of the low-pressure evaporator can be used as a cooling heat source of about 10 ° C. in the process of cooling the air performed during the desiccant air conditioning cycle, so that the primary energy required for desiccant regeneration can be saved. Therefore, it is possible to provide a desiccant air-conditioning system having an increased cooling effect and thus a high coefficient of operation.

【0013】[0013]

【発明の実施の形態】以下、本発明に係るデシカント空
調装置の一実施例を図1乃至図5を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of a desiccant air conditioner according to the present invention will be described below with reference to FIGS.

【0014】図1は本発明に係るデシカント空調装置の
基本構成を示す図であり、このうち吸収ヒートポンプの
部分は、低圧蒸発器3、低圧蒸発器よりも高い圧力で作
動する高圧蒸発器13、低圧吸収器1、低圧吸収器より
も高い圧力で作動する高圧吸収器11、再生器2、凝縮
器4、および吸収溶液の第1の熱交換器5、第2の熱交
換器15をおもな構成機器とし、かつ前記低圧吸収器1
の吸収熱で高圧蒸発器13を加熱するよう低圧吸収器1
と高圧蒸発器13が熱交換装置21すなわち図示の例で
は伝熱管を形成し、かつ低圧蒸発器3で蒸発した冷媒を
低圧吸収器1が吸収し、かつ高圧蒸発器13で蒸発した
冷媒を高圧吸収器11が吸収するよう構成する。
FIG. 1 is a diagram showing the basic construction of a desiccant air conditioner according to the present invention. Of these, the absorption heat pump part is a low pressure evaporator 3, a high pressure evaporator 13 operating at a higher pressure than the low pressure evaporator, Mainly comprises a low-pressure absorber 1, a high-pressure absorber 11 operating at a higher pressure than the low-pressure absorber, a regenerator 2, a condenser 4, and a first heat exchanger 5 and a second heat exchanger 15 for absorbing solution. Low pressure absorber 1
The low-pressure absorber 1 so that the high-pressure evaporator 13 is heated by the absorption heat of
And the high-pressure evaporator 13 form a heat exchange device 21, that is, a heat transfer tube in the illustrated example, and the low-pressure absorber 1 absorbs the refrigerant evaporated in the low-pressure evaporator 3 and the refrigerant evaporated in the high-pressure evaporator 13 becomes high-pressure. The absorber 11 is configured to absorb.

【0015】このように構成された吸収ヒートポンプの
吸収溶液経路は、低圧吸収器1を出た溶液が第1の熱交
換器5、第2の熱交換器15を経由して再生器2に流入
し、再生器2を出た溶液が第2の熱交換器15を経由し
て、高圧吸収器11に流入し、高圧吸収器11を出た溶
液が第1の熱交換器5を経由して低圧吸収器1に還流す
るよう構成する。
In the absorption solution path of the absorption heat pump configured as described above, the solution discharged from the low pressure absorber 1 flows into the regenerator 2 via the first heat exchanger 5 and the second heat exchanger 15. Then, the solution leaving the regenerator 2 flows into the high pressure absorber 11 via the second heat exchanger 15, and the solution leaving the high pressure absorber 11 passes via the first heat exchanger 5. It is configured to return to the low-pressure absorber 1.

【0016】さらに吸収ヒートポンプの冷媒経路は、再
生器2で発生した冷媒蒸気が凝縮器4に流入し、凝縮器
4を出た冷媒は2つに分流して、1つの経路は絞り機構
7を経由して低圧蒸発器3に流入し低圧蒸発器3で蒸発
した後低圧吸収器1に流入して溶液系統に吸収される経
路となり、もう1つの経路は絞り機構17を経由して高
圧蒸発器13に流入し高圧蒸発器13で蒸発した後高圧
吸収器11に流入して溶液系統に吸収される経路となる
よう構成する。
Further, in the refrigerant path of the absorption heat pump, the refrigerant vapor generated in the regenerator 2 flows into the condenser 4, the refrigerant exiting the condenser 4 is split into two, and one path is the throttling mechanism 7. Via the low pressure evaporator 3 to be vaporized in the low pressure evaporator 3 and then into the low pressure absorber 1 to be absorbed by the solution system, and the other path is via the throttling mechanism 17 to the high pressure evaporator 3. It is configured such that it becomes a path in which it flows into the high pressure evaporator 13 and then flows into the high pressure absorber 11 and is absorbed by the solution system.

【0017】また高圧吸収器の吸収熱および凝縮器の凝
縮熱を加熱源として取出す搬送媒体(温水)の経路は高
圧吸収器の吸収器伝熱管30から凝縮器伝熱管31の順
に通過して熱交換するよう構成し、かつ低圧蒸発器の蒸
発熱を冷却熱源として取出す搬送媒体(冷水)の経路は
低圧蒸発器の伝熱管32に接続して構成する。図1では
このように構成された吸収ヒートポンプの温水配管と冷
水配管を以下に示すデシカント空調機とをそれぞれ冷水
ポンプ160、温水ポンプ150を介して接続したもの
である。
The path of the carrier medium (hot water) that takes out the heat of absorption of the high-pressure absorber and the heat of condensation of the condenser as a heating source passes from the absorber heat transfer tube 30 of the high-pressure absorber to the condenser heat transfer tube 31 in this order. The path of the carrier medium (cold water) which is configured to be exchanged and which takes out the evaporation heat of the low pressure evaporator as a cooling heat source is connected to the heat transfer pipe 32 of the low pressure evaporator. In FIG. 1, the hot water pipe and the cold water pipe of the absorption heat pump configured as described above are connected to a desiccant air conditioner shown below via a cold water pump 160 and a hot water pump 150, respectively.

【0018】図1のデシカント空調装置の空調機の部分
は以下に示すよう構成されている。空調空間101は処
理空気の送風機102の吸い込み口と経路107を介し
て接続し、送風機102の吐出口はデシカントロータ1
03と経路108を介して接続し、デシカントロータ1
03の処理空気の出口は再生空気と熱交換関係にある顕
熱熱交換器104と経路109を介して接続し、顕熱熱
交換器104の処理空気の出口は冷水熱交換器115と
経路110を介して接続し、冷却器115の処理空気の
出口は加湿器105と経路119を介して接続し、加湿
器105の処理空気の出口は空調空間101と経路11
1を介して接続して処理空気のサイクルを形成する。
The air conditioner portion of the desiccant air conditioner shown in FIG. 1 is constructed as follows. The air-conditioned space 101 is connected to the suction port of the blower 102 of the treated air via the path 107, and the discharge port of the blower 102 is the desiccant rotor 1.
03 through the path 108, the desiccant rotor 1
The outlet of the treated air of 03 is connected to the sensible heat exchanger 104 having a heat exchange relationship with the regenerated air via the passage 109, and the outlet of the treated air of the sensible heat exchanger 104 is the cold water heat exchanger 115 and the passage 110. The outlet of the processing air of the cooler 115 is connected to the humidifier 105 via the path 119, and the outlet of the processing air of the humidifier 105 is connected to the air-conditioned space 101 and the path 11.
1 to form a cycle of process air.

【0019】一方、再生用の空気経路は、外気を再生空
気用の送風機130の吸い込み口と経路124を介して
接続し、送風機130の吐出口は処理空気と熱交換関係
にある顕熱熱交換器104と接続し、顕熱熱交換器10
4の再生空気の出口は別の顕熱熱交換器121の低温側
入口と経路125を介して接続し、顕熱熱交換器121
の低温側出口は加熱器120と経路126を介して接続
し、加熱器120の再生空気の出口はデシカントロータ
103の再生空気入口と経路127を介して接続し、デ
シカントロータ103の再生空気の出口は顕熱熱交換器
121の高温側入口と経路128を介して接続し、顕熱
熱交換器121の高温側出口は外部空間と経路129を
介して接続して再生空気を外部から取り入れて、外部に
排気するサイクルを形成する。
On the other hand, the air path for regeneration connects the outside air to the suction port of the blower 130 for regeneration air via the path 124, and the discharge port of the blower 130 has a sensible heat exchange in a heat exchange relationship with the process air. The sensible heat exchanger 10 is connected to the vessel 104.
The outlet of the regenerated air of No. 4 is connected to the low temperature side inlet of another sensible heat exchanger 121 via the path 125, and the sensible heat exchanger 121
Of the desiccant rotor 103 is connected to the regeneration air inlet of the desiccant rotor 103 via the path 127, and the regeneration air outlet of the heater 120 is connected to the regeneration air outlet of the desiccant rotor 103 via the passage 126. Is connected to the high temperature side inlet of the sensible heat exchanger 121 via a path 128, and the high temperature side outlet of the sensible heat exchanger 121 is connected to an external space via a path 129 to take in regenerated air from the outside. Form a cycle of exhausting to the outside.

【0020】前記加熱器120の熱媒体(温水)入口は
経路122を介して吸収ヒートポンプの温水経路の高圧
吸収器11の出口に接続し、加熱器120の温水出口は
経路123および温水ポンプ150を介して吸収ヒート
ポンプの温水経路の凝縮器4の入口に接続する。また前
記冷却器115の冷水入口は経路117を介して吸収ヒ
ートポンプの冷水経路の低圧蒸発器3の出口に接続し、
冷却器115の冷水出口は経路118およびポンプ16
0を介して吸収ヒートポンプの冷水経路の低圧蒸発器3
の入口に接続する。なお図中、丸で囲ったアルファベッ
トK〜Vは、図4と対応する空気の状態を示す記号であ
り、SAは給気を、RAは還気を、OAは外気を、EX
は排気を表わす。
The heat medium (hot water) inlet of the heater 120 is connected to the outlet of the high pressure absorber 11 of the hot water path of the absorption heat pump via the path 122, and the hot water outlet of the heater 120 connects the path 123 and the hot water pump 150. It is connected to the inlet of the condenser 4 in the hot water path of the absorption heat pump. Further, the cold water inlet of the cooler 115 is connected to the outlet of the low pressure evaporator 3 of the cold water path of the absorption heat pump via the path 117,
The chilled water outlet of the cooler 115 is the path 118 and the pump 16
Low-pressure evaporator 3 in the cold water path of the absorption heat pump
Connect to the entrance of. In the figure, the alphabets K to V surrounded by circles are symbols showing the state of air corresponding to FIG. 4, SA is supply air, RA is return air, OA is outside air, EX
Represents exhaust gas.

【0021】上述のように構成されたデシカント空調装
置の吸収ヒートポンプ部分の吸収サイクルを次に説明す
る。吸収溶液は再生器2で外部の熱源(図示せず)から
伝熱管33を介して加熱され、冷媒蒸気を発生し、濃縮
されたのち第2の熱交換器15を経て高圧吸収器11に
至る。高圧吸収器11では吸収溶液は高圧蒸発器13で
蒸発した冷媒を吸収し、希釈されたのち第1の熱交換器
5を経て低圧吸収器1に至る。低圧吸収器1では吸収溶
液は低圧蒸発器3で蒸発した冷媒を吸収し、希釈された
後ポンプ6の作用によって再び第1の熱交換器5、第2
の熱交換器15を経て再生器2に戻る。高圧吸収器11
では吸収の際発生する吸収熱をデシカントの再生用の加
熱源として利用するため温水などの熱媒体と伝熱管30
によって熱交換される。
Next, the absorption cycle of the absorption heat pump portion of the desiccant air conditioner constructed as described above will be described. The absorbing solution is heated in the regenerator 2 from an external heat source (not shown) via the heat transfer tube 33 to generate a refrigerant vapor, and after being concentrated, reaches the high pressure absorber 11 via the second heat exchanger 15. . In the high-pressure absorber 11, the absorbing solution absorbs the refrigerant evaporated in the high-pressure evaporator 13, is diluted, and then reaches the low-pressure absorber 1 via the first heat exchanger 5. In the low-pressure absorber 1, the absorbing solution absorbs the refrigerant evaporated in the low-pressure evaporator 3, and after being diluted, the first heat exchanger 5, the second heat exchanger 5
It returns to the regenerator 2 via the heat exchanger 15 of FIG. High pressure absorber 11
In order to use the absorption heat generated during absorption as a heat source for desiccant regeneration, a heat transfer medium such as hot water and a heat transfer tube 30 are used.
Is heat exchanged by.

【0022】低圧吸収器1では吸収の際発生する吸収熱
は内部サイクルにおいて高圧蒸発器13の加熱源として
使用するため伝熱管21によって熱交換される。再生器
2で発生した冷媒蒸気は、凝縮器4に流入し凝縮する。
凝縮器4では凝縮の際発生する凝縮熱をデシカントの再
生用の加熱源とするため温水などの熱媒体と伝熱管31
によって熱交換される。
In the low pressure absorber 1, the absorption heat generated during absorption is exchanged by the heat transfer tube 21 for use as a heating source of the high pressure evaporator 13 in the internal cycle. The refrigerant vapor generated in the regenerator 2 flows into the condenser 4 and is condensed.
In the condenser 4, the heat of condensation generated during condensation is used as a heat source for regenerating the desiccant, so that the heat transfer pipe 31
Is heat exchanged by.

【0023】凝縮器4で凝縮した冷媒は2つに分流し
て、1つの経路は絞り機構7を経由して低圧蒸発器3に
流入し伝熱管32によって冷水などの熱媒体から熱を奪
って蒸発した後低圧吸収器1に流入して溶液系統に吸収
される経路となり、もう1つの経路は絞り機構17を経
由して高圧蒸発器13に流入し伝熱管21によって低圧
吸収器1から吸収熱を奪って蒸発した後高圧吸収器11
に流入して溶液系統に吸収される経路となるよう構成す
る。なお低圧吸収器1の伝熱管21において、媒体を介
さず直接高圧蒸発器13内の冷媒が管内で蒸発するよう
構成しても差し支えなく、同様の作用を行うことができ
る。
The refrigerant condensed in the condenser 4 is divided into two, and one path flows into the low-pressure evaporator 3 via the throttle mechanism 7 and removes heat from a heat medium such as cold water by the heat transfer pipe 32. After being vaporized, it flows into the low-pressure absorber 1 and is absorbed by the solution system. The other route flows into the high-pressure evaporator 13 via the throttle mechanism 17 and the heat transfer pipe 21 absorbs heat absorbed from the low-pressure absorber 1. High-pressure absorber 11 after depriving and evaporating
It is configured so that it becomes a route that flows into and is absorbed by the solution system. The heat transfer tube 21 of the low-pressure absorber 1 may be configured such that the refrigerant in the high-pressure evaporator 13 evaporates directly in the tube without a medium, and the same operation can be performed.

【0024】また、前記熱媒体(温水)は高圧吸収器伝
熱管30から凝縮器伝熱管31の順序で流すことによって
冷媒凝縮温度が高圧吸収器の溶液温度よりも高くなる
が、温水の出口温度を一定として、温水の利用温度差を
大きく取った場合、高圧吸収器の作動圧力が低下し、そ
れによって高圧蒸発器の蒸発温度が下がり、低圧吸収器
の溶液温度も低下するため、サイクル全体の溶液濃度が
薄い状態で運転できる効果がある。本発明のデシカント
空調装置では、再生空気の加熱過程が顕熱変化であるた
め、このように温水の利用温度差を大きくとることも可
能である。
The heat medium (hot water) flows from the high-pressure absorber heat transfer tube 30 to the condenser heat transfer tube 31 in this order, so that the refrigerant condensing temperature becomes higher than the solution temperature of the high-pressure absorber. If the difference in the temperature of use of hot water is set to a large value, the operating pressure of the high-pressure absorber decreases, which lowers the evaporation temperature of the high-pressure evaporator and the solution temperature of the low-pressure absorber. It has the effect of being able to operate in a state where the solution concentration is low. In the desiccant air conditioner of the present invention, since the heating process of the regenerated air is a sensible heat change, it is possible to make the difference in hot water use temperature large as described above.

【0025】また、逆に前記熱媒体(温水)を凝縮器伝
熱管31から高圧吸収器伝熱管30の順序で流すことによ
って高圧吸収器の溶液温度が冷媒凝縮温度よりも高くな
るが、再生器2の圧力上限に制限があって、しかも温水
の出口温度を高く取りたい場合、このような温水の経路
を組むことによって高圧吸収器の作動圧力は上昇し、そ
れによって高圧蒸発器の蒸発温度が上がり、低圧吸収器
の溶液温度も上昇するため、サイクル全体の溶液濃度が
高い状態にはなるが再生器圧力が上昇しないで済む効果
がある。
On the contrary, by flowing the heat medium (warm water) from the condenser heat transfer tube 31 to the high pressure absorber heat transfer tube 30 in this order, the solution temperature of the high pressure absorber becomes higher than the refrigerant condensing temperature. If the upper limit of the pressure of 2 is limited and it is desired to keep the hot water outlet temperature high, the working pressure of the high-pressure absorber is increased by constructing such a hot-water path, which causes the evaporation temperature of the high-pressure evaporator to rise. As the temperature of the solution in the low-pressure absorber rises, the solution concentration in the entire cycle becomes high, but the pressure of the regenerator does not have to rise.

【0026】次に前述のように構成されたデシカント空
調装置の吸収ヒートポンプの部分の動作を図2を参照し
て説明する。図2は図1のデシカント空調装置の吸収ヒ
ートポンプの部分のサイクルを示すデューリング線図で
ある。本図は吸収冷凍機で一般的に用いられている臭化
リチウムー水系のものを代表例として示す。図中に示す
アルファベット記号は、吸収溶液や冷媒の状態を示すも
ので、同じ記号を丸で囲んだものを図1にも記載した。
吸収溶液は再生器2で外部の熱源から加熱され、冷媒蒸
気を発生し濃縮された(状態d:図の例では150℃)
のち第2の熱交換器15を経て(状態e)高圧吸収器1
1に至る。高圧吸収器11では吸収溶液は高圧蒸発器1
3で蒸発した冷媒を吸収し、希釈された後(状態f)第
1の熱交換器5を経て冷却され(状態g)低圧吸収器1
に流入し、低圧蒸発器3で蒸発した冷媒を吸収し、希釈
された後(状態a)第1の熱交換器5(状態b)、第2
の熱交換器15を経て加熱され(状態c)再生器2に戻
る。再生器2で発生した冷媒蒸気は、凝縮器4に流入し
凝縮する(状態h)。凝縮した冷媒は2つに分流して、
1つは絞り機構7を経由して低圧蒸発器3に流入し伝熱
管32によって冷水などの熱媒体から熱を奪って蒸発し
た後(状態j)低圧吸収器1に流入して溶液系統に吸収
される経路を流動し、もう1つの経路は絞り機構17を
経由して高圧蒸発器13に流入し伝熱管21によって低
圧吸収器1から吸収熱を奪って蒸発した(状態k)後高
圧吸収器11に流入して溶液系統に吸収される経路を流
動する。低圧吸収器1の吸収熱(状態a)は高圧蒸発器
13に伝熱され、冷媒を蒸発させる。
Next, the operation of the absorption heat pump portion of the desiccant air conditioner configured as described above will be described with reference to FIG. FIG. 2 is a Duhring diagram showing a cycle of a part of the absorption heat pump of the desiccant air conditioner of FIG. This figure shows a lithium bromide-water system that is generally used in absorption refrigerators as a representative example. The alphabetical symbols shown in the figure show the states of the absorbing solution and the refrigerant, and the same symbols surrounded by circles are also shown in FIG.
The absorbing solution was heated by an external heat source in the regenerator 2 to generate a refrigerant vapor and was condensed (state d: 150 ° C. in the example in the figure).
After passing through the second heat exchanger 15 (state e), the high pressure absorber 1
To 1. In the high-pressure absorber 11, the absorption solution is the high-pressure evaporator 1
The refrigerant evaporated in 3 is absorbed, diluted (state f) and then cooled via the first heat exchanger 5 (state g) low-pressure absorber 1
To the first heat exchanger 5 (state b) after absorbing the refrigerant evaporated in the low pressure evaporator 3 and being diluted (state a), the second
After being heated through the heat exchanger 15 (state c), it returns to the regenerator 2. The refrigerant vapor generated in the regenerator 2 flows into the condenser 4 and is condensed (state h). The condensed refrigerant is split into two,
One is that after flowing into the low-pressure evaporator 3 via the throttling mechanism 7 and taking heat from the heat medium such as cold water by the heat transfer pipe 32 to evaporate (state j), it flows into the low-pressure absorber 1 and is absorbed in the solution system. And the other path flows into the high-pressure evaporator 13 via the throttling mechanism 17 and absorbs heat absorbed from the low-pressure absorber 1 by the heat transfer tube 21 to evaporate (state k). 11 and flows through the path that is absorbed by the solution system. The absorbed heat (state a) of the low pressure absorber 1 is transferred to the high pressure evaporator 13 to evaporate the refrigerant.

【0027】このように構成された吸収ヒートポンプで
は、再生器2に外部から加えられた高温の熱は溶液濃縮
に利用され、その際発生した冷媒蒸気の保有熱が凝縮熱
として凝縮器4から取り出され、また濃縮された溶液は
高圧吸収器11において高圧蒸発器13で蒸発した冷媒
を吸収してその際の吸収熱が高圧吸収器11から80〜
100℃温水の形で取り出され、また低圧蒸発器13か
らは冷却熱源となる蒸発熱が10℃程度の冷水の形で取
り出される。また低圧吸収器1の吸収熱は高圧蒸発器1
3の蒸発熱として系内で使用する。
In the absorption heat pump thus constructed, the high temperature heat applied to the regenerator 2 from the outside is utilized for the solution concentration, and the heat of the refrigerant vapor generated at that time is taken out from the condenser 4 as the condensation heat. The concentrated solution absorbs the refrigerant evaporated in the high pressure evaporator 13 in the high pressure absorber 11, and the heat of absorption at that time is 80 to 80% from the high pressure absorber 11.
It is taken out in the form of hot water of 100 ° C., and the heat of evaporation, which serves as a cooling heat source, is taken out of the low-pressure evaporator 13 in the form of cold water of about 10 ° C. The heat absorbed by the low-pressure absorber 1 is the same as that of the high-pressure evaporator 1.
Used in the system as the heat of vaporization of 3.

【0028】このようにして吸収ヒートポンプから取り
出した温水はデシカントの再生に利用することができ、
また冷水は処理空気の冷却に利用することができる。こ
のサイクル全体の熱バランスを見ると、このサイクルへ
の入熱は再生器2に外部から加えられた高温の熱と低圧
蒸発器3で冷水から奪った熱であり、このサイクルから
の出熱は温水に加えられる高圧吸収器11の吸収熱と凝
縮器4の凝縮熱である。したがって温水には、再生器2
に外部から加えられた高温の熱の他に低圧蒸発器3で冷
水から奪った熱が加えられるため、加熱源として利用可
能な熱量は再生器に外部から加えられた熱量よりも増加
する。このようにこのサイクルにはヒートポンプ作用が
ある。
The hot water thus taken out from the absorption heat pump can be used for the regeneration of the desiccant,
Cold water can also be used to cool the process air. Looking at the heat balance of the entire cycle, the heat input to this cycle is the high temperature heat applied to the regenerator 2 from the outside and the heat taken from the cold water in the low pressure evaporator 3, and the heat output from this cycle is The heat of absorption of the high-pressure absorber 11 and the heat of condensation of the condenser 4 that are added to the warm water. Therefore, in hot water,
In addition to the high-temperature heat added from the outside, the heat taken from the cold water by the low-pressure evaporator 3 is added, so that the amount of heat that can be used as a heating source is larger than the amount of heat added to the regenerator from the outside. Thus, this cycle has a heat pump action.

【0029】次に前述のように構成された吸収ヒートポ
ンプをデシカント空調に組合せた際の動作を説明する。
図3は図1の実施例の空気調和の部分の作動状態を示す
モリエル線図である。本実施例のデシカント空調機部分
の作用について説明すると、図1において、空調される
室内101の空気(処理空気)は経路107を経て送風
機102に吸引され昇圧されて経路108をへてデシカ
ントロータ103に送られデシカントロータの吸湿剤で
空気中の水分を吸着され絶対湿度が低下する。
Next, an operation when the absorption heat pump configured as described above is combined with desiccant air conditioning will be described.
FIG. 3 is a Mollier diagram showing the operating state of the air conditioning portion of the embodiment of FIG. The operation of the desiccant air conditioner portion of the present embodiment will be described. In FIG. 1, the air (process air) in the room 101 to be air-conditioned is sucked by the blower 102 via the path 107 and the pressure thereof is increased, and the desiccant rotor 103 is moved to the path 108. The moisture in the air is adsorbed by the desiccant rotor hygroscopic agent and the absolute humidity decreases.

【0030】また吸着の際、吸着熱によって空気は温度
上昇する。湿度が下がり温度上昇した空気は経路109
を経て顕熱熱交換器104に送られ外気(再生空気)と
熱交換して冷却される。冷却された空気は経路110を
経て冷却器115に送られさらに冷却される。冷却され
た処理空気は加湿器105に送られ水噴射または気化式
加湿によって等エンタルピ過程で温度低下し経路111
を経て空調空間101に戻される。
During adsorption, the temperature of the air rises due to the heat of adsorption. The air whose humidity has dropped and whose temperature has risen is route 109
After passing through the sensible heat exchanger 104, the sensible heat exchanger 104 is cooled by exchanging heat with the outside air (regenerated air). The cooled air is sent to the cooler 115 via the path 110 and further cooled. The cooled process air is sent to the humidifier 105, and the temperature is lowered in the isenthalpic process by water injection or vaporization-type humidification, and the path 111
And is returned to the air-conditioned space 101.

【0031】デシカントロータはこの過程で水分を吸着
したため、再生が必要で、この実施例では外気を再生用
空気として用いて次のように行われる。
Since the desiccant rotor has adsorbed water in this process, it needs to be regenerated. In this embodiment, the outside air is used as the regenerating air to carry out the following procedure.

【0032】外気(OA)は経路124を経て送風機1
30に吸引され昇圧されて顕熱熱交換器104に送ら
れ、処理空気を冷却して自らは温度上昇し経路125を
経て次の顕熱熱交換器121に流入し、再生後の高温の
空気と熱交換して温度上昇する。さらに顕熱熱交換器1
21を出た再生空気は経路126を経て加熱器120に
流入し温水によって加熱され60〜100℃まで温度上
昇し、相対湿度が低下する。この過程は再生空気の顕熱
変化であり、空気の比熱は温水に比べて著しく低く温度
変化が大きいため、温水の流量を減少させて温度変化を
大きくしても熱交換は効率良く行われる。
The outside air (OA) passes through the path 124 and blower 1
The air is sucked by 30 and is pressurized and sent to the sensible heat exchanger 104, and the processing air is cooled to raise its temperature and flow into the next sensible heat exchanger 121 through the path 125, and the high temperature air after regeneration is used. And heat up to raise the temperature. Further sensible heat exchanger 1
The regenerated air that has exited 21 flows into the heater 120 via the path 126, is heated by hot water, rises in temperature to 60 to 100 ° C., and decreases in relative humidity. This process is a sensible heat change of the regenerated air, and the specific heat of the air is significantly lower than the hot water and the temperature change is large. Therefore, even if the flow rate of the hot water is reduced and the temperature change is increased, the heat exchange is efficiently performed.

【0033】従って温水を作る吸収ヒートポンプの温水
の流入側にあたる凝縮器4または高圧吸収器11の温度
は、出口側にあたる機器の温度よりも低く設定すること
ができ、そのようにすることによって前述した通り、サ
イクル全体の溶液の濃度を薄くすることや、再生器の圧
力を上昇させないことができるといった効果がえられ
る。また温水の利用温度差を大きくとるによって流量が
少なくなるため、搬送動力が低減される。加熱器120
を出て相対湿度が低下した再生空気はデシカントロータ
103を通過してデシカントロータの水分を除去し再生
作用をする。デシカントロータ103を通過した再生空
気は経路128を経て顕熱熱交換器121に流入し、再
生前の再生空気の余熱を行ったのち経路129を経て排
気として外部に捨てられる。
Therefore, the temperature of the condenser 4 or the high-pressure absorber 11 on the inflow side of the hot water of the absorption heat pump for producing hot water can be set lower than the temperature of the equipment on the exit side, and by doing so, the above-mentioned is achieved. As described above, it is possible to obtain the effect that the concentration of the solution in the entire cycle can be reduced and the pressure in the regenerator can be prevented from increasing. Further, since the flow rate is reduced by increasing the temperature difference of the hot water used, the transport power is reduced. Heater 120
The regenerated air having a reduced relative humidity after passing through the passage passes through the desiccant rotor 103 to remove the water content of the desiccant rotor and perform a regeneration operation. The regenerated air that has passed through the desiccant rotor 103 flows into the sensible heat exchanger 121 via the path 128, performs residual heat of the regenerated air before regeneration, and then is discharged to the outside as exhaust gas via the path 129.

【0034】これまでの過程をモリエル線図を用いて説
明すると、図3において、空調される室内101の空気
(処理空気:状態K)は経路107を経て送風機102
に吸引され昇圧されて経路108をへてデシカントロー
タ103に送られデシカントロータの吸湿剤で空気中の
水分を吸着され絶対湿度が低下するとともに吸着熱によ
って空気は温度上昇する(状態L)。湿度が下がり温度
上昇した空気は経路109を経て顕熱熱交換器104に
送られ外気(再生空気)と熱交換して冷却される(状態
M)。冷却された空気は経路110を経て冷却器115
に送られさらに冷却される(状態N)。冷却された空気
は経路110を経て加湿器105に送られ水噴射または
気化式加湿によって等エンタルピ過程で温度低下し(状
態P)、経路111を経て空調空間101に戻される。
このようにして室内の還気(状態K)と給気(状態P)
との間にはエンタルピ差ΔQが生じ、これによって空調
空間101の冷房が行われる。
The process up to this point will be described with reference to the Mollier diagram. In FIG. 3, the air in the room 101 to be conditioned (process air: state K) passes through the path 107 and the blower 102.
Is sucked in and pressure-increased to be sent to the desiccant rotor 103 via the path 108, the moisture in the air is adsorbed by the desiccant rotor hygroscopic agent, the absolute humidity is lowered and the temperature of the air is raised by the adsorption heat (state L). The air whose humidity has dropped and whose temperature has risen is sent to the sensible heat exchanger 104 via the path 109 and is cooled by exchanging heat with the outside air (regenerated air) (state M). The cooled air passes through the path 110 and cooler 115.
And further cooled (state N). The cooled air is sent to the humidifier 105 via the path 110, and its temperature is lowered in the isenthalpic process by water injection or vaporization-type humidification (state P), and is returned to the air-conditioned space 101 via the path 111.
In this way, return air (state K) and air supply (state P) in the room
An enthalpy difference ΔQ is generated between the air conditioning space 101 and the air conditioning space 101, thereby cooling the air-conditioned space 101.

【0035】デシカントの再生は次のように行われる。
再生用の外気(OA:状態Q)は経路124を経て送風
機130に吸引され昇圧されて顕熱熱交換器104に送
られ、処理空気を冷却して自らは温度上昇し(状態R)
経路125を経て次の顕熱熱交換器121に流入し、再
生後の高温の空気と熱交換して温度上昇する(状態
S)。さらに顕熱熱交換器121を出た再生空気は経路
126を経て加熱器120に流入し温水によって加熱さ
れ60〜100℃まで温度上昇し、相対湿度が低下する
(状態T)。相対湿度が低下した再生空気はデシカント
ロータ103を通過してデシカントロータの水分を除去
する(状態U)。デシカントロータ103を通過した再
生空気は経路128を経て顕熱熱交換器121に流入
し、顕熱熱交換器104を出た再生前の再生空気の余熱
を行って自らは温度低下した(状態V)のち経路129
を経て排気として外部に捨てられる。
The desiccant reproduction is performed as follows.
The outside air for regeneration (OA: state Q) is sucked by the blower 130 via the path 124, is pressurized and is sent to the sensible heat exchanger 104, cools the process air and raises itself in temperature (state R).
It flows into the next sensible heat exchanger 121 via the path 125 and exchanges heat with the regenerated high temperature air to rise in temperature (state S). Further, the regenerated air that has left the sensible heat exchanger 121 flows into the heater 120 through the path 126, is heated by hot water, and is heated to 60 to 100 ° C., and the relative humidity is lowered (state T). The regenerated air with reduced relative humidity passes through the desiccant rotor 103 to remove the moisture in the desiccant rotor (state U). The regenerated air that has passed through the dessicant rotor 103 flows into the sensible heat exchanger 121 via the path 128, and performs residual heat of the regenerated air that has left the sensible heat exchanger 104 before regeneration, and the temperature of the regenerated air decreases (state V). ) Route 129
After that, it is discarded as exhaust gas to the outside.

【0036】このようにしてデシカントの再生と処理空
気の除湿、冷却をくりかえし行うことによって、デシカ
ントによる空調を行う。なお再生用空気として室内換気
にともなう排気を用いる方法も従来からデシカント空調
では広く行われているが、本発明においても室内からの
排気を再生用空気として使用してもさしつかえなく、本
実施例と同様の効果が得られる。
Thus, the desiccant air-conditioning is performed by repeating the desiccant regeneration and the dehumidification and cooling of the treated air. It should be noted that the method of using the exhaust air accompanying the indoor ventilation as the reproduction air has been widely used in the desiccant air conditioning from the past, but in the present invention, the exhaust gas from the room may be used as the reproduction air, and this embodiment and The same effect can be obtained.

【0037】このように構成されたデシカント空調のエ
ネルギ効率を示す動作係数(COP)は図3における冷
房効果ΔQを再生加熱量で除した値で示されるが、再生
空気に温水熱交換器で加えられた熱量ΔHのうち冷水熱
交換器で冷却した熱量Δq分の熱量は前記の吸収ヒート
ポンプのヒートポンプ作用により処理空気から冷却器1
15、第2のサイクルの蒸発器13を介してくみ上げた
ものであるから、実際にこのシステムに加えられる熱量
はΔHからΔqを引いたΔhとなり、図中で状態Xから
状態Tまでの顕熱変化に相当する。
The coefficient of operation (COP) showing the energy efficiency of the desiccant air-conditioning configured as described above is shown by the value obtained by dividing the cooling effect ΔQ in FIG. 3 by the amount of regeneration heating, and is added to the regeneration air by the hot water heat exchanger. The amount of heat corresponding to the amount of heat Δq cooled by the cold water heat exchanger in the amount of heat ΔH thus obtained is changed from the treated air to the cooler 1 by the heat pump action of the absorption heat pump.
15. Since it is pumped through the evaporator 13 of the second cycle, the amount of heat actually added to this system is Δh obtained by subtracting Δq from ΔH, and sensible heat from state X to state T in the figure. Equivalent to change.

【0038】従って動作係数は、ΔQ/(ΔHーΔq)
=ΔQ/Δhとなる。図3の動作係数と図7の従来例の
動作係数を比較すると、本発明の実施例では分子の冷凍
効果ΔQは従来例に比べてΔqだけ増加し、また分母の
加熱量は従来例に比べてΔqだけ減少し、従って分母が
減少し分子が増加するため、動作係数は著しく向上す
る。
Therefore, the operation coefficient is ΔQ / (ΔH-Δq)
= ΔQ / Δh. Comparing the coefficient of operation of FIG. 3 with the coefficient of operation of the conventional example of FIG. 7, in the embodiment of the present invention, the refrigerating effect ΔQ of the numerator is increased by Δq compared to the conventional example, and the heating amount of the denominator is higher than that of the conventional example. By .DELTA.q, and thus the denominator is decreased and the numerator is increased, so that the coefficient of performance is significantly improved.

【0039】本発明のデシカント空調システムの動作係
数を以下に概略計算する。吸収ヒートポンプの冷凍効果
に対する動作係数を大略0.3とし、従来のデシカント
空調の動作係数を1.0とすると、本発明の実施例で
は、吸収ヒートポンプへ外部から加熱される熱量を1に
採ると、ヒートポンプ作用により、温水には1.3の熱
量が加えられ、この熱でデシカント空調を作動させる
と、冷房効果は1.0(動作係数)×1.3(加熱量)
+0.3(冷凍効果:Δq)=1.6の熱量となる。従
って、本発明の動作係数は、1.6(冷房効果)/1.
0(吸収ヒートポンプへの入熱)=1.6となる。この
値は従来の2重効用吸収冷凍機の持つ1.2程度の動作
係数を大幅に上回るものであり、極めて高い省エネルギ
効果がある。
The coefficient of operation of the desiccant air conditioning system of the present invention is roughly calculated below. Assuming that the coefficient of operation for the refrigerating effect of the absorption heat pump is approximately 0.3 and the coefficient of operation of the conventional desiccant air conditioning is 1.0, in the embodiment of the present invention, the heat quantity externally heated to the absorption heat pump is taken as 1. The heat pump action adds a heat quantity of 1.3 to the hot water, and when this heat is used to operate the desiccant air conditioning, the cooling effect is 1.0 (coefficient of operation) × 1.3 (amount of heat).
The heat quantity is +0.3 (freezing effect: Δq) = 1.6. Therefore, the coefficient of operation of the present invention is 1.6 (cooling effect) / 1.
0 (heat input to absorption heat pump) = 1.6. This value greatly exceeds the coefficient of operation of about 1.2 that the conventional double-effect absorption refrigerator has, and has an extremely high energy saving effect.

【0040】このように本実施例によれば、吸収ヒート
ポンプまたは冷凍機の、高圧吸収器の吸収熱および凝縮
器の凝縮熱を加熱源としてデシカントの再生を行うとと
もに低圧蒸発器の蒸発熱を冷却熱源として空調空間に供
給する処理空気の冷却を行うことができる。
As described above, according to this embodiment, the desiccant is regenerated by using the heat of absorption of the high pressure absorber and the heat of condensation of the condenser of the absorption heat pump or the refrigerator as a heating source, and the heat of vaporization of the low pressure evaporator is cooled. The process air supplied to the air-conditioned space as a heat source can be cooled.

【0041】図4は本発明の他の実施例である。図4
は、本発明を実施したデシカント空調装置の基本構成を
示す図であり、このうち吸収ヒートポンプの部分は、低
圧蒸発器3、低圧蒸発器よりも高い圧力で作動する高圧
蒸発器13、低圧吸収器1、低圧吸収器よりも高い圧力
で作動する高圧吸収器11、再生器2、凝縮器4、およ
び吸収溶液の第1の熱交換器5、第2の熱交換器15を
おもな構成機器とし、かつ前記低圧吸収器1の吸収熱で
高圧蒸発器13を加熱するよう低圧吸収器1と高圧蒸発
器13が熱交換装置21を形成し、かつ低圧蒸発器3で
蒸発した冷媒を低圧吸収器1が吸収し、かつ高圧蒸発器
13で蒸発した冷媒を高圧吸収器11が吸収するよう構
成したものである。
FIG. 4 shows another embodiment of the present invention. Figure 4
FIG. 1 is a diagram showing a basic configuration of a desiccant air-conditioning apparatus embodying the present invention, in which an absorption heat pump part includes a low-pressure evaporator 3, a high-pressure evaporator 13 operating at a higher pressure than the low-pressure evaporator, and a low-pressure absorber. 1, the high pressure absorber 11, which operates at a higher pressure than the low pressure absorber, the regenerator 2, the condenser 4, and the first heat exchanger 5 and the second heat exchanger 15 of the absorbing solution are the main constituent devices. And the low-pressure absorber 1 and the high-pressure evaporator 13 form a heat exchange device 21 so that the heat absorbed by the low-pressure absorber 1 heats the high-pressure evaporator 13, and the refrigerant evaporated in the low-pressure evaporator 3 is absorbed at low pressure. The high pressure absorber 11 absorbs the refrigerant absorbed by the container 1 and evaporated by the high pressure evaporator 13.

【0042】このように構成された吸収ヒートポンプの
吸収溶液経路は、低圧吸収器1を出た溶液が第1の熱交
換器5を経由して、高圧吸収器11に流入し、高圧吸収
器11を出た溶液が第2の熱交換器15を経由して再生
器2に流入し、再生器2を出た溶液が第2の熱交換器1
5、第1の熱交換器5を経由して低圧吸収器1に還流す
るよう構成する。さらに吸収ヒートポンプの冷媒経路
は、再生器2で発生した冷媒蒸気が凝縮器4に流入し、
凝縮器4を出た冷媒は2つに分流して、1つの経路は絞
り機構7を経由して低圧蒸発器3に流入し低圧蒸発器3
で蒸発した後低圧吸収器1に流入して溶液系統に吸収さ
れる経路となり、もう1つの経路は絞り機構17を経由
して高圧蒸発器13に流入し高圧蒸発器13で蒸発した
後高圧吸収器11に流入して溶液系統に吸収される経路
となるよう構成する。
In the absorption solution path of the absorption heat pump configured as described above, the solution discharged from the low pressure absorber 1 flows into the high pressure absorber 11 via the first heat exchanger 5, and the high pressure absorber 11 is supplied. The solution discharged from the regenerator 2 flows into the regenerator 2 via the second heat exchanger 15, and the solution discharged from the regenerator 2 is the second heat exchanger 1.
5, it is configured to flow back to the low pressure absorber 1 via the first heat exchanger 5. Further, in the refrigerant path of the absorption heat pump, the refrigerant vapor generated in the regenerator 2 flows into the condenser 4,
The refrigerant discharged from the condenser 4 is divided into two, and one path of the refrigerant flows into the low-pressure evaporator 3 via the throttle mechanism 7 and then flows into the low-pressure evaporator 3
After being evaporated at 1, it flows into the low-pressure absorber 1 and is absorbed by the solution system, and the other path flows into the high-pressure evaporator 13 via the throttle mechanism 17, is evaporated in the high-pressure evaporator 13, and then is absorbed at high pressure. It is configured so as to be a path that flows into the vessel 11 and is absorbed by the solution system.

【0043】また高圧吸収器の吸収熱および凝縮器の凝
縮熱を加熱源として取出す搬送媒体(温水)の経路は凝
縮器伝熱管31から高圧吸収器の吸収器伝熱管30の順
に通過して熱交換するよう構成し、かつ低圧蒸発器の蒸
発熱を冷却熱源として取出す搬送媒体(冷水)の経路は
低圧蒸発器の伝熱管32に接続して構成する。図4では
このように構成された吸収ヒートポンプの温水配管と冷
水配管を以下に示すデシカント空調機とをそれぞれ冷水
ポンプ160、温水ポンプ150を介して接続したもの
である。
The path of the carrier medium (hot water) that takes out the heat of absorption of the high-pressure absorber and the heat of condensation of the condenser as a heating source passes from the condenser heat transfer pipe 31 to the absorber heat transfer pipe 30 of the high-pressure absorber in this order. The path of the carrier medium (cold water) which is configured to be exchanged and which takes out the evaporation heat of the low pressure evaporator as a cooling heat source is connected to the heat transfer pipe 32 of the low pressure evaporator. In FIG. 4, the hot water pipe and the cold water pipe of the absorption heat pump configured as described above are connected to a desiccant air conditioner shown below via a cold water pump 160 and a hot water pump 150, respectively.

【0044】図4のデシカント空調装置の空調機の部分
は以下に示すよう構成されている。空調空間101は処
理空気の送風機102の吸い込み口と経路107を介し
て接続し、送風機102の吐出口はデシカントロータ1
03と経路108を介して接続し、デシカントロータ1
03の処理空気の出口は再生空気と熱交換関係にある顕
熱熱交換器104と経路109を介して接続し、顕熱熱
交換器104の処理空気の出口は冷水熱交換器115と
経路110を介して接続し、冷却器115の処理空気の
出口は加湿器105と経路119を介して接続し、加湿
器105の処理空気の出口は空調空間101と経路11
1を介して接続して処理空気のサイクルを形成する。
The air conditioner portion of the desiccant air conditioner shown in FIG. 4 is constructed as follows. The air-conditioned space 101 is connected to the suction port of the blower 102 of the treated air via the path 107, and the discharge port of the blower 102 is the desiccant rotor 1.
03 through the path 108, the desiccant rotor 1
The outlet of the treated air of 03 is connected to the sensible heat exchanger 104 having a heat exchange relationship with the regenerated air via the passage 109, and the outlet of the treated air of the sensible heat exchanger 104 is the cold water heat exchanger 115 and the passage 110. The outlet of the processing air of the cooler 115 is connected to the humidifier 105 via the path 119, and the outlet of the processing air of the humidifier 105 is connected to the air-conditioned space 101 and the path 11.
1 to form a cycle of process air.

【0045】一方、再生用の空気経路は、外気を再生空
気用の送風機130の吸い込み口と経路124を介して
接続し、送風機130の吐出口は処理空気と熱交換関係
にある顕熱熱交換器104と接続し、顕熱熱交換器10
4の再生空気の出口は別の顕熱熱交換器121の低温側
入口と経路125を介して接続し、顕熱熱交換器121
の低温側出口は加熱器120と経路126を介して接続
し、加熱器120の再生空気の出口はデシカントロータ
103の再生空気入口と経路127を介して接続し、デ
シカントロータ103の再生空気の出口は顕熱熱交換器
121の高温側入口と経路128を介して接続し、顕熱
熱交換器121の高温側出口はは外部空間と経路129
を介して接続して再生空気を外部から取り入れて、外部
に排気するサイクルを形成する。
On the other hand, the air path for regeneration connects the outside air to the suction port of the blower 130 for regeneration air via the path 124, and the discharge port of the blower 130 has a sensible heat exchange in a heat exchange relationship with the process air. The sensible heat exchanger 10 is connected to the vessel 104.
The outlet of the regenerated air of No. 4 is connected to the low temperature side inlet of another sensible heat exchanger 121 via the path 125, and the sensible heat exchanger 121
Of the desiccant rotor 103 is connected to the regeneration air inlet of the desiccant rotor 103 via the path 127, and the regeneration air outlet of the heater 120 is connected to the regeneration air outlet of the desiccant rotor 103 via the passage 126. Is connected to the high temperature side inlet of the sensible heat exchanger 121 via the path 128, and the high temperature side outlet of the sensible heat exchanger 121 is to the external space and the path 129.
A recycle air is taken in from the outside and exhausted to the outside to form a cycle.

【0046】前記加熱器120の熱媒体(温水)入口は
経路122を介して吸収ヒートポンプの温水経路の高圧
吸収器11の出口に接続し、加熱器120の温水出口は
経路123および温水ポンプ150を介して吸収ヒート
ポンプの温水経路の凝縮器4の入口に接続する。また前
記冷却器115の冷水入口は経路117を介して吸収ヒ
ートポンプの冷水経路の低圧蒸発器3の出口に接続し、
冷却器115の冷水出口は経路118およびポンプ16
0を介して吸収ヒートポンプの冷水経路の低圧蒸発器3
の入口に接続する。なお図中、丸で囲ったアルファベッ
トK〜Vは、図4と対応する空気の状態を示す記号であ
り、SAは給気を、RAは還気を、OAは外気を、EX
は排気を表わす。
The heat medium (warm water) inlet of the heater 120 is connected to the outlet of the high-pressure absorber 11 of the hot water path of the absorption heat pump via the path 122, and the hot water outlet of the heater 120 connects the path 123 and the hot water pump 150. It is connected to the inlet of the condenser 4 in the hot water path of the absorption heat pump. Further, the cold water inlet of the cooler 115 is connected to the outlet of the low pressure evaporator 3 of the cold water path of the absorption heat pump via the path 117,
The chilled water outlet of the cooler 115 is the path 118 and the pump 16
Low-pressure evaporator 3 in the cold water path of the absorption heat pump
Connect to the entrance of. In the figure, the alphabets K to V surrounded by circles are symbols showing the state of air corresponding to FIG. 4, SA is supply air, RA is return air, OA is outside air, EX
Represents exhaust gas.

【0047】上述のように構成されたデシカント空調装
置の吸収ヒートポンプ部分の吸収サイクルを次に説明す
る。吸収溶液は再生器2で外部の熱源(図示せず)から
伝熱管33を介して加熱され、冷媒蒸気を発生し、濃縮
されたのち第2の熱交換器15、第1の熱交換器5を経
て低圧吸収器1に至る。低圧吸収器1では吸収溶液は低
圧蒸発器3で蒸発した冷媒を吸収し、希釈された後ポン
プ6の作用によって第1の熱交換器5を経て低圧吸収器
1に至る。高圧吸収器11では吸収溶液は高圧蒸発器1
3で蒸発した冷媒を吸収し、希釈された後ポンプ16の
作用によって第2の熱交換器を経て再生器2に戻る。高
圧吸収器11では吸収の際発生する吸収熱をデシカント
の再生用の加熱源として利用するため温水などの熱媒体
と伝熱管30によって熱交換される。
Next, the absorption cycle of the absorption heat pump portion of the desiccant air conditioner constructed as described above will be described. The absorbing solution is heated in the regenerator 2 from an external heat source (not shown) via the heat transfer tube 33 to generate a refrigerant vapor, and after being concentrated, the second heat exchanger 15 and the first heat exchanger 5 To reach the low pressure absorber 1. In the low pressure absorber 1, the absorbing solution absorbs the refrigerant evaporated in the low pressure evaporator 3, and after being diluted, reaches the low pressure absorber 1 through the first heat exchanger 5 by the action of the pump 6. In the high-pressure absorber 11, the absorption solution is the high-pressure evaporator 1
The refrigerant evaporated in 3 is absorbed and diluted and then returned to the regenerator 2 via the second heat exchanger by the action of the pump 16. In the high-pressure absorber 11, the absorbed heat generated upon absorption is used as a heat source for regenerating the desiccant, so that heat is exchanged with a heat medium such as hot water by the heat transfer tube 30.

【0048】低圧吸収器1では吸収の際発生する吸収熱
は内部サイクルにおいて高圧蒸発器13の加熱源として
使用するため伝熱管21によって熱交換される。再生器
2で発生した冷媒蒸気は、凝縮器4に流入し凝縮する。
凝縮器4では凝縮の際発生する凝縮熱をデシカントの再
生用の加熱源とするため温水などの熱媒体と伝熱管31
によって熱交換される。凝縮器4で凝縮した冷媒は2つ
に分流して、1つの経路は絞り機構7を経由して低圧蒸
発器3に流入し伝熱管32によって冷水などの熱媒体か
ら熱を奪って蒸発した後低圧吸収器1に流入して溶液系
統に吸収される経路となり、もう1つの経路は絞り機構
17を経由して高圧蒸発器13に流入し伝熱管21によ
って低圧吸収器1から吸収熱を奪って蒸発した後高圧吸
収器11に流入して溶液系統に吸収される経路となるよ
う構成する。
In the low pressure absorber 1, the absorption heat generated upon absorption is used as a heat source for the high pressure evaporator 13 in the internal cycle and is exchanged by the heat transfer tube 21. The refrigerant vapor generated in the regenerator 2 flows into the condenser 4 and is condensed.
In the condenser 4, the heat of condensation generated during condensation is used as a heat source for regenerating the desiccant, so that the heat transfer pipe 31
Is heat exchanged by. The refrigerant condensed in the condenser 4 is divided into two, one path flows into the low-pressure evaporator 3 via the throttling mechanism 7, and after the heat transfer tube 32 takes heat from a heat medium such as cold water to evaporate. It becomes a path that flows into the low-pressure absorber 1 and is absorbed by the solution system, and the other path flows into the high-pressure evaporator 13 via the throttling mechanism 17 and removes absorption heat from the low-pressure absorber 1 by the heat transfer tube 21. After being evaporated, it is configured to flow into the high-pressure absorber 11 and be absorbed by the solution system.

【0049】次に前述のように構成されたデシカント空
調装置の吸収ヒートポンプの部分の動作を図5を参照し
て説明する。図5は図4のデシカント空調装置の吸収ヒ
ートポンプの部分のサイクルを示すデューリング線図で
ある。本図においても吸収冷凍機で一般的に用いられて
いる臭化リチウムー水系のものを代表例として示す。図
中に示すアルファベット記号は、吸収溶液や冷媒の状態
を示すもので、同じ記号を丸で囲んだものを図4にも記
載した。
Next, the operation of the absorption heat pump portion of the desiccant air conditioner configured as described above will be described with reference to FIG. FIG. 5 is a Duhring diagram showing a cycle of a part of the absorption heat pump of the desiccant air conditioner of FIG. Also in this figure, a lithium bromide-water system that is generally used in absorption refrigerators is shown as a typical example. The alphabetical symbols shown in the figure show the states of the absorbing solution and the refrigerant, and the same symbols surrounded by circles are also shown in FIG.

【0050】吸収溶液は再生器2で外部の熱源から加熱
され、冷媒蒸気を発生し濃縮された(状態d:図中では
150℃)のち第2の熱交換器15(状態e)、第1の
熱交換器5を経て(状態g)低圧吸収器1に至る。低圧
吸収器1に流入し、低圧蒸発器3で蒸発した冷媒を吸収
し、希釈された後(状態a)第1の熱交換器5(状態
b)を経て高圧吸収器11に至る。高圧吸収器11では
吸収溶液は高圧蒸発器13で蒸発した冷媒を吸収し、希
釈された後(状態f)第2の熱交換器15を経て加熱さ
れ(状態c)再生器2に戻る。再生器2で発生した冷媒
蒸気は、凝縮器4に流入し凝縮する(状態h)。凝縮し
た冷媒は2つに分流して、1つは絞り機構7を経由して
低圧蒸発器3に流入し伝熱管32によって冷水などの熱媒
体から熱を奪って蒸発した後(状態j)低圧吸収器1に
流入して溶液系統に吸収される経路を流動し、もう1つ
の経路は絞り機構17を経由して高圧蒸発器13に流入
し伝熱管21によって低圧吸収器1から吸収熱を奪って
蒸発した(状態k)後高圧吸収器11に流入して溶液系
統に吸収される経路を流動する。低圧吸収器1の吸収熱
(状態a)は高圧蒸発器13に伝熱され、冷媒を蒸発さ
せる。
The absorbing solution is heated in the regenerator 2 from an external heat source to generate a refrigerant vapor and is concentrated (state d: 150 ° C. in the figure), then the second heat exchanger 15 (state e), the first Through the heat exchanger 5 (state g) to the low pressure absorber 1. The refrigerant flowing into the low-pressure absorber 1 and absorbed in the low-pressure evaporator 3 is absorbed and diluted (state a), and then reaches the high-pressure absorber 11 via the first heat exchanger 5 (state b). In the high-pressure absorber 11, the absorbing solution absorbs the refrigerant evaporated in the high-pressure evaporator 13, is diluted (state f), is heated through the second heat exchanger 15, and is returned to the regenerator 2 (state c). The refrigerant vapor generated in the regenerator 2 flows into the condenser 4 and is condensed (state h). The condensed refrigerant is divided into two, one flows into the low-pressure evaporator 3 via the throttling mechanism 7, and the heat transfer pipe 32 removes heat from the heat medium such as cold water to evaporate (state j) low pressure. The fluid flows in a path that flows into the absorber 1 and is absorbed in the solution system, and the other path flows into the high-pressure evaporator 13 via the throttling mechanism 17 and removes the absorbed heat from the low-pressure absorber 1 by the heat transfer tube 21. After evaporating (state k), it flows into the high-pressure absorber 11 and flows through the path absorbed by the solution system. The absorbed heat (state a) of the low pressure absorber 1 is transferred to the high pressure evaporator 13 to evaporate the refrigerant.

【0051】このように構成された吸収ヒートポンプに
おいても、サイクルへの入熱は再生器2に外部から加え
られた高温の熱と低圧蒸発器3で冷水から奪った熱であ
り、本サイクルからの出熱は温水に加えられる高圧吸収
器11の吸収熱と凝縮器4の凝縮熱であり、したがって
温水には、再生器2に外部から加えられた高温の熱の他
に低圧蒸発器3で冷水から奪った熱が加えられるため、
加熱源として利用可能な熱量は再生器に外部から加えら
れた熱量よりも増加する。このように本サイクルにおい
てもヒートポンプ作用がある。
Also in the absorption heat pump configured as described above, the heat input to the cycle is the high temperature heat applied to the regenerator 2 from the outside and the heat taken from the cold water in the low pressure evaporator 3, and the heat input from the present cycle. The heat output is the heat of absorption of the high-pressure absorber 11 and the heat of condensation of the condenser 4 that are added to the hot water. Therefore, in addition to the high-temperature heat that is externally applied to the regenerator 2, the hot water is cooled by the low-pressure evaporator 3. Because the heat taken from is added,
The amount of heat that can be used as a heating source is larger than the amount of heat that is externally applied to the regenerator. Thus, there is a heat pump action also in this cycle.

【0052】次に前述のように構成された吸収ヒートポ
ンプをデシカント空調に組合せた際の動作を説明する。
図3は図4の実施例の空気調和の部分の作動状態を示す
モリエル線図である。本実施例のデシカント空調機部分
の作用について説明すると、図4において、空調される
室内101の空気(処理空気)は経路107を経て送風
機102に吸引され昇圧されて経路108をへてデシカ
ントロータ103に送られデシカントロータの吸湿剤で
空気中の水分を吸着され絶対湿度が低下する。
Next, the operation when the absorption heat pump configured as described above is combined with desiccant air conditioning will be described.
FIG. 3 is a Mollier diagram showing the operating state of the air conditioning portion of the embodiment of FIG. The operation of the desiccant air conditioner portion of the present embodiment will be described. In FIG. 4, the air (process air) in the air-conditioned room 101 is sucked by the blower 102 via the path 107 and the pressure thereof is increased to the desiccant rotor 103 via the path 108. The moisture in the air is adsorbed by the desiccant rotor hygroscopic agent and the absolute humidity decreases.

【0053】また吸着の際、吸着熱によって空気は温度
上昇する。湿度が下がり温度上昇した空気は経路109
を経て顕熱熱交換器104に送られ外気(再生空気)と
熱交換して冷却される。冷却された空気は経路110を
経て冷却器115に送られさらに冷却される。冷却され
た処理空気は加湿器105に送られ水噴射または気化式
加湿によって等エンタルピ過程で温度低下し経路111
を経て空調空間101に戻される。デシカントロータは
この過程で水分を吸着したため、再生が必要で、この実
施例では外気を再生用空気として用いて次のように行わ
れる。
During adsorption, the temperature of the air rises due to the heat of adsorption. The air whose humidity has dropped and whose temperature has risen is route 109
After passing through the sensible heat exchanger 104, the sensible heat exchanger 104 is cooled by exchanging heat with the outside air (regenerated air). The cooled air is sent to the cooler 115 via the path 110 and further cooled. The cooled process air is sent to the humidifier 105, and the temperature is lowered in the isenthalpic process by water injection or vaporization-type humidification, and the path 111
And is returned to the air-conditioned space 101. Since the desiccant rotor has adsorbed water in this process, it needs to be regenerated. In this embodiment, the outside air is used as the regenerating air to perform the following.

【0054】外気(OA)は経路124を経て送風機1
30に吸引され昇圧されて顕熱熱交換器104に送ら
れ、処理空気を冷却して自らは温度上昇し経路125を
経て次の顕熱熱交換器121に流入し、再生後の高温の
空気と熱交換して温度上昇する。さらに顕熱熱交換器1
21を出た再生空気は経路126を経て加熱器120に
流入し温水によって加熱され60〜100℃まで温度上
昇し、相対湿度が低下する。加熱器120を出て相対湿
度が低下した再生空気はデシカントロータ103を通過
してデシカントロータの水分を除去し再生作用をする。
デシカントロータ103を通過した再生空気は経路12
8を経て顕熱熱交換器121に流入し、再生前の再生空
気の余熱を行ったのち経路129を経て排気として外部
に捨てられる。これまでの過程は図1の実施例と同じく
図3をモリエル線図を用いて説明することができるの
で、本実施例の省エネルギ効果に関する説明は省略す
る。
The outside air (OA) passes through the path 124 and blower 1
The air is sucked by 30 and is pressurized and sent to the sensible heat exchanger 104, and the processing air is cooled to raise its temperature and flow into the next sensible heat exchanger 121 through the path 125, and the high temperature air after regeneration is used. And heat up to raise the temperature. Further sensible heat exchanger 1
The regenerated air that has exited 21 flows into the heater 120 via the path 126, is heated by hot water, rises in temperature to 60 to 100 ° C., and decreases in relative humidity. The regeneration air that has left the heater 120 and has a reduced relative humidity passes through the desiccant rotor 103 to remove the moisture in the desiccant rotor and perform a regeneration action.
The regeneration air that has passed through the desiccant rotor 103 has a path 12
After passing through 8, the sensible heat exchanger 121 flows into the sensible heat exchanger 121 to perform residual heat of the regenerated air before regeneration, and then is discharged to the outside as exhaust gas via the path 129. Since the process up to this point can be described using the Mollier diagram of FIG. 3 as in the embodiment of FIG. 1, the description of the energy saving effect of this embodiment will be omitted.

【0055】このように本実施例においても、吸収ヒー
トポンプまたは冷凍機の、高圧吸収器の吸収熱および凝
縮器の凝縮熱を加熱源としてデシカントの再生を行うと
ともに低圧蒸発器の蒸発熱を冷却熱源として空調空間に
供給する処理空気の冷却を行うことができる。
As described above, also in this embodiment, the desiccant is regenerated by using the heat of absorption of the high pressure absorber and the heat of condensation of the condenser of the absorption heat pump or the refrigerator as a heating source, and the heat of vaporization of the low pressure evaporator is used as a cooling heat source. As a result, the process air supplied to the air-conditioned space can be cooled.

【0056】[0056]

【発明の効果】以上説明したように本発明によれば、デ
シカント空調の処理空気の熱を吸収ヒートポンプのヒー
トポンプ作用により汲み上げて、再生空気の加熱に用い
ることができるため、デシカントの再生のため外部から
加える必要がある熱量が大幅に軽減され、動作係数を著
しく向上することができる。したがって本発明によれ
ば、冷房のための熱源エネルギの消費量が軽減され、経
済性にすぐれたデシカント空調装置を提供することがで
き、従来からの2重効用吸収冷凍機を用いて空気を冷却
除湿する空調システムの動作係数すなわちエネルギ効率
を上回る空調システムを提供することができる。
As described above, according to the present invention, the heat of the treated air of the desiccant air conditioner can be pumped up by the heat pump action of the absorption heat pump and used for heating the regenerated air. The amount of heat that needs to be added is greatly reduced, and the coefficient of operation can be significantly improved. Therefore, according to the present invention, it is possible to provide a desiccant air conditioner that consumes less heat source energy for cooling and is excellent in economic efficiency, and cool air using a conventional dual-effect absorption refrigerator. It is possible to provide an air conditioning system that exceeds the coefficient of operation of the air conditioning system for dehumidification, that is, the energy efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るデシカント空調装置の一実施例の
基本構成を示す説明図。
FIG. 1 is an explanatory diagram showing a basic configuration of an embodiment of a desiccant air conditioner according to the present invention.

【図2】図1の実施例に係る吸収ヒートポンプの一実施
例の吸収溶液サイクルをデューリング線図で示す説明
図。
FIG. 2 is an explanatory view showing an absorption solution cycle of one embodiment of the absorption heat pump according to the embodiment of FIG. 1 in a Duhring diagram.

【図3】図1の実施例に係る空気のデシカント空調サイ
クルをモリエル線図で示す説明図。
FIG. 3 is an explanatory view showing a desiccant air conditioning cycle of air according to the embodiment of FIG. 1 by a Mollier diagram.

【図4】本発明に係るデシカント空調装置の別の実施例
の基本構成を示す説明図。
FIG. 4 is an explanatory diagram showing the basic configuration of another embodiment of the desiccant air conditioner according to the present invention.

【図5】図4の実施例に係る吸収ヒートポンプの一実施
例の吸収溶液サイクルをデューリング線図で示す説明
図。
FIG. 5 is an explanatory view showing an absorption solution cycle of one example of the absorption heat pump according to the example of FIG. 4 by a Duhring diagram.

【図6】従来のデシカント空調の基本構成を示す説明
図。
FIG. 6 is an explanatory diagram showing a basic configuration of a conventional desiccant air conditioning.

【図7】従来のデシカント空調の空気のデシカント空調
サイクルをモリエル線図で示す説明図。
FIG. 7 is an explanatory diagram showing, with a Mollier diagram, a desiccant air conditioning cycle of air in the conventional desiccant air conditioning.

【符号の説明】 1・・・低圧吸収器 2・・・再生器 3・・・低圧蒸発器 4・・・凝縮器 5・・・第1の熱交換器 6・・・溶液ポンプ 7・・・絞り機構 11・・・高圧吸収器 13・・・高圧蒸発器 15・・・第2の熱交換器 16・・・溶液ポンプ 17・・・絞り機構 21・・・伝熱管(熱交換装置) 30・・・伝熱管(熱交換機構) 31・・・伝熱管(熱交換機構) 32・・・伝熱管(熱交換機構) 33・・・伝熱管(熱交換機構) 101・・・空調空間 102・・・送風機 103・・・デシカントロータ 104・・・顕熱熱交換器 105・・・加湿器 106・・・給水管 107・・・空気経路 108・・・空気経路 109・・・空気経路 110・・・空気経路 111・・・空気経路 115・・・冷却器(冷水熱交換器) 117・・・冷水経路 118・・・冷水経路 119・・・空気経路 120・・・加熱器(温水熱交換器) 121・・・顕熱熱交換器 122・・・温水経路 123・・・温水経路 124・・・空気経路 125・・・空気経路 126・・・空気経路 127・・・空気経路 128・・・空気経路 129・・・空気経路 130・・・送風機 150・・・温水ポンプ 160・・・冷水ポンプ a・・・吸収冷凍サイクルの状態点 b・・・吸収冷凍サイクルの状態点 c・・・吸収冷凍サイクルの状態点 d・・・吸収冷凍サイクルの状態点 e・・・吸収冷凍サイクルの状態点 f・・・吸収冷凍サイクルの状態点 g・・・吸収冷凍サイクルの状態点 h・・・吸収冷凍サイクルの状態点 j・・・吸収冷凍サイクルの状態点 K・・・デシカント空調の空気の状態点 L・・・デシカント空調の空気の状態点 M・・・デシカント空調の空気の状態点 N・・・デシカント空調の空気の状態点 P・・・デシカント空調の空気の状態点 Q・・・デシカント空調の空気の状態点 R・・・デシカント空調の空気の状態点 S・・・デシカント空調の空気の状態点 T・・・デシカント空調の空気の状態点 U・・・デシカント空調の空気の状態点 V・・・デシカント空調の空気の状態点 X・・・デシカント空調の空気の状態点 SA・・・給気 RA・・・還気 EX・・・排気 OA・・・外気 ΔQ・・・冷房効果 Δq・・・吸収ヒートポンプの冷凍効果 ΔH・・・温水による加熱量[Explanation of symbols] 1 ... Low pressure absorber 2 ... Regenerator 3 ... Low pressure evaporator 4 ... condenser 5: first heat exchanger 6 ... Solution pump 7: diaphragm mechanism 11 ... High-pressure absorber 13 ... High-pressure evaporator 15 ... Second heat exchanger 16 ... Solution pump 17 ... Throttle mechanism 21 ... Heat transfer tube (heat exchange device) 30 ... Heat transfer tube (heat exchange mechanism) 31 ... Heat transfer tube (heat exchange mechanism) 32 ... Heat transfer tube (heat exchange mechanism) 33 ... Heat transfer tube (heat exchange mechanism) 101 ... Air-conditioned space 102 ... blower 103 ... Desiccant rotor 104 ... Sensible heat exchanger 105 ... Humidifier 106 ... Water pipe 107 ... Air path 108 ... Air path 109 ... Air path 110 ... Air path 111 ... Air path 115 ... Cooler (cold water heat exchanger) 117: Cold water route 118: Cold water route 119 ... Air path 120 ... Heater (hot water heat exchanger) 121 ... Sensible heat exchanger 122 ... Warm water route 123 ... Warm water route 124 ... Air path 125 ... Air path 126 ... Air path 127 ... Air path 128 ... Air path 129 ... Air path 130: blower 150 ... Hot water pump 160: Cold water pump a ... State point of absorption refrigeration cycle b ... State point of absorption refrigeration cycle c ... State point of absorption refrigeration cycle d ... State point of absorption refrigeration cycle e ... State point of absorption refrigeration cycle f ... State point of absorption refrigeration cycle g ... State point of absorption refrigeration cycle h ... State point of absorption refrigeration cycle j ... State point of absorption refrigeration cycle K: State point of desiccant air conditioning L: Desiccant air conditioning air state point M: Desiccant air conditioning air condition point N: State point of desiccant air conditioning P: State point of desiccant air conditioning Q: State point of desiccant air conditioning R ... Desiccant air conditioning air status point S ... Desiccant air conditioning air state point T ... Desiccant air conditioning air state point U: Air condition point of desiccant air conditioning V: State point of desiccant air conditioning X: State point of desiccant air conditioning SA ... air supply RA ... return air EX ... Exhaust OA ... outside air ΔQ: cooling effect Δq ・ ・ ・ Refrigeration effect of absorption heat pump ΔH: Heating amount with hot water

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) F25B 17/08 F24F 3/14 F25B 15/00 301 F25B 25/00 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) F25B 17/08 F24F 3/14 F25B 15/00 301 F25B 25/00

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 加熱および冷却用の熱源として吸収ヒー
トポンプを使用するデシカント空調装置において、前記
吸収ヒートポンプは、低圧蒸発器と、その低圧蒸発器よ
りも高い圧力で作動する高圧蒸発器と、低圧吸収器と、
その低圧吸収器よりも高い圧力で作動する高圧吸収器
と、再生器と、凝縮器とを備え、かつ前記低圧吸収器の
吸収熱で高圧蒸発器を加熱するために低圧吸収器と高圧
蒸発器とが熱交換関係を形成する熱交換手段を有し、そ
して低圧蒸発器で蒸発した冷媒を低圧吸収器が吸収し、
かつ高圧蒸発器で蒸発した冷媒を高圧吸収器が吸収する
構成であって、デシカントの再生を行う加熱器が前記高
圧吸収器および凝縮器と熱交換するための温水経路を有
し、かつ空調空間に供給する処理空気の冷却器が低圧蒸
発器と熱交換するための冷水経路を有していることを特
徴とするデシカント空調装置。
1. A desiccant air conditioner using an absorption heat pump as a heat source for heating and cooling, wherein the absorption heat pump comprises a low pressure evaporator, a high pressure evaporator operating at a pressure higher than that of the low pressure evaporator, and a low pressure absorption. A vessel,
A high pressure absorber operating at a pressure higher than that of the low pressure absorber, a regenerator and a condenser, and a low pressure absorber and a high pressure evaporator for heating the high pressure evaporator with the heat of absorption of the low pressure absorber. And have a heat exchange means forming a heat exchange relationship, and the low pressure absorber absorbs the refrigerant evaporated in the low pressure evaporator,
And a structure in which the high-pressure absorber absorbs the refrigerant evaporated in the high-pressure evaporator, the heater for regenerating the desiccant has a hot water path for exchanging heat with the high-pressure absorber and the condenser, and the air-conditioned space The desiccant air conditioner, wherein the cooler of the process air supplied to the air conditioner has a cold water path for exchanging heat with the low pressure evaporator.
【請求項2】 デシカントが処理空気および再生空気と
選択的に接することができるデシカントロータと、処理
空気と再生空気とを熱交換媒体とする顕熱熱交換器とを
備え、前記加熱器が再生空気を加熱しており、前記冷却
器が前記顕熱熱交換器と空調空間との間の経路に設けら
れ、低圧蒸発器の蒸発熱を冷却熱源として処理空気の冷
却を行う請求項1記載のデシカント空調装置。
2. A desiccant rotor capable of selectively contacting a desiccant with treatment air and regeneration air, and a sensible heat exchanger using treatment air and regeneration air as a heat exchange medium, wherein the heater is regenerated. 2. The air is heated, the cooler is provided in a path between the sensible heat exchanger and the air-conditioned space, and the heat of evaporation of the low-pressure evaporator is used as a cooling heat source to cool the process air. Desiccant air conditioner.
【請求項3】 前記加熱器は顕熱熱交換器からデシカン
トロータに至る途中に設けられ、高圧吸収器の吸収熱お
よび凝縮器の凝縮熱を加熱源としている請求項1または
2記載のデシカント空調機。
3. The desiccant air conditioner according to claim 1, wherein the heater is provided on the way from the sensible heat exchanger to the desiccant rotor, and uses the heat of absorption of the high-pressure absorber and the heat of condensation of the condenser as heating sources. Machine.
【請求項4】 デシカント空調装置の加熱および冷却熱
源用のヒートポンプにおいて、低圧蒸発器と、その低圧
蒸発器よりも高い圧力で作動する高圧蒸発器と、低圧吸
収器と、その低圧吸収器よりも高い圧力で作動する高圧
吸収器と、再生器と、凝縮器とを備え、かつ前記低圧吸
収器の吸収熱で高圧蒸発器を加熱するために低圧吸収器
と高圧蒸発器とが熱交換関係を形成する熱交換手段を有
し、そして低圧蒸発器で蒸発した冷媒を低圧吸収器が吸
収し、かつ高圧蒸発器で蒸発した冷媒を高圧吸収器が吸
収する構成であって、加熱源として前記高圧吸収器の吸
収熱と凝縮器の凝縮熱とを取出す温水経路を有し、冷却
熱源として低圧蒸発器の蒸発熱を取出す冷水経路を有し
ていることを特徴とする吸収ヒートポンプ。
4. A heat pump for a heating and cooling heat source of a desiccant air conditioner, comprising a low pressure evaporator, a high pressure evaporator operating at a pressure higher than that of the low pressure evaporator, a low pressure absorber, and a low pressure absorber thereof. A high-pressure absorber operating at a high pressure, a regenerator, and a condenser are provided, and the low-pressure absorber and the high-pressure evaporator have a heat exchange relationship in order to heat the high-pressure evaporator by the heat absorbed by the low-pressure absorber. A heat exchange means for forming the low-pressure evaporator, the low-pressure evaporator absorbs the refrigerant, and the high-pressure evaporator absorbs the refrigerant, the high-pressure absorber absorbs the high pressure An absorption heat pump having a hot water path for taking out the absorption heat of the absorber and the condensation heat of the condenser, and a cold water path for taking out the evaporation heat of the low-pressure evaporator as a cooling heat source.
JP33323495A 1995-12-21 1995-12-21 Desiccant air conditioner Expired - Fee Related JP3434110B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP33323495A JP3434110B2 (en) 1995-12-21 1995-12-21 Desiccant air conditioner
US08/768,456 US5758509A (en) 1995-12-21 1996-12-18 Absorption heat pump and desiccant assisted air conditioning apparatus
CN96113903A CN1129753C (en) 1995-12-21 1996-12-23 Absorption heat pump and desiccant assisted air conditioning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33323495A JP3434110B2 (en) 1995-12-21 1995-12-21 Desiccant air conditioner

Publications (2)

Publication Number Publication Date
JPH09178291A JPH09178291A (en) 1997-07-11
JP3434110B2 true JP3434110B2 (en) 2003-08-04

Family

ID=18263830

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33323495A Expired - Fee Related JP3434110B2 (en) 1995-12-21 1995-12-21 Desiccant air conditioner

Country Status (1)

Country Link
JP (1) JP3434110B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109945373A (en) * 2019-04-12 2019-06-28 南京工业大学 Dehumidification heating system utilizing domestic wastewater waste heat

Also Published As

Publication number Publication date
JPH09178291A (en) 1997-07-11

Similar Documents

Publication Publication Date Title
US5943874A (en) Desiccant assisted air conditioning apparatus
US6675601B2 (en) Air conditioner
US5761923A (en) Air conditioning system
US5758509A (en) Absorption heat pump and desiccant assisted air conditioning apparatus
JP2994303B2 (en) Air conditioning system and operating method thereof
JP3585308B2 (en) Desiccant air conditioner
CN107246681A (en) A kind of small-sized household formula solution humidifying Fresh air handling units of external low-temperature receiver
JP2000257907A (en) Dehumidifying apparatus
JP3434109B2 (en) Desiccant air conditioner
JPH1026369A (en) Air conditioning system and control method
JP3434110B2 (en) Desiccant air conditioner
JP3480772B2 (en) Absorption heat pump
JP3743581B2 (en) Heat pump and operation method thereof
JP2972834B2 (en) Desiccant air conditioner
JPH10122689A (en) Absorption heat pump and air conditioning system using the same
CN115013889B (en) Environment-independent rotating wheel dehumidification regeneration system
JPH09257280A (en) Desiccant air conditioner
JP2971842B2 (en) Absorption heat pump and air conditioning system using the same as heat source
JP2971841B2 (en) Air conditioning system
JP2968230B2 (en) Air conditioning system
JPH09178287A (en) Absorption heat pump
JPH1026433A (en) Air conditioning system
JP3743579B2 (en) heat pump
JPH09318126A (en) Air-conditioning system
JPH09196499A (en) Heat pump

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees