[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP3246209B2 - Method and apparatus for measuring chromaticity and turbidity of solvent containing colloidal substance - Google Patents

Method and apparatus for measuring chromaticity and turbidity of solvent containing colloidal substance

Info

Publication number
JP3246209B2
JP3246209B2 JP18797094A JP18797094A JP3246209B2 JP 3246209 B2 JP3246209 B2 JP 3246209B2 JP 18797094 A JP18797094 A JP 18797094A JP 18797094 A JP18797094 A JP 18797094A JP 3246209 B2 JP3246209 B2 JP 3246209B2
Authority
JP
Japan
Prior art keywords
solvent
measured
light
turbidity
scattering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18797094A
Other languages
Japanese (ja)
Other versions
JPH0854339A (en
Inventor
睦久 平岡
靖史 財津
弘 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP18797094A priority Critical patent/JP3246209B2/en
Publication of JPH0854339A publication Critical patent/JPH0854339A/en
Application granted granted Critical
Publication of JP3246209B2 publication Critical patent/JP3246209B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、溶解性吸収物質とコロ
イド状物質の両方を含む溶媒の色度、濁度の測定方法と
その装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for measuring the chromaticity and turbidity of a solvent containing both a soluble absorbing substance and a colloidal substance.

【0002】[0002]

【従来の技術】例えば、上水場から供給される水道水の
水質に関して、色と濁りの目視検査が法律で義務付けら
れているが、色は色度で代用し、濁りは濁度で代用して
もよいとしている。色度は波長390nmの吸光度、濁
度は波長660nmの吸光度として定義されており、吸
光度は透過光の減衰量を測定する。
2. Description of the Related Art For example, with respect to the quality of tap water supplied from a waterworks, visual inspection of color and turbidity is required by law, but color is substituted by chromaticity, and turbidity is substituted by turbidity. It is possible to do so. Chromaticity is defined as absorbance at a wavelength of 390 nm, turbidity is defined as absorbance at a wavelength of 660 nm, and absorbance measures the amount of attenuation of transmitted light.

【0003】しかし、被測定溶媒の色度は、その溶媒に
含まれる光吸収物質濃度の指標であり、標準物質の濃度
換算で示されるべきである。色度の測定は、一般に被測
定溶媒に濁質を含まないときにのみ行なわれるが、本来
は水に溶けている吸光成分と、微粒子が分散しているコ
ロイド状物質の吸光成分の両方を考える方が望ましい。
[0003] However, the chromaticity of the solvent to be measured is an index of the concentration of the light absorbing substance contained in the solvent, and should be expressed in terms of the concentration of a standard substance. The measurement of chromaticity is generally performed only when the solvent to be measured does not contain turbidity. Considering both the light absorption component originally dissolved in water and the light absorption component of a colloidal substance in which fine particles are dispersed. Is more desirable.

【0004】基準となる吸光度の測定は、被測定溶媒を
光を透過する容器(光学セル)に入れ、光ビームを照射
して透過光の減衰量を測定することによって行なわれ、
光吸収物質の濃度と吸光度との間に、濁質のない場合、
以下に示すランバート・ベールの法則が成り立つ。 吸光度=−log(I/I0 )=εCL ここに、I0 : 照射光強度 I : 透過光強度 C : 吸光物質の濃度 L : 光路長 ε : 物質固有の定数(吸光係数) である。
The measurement of the absorbance as a reference is carried out by placing the solvent to be measured in a container (optical cell) that transmits light, irradiating a light beam and measuring the attenuation of the transmitted light.
If there is no turbidity between the concentration of the light absorbing substance and the absorbance,
The following Lambert-Beer law holds. Absorbance = -log (I / I 0) = εCL here, I 0: intensity of irradiated light I: transmitted light intensity C: concentration of absorbing substances L: optical path length epsilon: a substance-specific constants (absorption coefficient).

【0005】被測定溶媒の吸光係数εは、一般に未知で
あるが、標準物質の濃度と吸光度の検量線を作成してお
き、被測定溶媒の吸光度を測定して、検量線から被測定
溶媒の吸光度を標準物質濃度に換算することにより、被
測定溶媒の色度として計算することができる。一方、濁
度の測定についても、濁度は濁質、即ちコロイド状の散
乱吸光物質の濃度の指標であり、標準物質の濃度換算で
示されるべきである。濁質として溶解性の吸光物質を含
むとする考え方もあるが、一般には、溶解性の吸光物質
を除いたコロイド状物質のみで扱われることが多い。
Although the extinction coefficient ε of the solvent to be measured is generally unknown, a calibration curve of the concentration of the standard substance and the absorbance is prepared, and the absorbance of the solvent to be measured is measured. The chromaticity of the solvent to be measured can be calculated by converting the absorbance into a standard substance concentration. On the other hand, in the measurement of turbidity, the turbidity is an index of the concentration of a turbid substance, that is, a colloidal scattered light-absorbing substance, and should be indicated in terms of the concentration of a standard substance. There is a concept that a soluble light-absorbing substance is contained as a turbid substance, but in general, it is often handled only with a colloidal substance excluding the soluble light-absorbing substance.

【0006】濁度の測定には、大別して以下に示す三つ
の方法があり、図3(a)〜(c)を参照してこれらの
方法を説明する。第1の方法は図3(a)に示すよう
に、色度と同様に透過光の減衰量を測定する方式であ
り、光源1からの光2を、被測定溶媒3を入れた光学セ
ル4に照射し、矢印で表わした透過光5を受光器6aで
測定するものである。このとき、被測定溶媒3中に溶解
性の吸光物質のない場合、コロイド成分濃度に由来する
光の散乱と、光吸収による透過光の減衰量が、近似的に
ランバート・ベールの法則と同じになるとされ、以下の
式が成り立つ。
The turbidity measurement can be roughly classified into the following three methods. These methods will be described with reference to FIGS. 3 (a) to 3 (c). As shown in FIG. 3A, the first method is a method for measuring the amount of attenuation of transmitted light in the same manner as the chromaticity. The light 2 from the light source 1 is applied to the optical cell 4 containing the solvent 3 to be measured. And the transmitted light 5 indicated by the arrow is measured by the light receiver 6a. At this time, if there is no soluble light-absorbing substance in the solvent 3 to be measured, the scattering of light derived from the concentration of the colloid component and the attenuation of transmitted light due to light absorption are approximately the same as Lambert-Beer's law. And the following equation holds.

【0007】 透過光減衰量=−log(I/I0 )=τTL ここに、I0 : 照射光強度 I : 透過光強度 T : 濁質の濃度 L : 光路長 τ : 比例定数 である。Attenuation of transmitted light = −log (I / I 0 ) = τTL where I 0 : irradiation light intensity I: transmitted light intensity T: concentration of turbidity L: optical path length τ: proportional constant

【0008】被測定溶媒3の濁度は、標準物質の濃度と
透過光減衰量の検量線を作成した後に、試料の透過光減
衰量を測定して、検量線から透過光減衰量を標準物質濃
度に換算することにより、求めることができる。第2の
方法は図3(b)に示すように、散乱光の強度を測定す
る方式であり、光源1からの光2を、被測定溶媒3を入
れた光学セル4に照射し、下方に向かう矢印で表わした
散乱光7を受光器6bで測定するものである。このと
き、被測定溶媒3中に溶解性吸光物質を一定量含む場
合、コロイド成分濃度と散乱光強度はほぼ比例し、次式
のようになる。
The turbidity of the measured solvent 3 is determined by preparing a calibration curve of the concentration of the standard substance and the amount of attenuation of transmitted light, measuring the amount of attenuation of transmitted light of the sample, and calculating the amount of attenuation of transmitted light from the calibration curve. It can be obtained by converting to a concentration. The second method is a method of measuring the intensity of scattered light, as shown in FIG. 3 (b). Light 2 from a light source 1 is applied to an optical cell 4 containing a solvent 3 to be measured, The scattered light 7 indicated by the forward arrow is measured by the light receiver 6b. At this time, when a certain amount of the soluble light-absorbing substance is contained in the solvent 3 to be measured, the concentration of the colloid component and the scattered light intensity are almost proportional, and are expressed by the following equation.

【0009】 散乱光強度(IS )=kT k:比例定数 被測定溶媒3の濁度は、標準物質で検量線を作成した
後、標準物質濃度に換算して示される。第3の方法は、
図3(c)に示すように、積分球8と二つの受光器6
a,6bを用いてを用いて透過光強度と全散乱光強度を
測定する方式であり、光源1からの光2をレンズ9によ
り集光し、被測定溶媒3を入れた光学セル4を経て、積
分球8に入射した光2の透過光5の強度(It )を受光
器6aで測定し、散乱光7の強度(IS )を受光器6b
で測定するものである。このとき、溶解性吸光物質の影
響を差し引いた後の照射光強度を(It +IS )とし
て、次式により濁質濃度(T)を求めることができる。
[0010] Scattered light intensity (I S ) = kT k: proportionality constant The turbidity of the solvent 3 to be measured is expressed by converting a standard substance concentration into a standard curve after preparing a calibration curve with the standard substance. The third method is
As shown in FIG. 3C, the integrating sphere 8 and the two light receivers 6
In this method, the transmitted light intensity and the total scattered light intensity are measured by using a and 6b. Light 2 from a light source 1 is condensed by a lens 9 and passed through an optical cell 4 containing a solvent 3 to be measured. The intensity (I t ) of the transmitted light 5 of the light 2 incident on the integrating sphere 8 is measured by the light receiver 6a, and the intensity (I S ) of the scattered light 7 is measured by the light receiver 6b.
Is to be measured. In this case, the irradiation light intensity after subtraction of the effects of soluble light absorbing material as (I t + I S), can be obtained turbid medium concentration (T) by the following equation.

【0010】 IS /(It +IS )=kT k:比例定数 被測定溶媒3の濁度は、標準物質で検量線を作成した
後、標準物質濃度に換算する。
I S / (I t + I S ) = kT k: proportionality constant The turbidity of the solvent 3 to be measured is converted into a standard substance concentration after preparing a calibration curve with a standard substance.

【0011】[0011]

【発明が解決しようとする課題】しかしながら、前述の
ように色度を光吸収物質濃度の指標とし、濁度をコロイ
ド状の散乱吸光物質の濃度の指標とする考え方に基づい
て、溶解性吸光物質と濁質(コロイド状の散乱吸光物
質)の両方を含む被測定溶媒の色度および濁度を測定す
るには、上に述べた従来の方法では、次のような問題を
生ずる。
However, based on the idea that chromaticity is used as an index of the concentration of the light-absorbing substance and turbidity is used as an index of the concentration of the colloidal scattered light-absorbing substance, as described above, the soluble light-absorbing substance is used. In order to measure the chromaticity and turbidity of the solvent to be measured containing both the turbidity and the turbidity (colloidal scattered light-absorbing substance), the above-described conventional method has the following problems.

【0012】まず、吸光度による色度の測定は、濁質が
存在する場合、濁質の光散乱により透過光量が変わるた
め、ランバート・ベールの法則が適用できず、色度の正
確な測定を行なうことができない。フィルターで濾過し
た試料を測定すれば、濁質の影響を取り除くことはでき
るが、これは濁質に含まれる吸光成分を考慮していない
ことになる。即ち、溶液が色付いて見えるとき、コロイ
ド粒子の光吸収が原因となることがあるにもかかわら
ず、このような光吸収物質(コロイド状物質)の測定を
行なうことができない。
First, in the measurement of chromaticity based on the absorbance, when turbidity is present, the amount of transmitted light changes due to light scattering of the turbidity, so Lambert-Beer's law cannot be applied, and accurate chromaticity measurement is performed. Can not do. The effect of the turbid matter can be removed by measuring the sample filtered with the filter, but this does not take into account the light absorption component contained in the turbid matter. That is, when the solution looks colored, it is not possible to measure such a light-absorbing substance (colloidal substance) despite the fact that light absorption of the colloid particles may be a cause.

【0013】次に、濁度の測定について、第1の方法
(透過光による測定)は、溶解性吸光物質が存在する場
合、その量の変動によって透過光量が変わるので、正確
な測定を行なうことができない。また溶解性吸光物質の
量が一定であっても、コロイド成分が増えると、多重散
乱の影響により散乱光の実質的な光路長が長くなり、溶
解性吸光物質由来の光吸収も増えるため、正確な測定が
できない。例えば、コロイド状物質に溶解性吸光物質を
含めて、濁度を定義することもあるが、本来は両者を区
分して濁度を求めるべきであると考えられる。
Next, regarding the turbidity measurement, the first method (measurement by transmitted light) is to perform accurate measurement because the amount of transmitted light varies depending on the amount of a soluble light-absorbing substance, if present. Can not. Also, even if the amount of soluble light absorbing substance is constant, if the colloid component increases, the substantial optical path length of the scattered light becomes longer due to the effect of multiple scattering, and the light absorption derived from the soluble light absorbing substance also increases. Measurement is not possible. For example, turbidity may be defined by including a soluble light-absorbing substance in a colloidal substance.

【0014】第2の方法(散乱光による測定)では、第
1の方法と同様に、溶解性吸光物質の影響によって散乱
光強度が変化し、コロイド成分由来の散乱光強度変化と
溶解性吸光物質由来の散乱光強度変化とを、それぞれ単
独に取り扱うことができず、濁度の正確な測定を行なう
ことができない。第3の方法(積分球方式)について
は、吸光物質の影響が第1,第2の方法に比べて小さく
なるが、コロイド成分が増えると、透過光の光路長がほ
ぼ一定であるのに、多重散乱により散乱光の実質的な光
路長が長くなり、やはり、溶解性吸光物質の影響を受
け、正確な測定ができなくなる。
In the second method (measurement by scattered light), similarly to the first method, the scattered light intensity changes due to the influence of the soluble light-absorbing substance, and the change in the scattered light intensity derived from the colloid component and the soluble light-absorbing substance change. The scattered light intensity change due to the turbidity cannot be handled independently, and the turbidity cannot be accurately measured. In the third method (integrating sphere method), the influence of the light absorbing substance is smaller than in the first and second methods, but when the colloid component increases, the optical path length of the transmitted light is almost constant. Due to the multiple scattering, the substantial optical path length of the scattered light is lengthened, and again the influence of the soluble light-absorbing substance makes it impossible to perform an accurate measurement.

【0015】ここで、溶媒中に照射された光の挙動をさ
らに詳細に考察する。入射された光子は、まずある確率
で溶媒中に溶けている吸光物質に吸収されるが、吸収さ
れなかった光子はある確率でコロイド粒子に遭遇し、散
乱または吸収される。そして散乱された光子がある確率
で方向を変えるという上記の過程を繰り返し、最後まで
吸収されなかった光子のみが検出される。検出される光
量は、光子が最後まで吸収されずに検出器に到達する確
率に比例する。
Here, the behavior of the light irradiated into the solvent will be considered in more detail. The incident photons are firstly absorbed with a certain probability by the light absorbing substance dissolved in the solvent, but the unabsorbed photons encounter the colloid particles with a certain probability and are scattered or absorbed. The above process of scattered photons changing direction with a certain probability is repeated, and only photons not absorbed until the end are detected. The amount of light detected is proportional to the probability that a photon will reach the detector without being absorbed to the end.

【0016】散乱成分の濃度(コロイド状物質の濃度)
を変えずに、溶解性の吸光物質の濃度を増加させた場
合、光路長分布は、たとえ散乱成分の濃度を変化させな
くても、散乱成分の濃度の絶対値が異なれば、同じ分布
にはならない。そして溶解性物質の吸光による光子の吸
収確率は光路長に比例するから、吸光物質の濃度を増加
させると、長い光路を通った光子の数は減少する。この
減少の仕方は、光路長分布に依存するので、散乱成分の
濃度の絶対値が異なると、減少の仕方も変わることにな
る。即ち、吸光物質の濃度を増加させたときに測定され
る光量の変化率は、散乱成分の濃度が一定であっても、
その絶対値が異なる場合に変わるのである。
Concentration of scattering component (concentration of colloidal substance)
When the concentration of the soluble light-absorbing substance is increased without changing the optical path length distribution, even if the concentration of the scattering component is not changed, if the absolute value of the concentration of the scattering component is different, the optical path length distribution will be the same distribution. No. Since the probability of absorption of a photon due to the absorption of a soluble substance is proportional to the optical path length, increasing the concentration of the absorption substance decreases the number of photons that have passed through a long optical path. Since the manner of this reduction depends on the optical path length distribution, if the absolute value of the concentration of the scatter component is different, the manner of the reduction is also different. That is, the rate of change of the amount of light measured when the concentration of the light absorbing substance is increased, even if the concentration of the scattering component is constant.
It changes when the absolute value is different.

【0017】次に、吸光成分の濃度(コロイド状物質の
吸光成分濃度と溶解性物質の吸光成分濃度とを含む)を
変えることなく、散乱成分の濃度を変化させた場合、あ
る検出位置に到達した光子の光路長は、多重散乱の影響
により散乱の程度が強くなるほど長くなる。そのため同
じ吸光成分の濃度であっても、散乱が強くなるほど吸収
確率は高い。また、光路長分布も散乱成分の濃度変化に
よって変わるので、検出される光量は、散乱成分の濃度
に比例しない。
Next, when the concentration of the scattering component is changed without changing the concentration of the light absorbing component (including the concentration of the light absorbing component of the colloidal substance and the concentration of the light absorbing component of the soluble substance), a certain detection position is reached. The optical path length of the photon becomes longer as the degree of scattering becomes stronger due to the influence of multiple scattering. Therefore, even with the same concentration of the light absorbing component, the absorption probability increases as the scattering increases. Further, since the optical path length distribution also changes according to the change in the concentration of the scattering component, the amount of light detected is not proportional to the concentration of the scattering component.

【0018】次は、溶解性の吸光成分濃度を変えること
なく、コロイド状物質の濃度(コロイド状物質の吸光成
分濃度と散乱成分濃度とを含む)を変化させた場合であ
るが、全体の吸光成分濃度(コロイド状物質の吸光成分
濃度と溶解性物質の吸光成分濃度)と散乱成分の濃度の
両方が変わっていることになるので、検出される光量
は、さらに複雑になり、やはり散乱成分の濃度に比例し
ない。
The following is a case where the concentration of the colloidal substance (including the concentration of the light absorbing component of the colloidal substance and the concentration of the scattering component) is changed without changing the concentration of the soluble light absorbing component. Since both the component concentration (the concentration of the light-absorbing component of the colloidal substance and the concentration of the light-absorbing component of the soluble substance) and the concentration of the scattering component are different, the amount of light detected is further complicated, and the scattering component Not proportional to concentration.

【0019】以上を要約すると、従来の測定方法は、吸
光成分濃度(コロイド状物質の吸光成分濃度と溶解性物
質の吸光成分濃度)の変化に由来する光量変化と、散乱
成分の濃度(コロイド状物質の散乱成分濃度)の変化に
由来する光量変化とを、それぞれ単独に評価することが
できず、また、コロイド状物質の濃度(コロイド状物質
の吸光成分濃度と散乱成分濃度)の変化に由来する光量
変化と、溶解性吸光物質の濃度の変化に由来する光量変
化とを、それぞれ単独に測定することができない。した
がって、濁質(コロイド状の散乱吸光物質)と溶解性吸
光物質の双方を含む被測定溶媒の色度,濁度を検出する
際、上記のいずれに由来するものであるかを、正確に把
握することができないというのが問題である。
Summarizing the above, the conventional measuring method is based on a change in the amount of light resulting from a change in the concentration of the light-absorbing component (the concentration of the light-absorbing component of the colloidal substance and the concentration of the light-absorbing component of the soluble substance), and the concentration of the scattering component (colloidal The change in the amount of light resulting from the change in the concentration of the scattered component of the substance cannot be independently evaluated, and the change in the concentration of the colloidal substance (the concentration of the light-absorbing component and the concentration of the scattered component of the colloidal material) cannot be evaluated. And the change in the amount of light resulting from the change in the concentration of the soluble light-absorbing substance cannot be measured independently. Therefore, when detecting the chromaticity and turbidity of the solvent to be measured, including both the turbidity (colloidal scattered light-absorbing substance) and the soluble light-absorbing substance, it is necessary to accurately determine which one is derived from the above. The problem is that you can't.

【0020】[0020]

【課題を解決するための手段】1.溶解性吸収物質とコ
ロイド状物質の両方を含む被測定溶媒を透過、散乱した
光強度を、被測定溶媒の単位体積当たりの吸収断面積
(吸収係数)と、被測定溶媒の単位体積当たりの散乱断
面積(散乱係数)に変換して、被測定溶媒の吸収係数を
色度に対応するものとして測定し、被測定溶媒の散乱係
数を濁度に対応するものとして測定する。これら変換方
法は輸送方程式の解法による光強度を計算した変換テー
ブルを格納した演算部を備えた装置により行なうことが
できる。
[Means for Solving the Problems] The intensity of the light transmitted and scattered through the solvent containing both the soluble absorbing substance and the colloidal substance is measured by the absorption cross section (absorption coefficient) per unit volume of the solvent to be measured and the scattering per unit volume of the solvent to be measured. After converting into a cross-sectional area (scattering coefficient), the absorption coefficient of the measured solvent is measured as corresponding to chromaticity, and the scattering coefficient of the measured solvent is measured as corresponding to turbidity. These conversion methods can be performed by an apparatus having an operation unit storing a conversion table in which the light intensity is calculated by solving the transport equation.

【0021】2.溶解性吸収物質とコロイド状物質の両
を含む被測定を透過、散乱した光強度を、吸収係数と
散乱係数に変換する。次に被測定溶媒をフィルター濾過
し、透過光の減衰量を測定して、溶解性成分に起因する
被測定溶媒の部分吸収係数に変換する。そして被測定溶
媒の吸収係数から溶解性成分に起因する部分吸収係数を
差し引いて、コロイド成分に起因する部分吸収係数を求
める。溶解性成分に起因する部分吸収係数と、コロイド
成分に起因する部分吸収係数と、被測定溶媒の散乱係数
と、これら相互の加算、減算の結果に、さらに標準物質
の濃度換算係数を乗算して色度、濁度を求めることがで
きる。
2. Both soluble absorbing material and a colloidal substance
The intensity of light transmitted and scattered through the measured object including the two is converted into an absorption coefficient and a scattering coefficient. Next, the solvent to be measured is filtered through a filter, the attenuation of transmitted light is measured, and converted into a partial absorption coefficient of the solvent to be measured due to the soluble component. Then, the partial absorption coefficient due to the soluble component is subtracted from the absorption coefficient of the solvent to be measured to determine the partial absorption coefficient due to the colloid component. By multiplying the partial absorption coefficient due to the soluble component, the partial absorption coefficient due to the colloid component, the scattering coefficient of the solvent to be measured, the result of mutual addition and subtraction, and the concentration conversion coefficient of the standard substance, Chromaticity and turbidity can be determined.

【0022】[0022]

【作用】溶媒の単位体積当たりの吸収断面積(吸収係
数)は光吸収物質量に比例し、溶媒の単位体積当たりの
散乱断面積(散乱係数)は光散乱物質量に比例する。色
度、濁度の定義として、それぞれ吸収係数と散乱係数を
用いると、これら二つの物理量は互いに独立なものであ
るから、互いに干渉することがない。
The absorption cross section (absorption coefficient) per unit volume of the solvent is proportional to the amount of light absorbing substance, and the scattering cross section (scattering coefficient) per unit volume of the solvent is proportional to the amount of light scattering substance. When the absorption coefficient and the scattering coefficient are used as the definitions of chromaticity and turbidity, respectively, these two physical quantities are independent of each other and do not interfere with each other.

【0023】被測定溶媒の吸収係数と散乱係数の測定
は、直接行なうことはできないが、これらは、輸送方程
式により吸収係数と散乱係数に関係付けることは可能で
ある。そこで、これらの変換テーブルをあらかじめ作成
しておくことにより、被測定溶媒の透過光強度と散乱光
強度の測定から、吸収係数と散乱係数が求めることがで
きる。
The measurement of the absorption coefficient and the scattering coefficient of the solvent to be measured cannot be performed directly, but they can be related to the absorption coefficient and the scattering coefficient by a transport equation. Thus, by preparing these conversion tables in advance, the absorption coefficient and the scattering coefficient can be obtained from the measurement of the transmitted light intensity and the scattered light intensity of the measured solvent.

【0024】[0024]

【実施例】以下、本発明を実施例に基づき説明する。コ
ロイド状物質を含む被測定溶媒に対して、光の散乱を起
こすのは、コロイド成分のみであるが、光を吸収するの
は溶解性成分とコロイド状成分の双方で起こる。そこ
で、色度の指標として吸光物質の濃度、濁度の指標とし
て散乱物質の濃度を考えるのが適切であるとして、被測
定溶媒の色度および濁度を測定するに当たり、本発明者
らは、以下のような考察を行なった。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below based on embodiments. For the solvent to be measured including the colloidal substance, light is scattered only by the colloidal component, but light is absorbed by both the soluble component and the colloidal component. Therefore, the concentration of the light-absorbing substance as an index of chromaticity, as appropriate to consider the concentration of the scattering substance as an index of turbidity, in measuring the chromaticity and turbidity of the solvent to be measured, the present inventors, The following considerations were made.

【0025】溶媒を均質な物質と仮定すると、その均質
な物質の無限小の体積での散乱物質の存在確率と吸光物
質の存在確率は、無限小の体積における散乱確率と吸収
確率にそれぞれ比例する。単位空間当たりの散乱確率
は、単位空間当たりの散乱断面積に比例し、単位空間当
たりの吸収確率は、単位空間当たりの吸収断面積に比例
する。散乱断面積と吸収断面積は、本来、単一微粒子の
光散乱強度と光吸収強度の指標であり、単位断面積に単
位時間当たり入射するエネルギーに対する散乱と吸収の
それぞれによるエネルギー損失の割合として定義するこ
とができる。ここでは、単位空間当たりの散乱断面積
は、全てのコロイド粒子の散乱断面積の合計を空間体積
で割ったもの(次元は距離の逆数)とし、単位空間当た
りの吸収断面積は、全てのコロイド粒子の吸収断面積
と、全ての溶解性吸光物質の吸収断面積の合計を空間体
積で割ったもの(次元は距離の逆数)とし、物質の単位
空間当たりの散乱断面積を散乱係数と呼び、単位空間当
たりの吸収断面積を吸収係数と呼ぶことにする。以上を
纏めると、コロイド状物質の濃度は、散乱物質の濃度に
比例し、また散乱係数に比例する。吸光物質の濃度は吸
収係数に比例する。
Assuming that the solvent is a homogeneous substance, the existence probability of the scattering substance and the existence probability of the light absorbing substance in an infinitesimal volume of the homogeneous substance are proportional to the scattering probability and the absorption probability in an infinitesimal volume, respectively. . The scattering probability per unit space is proportional to the scattering cross section per unit space, and the absorption probability per unit space is proportional to the absorption cross section per unit space. The scattering cross section and absorption cross section are originally indicators of the light scattering intensity and light absorption intensity of a single fine particle, and are defined as the ratio of the energy loss due to scattering and absorption to the energy incident per unit time per unit cross section. can do. Here, the scattering cross section per unit space is the sum of the scattering cross sections of all colloid particles divided by the space volume (the dimension is the reciprocal of distance), and the absorption cross section per unit space is The sum of the absorption cross section of the particle and the absorption cross section of all soluble light absorbing substances is divided by the space volume (the dimension is the reciprocal of the distance), and the scattering cross section per unit space of the substance is called the scattering coefficient. The absorption cross section per unit space is called an absorption coefficient. In summary, the concentration of the colloidal substance is proportional to the concentration of the scattering substance and proportional to the scattering coefficient. The concentration of the light absorbing substance is proportional to the absorption coefficient.

【0026】媒体の散乱係数と吸収係数が与えられ、媒
体の形状と光源が与えられると、透過、散乱した出力光
量は、下記の輸送方程式を解くことにより得られる。
Given the scattering coefficient and absorption coefficient of the medium, and the shape and light source of the medium, the amount of transmitted and scattered output light can be obtained by solving the following transport equation.

【0027】[0027]

【数1】 (Equation 1)

【0028】 ここに、 μa : 吸収係数 μs : 散乱係数 L(r,Ω) : 位置rにおける単位面積、単位時
間、単位立体角dΩ当たり方向Ωに向かうエネルギー dμs (r,Ω′→Ω): 位置rにおける方向Ω′か
ら方向Ωに向かう散乱確率 s(r,Ω): 光源 である。
Here, μ a : absorption coefficient μ s : scattering coefficient L (r, Ω): unit area, unit time at unit r, energy dμ s (r, Ω ′ →) per unit solid angle dΩ toward direction Ω Ω): Probability of scattering in the direction Ω from the direction Ω ′ at the position r s (r, Ω): light source.

【0029】この方程式は、一般にモンテカルロ法を用
いて解くことができる。また、散乱が支配的な場合は、
拡散近似法を用いて解くこともできる。図1は本発明の
方法が適用される装置の要部構成を示す模式図であり、
図3と共通部分を同一符号で表わしたものである。図1
において、光源1からの光2をレンズ9により収束し、
直方体の光学セル4内に保持された被測定溶媒3に照射
して、その透過光5の強度を第1の光検出器10aで測
定し、一方散乱光7の強度を第2の光検出器10bで測
定する。測定されたこの透過光強度と散乱光強度のデー
タは演算部11に送られるが、演算部11には、輸送方
程式によりあらかじめ計算された表1,表2に示す変換
テーブルを格納してある。
This equation can be generally solved using the Monte Carlo method. If scattering is dominant,
It can also be solved using the diffusion approximation method. FIG. 1 is a schematic diagram showing a main configuration of an apparatus to which the method of the present invention is applied.
The same parts as those in FIG. 3 are represented by the same reference numerals. FIG.
, The light 2 from the light source 1 is converged by the lens 9,
The solvent 3 to be measured held in the rectangular optical cell 4 is irradiated and the intensity of the transmitted light 5 is measured by the first photodetector 10a, while the intensity of the scattered light 7 is measured by the second photodetector. Measure at 10b. The measured data of the transmitted light intensity and the scattered light intensity are sent to the calculation unit 11, and the calculation unit 11 stores conversion tables shown in Tables 1 and 2 calculated in advance by the transport equation.

【0030】表1は、縦方向に記入した散乱係数μ
s と、横方向に記入した吸収係数μa のそれぞれの係数
に対応する透過光強度を表わしており、表2は同様にし
て散乱光強度を表わすものである。
Table 1 shows the scattering coefficient μ written in the vertical direction.
and s, represent the transmitted light intensity corresponding to each of the coefficient of absorption coefficient mu a filled out laterally, in which Table 2 represents the scattered light intensity in the same manner.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 以上のようにして演算部11に送られた透過光強度と散
乱光強度のデータは、この変換テーブルを検索すること
により、吸収係数と散乱係数に変換することができる。
そして色度の出力として被測定溶媒の吸収係数を、濁度
の出力として被測定溶媒の散乱係数を、それぞれ標準物
質への濃度換算係数を乗算した後、表示装置12に示す
ことができる。
[Table 2] The data of the transmitted light intensity and the scattered light intensity transmitted to the arithmetic unit 11 as described above can be converted into an absorption coefficient and a scattering coefficient by searching this conversion table.
After multiplying the absorption coefficient of the solvent to be measured as the output of the chromaticity and the scattering coefficient of the solvent to be measured as the output of the turbidity by the concentration conversion coefficient to the standard substance, the display device 12 can display the result.

【0033】以上の過程で注目すべきは、吸収係数と散
乱係数は物質の持つ定数値であるから互いに独立に存在
し、吸収係数は、コロイド成分の吸収を起こす能力と、
溶解性吸光物質の吸収を起こす能力とを足したもので、
全吸光物質の濃度に比例するから、色度を定義するのに
適当なものであり、一方の散乱係数はコロイド成分の散
乱を起こす能力とみることができ、コロイド物質の濃度
(散乱成分の濃度)に比例するので、濁度を定義するの
に適当なものであるということである。
It should be noted that in the above process, the absorption coefficient and the scattering coefficient are independent of each other because they are constant values possessed by the substance.
And the ability to cause the absorption of soluble light-absorbing substances.
Since it is proportional to the concentration of the total light-absorbing substance, it is appropriate for defining chromaticity. On the other hand, the scattering coefficient can be regarded as the ability to cause scattering of the colloidal component, and the concentration of the colloidal substance (concentration of the scattering component) ), It is appropriate for defining turbidity.

【0034】さらに、本発明者らは、本発明を行なうに
当たり、以下の考察を行なった。前述のように、色度は
吸光物質濃度の指標であって、吸光物質には溶解性の吸
光成分とコロイド状の吸光成分があり、濁度はコロイド
状物質の指標であって、コロイド粒子には散乱成分と吸
光成分の両方がある。そこで、便宜的に溶媒の成分とし
て、 溶解性吸光成分濃度 コロイド状吸光成分濃度 コロイド状散乱成分濃度 の三つを考えると、これらは互いに独立であり、成分分
析を行なう上で大変便利である。吸収係数は(+)
に比例し、散乱係数はに比例する。
Further, the present inventors have made the following considerations in carrying out the present invention. As described above, chromaticity is an index of the light-absorbing substance concentration, the light-absorbing substance has a soluble light-absorbing component and a colloidal light-absorbing component, and the turbidity is an index of the colloidal substance. Has both a scattering component and a light absorption component. Therefore, considering the three components of the solvent for convenience, namely, the concentration of the soluble light-absorbing component, the concentration of the colloidal light-absorbing component, and the concentration of the colloidal scattering component, these are independent of each other and are very convenient for performing component analysis. Absorption coefficient is (+)
And the scattering coefficient is proportional to

【0035】前述の本発明の測定方法では、全吸光物質
による色度(+)のうち、コロイド成分由来のもの
()と、溶解性成分由来のもの()とを区分するこ
とはできないが、媒質をフイルター濾過したものの吸光
度を測定すると、溶解性成分由来の吸光度を定量するこ
とになり、溶解性吸光物質のみに由来する色度が求めら
れる。そして、前述の本発明の測定方法を併用し、全吸
光物質による色度から溶解性成分由来の色度を差し引く
ことにより、コロイド成分由来の色度を求めることがで
きる。
In the measurement method of the present invention described above, of the chromaticity (+) due to the total light-absorbing substance, it is not possible to distinguish between the colloid component-derived () and the soluble component-derived (). When the absorbance of the medium obtained by filtering the medium is measured, the absorbance derived from the soluble component is quantified, and the chromaticity derived only from the soluble light-absorbing substance is obtained. Then, the chromaticity derived from the colloid component can be obtained by subtracting the chromaticity derived from the soluble component from the chromaticity derived from the total light-absorbing substance by using the above-described measurement method of the present invention.

【0036】図2はこのような考えに基づいて行なわれ
た本発明の方法が適用される装置の要部構成を示す模式
図である。図2において、被測定溶媒3はバルブ13に
よって分流し、一方はそのまま光学セル4aに保持され
(第1の測定部)、他方はフィルター14で濾過された
後、別の光学セル4bに保持される(第2の測定部)。
FIG. 2 is a schematic diagram showing a main configuration of an apparatus to which the method of the present invention is applied based on such a concept. In FIG. 2, the solvent 3 to be measured is diverted by a valve 13, one of which is held as it is in an optical cell 4a (first measuring unit), and the other is filtered by a filter 14 and then held in another optical cell 4b. (Second measuring unit).

【0037】光学セル4aに保持された被測定溶媒3
は、図1に示したのと同様に、光源1aからの光をレン
ズ9aで収束した後、被測定溶媒3に照射し、その透過
光5aの強度を第1の光検出器10aで測定し、散乱光
7の強度を第2の光検出器10bで測定する。得られた
透過光強度と散乱光強度は演算部11aに送り、演算部
11aに格納された表1,表2に示す変換テーブルを用
いて、被測定溶媒3の吸収係数と散乱係数を計算するこ
とができる(第1の過程)。
Solvent 3 to be measured held in optical cell 4a
In the same manner as shown in FIG. 1, after the light from the light source 1a is converged by the lens 9a, the light is irradiated on the solvent 3 to be measured, and the intensity of the transmitted light 5a is measured by the first photodetector 10a. , The intensity of the scattered light 7 is measured by the second photodetector 10b. The obtained transmitted light intensity and scattered light intensity are sent to the calculation unit 11a, and the absorption coefficient and the scattering coefficient of the measured solvent 3 are calculated using the conversion tables shown in Tables 1 and 2 stored in the calculation unit 11a. (First step).

【0038】光学セル4bに保持された被測定溶媒3の
方は、もう一つの光源1bからの光2bをレンズ9bで
収束した後、被測定溶媒3に照射し、その透過光5bの
強度を第3の光検出器10cで測定し、演算部11bに
送る。演算部11bでは透過光強度は、ランバート・ベ
ールの演算式により、溶解性吸光物質のみに由来する部
分吸収係数に変換することができる(第2の過程)。
The solvent 3 to be measured held in the optical cell 4b converges the light 2b from the other light source 1b by the lens 9b, and then irradiates the solvent 3 to be measured, thereby reducing the intensity of the transmitted light 5b. The measurement is performed by the third photodetector 10c and sent to the calculation unit 11b. In the calculation unit 11b, the transmitted light intensity can be converted into a partial absorption coefficient derived only from the soluble light-absorbing substance by the Lambert-Beer calculation formula (second process).

【0039】そして、フィルター14で濾過されていな
い被測定溶媒3を測定して得られた吸収係数から、この
溶解性成分由来の部分吸収係数を差引き、コロイド成分
由来の部分吸収係数が求められる(第3の過程)。色度
の出力は、フィルター14で濾過した被測定溶媒3を含
む吸収係数と、散乱係数を加算または減算して、溶解性
成分由来の部分吸収係数、コロイド成分由来の部分吸収
係数および全吸光物質由来の吸収係数の三つを、標準物
質への濃度換算係数を乗算した後、表示装置12に表示
する。
Then, the partial absorption coefficient derived from the soluble component is subtracted from the absorption coefficient obtained by measuring the solvent 3 not filtered by the filter 14 to obtain the partial absorption coefficient derived from the colloid component. (Third step). The chromaticity output is obtained by adding or subtracting the absorption coefficient including the solvent 3 to be measured filtered by the filter 14 and the scattering coefficient to obtain a partial absorption coefficient derived from a soluble component, a partial absorption coefficient derived from a colloid component, and a total absorption material. After multiplying the three derived absorption coefficients by the concentration conversion coefficient for the standard substance, the absorption coefficient is displayed on the display device 12.

【0040】同様にして濁度の出力は、フィルター14
で濾過した被測定溶媒3を含む吸収係数と散乱係数を加
算または減算して、散乱係数(コロイド状物質の散乱成
分由来の濁度)、散乱係数とコロイド成分由来の部分吸
収係数を加えたもの(コロイド状物質由来の濁度)、散
乱係数と吸収係数を加えたもの(全散乱吸光物質由来の
濁度)の三つを、標準物質への濃度換算係数を乗算した
後、表示装置12に表示する。
Similarly, the output of the turbidity is output to the filter 14.
Addition or subtraction of the absorption coefficient and the scattering coefficient including the solvent 3 to be measured filtered in the above step, and adding the scattering coefficient (turbidity derived from the scattering component of the colloidal substance), the scattering coefficient and the partial absorption coefficient derived from the colloidal component. (Turbidity derived from colloidal substance) and the sum of the scattering coefficient and the absorption coefficient (turbidity derived from total scattered light-absorbing substance) are multiplied by the concentration conversion coefficient to the standard substance, and then displayed on the display device 12. indicate.

【0041】なお、この実施例で述べてきた散乱光につ
いては、その特別の場合として反射光が含まれるのは勿
論である。
It should be noted that the scattered light described in this embodiment includes reflected light as a special case.

【0042】[0042]

【発明の効果】以上述べてきたように、本発明によれ
ば、濁質と溶解性吸光物質の両方を含む被測定溶媒の色
度、濁度を測定するとき、濁質の濃度変化と溶解性吸光
物質の濃度変化をそれぞれ単独に測定することが可能に
なった。色度は、溶解性成分由来の色度、コロイド成分
由来の色度、全吸光物質由来の色度を個別に測定するこ
とができ、濁度は、コロイド状物質の散乱成分由来の濁
度、コロイド状物質の散乱と吸収由来の濁度、全散乱吸
光物質由来の濁度をそれぞれ単独に測定することができ
る。
As described above, according to the present invention, when the chromaticity and turbidity of a solvent to be measured containing both a turbid substance and a soluble light-absorbing substance are measured, the change in the concentration of the turbid substance and the solubility of the turbid substance are measured. It has become possible to independently measure the change in the concentration of the active light-absorbing substance. Chromaticity can be measured separately from chromaticity derived from soluble components, chromaticity derived from colloidal components, and chromaticity derived from total light-absorbing substances.Turbidity is turbidity derived from scattering components of colloidal substances. The turbidity derived from the scattering and absorption of the colloidal substance and the turbidity derived from the total scattered light-absorbing substance can be measured independently.

【0043】これらのことから、本発明の方法と装置に
より被測定溶媒の色度、濁度の測定に関して、従来に比
べて極めて正確で詳細な結果が得られる。
From the above, the method and apparatus of the present invention can provide extremely accurate and detailed results for the measurement of the chromaticity and turbidity of the solvent to be measured as compared with the conventional method.

【図面の簡単な説明】[Brief description of the drawings]

【図1】被測定溶媒の吸収係数と散乱係数を求める本発
明の方法が適用される装置の要部構成を示す模式図
FIG. 1 is a schematic diagram showing a main configuration of an apparatus to which a method of the present invention for obtaining an absorption coefficient and a scattering coefficient of a solvent to be measured is applied.

【図2】被測定溶媒の吸収成分と散乱成分をそれぞれ独
立に測定可能な本発明の方法が適用される装置の要部構
成を示す模式図
FIG. 2 is a schematic diagram showing a configuration of a main part of an apparatus to which the method of the present invention capable of independently measuring an absorption component and a scattering component of a solvent to be measured is applied.

【図3】従来の三つの濁度測定方法を示し、それぞれ
(a)は透過光検出方式、(b)は散乱光検出方式、
(c)は積分球方式を表わす模式図
FIG. 3 shows three conventional turbidity measurement methods, (a) is a transmitted light detection method, (b) is a scattered light detection method,
(C) is a schematic diagram showing the integrating sphere method.

【符号の説明】[Explanation of symbols]

1 光源 1a 光源 1b 光源 2 光 2a 光 2b 光 3 被測定溶媒 4 光学セル 4a 光学セル 4b 光学セル 5 透過光 5a 透過光 5b 透過光 6a 受光器 6b 受光器 7 散乱光 8 積分球 9 レンズ 9a レンズ 9b レンズ 10a 第1の光検出器 10b 第2の光検出器 10c 第3の光検出器 11 演算部 11a 演算部 11b 演算部 12 表示装置 13 バルブ 14 フィルター Reference Signs List 1 light source 1a light source 1b light source 2 light 2a light 2b light 3 solvent to be measured 4 optical cell 4a optical cell 4b optical cell 5 transmitted light 5a transmitted light 5b transmitted light 6a light receiver 6b light receiver 7 scattered light 8 integrating sphere 9 lens 9a lens 9b Lens 10a First photodetector 10b Second photodetector 10c Third photodetector 11 Operation unit 11a Operation unit 11b Operation unit 12 Display device 13 Valve 14 Filter

フロントページの続き (56)参考文献 特開 昭58−195140(JP,A) 特開 平6−123702(JP,A) 特開 昭57−74638(JP,A) 特開 平4−9746(JP,A) M.R.Arnfield,J.Tu lip,M.S.McPhee,Opt ical Propagation i n Tissue with Anis otropic Scatterin g,IEEE Transaction s on Biomedical En gineering,米国,第35巻第5 号,372−381 (58)調査した分野(Int.Cl.7,DB名) G01N 21/00 - 21/61 IEEE XploreContinuation of the front page (56) References JP-A-58-195140 (JP, A) JP-A-6-123702 (JP, A) JP-A-57-74638 (JP, A) JP-A-4-9746 (JP) , A) M. R. Arnfield, J .; Tu lip, M .; S. McPhee, Opt ical Propagation i n Tissue with Anis otropic Scatterin g, IEEE Transaction s on Biomedical En gineering, the United States, Vol. 35, No. 5, 372-381 (58) investigated the field (Int.Cl. 7, DB name) G01N 21/00-21/61 IEEE Xplore

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】溶解性吸収物質とコロイド状物質の両方
含む被測定溶媒に光ビームを照射し、被測定溶媒を透
過、散乱する光強度から被測定溶媒の色度と濁度を測定
する方法であって、透過、散乱する光強度を被測定溶媒
の単位体積当たりの吸収断面積(吸収係数)と、被測定
溶媒の単位体積当たりの散乱断面積(散乱係数)に変換
し、それぞれ標準物質の濃度換算係数を乗算して色度と
濁度を測定することを特徴とするコロイド状物質を含む
溶媒の色度、濁度の測定方法。
1. A solvent to be measured containing both a soluble absorbing substance and a colloidal substance is irradiated with a light beam, and the chromaticity and turbidity of the solvent to be measured are measured from the intensity of light transmitted and scattered through the solvent to be measured. A method of converting the transmitted and scattered light intensities into an absorption cross section per unit volume (absorption coefficient) of the measured solvent and a scattering cross section (scattering coefficient) per unit volume of the measured solvent. A method for measuring the chromaticity and turbidity of a solvent containing a colloidal substance, wherein the chromaticity and turbidity are measured by multiplying the concentration conversion coefficient of the substance.
【請求項2】請求項1記載の方法において、吸収係数と
散乱係数への変換は、輸送方程式の解法により種々の吸
収係数と散乱係数に対する透過、散乱する光強度を計算
した変換テーブルを参照して行なうことを特徴とするコ
ロイド状物質を含む溶媒の色度、濁度の測定方法。
2. The method according to claim 1, wherein the conversion into the absorption coefficient and the scattering coefficient is performed by referring to a conversion table in which the transmission and scattering light intensities for various absorption and scattering coefficients are calculated by solving the transport equation. A method for measuring the chromaticity and turbidity of a solvent containing a colloidal substance.
【請求項3】溶解性吸収物質とコロイド状物質の両方
含む被測定溶媒に光ビームを照射し、被測定溶媒を透
過、散乱する光強度から被測定溶媒の色度と濁度を測定
する装置であって、被測定溶媒を収容する光学セル,被
測定溶媒に照射する光の光源,被測定溶媒を透過する光
強度を測定する第1の光検出器,被測定溶媒から散乱す
る光強度を測定する第2の光検出器,得られたこれら光
強度を被測定溶媒の単位体積当たりの吸収断面積(吸収
係数)と、被測定溶媒の単位体積当たりの散乱断面積
(散乱係数)に変換する演算部,および表示装置を備え
てなることを特徴とするコロイド状物質を含む溶媒の色
度、濁度の測定装置。
3. A solvent to be measured containing both a soluble absorbing substance and a colloidal substance is irradiated with a light beam, and the chromaticity and turbidity of the solvent to be measured are measured from the intensity of light transmitted and scattered through the solvent to be measured. An optical cell containing a solvent to be measured, a light source for irradiating the solvent to be measured, a first photodetector for measuring a light intensity transmitted through the solvent to be measured, and a light intensity scattered from the solvent to be measured. A second photodetector for measuring the light intensity, the obtained light intensities are converted into an absorption cross section per unit volume (absorption coefficient) of the measured solvent and a scattering cross section (scattering coefficient) per unit volume of the measured solvent. An apparatus for measuring the chromaticity and turbidity of a solvent containing a colloidal substance, comprising a calculation unit for converting and a display device.
【請求項4】請求項3記載の装置において、輸送方程式
の解法により種々の吸収係数と散乱係数に対する透過、
散乱する光強度を計算した変換テーブルを格納した演算
部を備えることを特徴とするコロイド状物質を含む溶媒
の色度、濁度の測定装置。
4. An apparatus according to claim 3, wherein the transmission equation is solved for various absorption and scattering coefficients.
An apparatus for measuring the chromaticity and turbidity of a solvent containing a colloidal substance, comprising an operation unit storing a conversion table for calculating the scattered light intensity.
【請求項5】溶解性吸収物質とコロイド状物質の両方
含む被測定溶媒に光ビームを照射し、被測定溶媒を透
過、散乱する光強度から被測定溶媒の色度と濁度を測定
する方法であって、透過、散乱する光強度を被測定溶媒
の単位体積当たりの吸収断面積(吸収係数)と、被測定
溶媒の単位体積当たりの散乱断面積(散乱係数)に変換
する第1の過程と、フィルター濾過した被測定溶媒を透
過、散乱する光強度から透過光減衰量を被測定溶媒の溶
解性成分に起因する被測定溶媒の部分吸収係数に変換す
る第2の過程と、被測定溶媒の吸収係数から溶解性成分
に起因する部分吸収係数を差し引き、コロイド成分に起
因する被測定溶媒の部分吸収係数を求める第3の過程を
有し、前記被測定溶媒の散乱係数,溶解性成分に起因す
る部分吸収係数,コロイド成分に起因する部分吸収係数
またはこれら相互の加算、演算結果に、さらに標準物質
の濃度換算係数を乗算して色度と濁度を測定することを
特徴とするコロイド状物質を含む溶媒の色度、濁度の測
定方法。
5. A solvent to be measured containing both a soluble absorbing substance and a colloidal substance is irradiated with a light beam, and the chromaticity and turbidity of the solvent to be measured are measured from the intensity of light transmitted and scattered through the solvent to be measured. A first method of converting the intensity of transmitted and scattered light into an absorption cross section per unit volume (absorption coefficient) of the measured solvent and a scattering cross section (scattering coefficient) per unit volume of the measured solvent. A second step of converting the transmitted light attenuation from the intensity of light transmitted and scattered through the solvent to be measured filtered through the filter into a partial absorption coefficient of the solvent to be measured due to the solubility component of the solvent to be measured; and A third step of subtracting a partial absorption coefficient caused by the soluble component from an absorption coefficient of the solvent to obtain a partial absorption coefficient of the measured solvent caused by the colloid component; Partial absorption coefficient due to The color of a solvent containing a colloidal substance is characterized by measuring the chromaticity and turbidity by multiplying the partial absorption coefficient due to the id component or the result of addition and calculation of these, and the concentration conversion coefficient of the standard substance further. And turbidity measurement methods.
【請求項6】請求項5記載の方法において、第1の過程
における吸収係数と散乱係数への変換は、輸送方程式の
解法により種々の吸収係数と散乱係数に対する透過、散
乱する光強度を計算した変換テーブルを参照して行な
い、第2の過程における部分吸収係数への変換は、ラン
バート・ベールの法則を用いて行なうことを特徴とする
コロイド状物質を含む溶媒の色度、濁度の測定方法。
6. The method according to claim 5, wherein the conversion into the absorption coefficient and the scattering coefficient in the first step calculates the transmitted and scattered light intensities for various absorption and scattering coefficients by solving a transport equation. A method for measuring the chromaticity and turbidity of a solvent containing a colloidal substance, wherein the conversion into the partial absorption coefficient in the second step is performed by referring to a conversion table, wherein the conversion is performed using Lambert-Beer's law. .
【請求項7】溶解性吸収物質とコロイド状物質の両方
含む被測定溶媒に光ビームを照射し、被測定溶媒を透
過、散乱する光強度から被測定溶媒の色度と濁度を測定
する装置であって、被測定溶媒を収容する光学セル,被
測定溶媒に照射する光の光源,被測定溶媒を透過する光
強度を測定する第1の光検出器,被測定溶媒から散乱す
る光強度を測定する第2の光検出器,得られたこれら光
強度を被測定溶媒の単位体積当たりの吸収断面積(吸収
係数)と被測定溶媒の単位体積当たりの散乱断面積(散
乱係数)に変換する演算部を備える第1の測定部と、フ
ィルター濾過した被測定溶媒を収容する光学セル,被測
定溶媒に照射する光の光源,被測定溶媒を透過する光強
度を測定する第3の光検出器、被測定溶媒の部分吸収係
数に変換する演算部を備える第2の測定部,および第
1、第2の測定部に共通の表示装置を備えてなることを
特徴とするコロイド状物質を含む溶媒の色度、濁度の測
定装置。
7. A solvent to be measured containing both a soluble absorbing substance and a colloidal substance is irradiated with a light beam, and the chromaticity and turbidity of the solvent to be measured are measured from the intensity of light transmitted and scattered through the solvent to be measured. An optical cell containing a solvent to be measured, a light source for irradiating the solvent to be measured, a first photodetector for measuring a light intensity transmitted through the solvent to be measured, and a light intensity scattered from the solvent to be measured. A second photodetector that measures the light intensity, converts the obtained light intensities into an absorption cross section per unit volume (absorption coefficient) and a scattering cross section per unit volume (scattering coefficient) of the measured solvent. A first measuring unit having an operation unit for performing the measurement, an optical cell containing the solvent to be measured filtered, a light source for irradiating the solvent to be measured, and a third light detection for measuring the intensity of light transmitted through the solvent to be measured. Calculator for converting to the partial absorption coefficient of the solvent to be measured The second measuring unit comprises, and first, colloidal matter solvents including chromaticity and characterized in that it comprises a common display device in the second measuring section, turbidity measurement apparatus.
【請求項8】請求項7記載の装置において、第1の測定
部に属する演算部に輸送方程式の解法により種々の吸収
係数と散乱係数に対する透過、散乱する光強度を計算し
た変換テーブルを格納し、第2の測定部に属する演算部
にランバート・ベールの演算式を格納することを特徴と
するコロイド状物質を含む溶媒の色度、濁度の測定装
置。
8. The apparatus according to claim 7, wherein a conversion table in which the transmitted and scattered light intensities for various absorption coefficients and scattering coefficients are calculated by the solution of the transport equation is stored in the arithmetic unit belonging to the first measuring unit. A chromaticity and turbidity measuring device for a solvent containing a colloidal substance, wherein a Lambert-Beer calculation formula is stored in a calculation unit belonging to the second measurement unit.
JP18797094A 1994-08-10 1994-08-10 Method and apparatus for measuring chromaticity and turbidity of solvent containing colloidal substance Expired - Fee Related JP3246209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18797094A JP3246209B2 (en) 1994-08-10 1994-08-10 Method and apparatus for measuring chromaticity and turbidity of solvent containing colloidal substance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18797094A JP3246209B2 (en) 1994-08-10 1994-08-10 Method and apparatus for measuring chromaticity and turbidity of solvent containing colloidal substance

Publications (2)

Publication Number Publication Date
JPH0854339A JPH0854339A (en) 1996-02-27
JP3246209B2 true JP3246209B2 (en) 2002-01-15

Family

ID=16215339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18797094A Expired - Fee Related JP3246209B2 (en) 1994-08-10 1994-08-10 Method and apparatus for measuring chromaticity and turbidity of solvent containing colloidal substance

Country Status (1)

Country Link
JP (1) JP3246209B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4227991B2 (en) 2005-12-28 2009-02-18 トヨタ自動車株式会社 Exhaust gas analyzer and exhaust gas analysis method
US7495763B2 (en) * 2006-03-23 2009-02-24 Hach Company Dual function measurement system
JP4594277B2 (en) 2006-05-31 2010-12-08 トヨタ自動車株式会社 Sensor unit in exhaust gas analyzer
JP4732277B2 (en) 2006-08-23 2011-07-27 トヨタ自動車株式会社 Gas analyzer and gas analysis method
JP2008064594A (en) * 2006-09-07 2008-03-21 Yokogawa Electric Corp Turbidimeter
WO2014049831A1 (en) * 2012-09-28 2014-04-03 ニプロ株式会社 Device for measuring and method for measuring fluid concentration
JP2014130055A (en) * 2012-12-28 2014-07-10 Dkk Toa Corp Device and method for measuring iron concentration
CN105277518A (en) * 2015-11-02 2016-01-27 深圳市智水小荷技术有限公司 Water quality chromaticity measuring method and apparatus
JP6657016B2 (en) * 2016-05-27 2020-03-04 株式会社日立ハイテクノロジーズ Automatic analyzer
CN106053391A (en) * 2016-07-22 2016-10-26 深圳市绿恩环保技术有限公司 Turbidity measuring method, turbidity measuring device and turbidimeter
CN107907506B (en) * 2017-11-08 2020-05-19 华东师范大学 Measuring device and method for measuring sand content in wide range and dynamic optimal resolution
JP7217677B2 (en) * 2019-07-16 2023-02-03 株式会社日立製作所 Sample measuring device and sample measuring method
CN111239064A (en) * 2020-02-25 2020-06-05 东莞理工学院 A reflection and transmission combined optical measurement system for solution concentration measurement
KR102623962B1 (en) * 2021-10-14 2024-01-12 한국광기술원 Fiber optic sensor probe for diagnosis of transformer insuation oil aging

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M.R.Arnfield,J.Tulip,M.S.McPhee,Optical Propagation in Tissue with Anisotropic Scattering,IEEE Transactions on Biomedical Engineering,米国,第35巻第5号,372−381

Also Published As

Publication number Publication date
JPH0854339A (en) 1996-02-27

Similar Documents

Publication Publication Date Title
JP3246209B2 (en) Method and apparatus for measuring chromaticity and turbidity of solvent containing colloidal substance
EP0627620A1 (en) Method for measuring internal information in scattering medium and apparatus for the same
Foschum et al. Fully automated spatially resolved reflectance spectrometer for the determination of the absorption and scattering in turbid media
US9863881B2 (en) Methods for measuring concentrations of analytes in turbid solutions by applying turbidity corrections to raman observations
JPH0749307A (en) Method and apparatus for measuring scattering absorbent
EP1884765A1 (en) Method and device for the 3D reconstruction of the distribution of fluorescent elements
Müller et al. Constrained two-stream algorithm for calculating aerosol light absorption coefficient from the Particle Soot Absorption Photometer
Zhang et al. Improved diffusing wave spectroscopy based on the automatized determination of the optical transport and absorption mean free path
JP7203739B2 (en) Method and assembly for calibrating devices for detecting blood or blood components in liquids
Foster Attenuation of light by wood smoke
Liu et al. Characterization of absorption and scattering properties of small-volume biological samples using time-resolved spectroscopy
KR960018574A (en) Method and apparatus for measuring the concentration of insoluble substances in oil
Horvath Comparison of measurements of aerosol optical absorption by filter collection and a transmissometric method
WO2009067043A1 (en) Method for measuring particle size in a liquid and device for carrying out said method
JP2000146828A (en) Method and device for measure internal information on scatter absorber
US6660995B1 (en) Particle size analysis in a turbid media with a single-fiber, optical probe while using a visible spectrometer
US6570655B1 (en) Process and apparatus for measuring the opacity in gases
CN105092426A (en) Measuring method for nanoparticle 90-degree scattering spectrum
JP2583653B2 (en) Method and apparatus for detecting aggregation process of multiple components contained in liquid
US20070239036A1 (en) Method for reconstructing a fluorescence-enhanced optic tomography image of an object with any outline
EP1664745B1 (en) Method and apparatus for backscatter spectroscopy
JP2001033388A (en) Method and device for measuring concentration of chlorophyll a
JP3223097B2 (en) Method for analyzing the concentration of multiple components contained in a solution
CN104849724B (en) A method and device for measuring aerosol lidar ratio
RU2371703C1 (en) Photometre

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081102

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees