[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3449285B2 - Thermal strain absorber and power semiconductor device using the same - Google Patents

Thermal strain absorber and power semiconductor device using the same

Info

Publication number
JP3449285B2
JP3449285B2 JP7324299A JP7324299A JP3449285B2 JP 3449285 B2 JP3449285 B2 JP 3449285B2 JP 7324299 A JP7324299 A JP 7324299A JP 7324299 A JP7324299 A JP 7324299A JP 3449285 B2 JP3449285 B2 JP 3449285B2
Authority
JP
Japan
Prior art keywords
power semiconductor
linear expansion
metal
thermal strain
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP7324299A
Other languages
Japanese (ja)
Other versions
JP2000269391A (en
Inventor
賢二 澤谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP7324299A priority Critical patent/JP3449285B2/en
Publication of JP2000269391A publication Critical patent/JP2000269391A/en
Application granted granted Critical
Publication of JP3449285B2 publication Critical patent/JP3449285B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、熱伝導を行う線膨
張率の異なる2つの部材間に配置され、熱伝導性能を損
なわずになおかつ熱応力を低減するために2つの部材間
の熱伸び差を吸収する熱歪吸収体およびそれを用いたパ
ワー半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is arranged between two members having different linear expansion coefficients for heat conduction, and the thermal expansion between the two members is performed in order to reduce the thermal stress without impairing the thermal conductivity. The present invention relates to a thermal strain absorber that absorbs a difference and a power semiconductor device using the same.

【0002】[0002]

【従来の技術】図23は、例えば特開平7−14264
7号公報に記載された従来の半導体装置の構成を示す断
面図である。図において、1は半導体モジュール、2は
けい素で構成されているパワー半導体素子、3は両面に
銅等の金属の箔が接着されたアルミナや窒化アルミニウ
ム等からなる絶縁性基板、35はアルミニウム(Al)
やAl系合金、または銅(Cu)やCu系合金等の高熱
伝導性の薄い金属板を波形状に加工した伝熱性金属フォ
イル、40はパッケージ、41は熱伝導性の良い銅やア
ルミニウム等で形成したキャップ、5はこれも熱伝導性
の良い銅やアルミニウム等で形成されているヒートシン
ク等の冷却装置、6、7、8、9ははんだである。伝熱
性金属フォイル35の拡大斜視図を図24に示す。図に
おいて、36は可撓性を大きくするための切溝である。
2. Description of the Related Art FIG. 23 shows, for example, Japanese Patent Laid-Open No. 7-14264.
FIG. 7 is a cross-sectional view showing a configuration of a conventional semiconductor device described in Japanese Patent Publication No. In the figure, 1 is a semiconductor module, 2 is a power semiconductor element composed of silicon, 3 is an insulating substrate made of alumina, aluminum nitride or the like having a metal foil such as copper adhered to both sides, and 35 is aluminum ( Al)
Or aluminum alloy, or a heat conductive metal foil formed by corrugating a thin metal plate having high heat conductivity such as copper (Cu) or Cu alloy, 40 is a package, 41 is copper or aluminum having good heat conductivity. The formed cap 5 is a cooling device such as a heat sink which is also made of copper or aluminum having good thermal conductivity, and 6, 7, 8 and 9 are solders. An enlarged perspective view of the heat transfer metal foil 35 is shown in FIG. In the figure, reference numeral 36 is a kerf for increasing flexibility.

【0003】キャップ41上に伝熱性金属フォイル3
5、絶縁性基板3、およびパワー半導体素子2が順には
んだ6、7、8で接合され、パッケージ40に封入され
て半導体モジュール1が形成されており、この半導体モ
ジュール1は冷却装置5にはんだ9で接合されている。
半導体モジュール1の運転時、パワー半導体素子2で発
生する熱は、絶縁性基板3と伝熱性金属フォイル35お
よびキャップ41を介して、冷却装置5に伝導し、冷却
される。
A heat conductive metal foil 3 is placed on the cap 41.
5, the insulative substrate 3, and the power semiconductor element 2 are joined in this order with solders 6, 7, and 8 and enclosed in a package 40 to form a semiconductor module 1. The semiconductor module 1 is attached to a cooling device 5 with solder 9 Are joined together.
During operation of the semiconductor module 1, the heat generated in the power semiconductor element 2 is conducted to the cooling device 5 via the insulating substrate 3, the heat conductive metal foil 35 and the cap 41, and is cooled.

【0004】半導体モジュール1の構成部材の線膨張率
は、パワー半導体素子2のけい素で約2.6×10-6
K、絶縁性基板3の窒化アルミニウムで約4×10-6
K、キャップ41やヒートシンク等の冷却装置5は銅で
約16.6×10-6/K、アルミニウムで約23.2×
10-6/Kである。このようにパワー半導体素子2や絶
縁性基板3とキャップ41やヒートシンク等の冷却装置
5との間で、使用されている部材の線膨張率が違うた
め、運転時の温度変化による熱伸び量に大きな差が発生
する。また、大容量化にともないパワー半導体素子2か
らの発熱量は増加し、さらに長期信頼性の観点から熱サ
イクル数も増大している。このように、運転時に生じる
温度変化によってパワー半導体素子2とキャップ41の
熱伸び量に大きな差が生じ、それが繰り返されるるた
め、絶縁性基板3とキャップ41間は、この熱伸び差を
吸収するため可撓性の大きな伝熱性金属フォイル35に
より接続した構成が採られていた。
The linear expansion coefficient of the constituent members of the semiconductor module 1 is about 2.6 × 10 −6 / in the silicon of the power semiconductor element 2.
K, about 4 × 10 −6 / with aluminum nitride of insulating substrate 3
K, the cooling device 5 such as the cap 41 and the heat sink is made of copper at about 16.6 × 10 −6 / K, and made of aluminum at about 23.2 ×.
It is 10 -6 / K. As described above, since the linear expansion coefficient of the member used is different between the power semiconductor element 2 or the insulating substrate 3 and the cooling device 5 such as the cap 41 or the heat sink, the thermal expansion amount due to the temperature change during the operation is reduced. A big difference occurs. In addition, the amount of heat generated from the power semiconductor element 2 increases with the increase in capacity, and the number of thermal cycles also increases from the viewpoint of long-term reliability. In this way, a large difference occurs in the amount of thermal expansion between the power semiconductor element 2 and the cap 41 due to the temperature change that occurs during operation, and this is repeated, so the insulating substrate 3 and the cap 41 absorb this difference in thermal expansion. Therefore, a structure in which the heat conductive metal foil 35 having large flexibility is used for connection is adopted.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、伝熱性
金属フォイル35は可撓性を得るために例えば0.1m
mというような薄い金属板で構成されているので熱通過
方向に垂直な面の面積すなわち熱通過断面積が小さく、
従って熱抵抗が大きく冷却性能が低いという問題があっ
た。また、この波形状の伝熱性金属フォイル35は波の
進行方向の可撓性は大きなが、波と直角方向については
途中に切溝36があるとはいえ剛性が大きく、従って可
撓性が小さなため、絶縁性基板3とキャップ41間の熱
伸び差を充分吸収しきれず、はんだ割れや伝熱性金属フ
ォイル35自身に無理な力が加わり破壊するという強度
上の問題があった。
However, the heat conductive metal foil 35 is, for example, 0.1 m in order to obtain flexibility.
Since it is composed of a thin metal plate such as m, the area of the surface perpendicular to the heat passage direction, that is, the heat passage cross-sectional area is small,
Therefore, there is a problem that the thermal resistance is large and the cooling performance is low. Further, the wave-shaped heat-conducting metal foil 35 has a large flexibility in the traveling direction of the wave, but has a large rigidity in the direction orthogonal to the wave even though there is a groove 36 in the middle thereof, and therefore has a small flexibility. Therefore, there is a problem in strength that the difference in thermal expansion between the insulating substrate 3 and the cap 41 cannot be sufficiently absorbed, and the solder cracks and the heat-conducting metal foil 35 themselves are damaged by excessive force.

【0006】この発明は、上記のような従来のものの問
題点を解決するためになされたものであり、熱伝導を行
う線膨張率の異なる2つの部材間に配置され、熱伝導性
能を損なわずになおかつ熱応力を低減することができる
熱歪吸収体を提供することを目的とし、さらにそれを用
いたパワー半導体装置を提供することを目的とする。
The present invention has been made in order to solve the above-mentioned problems of the conventional ones, and is arranged between two members having different linear expansion coefficients for heat conduction without impairing the heat conduction performance. Moreover, it is an object of the present invention to provide a thermal strain absorber capable of reducing thermal stress, and further to provide a power semiconductor device using the same.

【0007】[0007]

【課題を解決するための手段】本発明の第1の構成に係
る熱歪吸収体は、線膨張率の異なる部材間に配置される
ものであって、線膨張率の異なる少なくとも2枚の熱伝
導性金属板を圧着してなり、これら複数の金属板にまた
がって形成された溝によって仕切られた複数の柱状の梁
とその支持部で構成されたものである。
A thermal strain absorber according to a first structure of the present invention is arranged between members having different linear expansion coefficients, and at least two thermal expansion members having different linear expansion coefficients are provided. The conductive metal plate is pressure-bonded, and is composed of a plurality of columnar beams partitioned by grooves formed across the plurality of metal plates and a supporting portion thereof.

【0008】本発明の第2の構成に係る熱歪吸収体は、
上記第1の構成に加えて、溝は一方の金属板側から他方
の金属板へ所定深さ食い込むように形成されているもの
である。
The thermal strain absorber according to the second aspect of the present invention is
In addition to the above-mentioned first configuration, the groove is formed so as to bite into the other metal plate by a predetermined depth from the one metal plate side.

【0009】本発明の第3の構成に係る熱歪吸収体は、
上記第2の構成に加えて、食い込む深さは梁の幅の1/
4以上であるものである。
The thermal strain absorber according to the third aspect of the present invention is
In addition to the above-mentioned second structure, the biting depth is 1 / the width of the beam.
It is 4 or more.

【0010】本発明の第4の構成に係る熱歪吸収体は、
上記第1の構成に加えて、溝は複数の金属板にまたがっ
て中央部に形成されており、両端に支持部を有するもの
である。
The thermal strain absorber according to the fourth aspect of the present invention is
In addition to the above-mentioned first structure, the groove is formed in the central portion over a plurality of metal plates and has supporting portions at both ends.

【0011】本発明の第5の構成に係る熱歪吸収体は、
上記第1ないし4のいずれかの構成に加えて、中央部の
梁の断面積を周辺部の梁の断面積よりも大きくしたもの
である。
The thermal strain absorber according to the fifth aspect of the present invention is
In addition to any one of the first to fourth configurations, the cross-sectional area of the central beam is larger than that of the peripheral beam.

【0012】本発明の第6の構成に係る熱歪吸収体は、
上記第1ないし5のいずれかの構成に加えて、溝は碁盤
の目状に形成されており、梁は角柱状であるものであ
る。
The thermal strain absorber according to the sixth aspect of the present invention is
In addition to any one of the above-mentioned first to fifth configurations, the grooves are formed in a grid pattern and the beams are prismatic.

【0013】本発明の第7の構成に係るパワー半導体装
置は、パワー半導体素子と放熱部とを有するパワー半導
体装置において、上記パワー半導体素子から放熱部への
熱伝導路中に、線膨張率の異なる少なくとも2枚の熱伝
導性金属板を圧着してなるものであって、これら複数の
金属板にまたがって形成された溝によって仕切られた複
数の柱状の梁とその支持部で構成された熱歪吸収体を配
置し、該熱歪吸収体の線膨張率の小さな方の金属板をパ
ワー半導体素子側と、線膨張率の大きな方の金属板を放
熱部側とそれぞれ接合したものである。
A power semiconductor device according to a seventh aspect of the present invention is a power semiconductor device having a power semiconductor element and a heat dissipation section, wherein a linear expansion coefficient of a linear expansion coefficient is provided in a heat conduction path from the power semiconductor element to the heat dissipation section. A heat-compressor formed by pressure-bonding at least two different heat-conductive metal plates, each of which is composed of a plurality of columnar beams partitioned by grooves formed across the plurality of metal plates and their supporting portions. A strain absorber is arranged, and a metal plate having a smaller linear expansion coefficient of the thermal strain absorber is bonded to the power semiconductor element side, and a metal plate having a larger linear expansion coefficient is bonded to the heat radiation portion side.

【0014】本発明の第8の構成に係るパワー半導体装
置は、上記第7の構成に加えて、熱歪吸収体の溝は一方
の金属板側から他方の金属板へ所定深さ食い込むように
形成されているものである。
In the power semiconductor device according to the eighth structure of the present invention, in addition to the seventh structure, the groove of the thermal strain absorber is set so as to penetrate a predetermined depth from one metal plate side to the other metal plate. It has been formed.

【0015】本発明の第9の構成に係るパワー半導体装
置は、上記第8の構成に加えて、食い込む深さは梁の幅
の1/4以上であるものである。
In the power semiconductor device according to the ninth structure of the present invention, in addition to the eighth structure, the bite depth is ¼ or more of the width of the beam.

【0016】本発明の第10の構成に係るパワー半導体
装置は、上記第7の構成に加えて、熱歪吸収体の溝は複
数の金属板にまたがって中央部に形成されており、両端
に支持部を有するものである。
In the power semiconductor device according to the tenth constitution of the present invention, in addition to the seventh constitution, the groove of the thermal strain absorber is formed in the central portion over a plurality of metal plates, and at both ends. It has a support part.

【0017】本発明の第11の構成に係るパワー半導体
装置は、上記第7ないし10のいずれかの構成に加え
て、熱歪吸収体は、中央部の梁の断面積を周辺部の梁の
断面積よりも大きくしたものである。
In the power semiconductor device according to the eleventh structure of the present invention, in addition to the structure of any one of the seventh to tenth structures, the thermal strain absorber has a cross-sectional area of the beam at the central portion and that of the beam at the peripheral portion. It is larger than the cross-sectional area.

【0018】本発明の第12の構成に係るパワー半導体
装置は、上記第7ないし11のいずれかの構成に加え
て、熱歪吸収体の溝は碁盤の目状に形成されており、梁
は角柱状であるものである。
In the power semiconductor device according to the twelfth structure of the present invention, in addition to the structure of any of the seventh to eleventh structures, the grooves of the thermal strain absorber are formed in a grid pattern, and the beams are It has a prismatic shape.

【0019】本発明の第13の構成に係るパワー半導体
装置は、上記第7の構成に加えて、放熱部は板状であ
り、該放熱部の熱歪吸収体が配置された側と反対側に放
熱部よりも線膨張率の大きな金属を接合したものであ
る。
In the power semiconductor device according to the thirteenth structure of the present invention, in addition to the seventh structure, the heat radiating portion is plate-shaped, and the heat radiating portion is opposite to the side on which the thermal strain absorber is arranged. Is joined to a metal having a linear expansion coefficient larger than that of the heat radiating portion.

【0020】本発明の第14の構成に係るパワー半導体
装置は、上記第13の構成に加えて、放熱部よりも線膨
張率の大きな金属の厚さは、その弾性係数をE2、放熱
部の弾性係数をE1、放熱部の厚さをh1とした場合に、
式(1)で求めた値h2の0.5倍以上2倍以下である
ものである。
A power semiconductor device according to a fourteenth structure of the present invention is the same as the thirteenth structure, in which the linear expansion is larger than that of the heat radiating portion.
The thickness of a metal having a large stretching coefficient is E 2 , the elastic coefficient of the heat radiation part is E 1 , and the thickness of the heat radiation part is h 1 ,
It is 0.5 times or more and 2 times or less of the value h 2 obtained by the equation (1).

【0021】[0021]

【数2】 [Equation 2]

【0022】[0022]

【発明の実施の形態】実施の形態1.図1は本発明の実
施の形態1によるパワー半導体装置の構成を示す正面図
である。図において、1は例えばIGBT(Insulated
Gate Bipolar Transistor)素子等を搭載したパワー半
導体モジュール、2は例えばIGBT素子等のパワー半
導体素子であり、主要部はけい素で構成されている。3
は両面に銅等の金属の箔が接着された、アルミナや窒化
アルミニウム等からなる絶縁性基板、4は銅やアルミニ
ウム等からなる放熱用金属ベース板、5はヒートシンク
等の冷却装置、6、7、8および9ははんだ、10は熱
歪吸収体(以下、マイクロビーム板と称する。)であ
る。11はモリブデンやタングステン等の線膨張率の小
さな材料からなる第1の熱伝導性金属板、12は銅やア
ルミニウム等の線膨張率の大きな材料からなる第2の熱
伝導性金属板である。13はロールクラッドや爆発圧着
等により形成された圧着部である。マイクロビーム板1
0は線膨張率の小さな絶縁性基板3と線膨張率の大きな
放熱用金属ベース板4との間に配置され、線膨張率の小
さな材料からなる第1の熱伝導性金属板11が線膨張率
の小さな絶縁性基板3すなわちパワー半導体素子2側に
接合され、線膨張率の大きな材料からなる第2の熱伝導
性金属板12が線膨張率の大きな放熱用金属ベース板4
すなわち放熱部側に接合されている。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiment 1. 1 is a front view showing the configuration of a power semiconductor device according to a first embodiment of the present invention. In the figure, 1 is, for example, an IGBT (Insulated).
A power semiconductor module 2 having a gate bipolar transistor element or the like mounted thereon is a power semiconductor element such as an IGBT element, and its main part is made of silicon. Three
Is an insulating substrate made of alumina, aluminum nitride, or the like having a foil of metal such as copper adhered to both surfaces, 4 is a metal base plate for heat dissipation made of copper, aluminum, or the like, 5 is a cooling device such as a heat sink, 6, 7 , 8 and 9 are solders, and 10 is a thermal strain absorber (hereinafter referred to as a microbeam plate). Reference numeral 11 is a first heat conductive metal plate made of a material having a small linear expansion coefficient such as molybdenum or tungsten, and 12 is a second heat conductive metal plate made of a material having a large linear expansion coefficient such as copper or aluminum. Reference numeral 13 is a crimp portion formed by roll clad or explosive crimping. Micro beam board 1
0 is arranged between the insulating substrate 3 having a small linear expansion coefficient and the heat-dissipating metal base plate 4 having a large linear expansion coefficient, and the first thermally conductive metal plate 11 made of a material having a small linear expansion coefficient expands linearly. The second heat conductive metal plate 12 made of a material having a large linear expansion coefficient, which is joined to the insulating substrate 3 having a small coefficient of expansion, that is, the power semiconductor element 2 side, is the metal base plate 4 for heat dissipation having a large linear expansion coefficient.
That is, it is joined to the heat dissipation portion side.

【0023】図2は図1のマイクロビーム板の一部を拡
大して示す正面図、図3は図2の矢視X−Xから見た断
面図である。図において、14は第1と第2の熱伝導性
金属板11,12にまたがって形成された溝、10aは
溝14によって仕切られた複数の柱状の梁(以下、マイ
クロビームと称する。)、10bは支持部である。本実
施の形態では、溝14は碁盤の目状に形成されており、
マイクロビーム10aは角柱状である。また、溝14は
第2の金属板12側から第1の金属板11へ所定深さ食
い込むように形成されている。
FIG. 2 is a front view showing a part of the microbeam plate of FIG. 1 in an enlarged manner, and FIG. 3 is a sectional view taken along the line X--X of FIG. In the figure, 14 is a groove formed over the first and second heat conductive metal plates 11 and 12, and 10a is a plurality of columnar beams (hereinafter referred to as microbeams) partitioned by the groove 14. 10b is a support part. In the present embodiment, the grooves 14 are formed in a grid pattern,
The micro beam 10a has a prismatic shape. Further, the groove 14 is formed so as to dig into the first metal plate 11 from the second metal plate 12 side to a predetermined depth.

【0024】このように構成されたものにおいて、モジ
ュールの運転時、パワー半導体素子2で発生する熱は、
絶縁性基板3、マイクロビーム板10および放熱用金属
ベース板4を介して、冷却装置5に伝導し、冷却され
る。このとき、線膨張率の小さな絶縁性基板3と線膨張
率の大きな放熱用金属ベース板4の間で熱伸び差が発生
する。この熱伸び差は中央では0であるが端に行くほど
大きくなり端部では図4に示すように、δ1となるが、
図4のようにマイクロビーム12が撓むことによって熱
伸び差は吸収される。また、図5に示すように、第1の
金属板11と第2の金属板12の圧着部13近傍では、
温度上昇によってマイクロビーム10aが線膨張率の小
さな第1の金属板11から線膨張率の大きな第2の金属
板12へ行くにしたがって徐々に膨らんで変形するが、
その影響長さXはマイクロビーム10aの幅Wの略半分
又はそれ以下であるので、第1の金属板11に食い込む
溝15の深さVをマイクロビーム10aの幅Wの1/4
以上例えば略半分程度にすれば変形の影響は第1の金属
板11の主要部分(厚さUの部分)すなわち支持部10
bには現われない。なお、支持部10bもマイクロビー
ム10aの撓みを支持するためにある程度の厚みが必要
である。この厚みは支持部10bの材質によっても異な
るが、例えば2mm程度は必要である。
In the structure thus constructed, the heat generated in the power semiconductor element 2 during the operation of the module is
The heat is conducted to the cooling device 5 via the insulating substrate 3, the microbeam plate 10 and the heat-dissipating metal base plate 4, and is cooled. At this time, a difference in thermal expansion occurs between the insulating substrate 3 having a small linear expansion coefficient and the metal base plate 4 for heat radiation having a large linear expansion coefficient. This thermal expansion difference is 0 at the center but becomes larger toward the end and becomes δ1 at the end, as shown in FIG. 4,
The difference in thermal expansion is absorbed by the bending of the microbeam 12 as shown in FIG. Further, as shown in FIG. 5, in the vicinity of the pressure-bonding portion 13 of the first metal plate 11 and the second metal plate 12,
As the temperature rises, the microbeam 10a gradually swells and deforms from the first metal plate 11 having a small linear expansion coefficient to the second metal plate 12 having a large linear expansion coefficient.
Since the affected length X is approximately half or less than the width W of the microbeam 10a, the depth V of the groove 15 that cuts into the first metal plate 11 is ¼ of the width W of the microbeam 10a.
For example, if it is reduced to about half, the influence of the deformation is exerted on the main portion (thickness U) of the first metal plate 11, that is, the support portion 10.
It does not appear in b. The supporting portion 10b also needs to have a certain thickness in order to support the bending of the microbeam 10a. This thickness is required to be, for example, about 2 mm, although it depends on the material of the supporting portion 10b.

【0025】図6(a)(b)に本実施の形態によるマ
イクロビーム板10の各寸法の一例を示す。(a)は上
面図、(b)は正面図である。本実施の形態ではマイク
ロビーム10aの断面積は一定とした。なお、図6にお
いて各寸法の単位はmmである。また、明確のため、
(a)ではマイクロビーム部に網かけを施して示してい
る。この例では、マイクロビーム板10は、線膨張率の
小さな材料であるモリブデンからなる縦35.5mm、
横31.5mm、厚さ3mmの第1の金属板11と線膨
張率の大きな材料である銅からなる縦35.5mm、横
31.5mm、厚さ12mmの第2の金属板12とを圧
着した後、第2の金属板12側から第1の金属板11に
1mm食い込んだ状態まで溝14の幅0.5mmで碁盤
の目状に溝加工して密集した多数の幅1.5mm、長さ
13mmの角柱状の梁すなわちマイクロビーム10aを
形成することにより形成される。なお、第1の金属板1
1の溝加工されないで残った部分10bが支持部とな
る。図6では支持部の厚さは2mmである。
FIGS. 6A and 6B show an example of each dimension of the microbeam plate 10 according to this embodiment. (A) is a top view and (b) is a front view. In this embodiment, the cross-sectional area of the microbeam 10a is constant. In FIG. 6, the unit of each dimension is mm. Also, for clarity,
In (a), the microbeam portion is shown as shaded. In this example, the microbeam plate 10 is made of molybdenum, which is a material having a small linear expansion coefficient, and has a length of 35.5 mm.
A first metal plate 11 having a width of 31.5 mm and a thickness of 3 mm and a second metal plate 12 having a length of 35.5 mm, a width of 31.5 mm, and a thickness of 12 mm and made of copper having a large linear expansion coefficient are pressure bonded. After that, from the side of the second metal plate 12 to the state of biting into the first metal plate 11 by 1 mm, the width of the grooves 14 is 0.5 mm, and a large number of widths of 1.5 mm are formed in a grid pattern and are densely packed. It is formed by forming a prismatic beam having a thickness of 13 mm, that is, a micro beam 10a. The first metal plate 1
The remaining portion 10b of the first groove that has not been processed becomes the support portion. In FIG. 6, the thickness of the supporting portion is 2 mm.

【0026】以上のように、本実施の形態によれば、絶
縁性基板3と放熱用金属ベース板4との間に熱伸び差が
生じても、支持部10bには無理な熱応力は発生せず、
はんだ7および8が破損することはなく長期信頼性が高
い。また、マイクロビーム10a部分の熱通過断面積は
従来の伝熱性金属フォイル35に比べて格段に大きく、
絶縁性基板3と放熱用金属ベース板4はこのような熱通
過断面積の大きなマイクロビーム板10を介して結合さ
れているので、従来の伝熱性金属フォイル35を介した
接合に比べて熱抵抗が低く冷却性能を向上させることが
できる。
As described above, according to the present embodiment, even if a difference in thermal expansion occurs between the insulating substrate 3 and the heat-dissipating metal base plate 4, excessive thermal stress is generated in the supporting portion 10b. Without
The solders 7 and 8 are not damaged and have long-term reliability. Further, the heat passage cross-sectional area of the microbeam 10a portion is significantly larger than that of the conventional heat conductive metal foil 35,
Since the insulating substrate 3 and the heat-dissipating metal base plate 4 are coupled via the microbeam plate 10 having such a large heat passage cross-sectional area, the thermal resistance is higher than that of the conventional joining using the heat-conducting metal foil 35. The cooling performance is low and the cooling performance can be improved.

【0027】実施の形態2.熱伸び差は中央では零で端
部に行くほど大きくなるので、マイクロビーム10aの
撓み量も中央では零で端部に行くほど大きくなる。この
ように、中央部では撓み量は小さいのでマイクロビーム
10aの断面積を大きくしてもマイクロビーム10aの
曲げ応力を許容応力以下にすることができる。図7
(a)(b)に中央に行くほど溝のピッチを大きくして
マイクロビームの断面積を大きくした本発明の実施の形
態2によるマイクロビーム板を示す。(a)は上面図、
(b)は正面図である。このようにして熱通過断面積を
増やすと熱抵抗が減るので冷却性能をさらに向上させる
ことができる。なお、明確のため、(a)ではマイクロ
ビーム部に網かけを施して示している。
Second Embodiment Since the difference in thermal expansion is zero at the center and becomes larger toward the ends, the amount of deflection of the microbeam 10a becomes zero at the center and becomes larger toward the ends. As described above, since the bending amount is small in the central portion, the bending stress of the microbeam 10a can be made equal to or less than the allowable stress even if the cross-sectional area of the microbeam 10a is increased. Figure 7
(A) and (b) show a microbeam plate according to a second embodiment of the present invention in which the pitch of the grooves is increased toward the center to increase the cross-sectional area of the microbeam. (A) is a top view,
(B) is a front view. When the heat passage cross section is increased in this way, the thermal resistance is reduced, so that the cooling performance can be further improved. For clarity, the microbeam portion is shown as shaded in (a).

【0028】なお、この図7では溝のピッチを2方向に
対して大きくすることにより断面積を大きくしている
が、必ずしも2方向共に大きくしなくてもよく、1方向
だけ大きくすることもできる。図8(a)(b)に中央
に行くほど溝のピッチを1方向だけ大きくすることによ
り断面積を大きくした例を示す。(a)は上面図、
(b)は正面図である。なお、明確のため、(a)では
マイクロビーム部に網かけを施して示している。
Although the cross-sectional area is increased by increasing the pitch of the grooves in the two directions in FIG. 7, it is not always necessary to increase the width in both directions, and it is possible to increase it in only one direction. . FIGS. 8A and 8B show an example in which the groove pitch is increased in only one direction toward the center to increase the cross-sectional area. (A) is a top view,
(B) is a front view. For clarity, the microbeam portion is shown as shaded in (a).

【0029】以上のように、本実施の形態によれば、熱
伸び差の小さな中央部のマイクロビームの断面積を熱伸
び差の大きな周辺部のマイクロビームの断面積よりも大
きくしたので、例えば周辺部のマイクロビームの断面積
を実施の形態1と同じにした場合には、実施の形態1に
比べて熱通過断面積を増やすことができ、冷却性能をさ
らに向上させることができる。なお、本実施の形態は、
実施の形態1に限らず、以下の各実施の形態にも適用し
て冷却性能や熱伸び差の吸収特性をより向上させること
ができる。
As described above, according to this embodiment, the cross-sectional area of the central microbeam having a small thermal expansion difference is made larger than that of the peripheral microbeam having a large thermal expansion difference. When the cross-sectional area of the peripheral microbeam is the same as that of the first embodiment, the heat passage cross-sectional area can be increased as compared with the first embodiment, and the cooling performance can be further improved. In this embodiment,
Not only the first embodiment, but also the following embodiments can be applied to further improve the cooling performance and the thermal expansion difference absorption characteristic.

【0030】実施の形態3.図9は本発明の実施の形態
3によるパワー半導体装置の構成を示す正面図である。
図において、18は放熱用金属ベース板を兼用した銅や
アルミニウム等からなるヒートシンク等の冷却装置であ
り、絶縁性基板3等のその他の構成部材の材料は実施の
形態1と同様である。本実施の形態においては、マイク
ロビーム板10はアルミナや窒化アルミニウム等からな
る線膨張率の小さな絶縁性基板3と放熱用金属ベース板
を兼用した銅やアルミニウム等からなる線膨張率の大き
な冷却装置18の間に配置され、線膨張率の小さな第1
の金属板11がパワー半導体素子2側すなわち絶縁性基
板3に、線膨張率の大きな第2の金属板12が放熱部側
すなわち放熱用金属ベース板を兼用した冷却装置18に
それぞれはんだ7および8により接合されている。
Embodiment 3. FIG. 9 is a front view showing the configuration of the power semiconductor device according to the third embodiment of the present invention.
In the figure, reference numeral 18 is a cooling device such as a heat sink made of copper, aluminum or the like which also serves as a metal base plate for heat radiation, and the materials of other components such as the insulating substrate 3 are the same as those in the first embodiment. In the present embodiment, the microbeam plate 10 is a cooling device having a large linear expansion coefficient made of copper, aluminum or the like which also serves as an insulating substrate 3 made of alumina or aluminum nitride having a small linear expansion coefficient and a metal base plate for heat dissipation. It is located between 18 and has a small linear expansion coefficient.
The metal plate 11 is on the power semiconductor element 2 side, that is, the insulating substrate 3, and the second metal plate 12 having a large linear expansion coefficient is on the heat radiating portion side, that is, the cooling device 18 that also serves as the heat radiating metal base plate. Are joined by.

【0031】モジュールの運転時、パワー半導体素子2
で発生する熱は、絶縁性基板3およびマイクロビーム1
0を介して、冷却装置5に伝導し、冷却される。このと
き、線膨張率の小さな絶縁性基板3と線膨張率の大きな
冷却装置5の間で熱伸び差が発生するが、その間を実施
の形態1と同様のマイクロビーム板10で結合すること
によってマイクロビーム板10の支持部10bには無理
な熱応力は発生せず、はんだ7および8が破損すること
はなく長期信頼性が高い。また、絶縁性基板3と冷却装
置5はこの熱通過断面積の大きなマイクロビーム板10
を介して結合されているので、従来の伝熱性金属フォイ
ル35を介した接合に比べて熱抵抗が低く冷却性能を向
上させることができる。
During operation of the module, the power semiconductor element 2
The heat generated at the insulating substrate 3 and the microbeam 1 is generated.
It is conducted to the cooling device 5 via 0 and cooled. At this time, a difference in thermal expansion occurs between the insulating substrate 3 having a small linear expansion coefficient and the cooling device 5 having a large linear expansion coefficient. By connecting the gaps with the microbeam plate 10 similar to that of the first embodiment, Unreasonable thermal stress does not occur in the supporting portion 10b of the microbeam plate 10, the solders 7 and 8 are not damaged, and long-term reliability is high. In addition, the insulating substrate 3 and the cooling device 5 are the microbeam plate 10 having a large heat passage cross section.
Since they are connected via the heat conductive metal foil 35, the heat resistance is low and the cooling performance can be improved.

【0032】実施の形態4.図10は本発明の実施の形
態4によるパワー半導体装置の構成を示す正面図であ
る。本実施の形態においては、放熱用金属ベース板4は
モリブデンやタングステン等の線膨張率の小さな材料か
らなり、ヒートシンク等の冷却装置5は銅やアルミニウ
ム等の線膨張率の大きな材料からなる。その他の構成部
材の材料は実施の形態1と同様である。マイクロビーム
板10は線膨張率の小さな材料からなる放熱用金属ベー
ス板4と線膨張率の大きな材料からなる冷却装置5との
間に配置され、線膨張率の小さな第1の金属板11がパ
ワー半導体素子2側すなわち放熱用金属ベース板4に、
線膨張率の大きな第2の金属板12が冷却部側すなわち
冷却装置5にそれぞれはんだ8および9により接合され
ている。
Fourth Embodiment FIG. 10 is a front view showing the configuration of the power semiconductor device according to the fourth embodiment of the present invention. In this embodiment, the heat-dissipating metal base plate 4 is made of a material having a small linear expansion coefficient such as molybdenum or tungsten, and the cooling device 5 such as a heat sink is made of a material having a large linear expansion coefficient such as copper or aluminum. The materials of the other constituent members are the same as those in the first embodiment. The microbeam plate 10 is arranged between the heat dissipation metal base plate 4 made of a material having a small linear expansion coefficient and the cooling device 5 made of a material having a large linear expansion coefficient, and the first metal plate 11 having a small linear expansion coefficient is provided. On the power semiconductor element 2 side, that is, on the metal base plate 4 for heat dissipation,
The second metal plate 12 having a large coefficient of linear expansion is joined to the cooling portion side, that is, the cooling device 5 by solders 8 and 9, respectively.

【0033】モジュールの運転時、パワー半導体素子2
で発生する熱は、絶縁性基板3、放熱用金属ベース板4
およびマイクロビーム板10を介して、冷却装置5に伝
導し、冷却される。このとき、線膨張率の小さな放熱用
金属ベース板4と線膨張率の大きな冷却装置5の間で熱
伸び差が発生するが、その間を実施の形態1と同様のマ
イクロビーム板10で結合することによって、マイクロ
ビーム板10の支持部10bには無理な熱応力は発生せ
ず、はんだ8および9が破損することはなく長期信頼性
が高い。また、放熱用金属ベース板4と冷却装置5はこ
の熱通過断面積の大きなマイクロビーム板10を介して
結合されているので、従来の伝熱性金属フォイルを介し
た接合に比べて熱抵抗が低く冷却性能を向上させること
ができる。
During operation of the module, the power semiconductor element 2
The heat generated in the insulating substrate 3 and the metal base plate 4 for heat dissipation are
And, it is conducted to the cooling device 5 through the micro beam plate 10 and cooled. At this time, a thermal expansion difference occurs between the heat-dissipation metal base plate 4 having a small linear expansion coefficient and the cooling device 5 having a large linear expansion coefficient, and the gap is connected by the microbeam plate 10 similar to that of the first embodiment. As a result, unreasonable thermal stress does not occur in the supporting portion 10b of the microbeam plate 10, the solders 8 and 9 are not damaged, and long-term reliability is high. Further, since the heat-dissipating metal base plate 4 and the cooling device 5 are connected via the microbeam plate 10 having a large heat passage cross-sectional area, the thermal resistance is lower than that of the conventional joining using a heat-conducting metal foil. The cooling performance can be improved.

【0034】実施の形態5.図11は本発明の実施の形
態5によるパワー半導体装置の構成を示す正面図であ
る。本実施の形態では、放熱用金属ベース板4や冷却装
置5等の各構成部材の材料および配置は図10で示した
実施の形態4と同じであるが、マイクロビーム板10の
構成が異なる。すなわち、マイクロビーム板10はモリ
ブデンやタングステン等の線膨張率の小さな材料からな
る第1の金属板11と銅やアルミニウム等の線膨張率の
大きな材料からなる第2の金属板12を圧着13したも
のを、線膨張率の小さな第1の金属板11側から線膨張
率の大きな第2の金属板12に食い込んだ状態まで碁盤
の目状に溝加工し、線膨張率の大きな第2の金属板12
をマイクロビーム支持部として少し残すようにしたもの
である。マイクロビーム板10を拡大して図12(a)
(b)に正面図および下面図でそれぞれ示す。なお、図
12において、各寸法の単位はmmである。なお、明確
のため、(b)ではマイクロビーム部に網かけを施して
示している。マイクロビーム板10は、線膨張率の小さ
な材料からなる放熱用金属ベース板4と線膨張率の大き
な材料からなる冷却装置5との間に配置され、線膨張率
の小さな第1の金属板11が放熱用金属ベース板4に、
線膨張率の大きな第2の金属板12が冷却装置5にそれ
ぞれはんだ8および9により接合されている。
Embodiment 5. FIG. 11 is a front view showing the configuration of the power semiconductor device according to the fifth embodiment of the present invention. In the present embodiment, the material and arrangement of each component such as the heat-dissipating metal base plate 4 and the cooling device 5 are the same as those in the fourth embodiment shown in FIG. 10, but the configuration of the microbeam plate 10 is different. That is, the microbeam plate 10 is formed by pressure bonding 13 a first metal plate 11 made of a material having a small linear expansion coefficient such as molybdenum or tungsten and a second metal plate 12 made of a material having a large linear expansion coefficient such as copper or aluminum. The second metal having a large coefficient of linear expansion is processed by grooving an object from the side of the first metal plate 11 having a small coefficient of linear expansion to the state of biting into the second metal plate 12 having a large coefficient of linear expansion. Board 12
Is to be left as a micro beam supporting portion. The microbeam plate 10 is enlarged and shown in FIG.
The front view and the bottom view are shown in FIG. In FIG. 12, the unit of each dimension is mm. For clarity, the microbeam portion is shown as shaded in (b). The microbeam plate 10 is arranged between the heat-dissipating metal base plate 4 made of a material having a small linear expansion coefficient and the cooling device 5 made of a material having a large linear expansion coefficient, and the first metal plate 11 having a small linear expansion coefficient. On the metal base plate 4 for heat dissipation,
A second metal plate 12 having a large linear expansion coefficient is joined to the cooling device 5 by solders 8 and 9, respectively.

【0035】モジュールの運転時、パワー半導体素子2
で発生する熱は、絶縁性基板3、放熱用金属ベース板4
およびマイクロビーム板10を介して、冷却装置5に伝
導し、冷却される。このとき、線膨張率の小さな放熱用
金属ベース板4と線膨張率の大きな冷却装置5の間で熱
伸び差が発生するが、その間をマイクロビーム板10で
結合することによって、線膨張率の小さな放熱用金属ベ
ース板4はマイクロビーム板の同じく線膨張率の小さな
第1の金属板11とはんだ付されるのと、マイクロビー
ムの撓みによる熱伸び差吸収作用によって放熱用金属ベ
ース板4には無理な熱応力は発生せず、はんだ8および
9が破損することはなく長期信頼性が高い。また、放熱
用金属ベース板4と冷却装置5はこの熱通過断面積の大
きなマイクロビーム板10を介して結合されているの
で、従来の伝熱性金属フォイル35を介した接合に比べ
て熱抵抗が低く冷却性能を向上させることができる。
During operation of the module, the power semiconductor element 2
The heat generated in the insulating substrate 3 and the metal base plate 4 for heat dissipation are
And, it is conducted to the cooling device 5 through the micro beam plate 10 and cooled. At this time, a thermal expansion difference occurs between the heat-dissipating metal base plate 4 having a small linear expansion coefficient and the cooling device 5 having a large linear expansion coefficient. The small heat-dissipating metal base plate 4 is soldered to the first metal plate 11 having the same small linear expansion coefficient as the microbeam plate, and the heat-dissipating metal base plate 4 is attached to the heat-dissipating metal base plate 4 by the effect of absorbing the thermal expansion difference due to the bending of the microbeam. Does not cause excessive thermal stress, does not damage the solders 8 and 9, and has high long-term reliability. Further, since the metal base plate 4 for heat dissipation and the cooling device 5 are connected via the micro beam plate 10 having a large heat passage cross-sectional area, the thermal resistance is higher than that of the conventional connection using the heat conductive metal foil 35. The cooling performance can be improved to a low level.

【0036】なお、本実施の形態では線膨張率の小さな
第1の金属11側から線膨張率の大きな第2の金属12
に食い込むように溝加工しているので、支持部10bは
第2の金属12の方に形成され第1の金属板11の方に
は形成されないため、銅やアルミニウムに比べて熱伝導
率が小さく一般に高価であるモリブデンやタングステン
等の第1の金属板11の厚さを薄くすることが可能とな
り、安価でしかも熱伝導率が向上したマイクロビーム板
10が得られる。ただし、マイクロビーム10aは線膨
張率の大きな第2の金属12部分の長さがある程度必要
である上に支持部10bも形成するので、第2の金属板
12の厚さは上記各実施の形態に比べて厚くする必要が
ある。図12の例では第1の金属板11の厚さが2m
m、第2の金属板12の厚さが15mmである。
In the present embodiment, the second metal 12 having a large linear expansion coefficient starts from the side of the first metal 11 having a small linear expansion coefficient.
Since the groove is processed so as to dig into, the supporting portion 10b is formed on the second metal 12 and not on the first metal plate 11, and therefore has a smaller thermal conductivity than copper or aluminum. The thickness of the first metal plate 11, which is generally expensive, such as molybdenum or tungsten, can be reduced, and the microbeam plate 10 that is inexpensive and has improved thermal conductivity can be obtained. However, since the microbeam 10a requires the length of the second metal 12 portion having a large linear expansion coefficient to some extent and also forms the support portion 10b, the thickness of the second metal plate 12 is the same as in the above-described respective embodiments. It needs to be thicker than. In the example of FIG. 12, the thickness of the first metal plate 11 is 2 m.
m, and the thickness of the second metal plate 12 is 15 mm.

【0037】実施の形態6.図13は本発明の実施の形
態6によるパワー半導体装置の構成を示す正面図であ
る。図において、17はマイクロビーム板10の第1の
金属板を兼用したモリブデンやタングステン等の線膨張
率の小さな材料からなる放熱用金属ベース板である。ヒ
ートシンク等の冷却装置5は銅やアルミニウム等の線膨
張率の大きな材料からなる。その他の構成部材の材料は
実施の形態1と同様である。本実施の形態では、マイク
ロビーム板10は、モリブデンやタングステン等の線膨
張率の小さな材料からなる放熱用金属ベース板17と銅
やアルミニウム等の線膨張率の大きな材料からなる第2
の金属板12を圧着13したものを、第2の金属板12
側から放熱用金属ベース板17に少し食い込む状態ま
で、碁盤の目状に溝加工したものである。パワー半導体
素子2は絶縁性基板3上にはんだ6で接合され、絶縁性
基板3はマイクロビーム板10の第1の金属板を兼用し
た放熱用金属ベース板17上にはんだ7で接合され、放
熱用金属ベース板17と一体となったマイクロビーム板
10は冷却装置5上にはんだ9で接合される。
Sixth Embodiment FIG. 13 is a front view showing the configuration of the power semiconductor device according to the sixth embodiment of the present invention. In the figure, reference numeral 17 denotes a heat-radiating metal base plate which also serves as the first metal plate of the microbeam plate 10 and which is made of a material having a small linear expansion coefficient such as molybdenum or tungsten. The cooling device 5 such as a heat sink is made of a material having a large linear expansion coefficient such as copper or aluminum. The materials of the other constituent members are the same as those in the first embodiment. In the present embodiment, the microbeam plate 10 includes a metal base plate 17 for heat dissipation made of a material having a small linear expansion coefficient such as molybdenum or tungsten and a second material made of a material having a large linear expansion coefficient such as copper or aluminum.
The second metal plate 12 is obtained by crimping 13 the metal plate 12 of
From the side, a groove is formed in a grid pattern from the side to a state where it slightly bites into the heat-dissipating metal base plate 17. The power semiconductor element 2 is bonded onto the insulating substrate 3 with solder 6, and the insulating substrate 3 is bonded onto the metal base plate 17 for heat dissipation, which also serves as the first metal plate of the microbeam plate 10, with solder 7 for heat dissipation. The micro-beam plate 10 integrated with the metal base plate 17 is bonded on the cooling device 5 with solder 9.

【0038】モジュールの運転時、パワー半導体素子2
で発生する熱は、絶縁性基板3および放熱用金属ベース
板17と一体となったマイクロビーム板10を介して、
冷却装置5に伝導し、冷却される。このとき、線膨張率
の小さな絶縁性基板3と線膨張率の大きな冷却装置5の
間で熱伸び差が発生するが、その間をマイクロビーム板
10で結合することによって、マイクロビーム板10の
支持部である線膨張率の小さな放熱用金属ベース板17
の溝14が形成されていない部分は線膨張率の異なる材
料を接合している圧着13面から離れているのと、マイ
クロビームの撓みによる熱伸び差吸収作用によって、こ
の支持部には無理な熱応力は発生せず、はんだ7および
9が破損することはなく長期信頼性が高い。また、放熱
用金属ベース板4と冷却装置5はこの熱通過断面積の大
きなマイクロビーム板10を介して結合されているの
で、従来の伝熱性金属フォイル35を介した接合に比べ
て熱抵抗が低く冷却性能を向上させることができる。図
14にマイクロビームの撓む様子を示す。図において、
δ2はマイクロビーム10aの端部における撓み量であ
る。
During operation of the module, the power semiconductor element 2
The heat generated in 1 is transmitted through the insulating substrate 3 and the microbeam plate 10 integrated with the metal base plate 17 for heat dissipation,
It is conducted to the cooling device 5 and cooled. At this time, a difference in thermal expansion occurs between the insulating substrate 3 having a small linear expansion coefficient and the cooling device 5 having a large linear expansion coefficient. The microbeam plate 10 supports the microbeam plate 10 by connecting the difference between them. Heat dissipation metal base plate 17 having a small linear expansion coefficient
The portion where the groove 14 is not formed is separated from the surface of the pressure-bonding 13 where materials having different linear expansion coefficients are joined, and the thermal expansion difference absorption effect due to the bending of the microbeam makes it impossible for this support portion. No thermal stress is generated, the solders 7 and 9 are not damaged, and long-term reliability is high. Further, since the metal base plate 4 for heat dissipation and the cooling device 5 are connected via the micro beam plate 10 having a large heat passage cross-sectional area, the thermal resistance is higher than that of the conventional connection using the heat conductive metal foil 35. The cooling performance can be improved to a low level. FIG. 14 shows how the microbeam bends. In the figure,
δ2 is the amount of bending at the end of the microbeam 10a.

【0039】実施の形態7.図15は本発明の実施の形
態7によるパワー半導体の構成を示す正面図である。図
において、4はモリブデンやタングステン等の線膨張率
の小さな材料からなる放熱用金属ベース板、19はマイ
クロビーム板10の第2の金属板を兼用した銅やアルミ
ニウム等の線膨張率の大きな材料からなるヒートシンク
等の冷却装置である。その他の構成部材の材料は実施の
形態1と同様である。本実施の形態では、マイクロビー
ム板10は、銅やアルミニウム等の線膨張率の大きな材
料からなる第2の金属板を兼用した冷却装置19にモリ
ブデンやタングステン等の線膨張率の小さな材料からな
る第1の金属板11を圧着13したものを、線膨張率の
小さな第1の金属板11側から第2の金属板を兼用した
冷却装置19に食い込む状態まで、碁盤の目状溝加工し
たものである。パワー半導体素子2は絶縁性基板3上に
はんだ6で接合され、絶縁性基板3は放熱用金属ベース
板4上にはんだ7で接合され、放熱用金属ベース板4は
冷却装置と一体となったマイクロビーム板10にはんだ
8で接合される。
Embodiment 7. FIG. 15 is a front view showing the configuration of the power semiconductor according to the seventh embodiment of the present invention. In the figure, 4 is a metal base plate for heat dissipation made of a material having a small linear expansion coefficient such as molybdenum or tungsten, and 19 is a material having a large linear expansion coefficient such as copper or aluminum which also serves as the second metal plate of the microbeam plate 10. It is a cooling device such as a heat sink. The materials of the other constituent members are the same as those in the first embodiment. In the present embodiment, the microbeam plate 10 is made of a material having a small linear expansion coefficient such as molybdenum or tungsten in the cooling device 19 that also serves as the second metal plate made of a material having a large linear expansion coefficient such as copper or aluminum. The first metal plate 11 that is crimped 13 is processed into a grid-like groove from the side of the first metal plate 11 having a small linear expansion coefficient to the state of biting into the cooling device 19 that also serves as the second metal plate. Is. The power semiconductor element 2 is joined to the insulating substrate 3 with the solder 6, the insulating substrate 3 is joined to the heat radiating metal base plate 4 with the solder 7, and the heat radiating metal base plate 4 is integrated with the cooling device. It is joined to the microbeam plate 10 with solder 8.

【0040】モジュールの運転時、パワー半導体素子2
で発生する熱は、絶縁性基板3、放熱用金属ベース板4
および冷却装置と一体となったマイクロビーム板10を
介して冷却装置19に伝導し、冷却される。このとき、
線膨張率の小さな放熱用金属ベース板4と線膨張率の大
きな冷却装置19の間で熱伸び差が発生するが、その間
をマイクロビームで結合することによって、線膨張率の
小さな放熱用金属ベース板4は線膨張率の異なる材料を
接合している圧着13面から離れているのと、マイクロ
ビームの撓みによる熱伸び差吸収作用によって、放熱用
金属ベース板4には無理な熱応力は発生せず、はんだ7
および9が破損することはなく長期信頼性が高い。ま
た、放熱用金属ベース板4と冷却装置19は熱通過断面
積の大きなマイクロビームを介して結合されているの
で、従来の伝熱性金属フォイル35を介した接合に比べ
て熱抵抗が低く冷却性能を向上させることができる。
During operation of the module, the power semiconductor element 2
The heat generated in the insulating substrate 3 and the metal base plate 4 for heat dissipation are
And, it is conducted to the cooling device 19 through the micro beam plate 10 integrated with the cooling device and cooled. At this time,
A thermal expansion difference occurs between the heat-dissipating metal base plate 4 having a small linear expansion coefficient and the cooling device 19 having a large linear expansion coefficient. By connecting them by a microbeam, the heat-dissipating metal base having a small linear expansion coefficient. Since the plate 4 is separated from the pressure-bonding 13 surface where materials having different linear expansion coefficients are joined, and due to the thermal expansion difference absorption effect due to the bending of the microbeam, an unreasonable thermal stress is generated in the heat dissipation metal base plate 4. Without, solder 7
And 9 are not damaged and have high long-term reliability. Further, since the heat-dissipating metal base plate 4 and the cooling device 19 are coupled via the microbeam having a large heat passage cross-sectional area, the thermal resistance is low and the cooling performance is lower than that of the conventional joining using the heat-conductive metal foil 35. Can be improved.

【0041】実施の形態8.図16は本発明の実施の形
態8によるパワー半導体装置の構成を示す正面図であ
る。図において、20は冷却装置5より線膨張率の大き
なバイメタル金属であり、例えば、冷却装置5に銅を使
用した場合、バイメタル金属20にアルミニウム等を使
用する。21は圧着部またははんだであり、圧着または
はんだによりバイメタル金属20を冷却装置5に接合し
ている。図17は図16の要部を拡大して示す正面図、
図18は本実施の形態の作用を説明する図である。本実
施の形態においては、冷却装置5はその反パワー半導体
素子2側にはフィン等が形成されておらず板状であり、
バイメタル金属20が接合されている点を除けば、実施
の形態6と同様の構成を有している。
Embodiment 8. FIG. 16 is a front view showing the configuration of the power semiconductor device according to the eighth embodiment of the present invention. In the figure, 20 is a bimetal metal having a larger linear expansion coefficient than the cooling device 5. For example, when copper is used for the cooling device 5, aluminum or the like is used for the bimetal metal 20. Reference numeral 21 is a crimp portion or solder, and the bimetal metal 20 is joined to the cooling device 5 by crimping or soldering. FIG. 17 is an enlarged front view showing the main part of FIG.
FIG. 18 is a diagram for explaining the operation of this embodiment. In the present embodiment, the cooling device 5 has a plate shape without fins or the like formed on the side opposite to the power semiconductor element 2.
The structure is the same as that of the sixth embodiment except that the bimetal metal 20 is joined.

【0042】モジュールの運転時、マイクロビーム板1
0の熱伸び差吸収作用は実施の形態6の場合と同様であ
るのでここでは説明を省略する。本実施の形態では、図
16〜図18に示すように、冷却装置5より線膨張率の
大きなバイメタル金属20を冷却装置5の反パワー半導
体素子2側に接合しているので、モジュールの運転時に
冷却装置5は図18に示すようにパワー半導体素子2側
が凹むように湾曲し、マイクロビーム10aで吸収する
撓み量(中央では0であるが端に行くほど大きくなり端
部ではδ3)はバイメタル金属20が接合されていない
実施の形態6の図14における撓み量(端部ではδ2)
より小さくて済み、従ってマイクロビーム10aの長さ
を短くしたり断面積を大きくしたりすることができ、熱
抵抗が小さくなるので冷却効果はさらに向上する。
During operation of the module, the microbeam plate 1
Since the effect of absorbing the difference in thermal expansion difference of 0 is the same as that in the case of the sixth embodiment, its explanation is omitted here. In this embodiment, as shown in FIGS. 16 to 18, the bimetal metal 20 having a larger linear expansion coefficient than the cooling device 5 is joined to the non-power semiconductor element 2 side of the cooling device 5. As shown in FIG. 18, the cooling device 5 is curved so that the power semiconductor element 2 side is recessed, and the amount of deflection absorbed by the microbeam 10a (0 at the center but increases toward the end and becomes δ3 at the end) is a bimetal metal. Deflection amount (FIG. 14) of Embodiment 6 in which 20 is not joined (δ2 at the end)
Since the microbeam 10a can be made smaller, the length of the microbeam 10a can be shortened and the cross-sectional area can be increased, and the thermal resistance can be reduced, so that the cooling effect is further improved.

【0043】また、例えば、板状の冷却装置5に銅を使
用し、バイメタル金属20にアルミニウムを使用した場
合、冷却装置5の厚さを16mmとすると、マイクロビ
ーム10aで吸収すべき撓み量δ3は、図19に示す様
にバイメタル金属20の厚さh2によって異なり、δ3が
最小となる点が存在する。即ち、湾曲することによって
生じる曲率半径が最小となりバイメタル効果が最大とな
る点が存在する。
Also, for example, when copper is used for the plate-shaped cooling device 5 and aluminum is used for the bimetal metal 20, if the thickness of the cooling device 5 is 16 mm, the amount of deflection δ3 that should be absorbed by the microbeam 10a. 19 differs depending on the thickness h 2 of the bimetal metal 20, as shown in FIG. 19, and there is a point where δ 3 becomes the minimum. That is, there is a point where the radius of curvature caused by bending is the smallest and the bimetal effect is the largest.

【0044】そこで、図20を用いてバイメタル効果が
最大となるバイメタル金属20の厚さについて説明す
る。図20に示すように各部の大きさを下表のように定
義する。
Therefore, the thickness of the bimetal metal 20 that maximizes the bimetal effect will be described with reference to FIG. As shown in FIG. 20, the size of each part is defined as shown in the table below.

【0045】[0045]

【表1】 [Table 1]

【0046】歪量の釣合いより α1ΔT1+ P1/(A1E1)+ h1/(2R1) = α2ΔT2− P2/(A2E2)− h2/(2R2) …(11) ∴ α2ΔT2−α1ΔT1= h/R+ P{1/(A1E1)+ 1/(A
2E2)}モーメントの釣合いより Ph = M1+ M2 = E1I1/R1+ E2I2/R2 = (E1I1+E2I2)/R …(12) 式(11)(12)より極率は 1/R= (α2ΔT2−α1ΔT1)/[ h+ {1/(A1E1)+ 1/(A2E2)}(E1I1+E2I2)/h] …(13) 撓み角は(片側) θ= L/2・1/R=L/2・ (α2ΔT2−α1ΔT1)/ [ h+ {1/(A1E1)+ 1/(A2E2)}(E1I1+E2I2)/h]…(14) 式(13)および式(14)の分母 f(h2)=h+ {1/(A1E1)+ 1/(A2E2)}(E1I1+E2I2)/h …(15) が最小となる時に式(13)の曲率が最大、曲率半径が
最小となり、また、式(14)の撓み角が最大となりバ
イメタル効果が最大となる。式(15)に 式(a),
(b),(c)を代入すると
From the balance of strain amount, α 1 ΔT 1 + P 1 / (A 1 E 1 ) + h 1 / (2R 1 ) = α 2 ΔT 2 −P 2 / (A 2 E 2 ) −h 2 / ( 2R 2 )… (11) ∴ α 2 ΔT 2 −α 1 ΔT 1 = h / R + P {1 / (A 1 E 1 ) + 1 / (A
2 E 2 )} From the balance of moments Ph = M 1 + M 2 = E 1 I 1 / R 1 + E 2 I 2 / R 2 = (E 1 I 1 + E 2 I 2 ) / R (12) Formula From (11) and (12), the polar ratio is 1 / R = (α 2 ΔT 2 −α 1 ΔT 1 ) / [h + {1 / (A 1 E 1 ) + 1 / (A 2 E 2 )} (E 1 I 1 + E 2 I 2 ) / h] (13) Deflection angle is (one side) θ = L / 2 ・ 1 / R = L / 2 ・ (α 2 ΔT 2 −α 1 ΔT 1 ) / [h + {1 / (A 1 E 1 ) + 1 / (A 2 E 2 )} (E 1 I 1 + E 2 I 2 ) / h] ... (14) Denominator f (h 2 ) of equations (13) and (14) = h + {1 / (A 1 E 1 ) + 1 / (A 2 E 2 )} (E 1 I 1 + E 2 I 2 ) / h… The curvature of equation (13) is maximum when (15) is minimum. , The radius of curvature becomes the minimum, the deflection angle of the equation (14) becomes the maximum, and the bimetal effect becomes the maximum. In equation (15), equation (a),
Substituting (b) and (c)

【0047】[0047]

【数3】 [Equation 3]

【0048】この値が最小となるh2 を求めるとFinding h 2 that minimizes this value

【0049】[0049]

【数4】 [Equation 4]

【0050】これを無次元化して図にすると図21のよ
うになる。例えば、冷却装置5に銅を使用し、バイメタ
ル金属20にアルミニウムを使用するとE1=12000kgf/
mm2、E2=7200kgf/mm2、E2/E1=0.6、h2/h1=0.
626となり、冷却装置5の厚さをh=16mmとする
と、バイメタル効果が最も大きく曲率半径が最小となる
バイメタル金属20の厚さはh2=0.626×16=10m
mとなる。また、図19からも分かるように、バイメタ
ル金属20の厚さh2は、バイメタル効果が最も大きく
曲率半径が最小となるバイメタル金属20の厚さ(10
mm)の0.5倍(5mm)から2.0倍(20mm)
の間の値で比較的大きなバイメタル効果が得られ、撓み
量δ3が小さくなる。したがって、バイメタル金属の厚
さを上式で求めた値h2の0.5倍以上2.0倍以下の
値とすることによってマイクロビーム板10で吸収すべ
き撓み量δ3を小さくすることができる。
FIG. 21 is a diagram showing this by making it dimensionless. For example, if copper is used for the cooling device 5 and aluminum is used for the bimetal metal 20, E 1 = 12000 kgf /
mm 2 , E 2 = 7200 kgf / mm 2 , E 2 / E 1 = 0.6, h 2 / h 1 = 0.
626, and assuming that the thickness of the cooling device 5 is h = 16 mm, the thickness of the bimetal metal 20 having the largest bimetal effect and the smallest radius of curvature is h 2 = 0.626 × 16 = 10 m.
m. Further, as can be seen from FIG. 19, the thickness h 2 of the bimetal metal 20 is the thickness (10) of the bimetal metal 20 having the largest bimetal effect and the smallest curvature radius.
0.5 times (5 mm) to 2.0 times (20 mm)
With a value between 2 and 3, a relatively large bimetal effect is obtained, and the amount of flexure δ3 becomes small. Therefore, by setting the thickness of the bimetal metal to a value of 0.5 times or more and 2.0 times or less of the value h 2 obtained by the above equation, it is possible to reduce the bending amount δ 3 to be absorbed by the microbeam plate 10. .

【0051】なお、バイメタル金属20と冷却装置5と
を放熱用金属ベース板と一体となったマイクロビーム板
10にはんだ付けする操作としては、次の3操作が考え
られ、接合する手順としては次の3ケースが考えられ
る。 操作1:バイメタル金属20を冷却装置に圧着する。 操作2:バイメタル金属20を冷却装置にはんだ付けす
る。 操作3:冷却装置5を放熱用金属ベース板と一体となっ
たマイクロビーム板10にはんだ付けする。 ケース1:操作1を行ってから操作3を行う。 ケース2:操作2と操作3を一括して同時に行う。 ケース3:操作2の高温はんだ付けを行ってから操作3
の低温はんだ付けを行う。
As the operation of soldering the bimetal metal 20 and the cooling device 5 to the microbeam plate 10 integrated with the metal base plate for heat radiation, the following three operations are conceivable. There are three possible cases. Operation 1: Crimp the bimetal metal 20 to the cooling device. Operation 2: Solder the bimetal metal 20 to the cooling device. Operation 3: The cooling device 5 is soldered to the microbeam plate 10 integrated with the heat dissipation metal base plate. Case 1: Operation 1 is performed, and then operation 3 is performed. Case 2: Operation 2 and operation 3 are performed at the same time. Case 3: Operation 3 after performing high temperature soldering in operation 2
Perform low temperature soldering.

【0052】なお、ケース1と3において、バイメタル
金属20が接合された冷却装置5を放熱用金属ベース板
と一体となったマイクロビーム板10にはんだ付けする
際、バイメタル金属20と一体となった冷却装置5はは
んだ付け温度に加熱されて、バイメタル金属20と冷却
装置5の線膨張率の差によって湾曲し、マイクロビーム
板10にはんだ付けする面(以下この面を面1と言う)
も湾曲する。しかるに、放熱用金属ベース板と一体とな
ったマイクロビーム板10の冷却装置5側の面(以下こ
の面を面2と言う)はマイクロビーム10aに分割され
てはいるが平面であるのではんだ付けが多少難しくなる
場合が生じる。このとき、はんだ付けする方法として次
の3ケースが考えられる。 ケース4:面1の湾曲量がはんだの厚さに比べて小さな
のでそのままはんだ付する。 ケース5:放熱用金属ベース板17は薄く剛性が低いの
で、面2を面1に沿わせて湾曲させてはんだ付する。 ケース6:バイメタル金属20と一体となった冷却装置
5をはんだの溶融温度まで加熱した状態で面1を平面加
工し、その後はんだ付する。ケース6の場合は、はんだ
付する際、バイメタル金属20と一体となった冷却装置
5はんだ付温度まで加熱されているので面1は平面にな
っており、平面の面2と平面と平面のはんだ付となるの
で良好なはんだ付を行うことができる。
In the cases 1 and 3, when the cooling device 5 to which the bimetal metal 20 is joined is soldered to the microbeam plate 10 integrated with the metal base plate for heat dissipation, it is integrated with the bimetal metal 20. The cooling device 5 is heated to the soldering temperature and curved due to the difference in linear expansion coefficient between the bimetal metal 20 and the cooling device 5 and soldered to the microbeam plate 10 (hereinafter, this surface is referred to as surface 1).
Also bends. However, since the surface of the microbeam plate 10 integrated with the metal base plate for heat dissipation on the cooling device 5 side (hereinafter, this surface is referred to as surface 2) is a flat surface although it is divided into the microbeams 10a, it is soldered. May become a little difficult. At this time, the following three cases can be considered as a method of soldering. Case 4: Since the amount of curvature of the surface 1 is smaller than the thickness of the solder, soldering is performed as it is. Case 5: Since the metal base plate 17 for heat dissipation is thin and has low rigidity, the surface 2 is curved along the surface 1 and soldered. Case 6: The cooling device 5 integrated with the bimetal metal 20 is flattened on the surface 1 while being heated to the melting temperature of the solder, and then soldered. In the case of the case 6, when the soldering is performed, the cooling device 5 that is integrated with the bimetal metal 20 is heated to the soldering temperature, so that the surface 1 is a flat surface and the flat surface 2 and the flat surface and the flat surface solder. Therefore, good soldering can be performed.

【0053】なお、本実施の形態では実施の形態6にお
いて、冷却装置5の反パワー半導体素子2側にバイメタ
ル金属20を接合した場合について説明したが、上記各
実施の形態1〜5や7にも適用できるのは言うまでもな
い。
In the present embodiment, the case where the bimetal metal 20 is joined to the side of the cooling device 5 opposite to the power semiconductor element 2 has been described in the sixth embodiment, but in each of the first to fifth and seventh embodiments described above. Needless to say, it is also applicable.

【0054】実施の形態9.なお、上記各実施の形態で
は、マイクロビーム板10として溝14が一方の金属板
11(または12)側から他方の金属板12(または1
1)へ所定深さ食い込むように形成されているものにつ
いて説明したが、これに限るものではなく、図22に示
すように溝14が2枚の金属板11,12にまたがって
中央部に形成されており、両端に支持部10bを有する
ものであってもよく、この場合には両端が支持部10b
であるので、他の部材との接合が容易となる。
Embodiment 9 In each of the above embodiments, the microbeam plate 10 has grooves 14 from one metal plate 11 (or 12) side to the other metal plate 12 (or 1).
Although it has been described that it is formed so as to penetrate into 1) to a predetermined depth, the present invention is not limited to this, and the groove 14 is formed in the central portion across the two metal plates 11 and 12 as shown in FIG. It is also possible to have the support portions 10b at both ends. In this case, both ends are provided with the support portions 10b.
Therefore, joining with other members becomes easy.

【0055】なお、上記各実施の形態では、パワー半導
体素子2から放熱部5への熱伝導路中で様々な場所にマ
イクロビーム板10を配置した場合につて説明したが、
要は、線膨張率の最も大きく異なる部材間にマイクロビ
ーム板10を配置するのが最も効果的である。ただし、
実施の形態1の図1と実施の形態4の図10を比べた場
合、図1の方が、マイクロビーム板10を個々のパワー
半導体素子2に小さく分割して接合しているので、熱伸
び差が小さくより吸収しやすいという利点はある。
In each of the above embodiments, the case where the microbeam plate 10 is arranged at various places in the heat conduction path from the power semiconductor element 2 to the heat dissipation portion 5 has been described.
In short, it is most effective to dispose the microbeam plate 10 between members having the largest linear expansion coefficient. However,
When FIG. 1 of the first embodiment and FIG. 10 of the fourth embodiment are compared, in FIG. 1, the microbeam plate 10 is divided into individual power semiconductor elements 2 and bonded to each other, so that thermal expansion The advantage is that the difference is small and it is easier to absorb.

【0056】なお、上記各実施の形態では熱歪吸収体す
なわちマイクロビーム板10をパワー半導体装置の熱歪
吸収に用いた場合について説明したが、これに限るもの
ではなく、例えばガソリンエンジンなどの燃焼室等の内
壁を冷却したり、ごみ焼却炉などの燃焼炉の熱を利用し
たりする時の熱伝導路としても用いることができる。
In each of the above embodiments, the case where the thermal strain absorber, that is, the microbeam plate 10 is used for absorbing the thermal strain of the power semiconductor device has been described. However, the present invention is not limited to this. It can also be used as a heat conduction path when cooling the inner wall of a chamber or the like or utilizing the heat of a combustion furnace such as a refuse incinerator.

【0057】[0057]

【発明の効果】以上のように、本発明の第1の構成に係
る熱歪吸収体は、線膨張率の異なる部材間に配置される
ものであって、線膨張率の異なる少なくとも2枚の熱伝
導性金属板を圧着してなり、これら複数の金属板にまた
がって形成された溝によって仕切られた複数の柱状の梁
とその支持部で構成されたので、熱伝導性能を損なわず
になおかつ両部材の線膨張率の違いによる熱伸び差を吸
収して熱応力を低減することができる。
As described above, the thermal strain absorber according to the first structure of the present invention is arranged between members having different linear expansion coefficients, and at least two sheets having different linear expansion coefficients are provided. Since it is composed of a plurality of pillar-shaped beams and their supporting portions which are formed by crimping a heat conductive metal plate and are partitioned by a groove formed across these metal plates, Thermal stress can be reduced by absorbing the difference in thermal expansion due to the difference in linear expansion coefficient between both members.

【0058】本発明の第2の構成に係る熱歪吸収体は、
上記第1の構成に加えて、溝は一方の金属板側から他方
の金属板へ所定深さ食い込むように形成されているの
で、製造が容易である。
The thermal strain absorber according to the second structure of the present invention is
In addition to the first configuration, the groove is formed so as to penetrate into the other metal plate from one metal plate side by a predetermined depth, so that the manufacturing is easy.

【0059】本発明の第3の構成に係る熱歪吸収体は、
上記第2の構成に加えて、食い込む深さは梁の幅の1/
4以上であるので、熱応力を効果的に低減することがで
きる。
The thermal strain absorber according to the third aspect of the present invention is
In addition to the above-mentioned second structure, the biting depth is 1 / the width of the beam.
Since it is 4 or more, thermal stress can be effectively reduced.

【0060】本発明の第4の構成に係る熱歪吸収体は、
上記第1の構成に加えて、溝は複数の金属板にまたがっ
て中央部に形成されており、両端に支持部を有するの
で、熱歪吸収体の両側に配置される部材との接合が容易
である。
The thermal strain absorber according to the fourth structure of the present invention is
In addition to the first configuration, the groove is formed in the central portion over a plurality of metal plates and has support portions at both ends, so that it is easy to join with members arranged on both sides of the thermal strain absorber. Is.

【0061】本発明の第5の構成に係る熱歪吸収体は、
上記第1ないし4のいずれかの構成に加えて、中央部の
梁の断面積を周辺部の梁の断面積よりも大きくしたの
で、冷却性能をさらに向上させたり、熱伸び差の吸収特
性をより向上させたりすることができる。
The thermal strain absorber according to the fifth aspect of the present invention is
In addition to any one of the first to fourth configurations described above, since the cross-sectional area of the beam in the central portion is made larger than the cross-sectional area of the beam in the peripheral portion, the cooling performance is further improved and the thermal expansion difference absorption characteristic is improved. It can be improved.

【0062】本発明の第6の構成に係る熱歪吸収体は、
上記第1ないし5のいずれかの構成に加えて、溝は碁盤
の目状に形成されており、梁は角柱状であるので、容易
にしかもスペースファクター良く梁を形成することがで
きる。
The thermal strain absorber according to the sixth aspect of the present invention is
In addition to any one of the first to fifth configurations, the grooves are formed in a grid pattern and the beams are prismatic, so that the beams can be easily formed with a good space factor.

【0063】本発明の第7の構成に係るパワー半導体装
置は、パワー半導体素子と放熱部とを有するパワー半導
体装置において、上記パワー半導体素子から放熱部への
熱伝導路中に、線膨張率の異なる少なくとも2枚の熱伝
導性金属板を圧着してなるものであって、これら複数の
金属板にまたがって形成された溝によって仕切られた複
数の柱状の梁とその支持部で構成された熱歪吸収体を配
置し、該熱歪吸収体の線膨張率の小さな方の金属板をパ
ワー半導体素子側と、線膨張率の大きな方の金属板を放
熱部側とそれぞれ接合したので、パワー半導体素子から
放熱部への熱伝導性能を損なわずに、なおかつ線膨張率
の違いによる熱伸び差を吸収してパワー半導体装置に発
生する熱応力を低減することができる。
A power semiconductor device according to a seventh structure of the present invention is a power semiconductor device having a power semiconductor element and a heat radiating portion, and has a linear expansion coefficient in a heat conduction path from the power semiconductor element to the heat radiating portion. A heat-compressor formed by pressure-bonding at least two different heat-conductive metal plates, each of which is composed of a plurality of columnar beams partitioned by grooves formed across the plurality of metal plates and their supporting portions. Since the strain absorber is arranged and the metal plate having the smaller linear expansion coefficient of the thermal strain absorber is bonded to the power semiconductor element side and the metal plate having the larger linear expansion coefficient is bonded to the heat radiation portion side, respectively, the power semiconductor It is possible to reduce the thermal stress generated in the power semiconductor device by absorbing the difference in thermal expansion due to the difference in linear expansion coefficient without impairing the heat conduction performance from the element to the heat dissipation portion.

【0064】本発明の第8の構成に係るパワー半導体装
置は、上記第7の構成に加えて、熱歪吸収体の溝は一方
の金属板側から他方の金属板へ所定深さ食い込むように
形成されているもで、製造が容易である。
In the power semiconductor device according to the eighth structure of the present invention, in addition to the structure of the seventh structure, the groove of the thermal strain absorber is set so as to dig into the other metal plate by a predetermined depth from the one metal plate side. Since it is formed, it is easy to manufacture.

【0065】本発明の第9の構成に係るパワー半導体装
置は、上記第8の構成に加えて、食い込む深さは梁の幅
の1/4以上であるので、熱応力を効果的に低減するこ
とができる。
In the power semiconductor device according to the ninth structure of the present invention, in addition to the eighth structure, the biting depth is ¼ or more of the width of the beam, so that the thermal stress is effectively reduced. be able to.

【0066】本発明の第10の構成に係るパワー半導体
装置は、上記第7の構成に加えて、熱歪吸収体の溝は複
数の金属板にまたがって中央部に形成されており、両端
に支持部を有するので、熱歪吸収体の両側に配置される
部材との接合が容易である。
In the power semiconductor device according to the tenth structure of the present invention, in addition to the structure of the seventh structure, the groove of the thermal strain absorber is formed in the central part over a plurality of metal plates, and the groove is formed at both ends. Since it has the support portion, it can be easily joined to the members arranged on both sides of the thermal strain absorber.

【0067】本発明の第11の構成に係るパワー半導体
装置は、上記第7ないし10のいずれかの構成に加え
て、熱歪吸収体は、中央部の梁の断面積を周辺部の梁の
断面積よりも大きくしたので、パワー半導体素子から放
熱部への熱伝導性能をさらに向上させたり、熱伸び差の
吸収特性をより向上させたりすることができる。
In the power semiconductor device according to the eleventh structure of the present invention, in addition to the structure of any of the seventh to tenth structures, the thermal strain absorber has a cross-sectional area of the beam in the central portion and that of the beam in the peripheral portion. Since it is made larger than the cross-sectional area, it is possible to further improve the heat conduction performance from the power semiconductor element to the heat dissipation portion and further improve the thermal expansion difference absorption characteristic.

【0068】本発明の第12の構成に係るパワー半導体
装置は、上記第7ないし11のいずれかの構成に加え
て、熱歪吸収体の溝は碁盤の目状に形成されており、梁
は角柱状であるので、容易にしかもスペースファクター
良く梁を形成することができる。
In the power semiconductor device according to the twelfth structure of the present invention, in addition to the structure of any of the seventh to eleventh structures, the grooves of the thermal strain absorber are formed in a grid pattern, and the beams are Since it has a prismatic shape, the beam can be easily formed with a good space factor.

【0069】本発明の第13の構成に係るパワー半導体
装置は、上記第7の構成に加えて、放熱部は板状であ
り、該放熱部の熱歪吸収体が配置された側と反対側に放
熱部よりも線膨張率の大きな金属を接合したので、熱歪
吸収体で吸収すべき撓み量を小さくすることができ、梁
の長さを短くしたり断面積を大きくしたりできるので、
パワー半導体素子から放熱部への熱伝導性能をさらに向
上させることができる。
In the power semiconductor device according to the thirteenth structure of the present invention, in addition to the above-mentioned seventh structure, the heat radiating portion is plate-shaped, and the heat radiating portion is opposite to the side on which the thermal strain absorber is arranged. Since a metal having a larger linear expansion coefficient than that of the heat radiating portion is joined to the heat dissipating portion, the amount of bending to be absorbed by the thermal strain absorber can be reduced, and the beam length can be shortened or the cross-sectional area can be increased.
The heat conduction performance from the power semiconductor element to the heat dissipation portion can be further improved.

【0070】本発明の第14の構成に係るパワー半導体
装置は、上記第13の構成に加えて、放熱部よりも線膨
張率の大きな金属の厚さは、その弾性係数をE2、放熱
部の弾性係数をE1、放熱部の厚さをh1とした場合に、
式(1)で求めた値h2の0.5倍以上2倍以下とする
ことにより、上記第13の構成による効果を効率的に得
ることができる。
A power semiconductor device according to a fourteenth structure of the present invention is the same as the thirteenth structure described above, except that the linear expansion is larger than that of the heat radiating portion.
The thickness of a metal having a large stretching coefficient is E 2 , the elastic coefficient of the heat radiation part is E 1 , and the thickness of the heat radiation part is h 1 ,
By setting the value h 2 obtained by the equation (1) to 0.5 times or more and 2 times or less, the effect of the thirteenth configuration can be efficiently obtained.

【0071】[0071]

【数5】 [Equation 5]

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施の形態1によるパワー半導体装
置の構成を示す正面図である。
FIG. 1 is a front view showing a configuration of a power semiconductor device according to a first embodiment of the present invention.

【図2】 本発明の実施の形態1に係わり図1のマイク
ロビーム板の一部を拡大して示す正面図である。
FIG. 2 is a front view showing a part of the micro beam plate of FIG. 1 in an enlarged manner according to the first embodiment of the present invention.

【図3】 本発明の実施の形態1に係わり図2の矢視X
−Xから見た断面図である。
FIG. 3 relates to the first embodiment of the present invention and is viewed in the direction of arrow X in FIG.
It is sectional drawing seen from -X.

【図4】 本発明の実施の形態1に係わりマイクロビー
ム板の作用を説明する図である。
FIG. 4 is a diagram illustrating the operation of the microbeam plate according to the first embodiment of the present invention.

【図5】 本発明の実施の形態1に係わりマイクロビー
ム板の圧着部近傍を拡大して作用を説明する図である。
FIG. 5 is a diagram for explaining the operation of the first embodiment of the present invention by enlarging the vicinity of the crimping portion of the microbeam plate.

【図6】 本発明の実施の形態1に係わるマイクロビー
ム板の各寸法の一例を示し、(a)は上面図、(b)は
正面図である。
FIG. 6 shows an example of respective dimensions of the microbeam plate according to the first embodiment of the present invention, (a) is a top view and (b) is a front view.

【図7】 本発明の実施の形態2に係わるマイクロビー
ム板の各寸法の一例を示し、(a)は上面図、(b)は
正面図である。
7A and 7B show an example of respective dimensions of a microbeam plate according to Embodiment 2 of the present invention, FIG. 7A is a top view and FIG. 7B is a front view.

【図8】 本発明の実施の形態2に係わるマイクロビー
ム板の各寸法の別の例を示し、(a)は上面図、(b)
は正面図である。
FIG. 8 shows another example of each dimension of the microbeam plate according to the second embodiment of the present invention, (a) is a top view, and (b) is a top view.
Is a front view.

【図9】 本発明の実施の形態3によるパワー半導体装
置の構成を示す正面図である。
FIG. 9 is a front view showing a configuration of a power semiconductor device according to a third embodiment of the present invention.

【図10】 本発明の実施の形態4によるパワー半導体
装置の構成を示す正面図である。
FIG. 10 is a front view showing a configuration of a power semiconductor device according to a fourth embodiment of the present invention.

【図11】 本発明の実施の形態5によるパワー半導体
装置の構成を示す正面図である。
FIG. 11 is a front view showing a configuration of a power semiconductor device according to a fifth embodiment of the present invention.

【図12】 本発明の実施の形態5に係わるマイクロビ
ーム板の各寸法の一例を示し、(a)は上面図、(b)
は正面図である。
FIG. 12 shows an example of each dimension of a microbeam plate according to Embodiment 5 of the present invention, (a) is a top view, and (b) is a top view.
Is a front view.

【図13】 本発明の実施の形態6によるパワー半導体
装置の構成を示す正面図である。
FIG. 13 is a front view showing the configuration of a power semiconductor device according to a sixth embodiment of the present invention.

【図14】 本発明の実施の形態6に係わりマイクロビ
ーム板の撓む様子を示す図である。
FIG. 14 is a diagram showing how the microbeam plate is bent in accordance with the sixth embodiment of the present invention.

【図15】 本発明の実施の形態7によるパワー半導体
装置の構成を示す正面図である。
FIG. 15 is a front view showing the configuration of a power semiconductor device according to a seventh embodiment of the present invention.

【図16】 本発明の実施の形態8によるパワー半導体
装置の構成を示す正面図である。
FIG. 16 is a front view showing the configuration of a power semiconductor device according to an eighth embodiment of the present invention.

【図17】 本発明の実施の形態8に係わり図16の要
部を拡大して示す正面図である。
FIG. 17 is a front view showing an enlarged main part of FIG. 16 according to the eighth embodiment of the present invention.

【図18】 本発明の実施の形態8に係わりマイクロビ
ーム板の撓む様子を示す図である。
FIG. 18 is a diagram showing a manner in which a microbeam plate is bent according to an eighth embodiment of the present invention.

【図19】 本発明の実施の形態8に係わり撓み量とバ
イメタル金属の厚さの関係を示す特性図である。
FIG. 19 is a characteristic diagram showing the relationship between the amount of flexure and the thickness of bimetal according to the eighth embodiment of the present invention.

【図20】 本発明の実施の形態8に係わる説明図であ
る。
FIG. 20 is an explanatory diagram according to the eighth embodiment of the present invention.

【図21】 本発明の実施の形態8に係わりバイメタル
金属と冷却装置の厚さの比とバイメタル金属と冷却装置
の縦弾性計数の比との関係を示す特性図である。
FIG. 21 is a characteristic diagram showing a relationship between a bimetal metal / cooling device thickness ratio and a bimetal metal / cooling device longitudinal elasticity coefficient ratio according to the eighth embodiment of the present invention;

【図22】 本発明の実施の形態10に係わるマイクロ
ビーム板の一部を拡大して示す正面図である。
FIG. 22 is an enlarged front view showing a part of a microbeam plate according to the tenth embodiment of the present invention.

【図23】 従来パワー半導体装置の構成を示す断面図
である。
FIG. 23 is a sectional view showing a configuration of a conventional power semiconductor device.

【図24】 図23の伝熱性金属フォイルを拡大して示
す斜視図である。
FIG. 24 is an enlarged perspective view showing the heat conductive metal foil of FIG. 23.

【符号の説明】[Explanation of symbols]

1 パワー半導体モジュール、2 パワー半導体素子、
3 絶縁性基板、4放熱用金属ベース板、5 冷却装
置、6〜9 はんだ、10 マイクロビーム板、10a
マイクロビーム、10b 支持部、11 第1の金属
板、12 第2の金属板、13 圧着部、14 溝、1
7 第1の金属板を兼用した放熱用金属ベース版、18
放熱用金属ベース版を兼用した冷却装置、19 第2
の金属板を兼用した冷却装置、20 バイメタル金属、
21 はんだまたは圧着部、35伝熱性金属フォイル、
36 切溝、40 パッケージ、41 キャップ。
1 power semiconductor module, 2 power semiconductor element,
3 Insulating substrate, 4 Heat dissipation metal base plate, 5 Cooling device, 6-9 solder, 10 Micro beam plate, 10a
Microbeam, 10b Supporting part, 11 First metal plate, 12 Second metal plate, 13 Crimping part, 14 Groove, 1
7 Metal base plate for heat dissipation, which doubles as the first metal plate, 18
Cooling device that doubles as a metal base plate for heat dissipation, 19 2
Cooling device that doubles as a metal plate, 20 bimetal metal,
21 solder or crimp part, 35 heat conductive metal foil,
36 kerfs, 40 packages, 41 caps.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 23/34 - 23/473 ─────────────────────────────────────────────────── ─── Continuation of the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 23/34-23/473

Claims (14)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 線膨張率の異なる部材間に配置されるも
のであって、線膨張率の異なる少なくとも2枚の熱伝導
性金属板を圧着してなり、これら複数の金属板にまたが
って形成された溝によって仕切られた複数の柱状の梁と
その支持部で構成されたことを特徴とする熱歪吸収体。
1. A member disposed between members having different linear expansion coefficients, which is formed by pressing at least two thermally conductive metal plates having different linear expansion coefficients, and is formed over the plurality of metal plates. A thermal strain absorber comprising a plurality of pillar-shaped beams partitioned by the formed grooves and supporting portions thereof.
【請求項2】 溝は一方の金属板側から他方の金属板へ
所定深さ食い込むように形成されていることを特徴とす
る請求項1に記載の熱歪吸収体。
2. The thermal strain absorber according to claim 1, wherein the groove is formed so as to penetrate from one metal plate side to the other metal plate by a predetermined depth.
【請求項3】 食い込む深さは梁の幅の1/4以上であ
ることを特徴とする請求項2に記載の熱歪吸収体。
3. The thermal strain absorber according to claim 2, wherein the bite depth is 1/4 or more of the width of the beam.
【請求項4】 溝は複数の金属板にまたがって中央部に
形成されており、両端に支持部を有することを特徴とす
る請求項1に記載の熱歪吸収体。
4. The thermal strain absorber according to claim 1, wherein the groove is formed in a central portion over a plurality of metal plates and has support portions at both ends.
【請求項5】 中央部の梁の断面積を周辺部の梁の断面
積よりも大きくしたことを特徴とする請求項1ないし4
のいずれかに記載の熱歪吸収体。
5. The cross-sectional area of the central beam is larger than the cross-sectional area of the peripheral beam.
The thermal strain absorber according to any one of 1.
【請求項6】 溝は碁盤の目状に形成されており、梁は
角柱状であることを特徴とする請求項1ないし5のいず
れかに記載の熱歪吸収体。
6. The thermal strain absorber according to claim 1, wherein the grooves are formed in a grid pattern and the beams are prismatic.
【請求項7】 パワー半導体素子と放熱部とを有するパ
ワー半導体装置において、上記パワー半導体素子から放
熱部への熱伝導路中に、線膨張率の異なる少なくとも2
枚の熱伝導性金属板を圧着してなるものであって、これ
ら複数の金属板にまたがって形成された溝によって仕切
られた複数の柱状の梁とその支持部で構成された熱歪吸
収体を配置し、該熱歪吸収体の線膨張率の小さな方の金
属板をパワー半導体素子側と、線膨張率の大きな方の金
属板を放熱部側とそれぞれ接合したことを特徴とするパ
ワー半導体装置。
7. A power semiconductor device having a power semiconductor element and a heat radiating portion, wherein at least two different linear expansion coefficients are provided in a heat conduction path from the power semiconductor element to the heat radiating portion.
A thermal strain absorber composed of a plurality of heat-conductive metal plates pressure-bonded to each other, the plurality of columnar beams partitioned by grooves formed across the plurality of metal plates and a supporting portion thereof. And a metal plate having a smaller linear expansion coefficient of the thermal strain absorber is bonded to the power semiconductor element side, and a metal plate having a larger linear expansion coefficient is bonded to the heat radiating portion side. apparatus.
【請求項8】 熱歪吸収体の溝は一方の金属板側から他
方の金属板へ所定深さ食い込むように形成されているこ
とを特徴とする請求項7に記載のパワー半導体装置。
8. The power semiconductor device according to claim 7, wherein the groove of the thermal strain absorber is formed so as to penetrate from one metal plate side to the other metal plate by a predetermined depth.
【請求項9】 食い込む深さは梁の幅の1/4以上であ
ることを特徴とする請求項8に記載のパワー半導体装
置。
9. The power semiconductor device according to claim 8, wherein the bite depth is ¼ or more of the width of the beam.
【請求項10】 熱歪吸収体の溝は複数の金属板にまた
がって中央部に形成されており、両端に支持部を有する
ことを特徴とする請求項7に記載のパワー半導体装置。
10. The power semiconductor device according to claim 7, wherein the groove of the thermal strain absorber is formed in a central portion over a plurality of metal plates, and has support portions at both ends.
【請求項11】 熱歪吸収体は、中央部の梁の断面積を
周辺部の梁の断面積よりも大きくしたものであることを
特徴とする請求項7ないし10のいずれかに記載のパワ
ー半導体装置。
11. The power according to claim 7, wherein the thermal strain absorber has a cross-sectional area of the beam in the central portion larger than that of the beam in the peripheral portion. Semiconductor device.
【請求項12】 熱歪吸収体の溝は碁盤の目状に形成さ
れており、梁は角柱状であることを特徴とする請求項7
ないし11のいずれかに記載のパワー半導体装置。
12. The thermal strain absorber has grooves formed in a grid pattern, and the beam has a prismatic shape.
12. The power semiconductor device according to any one of 1 to 11.
【請求項13】 放熱部は板状であり、該放熱部の熱歪
吸収体が配置された側と反対側に放熱部よりも線膨張率
の大きな金属を接合したことを特徴とする請求項7に記
載のパワー半導体装置。
13. The heat radiating portion is plate-shaped, and thermal strain of the heat radiating portion is generated.
The power semiconductor device according to claim 7, wherein a metal having a larger linear expansion coefficient than that of the heat radiating portion is bonded to a side opposite to the side where the absorber is arranged .
【請求項14】 放熱部よりも線膨張率の大きな金属
厚さは、その弾性係数をE2、放熱部の弾性係数をE1
放熱部の厚さをh1とした場合に、式(1)で求めた値
2の0.5倍以上2倍以下であることを特徴とする請
求項13に記載のパワー半導体装置。 【数1】
14. The thickness of a metal having a linear expansion coefficient larger than that of the heat radiating portion has an elastic coefficient of E 2 , an elastic coefficient of the heat radiating portion is E 1 ,
14. The power semiconductor device according to claim 13, wherein when the thickness of the heat dissipation portion is h 1 , it is 0.5 times or more and 2 times or less of the value h 2 obtained by the equation (1). [Equation 1]
JP7324299A 1999-03-18 1999-03-18 Thermal strain absorber and power semiconductor device using the same Expired - Fee Related JP3449285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7324299A JP3449285B2 (en) 1999-03-18 1999-03-18 Thermal strain absorber and power semiconductor device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7324299A JP3449285B2 (en) 1999-03-18 1999-03-18 Thermal strain absorber and power semiconductor device using the same

Publications (2)

Publication Number Publication Date
JP2000269391A JP2000269391A (en) 2000-09-29
JP3449285B2 true JP3449285B2 (en) 2003-09-22

Family

ID=13512530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7324299A Expired - Fee Related JP3449285B2 (en) 1999-03-18 1999-03-18 Thermal strain absorber and power semiconductor device using the same

Country Status (1)

Country Link
JP (1) JP3449285B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8871355B1 (en) * 2010-10-08 2014-10-28 Clemson University Microstructure enhanced sinter bonding of metal injection molded part to a support substrate
JP6308780B2 (en) * 2013-12-27 2018-04-11 三菱電機株式会社 Power module
CN110456498A (en) * 2019-08-06 2019-11-15 南京英田光学工程股份有限公司 Based on the adjustable main beam-expanding system for carrying out Control Thermal Deformation with reversed thermal compensation
DE102021130989A1 (en) 2021-11-25 2023-05-25 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung ELECTRONIC DEVICE AND METHOD OF MAKING AN ELECTRONIC DEVICE

Also Published As

Publication number Publication date
JP2000269391A (en) 2000-09-29

Similar Documents

Publication Publication Date Title
JP4621531B2 (en) Heat dissipation device
KR100993754B1 (en) Semiconductor device
US5567986A (en) Heat sink
US5894882A (en) Heat sink structure for cooling a substrate and an electronic apparatus having such a heat sink structure
US7768121B2 (en) Apparatus and methods for cooling semiconductor integrated circuit package structures
US6554060B2 (en) Heat sink with fins
US20020015288A1 (en) High performance thermal/mechanical interface for fixed-gap references for high heat flux and power semiconductor applications
EP2139036B1 (en) Semiconductor device
EP1901350A1 (en) Heat dissipation device and power module
US7834445B2 (en) Heat sink with thermally compliant beams
JPH07161883A (en) Heat sink
JPH1038484A (en) Flat type heat pipe
JP2001183080A (en) Method for manufacturing compressed mesh wick and flat surface type heat pipe having compressed mesh wick
JPS6323658B2 (en)
US6260610B1 (en) Convoluted fin heat sinks with base topography for thermal enhancement
JPH0157502B2 (en)
KR20120025432A (en) Semiconductor unit
US6830097B2 (en) Combination tower and serpentine fin heat sink device
JP3449285B2 (en) Thermal strain absorber and power semiconductor device using the same
JP3438944B2 (en) Heat pipe type heat radiating unit and manufacturing method thereof
JP2000332175A (en) Heat sink with fin
JPH11121662A (en) Cooling structure for semiconductor device
JP5658837B2 (en) Heat dissipation device for electronic parts
US20070277962A1 (en) Two-phase cooling system for cooling power electronic components
WO2023067894A1 (en) Cooling device and method for manufacturing cooling device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees