JP3078752B2 - Method and apparatus for high frequency heating and melting of polycrystalline raw material for single crystal production - Google Patents
Method and apparatus for high frequency heating and melting of polycrystalline raw material for single crystal productionInfo
- Publication number
- JP3078752B2 JP3078752B2 JP08201203A JP20120396A JP3078752B2 JP 3078752 B2 JP3078752 B2 JP 3078752B2 JP 08201203 A JP08201203 A JP 08201203A JP 20120396 A JP20120396 A JP 20120396A JP 3078752 B2 JP3078752 B2 JP 3078752B2
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- frequency heating
- melting
- vessel
- melt
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Landscapes
- General Induction Heating (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、単結晶育成用引上げ炉
に外部から多結晶原料を溶融状態で供給する際に多結晶
原料を効率よく高周波加熱により溶解する方法及び装置
に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for efficiently melting a polycrystalline raw material by high-frequency heating when the polycrystalline raw material is supplied to a single crystal growing pulling furnace from the outside in a molten state.
【0002】[0002]
【従来の技術】Si等の単結晶を融液から引上げ成長さ
せるチョクラルスキー法では、石英ルツボに収容した融
液に種結晶を接触させ、種結晶の方位に倣った結晶特性
をもつ単結晶を育成する。単結晶は成長の度合いに応じ
て引き上げられるが、それに伴って石英ルツボ中の融液
が消費され、融液の液面が変動する。バッチ式の引上げ
法では、単結晶の成長に応じて石英ルツボを上昇させる
ことによって液面変動を補正し、成長界面を一定化した
条件下に維持している。しかし、そのために複雑な制御
装置が必要とされ、また高精度で液面を制御することが
必要になる。しかも、バッチ式であることから、大径化
や長尺単結晶を引上げることに自ずと限界がある。2. Description of the Related Art In the Czochralski method in which a single crystal such as Si is pulled from a melt and grown, a single crystal having a crystal characteristic according to the orientation of the seed crystal is brought into contact with a melt contained in a quartz crucible. Nurture. The single crystal is pulled up according to the degree of growth, but the melt in the quartz crucible is consumed and the liquid level of the melt fluctuates accordingly. In the batch pulling method, the liquid level fluctuation is corrected by raising the quartz crucible in accordance with the growth of the single crystal, and the growth interface is maintained under a constant condition. However, for that purpose, a complicated control device is required, and it is necessary to control the liquid level with high accuracy. In addition, since it is a batch type, there is naturally a limit in increasing the diameter or pulling a long single crystal.
【0003】そこで、半導体原料を連続チャージしなが
ら単結晶を引上げる方法が使用されるようになってき
た。この方法では、流動床法等で製造された粒状の多結
晶原料を使用し、粒状で石英ルツボに供給して溶解さ
せ、或いは外部で溶解した多結晶原料を石英ルツボに供
給している。たとえば、特開平5−105576号公報
では、真空チャンバ内に設けられた溶解容器にペレット
状原料を送り込み、溶解した原料を結晶育成用ルツボに
供給している。また、特開平3−215383号公報で
は、二重構造の容器を使用して多結晶原料を溶解し、結
晶成長部に供給することを紹介している。Therefore, a method of pulling a single crystal while continuously charging a semiconductor raw material has been used. In this method, a granular polycrystalline raw material produced by a fluidized bed method or the like is used, and the granular polycrystalline raw material is supplied to and melted in a quartz crucible, or the polycrystalline raw material dissolved outside is supplied to a quartz crucible. For example, in Japanese Patent Application Laid-Open No. 5-105576, a pellet-shaped raw material is fed into a melting vessel provided in a vacuum chamber, and the melted raw material is supplied to a crystal growing crucible. Japanese Patent Application Laid-Open No. 3-215383 discloses that a polycrystalline raw material is dissolved in a double-structured container and supplied to a crystal growth section.
【0004】[0004]
【発明が解決しようとする課題】石英ルツボに送り込ま
れる多結晶原料は、たとえば高周波加熱装置で加熱溶解
される。しかし、高周波加熱装置で多結晶原料を溶解す
るとき、コイル周りの真空度が高いと放電が発生し易
く、原料を溶解できない。ところが、引上げ炉は、通常
の運転状態で10〜50トール程度の真空度に保たれて
いる。そのため、引上げ炉の内部が原料溶解部に連通し
ていると、原料溶解部も同程度の真空度となり、放電発
生によって原料溶解が困難になる。放電の発生自体は真
空度を常圧程度まで低下させることにより防止できる
が、その結果として圧力上昇に起因して原料溶解部の汚
染や同じ圧力に保たれている結晶成長部での運転条件に
制約が生じる。本発明は、このような問題を解消すべく
案出されたものであり、高周波加熱装置を雰囲気的に遮
断して常圧又は低真空度に保持することにより、放電の
発生を防止し、安定条件下で溶解した多結晶原料を結晶
成長部に容易に送り込むことを目的とする。The polycrystalline raw material fed into the quartz crucible is heated and melted by, for example, a high-frequency heating device. However, when the polycrystalline raw material is melted by the high-frequency heating device, if the degree of vacuum around the coil is high, discharge is likely to occur, and the raw material cannot be melted. However, the pulling furnace is maintained at a vacuum of about 10 to 50 Torr in a normal operation state. Therefore, if the inside of the pulling furnace communicates with the raw material melting section, the raw material melting section also has the same degree of vacuum, and it becomes difficult to melt the raw material due to discharge. The discharge itself can be prevented by lowering the degree of vacuum to about normal pressure, but as a result, contamination of the raw material melting section due to pressure rise and operating conditions in the crystal growth section maintained at the same pressure are reduced. Restrictions arise. The present invention has been devised in order to solve such a problem, and by preventing the high-frequency heating device from being shut off atmospherically and maintaining the same at a normal pressure or a low degree of vacuum, it is possible to prevent the occurrence of electric discharge and stabilize the discharge. It is an object of the present invention to easily feed a polycrystalline raw material dissolved under conditions to a crystal growth part.
【0005】[0005]
【課題を解決するための手段】本発明の高周波加熱溶解
方法は、その目的を達成するため、常圧又は低真空度の
雰囲気に維持された封入容器に高周波加熱コイルを収容
し、多結晶原料が投入される溶解容器を結晶成長部と同
じ圧力の雰囲気下で前記高周波加熱コイルの中央部に配
置し、前記高周波加熱コイルに通電して前記溶解容器内
の多結晶原料を加熱溶解することを特徴とする。封入容
器は、100トール以上のAr雰囲気圧に維持すること
が好ましい。Ar雰囲気とすることにより封入容器の破
損に際しても、原料溶解部への被害が最小限に抑えられ
る。また、コイル部と原料溶解部の差圧を可能な限り小
さくすることでも、原料溶解部への被害が抑制される。
また、高周波加熱溶解装置は、吊り堰で原料溶解部と融
液貯留部に区分された溶解容器と、該溶解容器の周囲に
配置され、常圧又は低真空度の雰囲気に維持された封入
容器と、該封入容器に収容された高周波加熱コイルと、
前記融液貯留部を結晶成長部に連通する融液供給管とを
備え、前記溶解容器と前記高周波加熱コイルとの間が導
電性の低い材質でできた石英等の器壁により仕切られて
いることを特徴とする。In order to achieve the object, a high-frequency heating and melting method according to the present invention comprises a high-frequency heating coil housed in a sealed container maintained in an atmosphere of normal pressure or a low degree of vacuum. Is placed in the center of the high-frequency heating coil under an atmosphere of the same pressure as the crystal growth section, and the high-frequency heating coil is energized to heat and melt the polycrystalline raw material in the melting vessel. Features. The sealed container is preferably maintained at an Ar atmospheric pressure of 100 Torr or more. By using an Ar atmosphere, damage to the raw material melting section can be minimized even when the enclosure is damaged. Also, by reducing the pressure difference between the coil section and the raw material melting section as much as possible, damage to the raw material melting section is suppressed.
In addition, the high-frequency heating and melting apparatus includes a melting vessel divided into a raw material melting section and a melt storage section by a suspension weir, and a sealing vessel arranged around the melting vessel and maintained in an atmosphere of normal pressure or low vacuum. And a high-frequency heating coil housed in the enclosure,
A melt supply pipe communicating the melt storage section with a crystal growth section, wherein a space between the melting vessel and the high-frequency heating coil is separated by a vessel wall made of a material having low conductivity, such as quartz. It is characterized by the following.
【0006】[0006]
【実施の形態】本発明に従った高周波加熱溶解方法で
は、図1に示すように溶解容器1を取り囲んで高周波加
熱コイル2を配置した設備が使用される。溶解容器1と
しては、多結晶Siを原料とする場合、融液を汚染なく
保持できるように高純度の石英ルツボを内側とし、必要
に応じてカーボン等の導電性が良好なルツボ支持体を外
側に設けた二重構造のルツボが使用される。カーボン等
の高導電性材料は、熱伝導による間接加熱を促進させ
る。溶解容器1は、たとえば図示されるように吊り堰3
で原料溶解部4と融液貯留部5に区分されている。原料
溶解部4には、多結晶質の固体原料6が投入されるフィ
ーダ7が臨んでいる。また、給気管8から送り込まれ、
排気管9を介して排出されるArガス10により不活性
雰囲気に維持される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In a high-frequency heating and melting method according to the present invention, equipment having a high-frequency heating coil 2 surrounding a melting vessel 1 as shown in FIG. 1 is used. When the melting vessel 1 is made of polycrystalline Si as a raw material, a high-purity quartz crucible is placed inside so that the melt can be held without contamination, and a crucible support having good conductivity such as carbon is placed outside, if necessary. Is used. A highly conductive material such as carbon promotes indirect heating by heat conduction. The melting vessel 1 includes, for example, a hanging weir 3 as shown in the drawing.
And is divided into a raw material dissolving section 4 and a melt storage section 5. A feeder 7 into which the polycrystalline solid raw material 6 is charged faces the raw material melting section 4. Also, it is sent from the air supply pipe 8,
The atmosphere is maintained in an inert atmosphere by the Ar gas 10 discharged through the exhaust pipe 9.
【0007】高周波加熱コイル2は、Arガスを封入し
た容器11に収容されている。封入容器11は、Arガ
スの封入により常圧又は低真空度の雰囲気に維持され
る。封入容器11の雰囲気圧は、数十kHzの周波数を
使用する場合でも、通常のチョクラルスキー法炉内圧
(10〜50トール)程度の高真空度では放電を起こす
虞れがあることから、100トール以上の雰囲気圧に維
持することが好ましい。溶解容器1と高周波加熱コイル
2とを仕切る封入容器11の器壁12は、誘導電流によ
る損失を防止するため、好ましくは導電性が低い石英等
の材質でつくられている。溶解容器1を含む溶解部は、
給気管8からArガス10が吹き込まれる。余剰のAr
ガスは、排気管9から排出される。Arガス10の流入
量及び排出量を調節することにより、溶解容器1の内部
が結晶成長部と同程度の圧力に維持される。The high-frequency heating coil 2 is housed in a container 11 in which Ar gas is sealed. The sealed container 11 is maintained at a normal pressure or a low vacuum atmosphere by sealing Ar gas. Even if a frequency of several tens of kHz is used, the atmosphere in the enclosure 11 may be discharged at a high degree of vacuum such as a normal Czochralski furnace pressure (10 to 50 Torr). It is preferable to maintain the atmospheric pressure at or above Torr. The vessel wall 12 of the enclosure 11 that separates the melting vessel 1 and the high-frequency heating coil 2 is preferably made of a material having low conductivity, such as quartz, in order to prevent loss due to induced current. The dissolving section including the dissolving vessel 1
Ar gas 10 is blown from the air supply pipe 8. Surplus Ar
The gas is exhausted from the exhaust pipe 9. By adjusting the inflow amount and the discharge amount of the Ar gas 10, the inside of the melting vessel 1 is maintained at the same pressure as the crystal growth part.
【0008】溶解容器1にフィーダ7から供給された粒
状,チップ状等の多結晶原料を溶解する際、原料溶融の
初期段階では、原料の導電率を上げ溶融に有効な渦電流
を効率よく発生させるため、必要に応じて予備加熱した
原料が使用される。また、石英ルツボ外側に設けられる
カーボン等の高導電性支持体も、加熱促進に有効に作用
する。高周波加熱によって溶融した溶融原料13は、吊
り堰3を潜って原料溶解部4から融液貯留部5に流入す
る。そして、融液貯留部5の側壁14を溢流し、融液供
給管15を経て融液16として結晶成長部(図2)に送
られる。側壁14は、溢流により融液16の供給量を調
節する作用を呈する。融液貯留部5は、融液供給管15
を介して結晶成長部に連通しているので、結晶成長部と
同じ雰囲気に維持される。他方、原料溶解部4は、吊り
堰3で融液貯留部5から分離されており、結晶成長部の
雰囲気から独立している。When the granular or chip-like polycrystalline raw material supplied from the feeder 7 is melted into the melting vessel 1, in the initial stage of melting the raw material, the conductivity of the raw material is increased to efficiently generate an eddy current effective for melting. For this purpose, a preheated raw material is used as necessary. In addition, a highly conductive support such as carbon provided outside the quartz crucible also effectively acts to promote heating. The molten raw material 13 melted by the high frequency heating flows under the suspension weir 3 from the raw material melting section 4 into the melt storage section 5. Then, it overflows the side wall 14 of the melt storage section 5 and is sent to the crystal growth section (FIG. 2) as a melt 16 via a melt supply pipe 15. The side wall 14 has an effect of adjusting the supply amount of the melt 16 by overflow. The melt storage unit 5 includes a melt supply pipe 15.
, And is maintained in the same atmosphere as the crystal growth portion. On the other hand, the raw material dissolving section 4 is separated from the melt storage section 5 by the suspension weir 3 and is independent of the atmosphere of the crystal growth section.
【0009】このように原料溶解部を結晶成長部と別個
の独立した不活性ガス雰囲気に維持するとき、結晶成長
部への雰囲気汚染が防止される。また、比較的高圧の封
入容器11に高周波コイル2を封入しているので、高周
波加熱時に放電現象が生じることなく、投入された電力
が効率よく固体原料6の加熱,溶融に消費される。高周
波加熱により調整された融液16は、融液供給管15か
ら結晶成長部のルツボ17が送り込まれる。このとき、
ヒータ18を巻回した融液供給管15を使用すると、結
晶成長用ルツボ17に送り込まれる融液16を温度制御
することができる。結晶成長用ルツボ17は、仕切り板
19で外周部20と内周部21に仕切られており、外側
に温度調節用のヒータ22が配置されている。外周部1
9に融液供給管15から送り込まれた融液16は、仕切
り板19に設けられた連通孔23を経て内周部に21に
流入し、単結晶24の育成に消費される。As described above, when the raw material dissolving section is maintained in an inert gas atmosphere independent of the crystal growth section, the contamination of the crystal growth section with the atmosphere is prevented. Further, since the high-frequency coil 2 is sealed in the relatively high-pressure enclosure 11, the supplied power is efficiently consumed for heating and melting the solid raw material 6 without causing a discharge phenomenon during high-frequency heating. The melt 16 adjusted by the high-frequency heating is fed into the crucible 17 of the crystal growth part from the melt supply pipe 15. At this time,
When the melt supply pipe 15 around which the heater 18 is wound is used, the temperature of the melt 16 fed into the crystal growth crucible 17 can be controlled. The crystal growth crucible 17 is divided into an outer peripheral portion 20 and an inner peripheral portion 21 by a partition plate 19, and a heater 22 for temperature adjustment is arranged outside. Outer part 1
The melt 16 sent into the melt 9 from the melt supply pipe 15 flows into the inner peripheral portion 21 through the communication hole 23 provided in the partition plate 19, and is consumed for growing the single crystal 24.
【0010】[0010]
【実施例】容量2kgの溶解容器1に1kgの多結晶S
i原料6を送り込み、20トールのAr雰囲気中で溶解
した。このとき、200トールのAr雰囲気に維持され
た封入容器11に収容している高周波加熱コイル2によ
り、20kHzの周波数,40kW程度の供給電力で溶
解容器1の石英ルツボの外側に設けられたカーボンの支
持体を加熱した。Si原料6が800℃程度になり、導
電性が十分となったところで、高周波で誘導加熱され、
融液16が調整された。この条件下で高周波加熱したと
き、減圧雰囲気に起因して放電が発生することなく、投
入した電力が効率よく多結晶原料6の溶解に消費され
た。比較のため、封入容器11を使用することなく溶解
容器1と同じ雰囲気に維持された高周波加熱コイル2に
通電して多結晶原料6を加熱したところ、放電の発生が
著しく、連続して投入原料を溶解することはできなかっ
た。溶解された融液原料13を融液供給管15から結晶
成長部に送り込み、引上げ速度0.8mm/分で直径2
00mmのSi単結晶を引き上げた。結晶成長に伴い6
5g/分の速度で融液16を連続供給したが、多結晶S
i原料6の供給,溶解,結晶成長部への移送は問題なく
継続された。得られた単結晶を観察したところ、原料溶
解部の汚染雰囲気ガスに起因した欠陥が検出されず、高
品質の単結晶であった。EXAMPLE 1 kg of polycrystalline S was placed in a melting vessel 1 having a capacity of 2 kg.
Raw material 6 was fed and dissolved in an Ar atmosphere of 20 Torr. At this time, the high-frequency heating coil 2 housed in the enclosing container 11 maintained in the Ar atmosphere of 200 Torr causes the carbon provided outside the quartz crucible of the melting container 1 with a frequency of 20 kHz and a supply power of about 40 kW. The support was heated. When the temperature of the Si raw material 6 reached about 800 ° C. and the conductivity became sufficient, induction heating was performed at a high frequency,
Melt 16 was prepared. When high-frequency heating was performed under these conditions, the supplied electric power was efficiently consumed for dissolving the polycrystalline raw material 6 without generating discharge due to the reduced-pressure atmosphere. For comparison, when the polycrystalline raw material 6 was heated by energizing the high-frequency heating coil 2 maintained in the same atmosphere as the melting container 1 without using the enclosure 11, discharge was remarkable, and the raw material was continuously charged. Could not be dissolved. The melted melt raw material 13 is fed from the melt supply pipe 15 to the crystal growth section, and has a diameter of 2 at a pulling rate of 0.8 mm / min.
A 00 mm Si single crystal was pulled. 6 with crystal growth
The melt 16 was continuously supplied at a rate of 5 g / min.
The supply, dissolution, and transfer of the i raw material 6 to the crystal growth section were continued without any problem. Observation of the obtained single crystal revealed no defect due to the contaminated atmosphere gas in the raw material melting portion, and it was a high quality single crystal.
【0011】[0011]
【発明の効果】以上に説明したように、本発明において
は、多結晶原料を溶解して単結晶育成用融液を調製する
際に使用される高周波加熱コイルが常圧又は低真空度の
雰囲気に維持された封入容器内に収容されているので、
高真空度に起因する放電現象が生じることなく、投入さ
れた電力が効率よく原料溶解に消費される。また、原料
溶解部と結晶成長部とをそれぞれ独立した減圧雰囲気に
維持しているので、汚染雰囲気に起因した欠陥が引き上
げられる単結晶に取り込まれることがなく、高品質の単
結晶を育成することが可能になる。As described above, in the present invention, the high-frequency heating coil used for preparing the melt for growing a single crystal by dissolving the polycrystalline raw material is used in an atmosphere under normal pressure or low vacuum. It is housed in a sealed container maintained at
The supplied electric power is efficiently consumed for melting the raw material without causing a discharge phenomenon caused by the high vacuum. In addition, since the raw material melting part and the crystal growth part are maintained in independent reduced-pressure atmospheres, it is possible to grow a high-quality single crystal without defects caused by a contaminated atmosphere being taken into the pulled single crystal. Becomes possible.
【図1】 本発明に従った原料溶解部FIG. 1 is a raw material melting section according to the present invention.
【図2】 原料溶解部から融液が送り込まれる結晶成長
部Fig. 2 Crystal growth part where melt is fed from raw material melting part
1:溶解容器 2:高周波加熱コイル 3:吊り堰
4:原料溶解部 5:融液貯留部 6:固体原料 7:フィーダ
8:給気管 9:排気管 10:Arガス 1
1:封入容器 12:器壁 13:溶融原料 14:側壁 15:融液供給管 16:融液 1
7:結晶成長用ルツボ 18:ヒータ 19:仕切り板 20:外周部
21:内周部 22:ヒータ 23:連通孔 2
4:単結晶1: melting vessel 2: high-frequency heating coil 3: hanging weir 4: raw material melting section 5: melt storage section 6: solid raw material 7: feeder
8: Air supply pipe 9: Exhaust pipe 10: Ar gas 1
1: enclosure 12: vessel wall 13: molten material 14: side wall 15: melt supply pipe 16: melt 1
7: Crystal growth crucible 18: Heater 19: Partition plate 20: Outer periphery
21: Inner circumference 22: Heater 23: Communication hole 2
4: Single crystal
フロントページの続き (72)発明者 高瀬 伸光 東京都千代田区丸の内1−4−2 (72)発明者 飯田 哲広 東京都千代田区丸の内1−4−2 (72)発明者 松原 順一 東京都千代田区丸の内1−4−2 (56)参考文献 特開 昭52−58080(JP,A) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 (72) Inventor Nobumitsu Takase 1-4-2 Marunouchi, Chiyoda-ku, Tokyo (72) Inventor Tetsuhiro Iida 1-4-2, Marunouchi, Chiyoda-ku, Tokyo (72) Inventor Junichi Matsubara Marunouchi, Chiyoda-ku, Tokyo 1-4-2 (56) References JP-A-52-58080 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C30B 1/00-35/00
Claims (4)
封入容器に高周波加熱コイルを収容し、多結晶原料が投
入される溶解容器を結晶成長部と同じ圧力の雰囲気下で
前記高周波加熱コイルの中央部に配置し、前記高周波加
熱コイルに通電して前記溶解容器内の多結晶原料を加熱
溶解する単結晶製造用多結晶原料の高周波加熱溶解方
法。1. A high-frequency heating coil is housed in a sealed container maintained at normal pressure or a low vacuum atmosphere, and a melting vessel into which a polycrystalline raw material is charged is heated under an atmosphere at the same pressure as a crystal growth part. A high-frequency heating and melting method of a polycrystalline raw material for producing a single crystal, wherein the polycrystalline raw material in the melting vessel is heated and melted by disposing the high-frequency heating coil and energizing the high-frequency heating coil.
以上のAr雰囲気圧に維持する単結晶製造用多結晶原料
の高周波加熱溶解方法。2. A high-frequency heating and melting method for a polycrystalline raw material for producing a single crystal, wherein the sealed container according to claim 1 is maintained at an Ar atmospheric pressure of 100 Torr or more.
された溶解容器と、該溶解容器の周囲に配置され、常圧
又は低真空度の雰囲気に維持された封入容器と、該封入
容器に収容された高周波加熱コイルと、前記融液貯留部
を結晶成長部に連通する融液供給管とを備え、前記溶解
容器と前記高周波加熱コイルとの間が導電性の低い材質
でできた器壁により仕切られている単結晶製造用多結晶
原料の高周波加熱溶解装置。3. A dissolving vessel divided by a hanging weir into a raw material dissolving section and a melt storing section, an enclosing vessel disposed around the dissolving vessel and maintained in an atmosphere of normal pressure or low vacuum, A high-frequency heating coil housed in a sealed container, and a melt supply pipe communicating the melt storage unit with a crystal growing unit are provided, and a space between the melting vessel and the high-frequency heating coil is made of a material having low conductivity. High-frequency heating and melting equipment for polycrystalline raw materials for producing single crystals, which are separated by vessel walls.
イルとの間が石英質の器壁で仕切られている単結晶製造
用多結晶原料の高周波加熱溶解装置。4. A high-frequency heating and melting apparatus for a polycrystalline raw material for producing a single crystal, wherein a space between the melting vessel and the high-frequency heating coil according to claim 3 is separated by a quartz vessel wall.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08201203A JP3078752B2 (en) | 1996-07-11 | 1996-07-11 | Method and apparatus for high frequency heating and melting of polycrystalline raw material for single crystal production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP08201203A JP3078752B2 (en) | 1996-07-11 | 1996-07-11 | Method and apparatus for high frequency heating and melting of polycrystalline raw material for single crystal production |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH1025189A JPH1025189A (en) | 1998-01-27 |
JP3078752B2 true JP3078752B2 (en) | 2000-08-21 |
Family
ID=16437064
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP08201203A Expired - Fee Related JP3078752B2 (en) | 1996-07-11 | 1996-07-11 | Method and apparatus for high frequency heating and melting of polycrystalline raw material for single crystal production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3078752B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5196438B2 (en) * | 2009-01-20 | 2013-05-15 | シャープ株式会社 | Raw material melt supply apparatus, polycrystal or single crystal production apparatus and production method |
-
1996
- 1996-07-11 JP JP08201203A patent/JP3078752B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH1025189A (en) | 1998-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH08333191A (en) | Production of single crystal and apparatus therefor | |
EP0785298B1 (en) | Rapid cooling of cz silicon crystal growth system | |
US5223077A (en) | Method of manufacturing single-crystal silicon | |
US5006317A (en) | Process for producing crystalline silicon ingot in a fluidized bed reactor | |
JP2601411B2 (en) | Single crystal pulling method and apparatus therefor | |
US6797060B2 (en) | Method and apparatus for producing silicon carbide single crystal | |
WO1999046433A1 (en) | Auxiliary apparatus for melting single crystal raw material and method of melting single crystal raw material | |
KR100204522B1 (en) | Process and apparatus for growing single crystals | |
CN114929951B (en) | Single crystal manufacturing apparatus | |
JP3078752B2 (en) | Method and apparatus for high frequency heating and melting of polycrystalline raw material for single crystal production | |
EP0675214B1 (en) | Method of growing crystals | |
WO2000052235A1 (en) | Method for producing silicon single crystal | |
JPH09194289A (en) | Apparatus for pulling up single crystal | |
JP3085567B2 (en) | Polycrystalline recharge apparatus and recharge method | |
JP2004131376A (en) | Silicon carbide single crystal, and method and apparatus for producing the same | |
JP4293109B2 (en) | Method for producing silicon carbide single crystal | |
JP2710433B2 (en) | Single crystal pulling device | |
JPH09241091A (en) | Device for growing single crystal and method for growing the same | |
JPH05330995A (en) | Production of silicon carbide single crystal and apparatus therefor | |
JP2004292288A (en) | Method for melting raw material for silicon single crystal | |
JPH01160892A (en) | Method for controlling oxygen concentration in silicon single crystal | |
JPH04198086A (en) | Process for growing single crystal | |
JPS59141494A (en) | Production unit for single crystal | |
JP2004043211A (en) | PROCESS AND APPARATUS FOR PREPARING SiC SINGLE CRYSTAL | |
JP2007210865A (en) | Silicon single crystal pulling device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |