[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3288571B2 - Method for producing bulk compact of amorphous alloy powder - Google Patents

Method for producing bulk compact of amorphous alloy powder

Info

Publication number
JP3288571B2
JP3288571B2 JP03971796A JP3971796A JP3288571B2 JP 3288571 B2 JP3288571 B2 JP 3288571B2 JP 03971796 A JP03971796 A JP 03971796A JP 3971796 A JP3971796 A JP 3971796A JP 3288571 B2 JP3288571 B2 JP 3288571B2
Authority
JP
Japan
Prior art keywords
amorphous alloy
powder
glass
alloy powder
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03971796A
Other languages
Japanese (ja)
Other versions
JPH09235660A (en
Inventor
正昭 八木
功 遠藤
秀生 越本
裕史 山本
勇 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP03971796A priority Critical patent/JP3288571B2/en
Publication of JPH09235660A publication Critical patent/JPH09235660A/en
Application granted granted Critical
Publication of JP3288571B2 publication Critical patent/JP3288571B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非晶質合金粉末の
バルク成形体に関する。
The present invention relates to a bulk compact of an amorphous alloy powder.

【0002】[0002]

【従来の技術】非晶質の磁性合金は、結晶材料と比べて
高耐食性、高耐摩耗性、高強度、高透磁率等の点ですぐ
れた特性を示すことが知られている。しかし、この非晶
質合金は、非晶質状態を確保するための製造プロセスの
関係上、一部の例外を除いて、その形状は薄帯状、細線
状に限られている。このため、最近では、粉末から任意
形状の成形体を作製する方法が検討されている。非晶質
合金粉末の場合、その非晶質状態を維持するために、一
般的な焼結体のように結晶化温度以上で金属どうしを拡
散させて接合することができない。即ち、合金の成形
は、結晶化温度よりも低温で実施せねばならないから、
ホットプレス、HIP(熱間等方加圧)等の加圧焼結法
では、非晶質合金粉末どうしをバルク化することは困難
であった。
2. Description of the Related Art Amorphous magnetic alloys are known to exhibit excellent properties in terms of high corrosion resistance, high wear resistance, high strength, high magnetic permeability, etc., as compared with crystalline materials. However, the shape of this amorphous alloy is limited to a ribbon shape and a thin line shape, with some exceptions, due to a manufacturing process for securing an amorphous state. For this reason, recently, a method of producing a molded article of an arbitrary shape from powder has been studied. In the case of an amorphous alloy powder, in order to maintain the amorphous state, it is impossible to diffuse and join metals at a temperature higher than the crystallization temperature as in a general sintered body. That is, since the forming of the alloy must be performed at a temperature lower than the crystallization temperature,
In a pressure sintering method such as hot pressing or HIP (hot isostatic pressing), it has been difficult to make amorphous alloy powders into bulk.

【0003】非晶質合金粉末からバルク体を成形する方
法として、爆薬法、衝撃銃法等を挙げることができる
が、これらの方法では、非常に大きなエネルギーを得る
ために特殊な装置を必要とするだけでなく、成形工程が
複雑で生産性が低い問題がある。
As a method of forming a bulk body from an amorphous alloy powder, an explosive method, an impact gun method, and the like can be cited. However, these methods require special equipment to obtain a very large energy. In addition, there is a problem that the molding process is complicated and productivity is low.

【0004】[0004]

【発明が解決しようとする課題】本発明は、加圧焼結法
により、非晶質合金粉末からバルク成形体を作製するこ
とを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to produce a bulk compact from an amorphous alloy powder by a pressure sintering method.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するた
め、本発明では、非晶質合金の粉末と、該非晶質合金の
結晶化温度よりも軟化点が低いガラスの粉末との混合粉
末を、ガラスの軟化点よりも高く、非晶質合金の結晶化
温度よりも低い温度で加圧焼結することにより、軟化し
たガラスをバインダーとして作用させ、非晶質合金の粒
子をガラスを介して接合し、非晶質合金粉末をバルク化
できるようにしたものである。
In order to achieve the above-mentioned object, the present invention provides a mixed powder of an amorphous alloy powder and a glass powder having a softening point lower than the crystallization temperature of the amorphous alloy. By sintering under pressure at a temperature higher than the softening point of the glass and lower than the crystallization temperature of the amorphous alloy, the softened glass acts as a binder, and the particles of the amorphous alloy pass through the glass. By joining, the amorphous alloy powder can be made into a bulk.

【0006】ガラスの混合量は、3〜20vol%が望ま
しい。ガラスの混合量が少なすぎると、非晶質合金粉末
をバルク化させることができないためであり、一方、混
合量を増やすと結合強度は大きくなるが、成形体中にお
ける非晶質合金の量が少なくなり、十分な特性を確保で
きなくなるためである。なお、バルク成形体の結合強度
は、穴明け等の機械加工を施したときに形崩れがしない
程度で十分である。
[0006] The mixing amount of glass is desirably 3 to 20 vol%. If the mixing amount of the glass is too small, the amorphous alloy powder cannot be made into a bulk.On the other hand, if the mixing amount is increased, the bonding strength increases, but the amount of the amorphous alloy in the compact is reduced. This is because it becomes impossible to secure sufficient characteristics. Note that the bonding strength of the bulk molded body is enough that the shape does not collapse when machining such as drilling is performed.

【0007】非晶質状態での使用が所望される合金とし
て、Fe系、Co系等の合金を挙げることができる。こ
れら合金の結晶化温度は、通常、約500℃前後であ
る。ガラスは、軟化点が非晶質合金の結晶化温度よりも
低温のものを使用し、例えば約100〜200℃低いも
のを使用することが望ましい。加圧焼結する際、焼結温
度の範囲に幅を持たせるためである。適当なガラス材料
として、酸化鉛含有のホウ酸塩系ガラス(PbO・B2
3)等の低軟化点ガラスを挙げることができる。
[0007] As alloys that are desired to be used in an amorphous state, alloys such as Fe-based and Co-based can be given. The crystallization temperature of these alloys is usually around 500 ° C. A glass having a softening point lower than the crystallization temperature of the amorphous alloy is used, and for example, a glass having a softening point lower by about 100 to 200 ° C. is desirably used. This is because a range of the sintering temperature is given a range when performing pressure sintering. As a suitable glass material, a borate-based glass containing lead oxide (PbO.B 2 O
Glasses having a low softening point, such as 3 ).

【0008】[0008]

【作用】非晶質合金粉末とガラス粉末の混合粉末の加圧
焼結において、加熱温度は非晶質合金の結晶化温度より
も温度が低いから、非晶質合金は非晶質状態が維持され
る。一方、焼結加熱温度は、ガラスの軟化点よりも温度
が高いから、その温度で圧力が加えられると、軟化した
ガラスの粉末は非晶質合金粒子の間にほぼ隙間なく侵入
する。冷却後、ガラスは硬化して、非晶質合金粉末のバ
インダーとしての役割を果たすことになり、焼結品はバ
ルク化し、高密度の成形体が得られる。
[Function] In the pressure sintering of the mixed powder of the amorphous alloy powder and the glass powder, the heating temperature is lower than the crystallization temperature of the amorphous alloy, so that the amorphous alloy maintains the amorphous state. Is done. On the other hand, since the sintering heating temperature is higher than the softening point of the glass, when a pressure is applied at that temperature, the softened glass powder penetrates almost without gaps between the amorphous alloy particles. After cooling, the glass hardens and plays a role as a binder for the amorphous alloy powder, and the sintered product is bulked to obtain a high-density compact.

【0009】[0009]

【発明の実施の形態】非晶質合金の粉末は、原料合金を
その融点より50〜200℃程度高温に溶解し、例えば
高速回転水流法により、約105K/sec以上の速い冷却速
度で急冷することにより作製することができる。なお、
高速回転水流法とは、冷却用筒体の内周面に旋回しなが
ら流下する冷却水層を形成し、該冷却水層に溶融金属流
の噴流を供給し、これを旋回する冷却液層によって分断
し、急冷凝固させて金属粉末を得る方法(特開平4−1
7605号公報)であり、量産性にすぐれている。
BEST MODE FOR CARRYING OUT THE INVENTION A powder of an amorphous alloy is prepared by melting a raw material alloy at a temperature of about 50 to 200 ° C. higher than its melting point, for example, by a high speed rotating water flow method at a high cooling rate of about 10 5 K / sec or more. It can be produced by quenching. In addition,
The high-speed rotation water flow method is to form a cooling water layer that flows down while rotating on the inner peripheral surface of the cooling cylinder, supply a jet of a molten metal flow to the cooling water layer, and rotate A method of obtaining a metal powder by dividing and rapidly solidifying (see JP-A-4-14-1)
7605), which is excellent in mass productivity.

【0010】非晶質合金粉末の粒径は非晶質性を確保す
るために約250μm以下とし、平均粒径は約100〜
150μmが好ましい。
The particle size of the amorphous alloy powder is set to about 250 μm or less in order to secure the amorphous property, and the average particle size is about 100 to 100 μm.
150 μm is preferred.

【0011】低軟化点ガラスの粉末は、非晶質合金粉末
の粒子の間にうまく入り込むことができるように、非晶
質合金粉末の平均粒径の約1/20よりも小さくするこ
とが好ましい。粒径が約250μm以下、平均粒径が約
100〜150μmの非晶質合金粉末に対しては、ガラ
ス粉末の粒径は約10μm以下、平均粒径は約1〜7μm
が好ましい。ガラス粉末を非晶質合金粉末と共にボール
ミルの中で混合する場合、ガラス粉末は、その攪拌過程
で粉砕されて微細化されるため、ボールミルに投入する
段階では適当に砕かれたものを使用すればよく、その粒
径は攪拌時間によって調節することができる。
[0011] The low softening point glass powder is preferably smaller than about 1/20 of the average particle size of the amorphous alloy powder so that it can enter between the particles of the amorphous alloy powder. . For an amorphous alloy powder having a particle diameter of about 250 μm or less and an average particle diameter of about 100 to 150 μm, the particle diameter of the glass powder is about 10 μm or less, and the average particle diameter is about 1 to 7 μm.
Is preferred. When the glass powder is mixed with the amorphous alloy powder in a ball mill, the glass powder is pulverized and refined in the stirring process. Frequently, the particle size can be adjusted by the stirring time.

【0012】[0012]

【実施例】実施例1 この実施例では、ホットプレスにより、非晶質Fe系合
金粉末のバルク成形を行なうものである。前述の高速回
転水流法により、Fe78Si913の非晶質合金粉末を
作製した。Fe78Si913の非晶質合金粉末の平均粒
径は約150μmである。なお、Fe78Si913の結晶
化開始温度は約470℃である。このFe78Si913
の非晶質合金粉末と、軟化点が約320℃のガラス(酸
化鉛含有のホウ酸塩系ガラス)粉末を、97:3の混合
比(容積比)にてボールミルの中で24時間攪拌混合し
た。混合後のガラス粉末の平均粒径は約1〜2μmであ
る。この混合粉末を、圧力1.6GPa、温度450℃(ガ
ラスの軟化点以上、Fe合金の結晶化温度以下の温度)
の条件の下、1分以内の時間内でホットプレスを行な
い、直径20mm、長さ10mmの円柱状成形体を得た。得
られた成形体はバルク化されており、その相対密度は9
5%であった。なお、「相対密度」とは、円柱状成形体
を完全緻密体と仮定したときの重量に対する実際の重量
の比率として求めたものである。完全緻密体の重量は、
非晶質合金粉末とガラス粉末の混合比に基づいて計算し
た値である。
EXAMPLE 1 In this example, bulk molding of amorphous Fe-based alloy powder is performed by hot pressing. An amorphous alloy powder of Fe 78 Si 9 B 13 was produced by the high-speed rotating water flow method described above. The average particle size of the amorphous alloy powder of Fe 78 Si 9 B 13 is about 150 μm. Incidentally, the crystallization starting temperature of Fe7 8 Si 9 B 13 is about 470 ° C.. This Fe 78 Si 9 B 13
Of amorphous alloy powder and glass (borate-based glass containing lead oxide) having a softening point of about 320 ° C. in a ball mill at a mixing ratio (volume ratio) of 97: 3 for 24 hours. did. The average particle size of the glass powder after mixing is about 1-2 μm. This mixed powder is subjected to a pressure of 1.6 GPa and a temperature of 450 ° C. (a temperature not lower than the softening point of glass and not higher than the crystallization temperature of the Fe alloy).
Under the conditions described above, hot pressing was performed within 1 minute to obtain a cylindrical molded body having a diameter of 20 mm and a length of 10 mm. The obtained compact is bulked, and its relative density is 9
5%. The “relative density” is obtained as a ratio of an actual weight to a weight when the cylindrical molded body is assumed to be a perfect dense body. The weight of a perfectly dense body is
This is a value calculated based on the mixing ratio between the amorphous alloy powder and the glass powder.

【0013】バルク化を比較するために、ガラス粉末は
添加せず、Fe78Si913の非晶質合金粉末のみを圧
力1.6GPa、温度450℃の条件でホットプレスを行な
った。しかし、プレス型から取り外した成形体に外力を
加えると、容易に崩壊してしまい、バルク化されていな
かった。
In order to compare the bulking, hot pressing was performed under the conditions of a pressure of 1.6 GPa and a temperature of 450 ° C. only with an amorphous alloy powder of Fe 78 Si 9 B 13 without adding glass powder. However, when an external force is applied to the molded body removed from the press die, it collapses easily and is not bulky.

【0014】次に、結晶構造を比較するために、ガラス
粉末は添加せず、Fe78Si913の非晶質合金粉末の
みを圧力1.6GPa、温度900℃の条件でホットプレス
を行ない、結晶構造の成形体を作製した。この結晶構造
の成形体、並びに非晶質合金粉末、及び非晶質合金粉末
とガラス粉末の混合粉末を450℃の温度でホットプレ
スした前記成形体の夫々について、X線回折パターンを
調べた。その結果を図1に示す。図1から明らかなよう
に、900℃の温度でホットプレスした成形体は、結晶
構造を表わすピークが数箇所で観察されているのに対
し、非晶質合金粉末とガラス粉末の混合粉末を450℃
の温度でホットプレスした成形体は、非晶質粉末と略同
じX線回折パターンであり、非晶質状態であることがわ
かる。
Next, in order to compare the crystal structures, hot pressing was performed under the conditions of a pressure of 1.6 GPa and a temperature of 900 ° C. only with an amorphous alloy powder of Fe 78 Si 9 B 13 without adding glass powder. Thus, a compact having a crystal structure was produced. An X-ray diffraction pattern of each of the compact having the crystal structure, the amorphous alloy powder, and the compact obtained by hot pressing the mixed powder of the amorphous alloy powder and the glass powder at a temperature of 450 ° C. was examined. The result is shown in FIG. As is clear from FIG. 1, in the compact hot-pressed at a temperature of 900 ° C., peaks indicating the crystal structure are observed at several places, whereas 450 μm of the mixed powder of the amorphous alloy powder and the glass powder is used. ° C
The green compact hot-pressed at the temperature of the above has substantially the same X-ray diffraction pattern as that of the amorphous powder, indicating that it is in an amorphous state.

【0015】実施例2 この実施例では、ホットプレスにより、非晶質Co系合
金粉末のバルク成形を行なうものである。実施例1と同
様、高速回転水流法により、(Co0.95Fe0.05)75(S
0.60. 4)25の非晶質合金粉末を作製した。(Co0.95
Fe0.05)75(Si0.60.4)25の非晶質合金粉末の平均
粒径は約150μmである。なお、(Co0.95Fe0.05)
75(Si0.60.4)25の結晶化開始温度は約490℃であ
る。この非晶質合金粉末と、軟化点が約320℃のガラ
ス粉末を、97:3の混合比(容積比)にてボールミル
の中で24時間攪拌混合した。混合後のガラス粉末の平
均粒径は約1〜2μmである。この混合粉末を、圧力1.
6GPa、温度450℃(ガラスの軟化点以上、Co合金の
結晶化温度以下の温度)の条件の下、1分以内の時間内
でホットプレスを行ない、直径20mm、長さ10mmの円
柱状成形体を得た。得られた成形体はバルク化されてお
り、その相対密度は95%であった。
Embodiment 2 In this embodiment, bulk molding of an amorphous Co-based alloy powder is performed by hot pressing. In the same manner as in Example 1, (Co 0.95 Fe 0.05 ) 75 (S
The amorphous alloy powder of i 0.6 B 0. 4) 25 was prepared. (Co 0.95
The average particle size of the amorphous alloy powder of Fe 0.05) 75 (Si 0.6 B 0.4) 25 is about 150 [mu] m. Note that (Co 0.95 Fe 0.05 )
The crystallization onset temperature of 75 (Si 0.6 B 0.4 ) 25 is about 490 ° C. This amorphous alloy powder and glass powder having a softening point of about 320 ° C. were stirred and mixed in a ball mill at a mixing ratio (volume ratio) of 97: 3 for 24 hours. The average particle size of the glass powder after mixing is about 1-2 μm. This mixed powder is pressed at a pressure of 1.
Under a condition of 6 GPa and a temperature of 450 ° C. (a temperature equal to or higher than the softening point of glass and equal to or lower than the crystallization temperature of the Co alloy), a hot press is performed within 1 minute within a period of 1 minute, and a cylindrical molded body having a diameter of 20 mm and a length of 10 mm I got The obtained compact was bulked, and its relative density was 95%.

【0016】バルク化を比較するために、ガラス粉末は
添加せずに、(Co0.95Fe0.05)75(Si0.60.4)25
非晶質合金粉末のみを、同じように圧力1.6GPa、温度
450℃の条件でホットプレスを行なった。しかし、プ
レス型から取り外した成形体に外力を加えると、容易に
崩壊してしまい、バルク化されていなかった。
In order to compare the bulking, an amorphous alloy powder of (Co 0.95 Fe 0.05 ) 75 (Si 0.6 B 0.4 ) 25 was similarly added without adding glass powder, and the pressure was similarly set to 1.6 GPa. Hot pressing was performed at a temperature of 450 ° C. However, when an external force is applied to the molded body removed from the press die, it collapses easily and is not bulky.

【0017】さらに、結晶構造を比較するために、ガラ
ス粉末は添加せず、(Co0.95Fe0 .05)75(Si0.6
0.4)25の非晶質合金粉末のみを圧力1.6GPa、温度90
0℃の条件でホットプレスを行ない、結晶構造の成形体
を作製した。この結晶構造の成形体、並びに非晶質合金
粉末、及び非晶質合金粉末とガラス粉末の混合粉末を4
50℃の温度でホットプレスした前記成形体の夫々につ
いて、X線回折パターンを調べた。その結果を図2に示
す。図2から明らかなように、900℃の温度でホット
プレスした成形体は、結晶構造を表わすピークが数箇所
で観察されているのに対し、非晶質合金粉末とガラス粉
末の混合粉末を450℃の温度でホットプレスした成形
体は、非晶質粉末と略同じX線回折パターンであり、非
晶質状態であることがわかる。
Furthermore, in order to compare the crystal structure, the glass powder is not added, (Co 0.95 Fe 0 .05) 75 (Si 0.6 B
0.4 ) 25 amorphous alloy powder only, pressure 1.6 GPa, temperature 90
Hot pressing was performed under the condition of 0 ° C. to produce a compact having a crystal structure. A compact having this crystal structure, an amorphous alloy powder, and a mixed powder of an amorphous alloy powder and a glass powder
An X-ray diffraction pattern was examined for each of the compacts hot-pressed at a temperature of 50 ° C. The result is shown in FIG. As is clear from FIG. 2, in the compact hot-pressed at a temperature of 900 ° C., peaks indicating the crystal structure are observed at several places, whereas 450 μm of the mixed powder of the amorphous alloy powder and the glass powder is used. The compact hot-pressed at a temperature of ° C. has almost the same X-ray diffraction pattern as that of the amorphous powder, indicating that it is in an amorphous state.

【0018】実施例3 この実施例では、HIPにより、非晶質Fe系合金粉末
のバルク成形を行なうものである。Fe78Si913
非晶質合金粉末は実施例1と同じものを使用した。この
非晶質合金粉末と、軟化点が約320℃のガラス粉末
を、95:5の混合比(容積比)にてボールミルの中で
24時間攪拌混合した。混合後のガラス粉末の平均粒径
は約1〜2μmである。この混合粉末をカプセル缶に装
填し、脱気密封後、圧力176MPa、温度450℃の条
件の下、1分以内の時間内でHIPによる焼結を行な
い、直径30mm、長さ40mmの円柱状成形体を得た。得
られた成形体はバルク化されており、その相対密度は8
5%であった。次に、圧力980MPa、温度450℃の
条件の下、1分以内の時間内でHIPによる焼結を行な
った。得られた成形体はバルク化されており、その相対
密度は97%であった。このバルク成形体のミクロ組織
を図3に示す。図3中、白い部分が非晶質合金粒子、黒
い部分がガラスを表わしている。図3に示されるよう
に、非晶質合金の粒子は幾分押し潰された状態となり、
ガラスを介して接合されていることがわかる。これら2
つのバルク成形体について、実施例1及び2と同じ要領
にてX線回折パターンを調べたところ、2つのバルク成
形体は非晶質状態であることが確認された。
Embodiment 3 In this embodiment, bulk molding of an amorphous Fe-based alloy powder is performed by HIP. Amorphous alloy powder of Fe 78 Si 9 B 13 was the same as used in Example 1. This amorphous alloy powder and glass powder having a softening point of about 320 ° C. were stirred and mixed in a ball mill at a mixing ratio (volume ratio) of 95: 5 for 24 hours. The average particle size of the glass powder after mixing is about 1-2 μm. This mixed powder was charged in a capsule can, and after degassing and sealing, sintering by HIP was performed within 1 minute under the conditions of a pressure of 176 MPa and a temperature of 450 ° C. to form a cylindrical shape having a diameter of 30 mm and a length of 40 mm. I got a body. The obtained compact is bulked and has a relative density of 8
5%. Next, sintering by HIP was performed under the conditions of a pressure of 980 MPa and a temperature of 450 ° C. within a period of one minute or less. The obtained compact was bulked, and its relative density was 97%. FIG. 3 shows the microstructure of this bulk compact. In FIG. 3, white portions represent amorphous alloy particles, and black portions represent glass. As shown in FIG. 3, the particles of the amorphous alloy are in a somewhat crushed state,
It can be seen that they are joined via the glass. These two
When the X-ray diffraction patterns of the two bulk compacts were examined in the same manner as in Examples 1 and 2, it was confirmed that the two bulk compacts were in an amorphous state.

【0019】バルク化を比較するために、ガラス粉末は
添加せず、Fe78Si913の非晶質合金粉末のみを、
同じように圧力980MPa、温度450℃の条件でHI
Pによる焼結を行ない、円柱状成形体を作製した。しか
し、プレス型から取り外した成形体に外力を加えると容
易に崩壊してしまい、バルク化されていなかった。
For comparison of bulking, no glass powder was added, and only the amorphous alloy powder of Fe 78 Si 9 B 13 was used.
Similarly, at a pressure of 980 MPa and a temperature of 450 ° C., HI
By sintering with P, a cylindrical molded body was produced. However, when an external force is applied to the molded body removed from the press die, the molded body is easily collapsed and is not bulked.

【0020】[0020]

【発明の効果】本発明によれば、非晶質合金の粉末を加
圧焼結法によりバルク成形体にすることができるから、
磁性が要求される各種形状のデバイスに適用することが
できる。バルク成形体を高周波用のパワーデバイス用に
使用する場合、一定以上の透磁率を得るための高充填成
形が必要であるが、この場合、ガラス粉末の添加量を少
なくすればよい。一方、渦電流損失を抑制するために粒
子間の絶縁確保が重要視される用途に使用される場合、
ガラスが絶縁材としての役割を果たすため、ガラス粉末
の添加量を多めにすればよい。このように、本発明によ
れば、要求される諸特性に応じて、ガラス粉末の添加量
を調節することにより、所望通りの非晶質バルク成形体
を作製することが可能となる。
According to the present invention, the amorphous alloy powder can be formed into a bulk compact by the pressure sintering method.
It can be applied to devices of various shapes requiring magnetism. When the bulk compact is used for a high-frequency power device, it is necessary to perform high filling molding in order to obtain a certain or higher magnetic permeability. In this case, the amount of glass powder to be added may be reduced. On the other hand, when used for applications where securing insulation between particles is important to suppress eddy current loss,
Since glass serves as an insulating material, the amount of glass powder added may be increased. As described above, according to the present invention, it is possible to produce a desired amorphous bulk molded body by adjusting the amount of glass powder to be added according to various required properties.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Fe系非晶質合金粉末のバルク成形体のX線回
折パターンを示す図である。
FIG. 1 is a view showing an X-ray diffraction pattern of a bulk compact of an Fe-based amorphous alloy powder.

【図2】Co系非晶質合金粉末のバルク成形体のX線回
折パターンを示す図である。
FIG. 2 is a view showing an X-ray diffraction pattern of a bulk compact of a Co-based amorphous alloy powder.

【図3】ガラス粉末とFe78Si913の非晶質合金粉
末の混合粉末を、圧力980MPa、温度450℃の条
件でHIPして得られたバルク成形体のミクロ組織を示
す図である。
FIG. 3 is a view showing a microstructure of a bulk compact obtained by HIPing a mixed powder of a glass powder and an amorphous alloy powder of Fe 78 Si 9 B 13 under the conditions of a pressure of 980 MPa and a temperature of 450 ° C. .

フロントページの続き (72)発明者 山本 裕史 兵庫県尼崎市浜1丁目1番1号 株式会 社クボタ技術開発研究所内 (72)発明者 大塚 勇 兵庫県尼崎市浜1丁目1番1号 株式会 社クボタ技術開発研究所内 (56)参考文献 特開 平1−290206(JP,A) 特開 昭61−166902(JP,A) 特開 昭62−74032(JP,A) 特開 平4−99833(JP,A) 特開 昭62−232103(JP,A) 特開 平4−341502(JP,A) (58)調査した分野(Int.Cl.7,DB名) B22F 3/15 C22C 1/04 C22C 45/00 Continued on the front page (72) Inventor Hiroshi Yamamoto 1-1-1, Hama, Amagasaki-shi, Hyogo Prefecture Inside Kubota Technology Development Laboratory Co., Ltd. (72) Inventor Isamu Otsuka 1-1-1, Hama, Amagasaki-shi, Hyogo Co., Ltd. Kubota Corporation Inside the Technology Development Laboratory (56) References JP-A-1-290206 (JP, A) JP-A-61-166902 (JP, A) JP-A-62-74032 (JP, A) JP-A-4-99833 (JP) , A) JP-A-62-232103 (JP, A) JP-A-4-341502 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) B22F 3/15 C22C 1/04 C22C 45/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 非晶質合金の粉末と、軟化点が非晶質合
金の結晶化温度よりも低く、平均粒径が非晶質合金粉末
の平均粒径の1/20よりも小さいガラス粉末とを混合
する工程と、得られた混合粉末を、ガラスの軟化点より
も高く、非晶質合金の結晶化温度よりも低い温度で加圧
焼結する工程を有することを特徴とする非晶質合金粉末
のバルク成形体の製造方法。
An amorphous alloy powder having a softening point of an amorphous alloy
Amorphous alloy powder with an average particle size lower than the crystallization temperature of gold
With glass powder smaller than 1/20 of the average particle size of
And mixing the obtained mixed powder from the softening point of the glass.
Pressure at a temperature lower than the crystallization temperature of the amorphous alloy
Amorphous alloy powder having a step of sintering
Method for producing a bulk molded article.
【請求項2】 非晶質合金の粉末と、該非晶質合金の結
晶化温度よりも低い軟化点を有するガラスの粉末とを混
合し、撹拌によって、ガラス粉末の平均粒径が非晶質合
金粉末の平均粒径の1/20よりも小さくなるまでガラ
ス粉末を粉砕して混合粉末を作製する工程と、得られた
混合粉末を、ガラスの軟化点よりも高く、非晶質合金の
結晶化温度よりも低い温度で加圧焼結する工程を有する
ことを特徴とする非晶質合金粉末のバルク成形体の製造
方法。
2. An amorphous alloy powder and a glass powder having a softening point lower than the crystallization temperature of the amorphous alloy are mixed, and the average particle diameter of the glass powder is reduced by stirring.
Gala until it is smaller than 1/20 of the average particle size of the gold powder
And a step of sintering the obtained mixed powder under pressure at a temperature higher than the softening point of glass and lower than the crystallization temperature of the amorphous alloy. A method for producing a bulk compact of an amorphous alloy powder.
JP03971796A 1996-02-27 1996-02-27 Method for producing bulk compact of amorphous alloy powder Expired - Lifetime JP3288571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03971796A JP3288571B2 (en) 1996-02-27 1996-02-27 Method for producing bulk compact of amorphous alloy powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03971796A JP3288571B2 (en) 1996-02-27 1996-02-27 Method for producing bulk compact of amorphous alloy powder

Publications (2)

Publication Number Publication Date
JPH09235660A JPH09235660A (en) 1997-09-09
JP3288571B2 true JP3288571B2 (en) 2002-06-04

Family

ID=12560746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03971796A Expired - Lifetime JP3288571B2 (en) 1996-02-27 1996-02-27 Method for producing bulk compact of amorphous alloy powder

Country Status (1)

Country Link
JP (1) JP3288571B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517026A (en) * 2012-03-23 2015-06-18 アップル インコーポレイテッド Processing process of amorphous alloy powder raw material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517025A (en) 2012-03-23 2015-06-18 アップル インコーポレイテッド Continuous production of amorphous alloy ingot without mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015517026A (en) * 2012-03-23 2015-06-18 アップル インコーポレイテッド Processing process of amorphous alloy powder raw material

Also Published As

Publication number Publication date
JPH09235660A (en) 1997-09-09

Similar Documents

Publication Publication Date Title
US3424578A (en) Method of producing permanent magnets of rare earth metals containing co,or mixtures of co,fe and mn
KR100344268B1 (en) Pressed body of amorphous magnetically soft alloy powder and process for producing same
CN109778042B (en) High-strength tungsten-based alloy and preparation method thereof
US7297310B1 (en) Manufacturing method for aluminum matrix nanocomposite
JP2007251125A (en) Soft magnetic alloy consolidation object and method for fabrication thereof
JP3288571B2 (en) Method for producing bulk compact of amorphous alloy powder
Kawamura et al. Fabrication of nanocrystalline Fe86Zr7B6Cu1 soft‐magnetic compacts with high saturation magnetization
JPH11260616A (en) Manufacture of soft magnetic material foil
Kojima et al. Soft-Magnetic Properties of Nanocrystalline bcc Fe–(Nb, Zr)–B Bulk Alloys Consolidated by Warm Extrusion
JPS61268006A (en) Anisotropic magnet
US5352268A (en) Fe-Ni alloy fine powder of flat shape
TW310438B (en)
US5470399A (en) Process for manufacturing MPP core forming powder, and process for manufacturing MPP core using the powder
JP2000100617A (en) Coil with core and pam-controlled air conditioner
KR100262488B1 (en) Method of manufacturing sintered fe-si type soft magnets
JPH0645841B2 (en) Method of manufacturing permanent magnet material
JPH10152705A (en) Production of bulk compacted body of amorphous alloy powder
JPS62282417A (en) Manufacture of rare earth magnet
JPS63100107A (en) Production of amorphous alloy powder
JPH055881B2 (en)
JPH06256912A (en) Production of ultra-magnetostrictive sintered compact having high magnetostrictive property
JPH02241006A (en) Manufacture of ferrite magnetic material
JP2946350B2 (en) Method for producing sintered body made of amorphous alloy powder
JPH02129344A (en) Oxide-dispersed heat resisting steel and its production
Schumacher et al. Some aspects of powder metallurgy

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20020305

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080315

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090315

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100315

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110315

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120315

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130315

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140315

Year of fee payment: 12

EXPY Cancellation because of completion of term