JP2890629B2 - Manufacturing method of composite sintered body - Google Patents
Manufacturing method of composite sintered bodyInfo
- Publication number
- JP2890629B2 JP2890629B2 JP2064928A JP6492890A JP2890629B2 JP 2890629 B2 JP2890629 B2 JP 2890629B2 JP 2064928 A JP2064928 A JP 2064928A JP 6492890 A JP6492890 A JP 6492890A JP 2890629 B2 JP2890629 B2 JP 2890629B2
- Authority
- JP
- Japan
- Prior art keywords
- sintered body
- particles
- powder particles
- metal powder
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000002131 composite material Substances 0.000 title claims description 17
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 239000000843 powder Substances 0.000 claims description 67
- 239000002245 particle Substances 0.000 claims description 47
- 229910052751 metal Inorganic materials 0.000 claims description 26
- 239000002184 metal Substances 0.000 claims description 26
- 239000000919 ceramic Substances 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 6
- 238000010304 firing Methods 0.000 claims description 3
- 229910000831 Steel Inorganic materials 0.000 claims 1
- 239000002923 metal particle Substances 0.000 claims 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims 1
- 239000010959 steel Substances 0.000 claims 1
- 238000005245 sintering Methods 0.000 description 7
- 238000000465 moulding Methods 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 3
- 238000010891 electric arc Methods 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- -1 polypropylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は、均一に分散した金属粉末とセラミック粉末
とからなる複合焼結体の製造方法に関する。Description: TECHNICAL FIELD The present invention relates to a method for producing a composite sintered body composed of uniformly dispersed metal powder and ceramic powder.
(従来の技術) 従来の複合焼結体は、金属粉末とセラミック粉末と
を、ステアリン酸亜鉛等のバインダーと共に混練した
後、成形し焼成して製造される。(Prior Art) A conventional composite sintered body is manufactured by kneading a metal powder and a ceramic powder together with a binder such as zinc stearate and then molding and firing.
また他の方法としては、金属粉末とセラミック粉末と
の混合粉末にポリプロピレン等の熱可塑性樹脂を添加
し、一旦混合粉末からなるペレットを作成し、該ペレッ
トを100℃〜150℃に加熱して流動状態にした後、成形し
焼成して製造される。As another method, a thermoplastic resin such as polypropylene is added to a mixed powder of a metal powder and a ceramic powder, and a pellet made of the mixed powder is once prepared, and the pellet is heated to 100 ° C to 150 ° C and fluidized. After being in a state, it is molded and fired to be manufactured.
(発明が解決しようとする課題) このような従来の焼結体の製造方法では、金属粉末と
セラミック粉末とを均一に分散させることが困難であ
り、焼結体内部にて金属粉末とセラミック粉末とが偏在
する。(Problems to be Solved by the Invention) In such a conventional method for manufacturing a sintered body, it is difficult to uniformly disperse the metal powder and the ceramic powder. And are unevenly distributed.
すると、焼結体内部の強度が一様にならず、該焼結体
に外力が作用すると内部応力の集中する箇所が発生し、
焼結体全体としての強度が低下するという問題がある。Then, the strength inside the sintered body is not uniform, and when an external force acts on the sintered body, a portion where internal stress is concentrated occurs,
There is a problem that the strength of the entire sintered body is reduced.
本発明は、上記の点に鑑みてなされたもので、焼結体
を構成する金属粉末とセラミック粉末とが一様に分散
し、内部強度が偏らない複合焼結体の製造方法を提供し
ようとするものである。The present invention has been made in view of the above points, and an object thereof is to provide a method for manufacturing a composite sintered body in which a metal powder and a ceramic powder constituting a sintered body are uniformly dispersed, and the internal strength is not biased. Is what you do.
(課題を解決するための手段) 本発明によれば、金属粉末と該金属粉末の粒子径より
粒径が小であるセラミック粉末とを静電気帯電させた容
器内にて混合し、金属粉末粒子表面にセラミック粉末粒
子を吸着せしめるステップと、該セラミック粉末粒子を
衝打し金属粉末粒子表面に侵着せしめるステップと、該
ステップ終了後、該金属粉末を成形し焼成するステップ
とを有することを特徴とする複合焼結体の製造方法を提
供できる。(Means for Solving the Problems) According to the present invention, a metal powder and a ceramic powder having a smaller particle diameter than the particle diameter of the metal powder are mixed in an electrostatically charged container, and the surface of the metal powder particles is mixed. A step of adsorbing the ceramic powder particles, a step of hitting the ceramic powder particles to infiltrate the surface of the metal powder particles, and a step of molding and firing the metal powder after the step is completed. A method for producing a composite sintered body can be provided.
(作用) 本発明の複合焼結体の製造方法では、金属粉末粒子を
核とし、該金属粉末粒子表面にセラミック粉末粒子を静
電吸着させるので、金属粉末粒子とセラミック粉末粒子
とが一様に混合される。(Function) In the method for producing a composite sintered body of the present invention, the metal powder particles are used as nuclei, and the ceramic powder particles are electrostatically adsorbed on the surface of the metal powder particles. Mixed.
更に、該吸着しているセラミック粉末粒子を、金属粉
末粒子表面に衝打し侵着させるので、成形及び焼結時に
セラミック粉末粒子が金属粉末粒子から脱落せず、よっ
て、一様に金属粉末粒子とセラミック粉末粒子とが一様
に分散された複合焼結体を製造することができる。Further, since the adsorbed ceramic powder particles are impacted and infiltrated on the surface of the metal powder particles, the ceramic powder particles do not fall off from the metal powder particles during molding and sintering. And the ceramic powder particles are uniformly dispersed to produce a composite sintered body.
(実施例) 以下、本発明の一実施例を図面に従って詳細に説明す
る。Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings.
第1図は、本発明による製造方法の工程を示すフロー
図、第2図は各工程での断面図である。FIG. 1 is a flowchart showing steps of a manufacturing method according to the present invention, and FIG. 2 is a cross-sectional view of each step.
耐熱性に優れたSUS304材にAl2O3を添加し、耐摩耗性
を向上させる場合について説明する。A case in which Al 2 O 3 is added to a SUS304 material having excellent heat resistance to improve wear resistance will be described.
第2図(a)に示すごとく、粒径40〜50μmのSUS304
粉末2を70wt%と、粒径4〜5μmのAl2O3粉末3を30w
t%とを、静電気を帯電させた容器内に投入し、攪拌す
ることによりSUS304粉末粒子2どうしを分離し、かつ該
SUS304粉末粒子2表面にAl2O3粉末粒子3を静電気力に
より吸着させ、吸着粉末1を作成する。As shown in FIG. 2 (a), SUS304 having a particle size of 40 to 50 μm
70% by weight of powder 2 and Al 2 O 3 powder 3 having a particle size of 4-5 μm
t% into a container charged with static electricity, and stirred to separate SUS304 powder particles 2 from each other.
The Al 2 O 3 powder particles 3 are adsorbed on the surface of the SUS304 powder particles 2 by electrostatic force, and an adsorption powder 1 is prepared.
次に、内部にて回転翼が約5000rpmで回転している衝
打装置内に、該吸着粉末1を投入し、該吸着粉末1の粒
子を回転翼及び衝打装置内壁に衝突せしめ、Al2O3粉末
粒子3をSUS304粉末粒子2の表面に食い込ませ、侵着せ
しめることにより、第2図(b)に示す複合粉末4を作
成する。Then, the striking in an apparatus rotating blade at the inside is rotating at about 5000 rpm, was charged adsorber powder 1, allowed the collision of particles of the adsorber powder 1 to rotary blade and striking inner wall of the apparatus, Al 2 The O 3 powder particles 3 bite into the surface of the SUS304 powder particles 2 and infiltrate them to form the composite powder 4 shown in FIG. 2 (b).
そして、該複合粉末4の衝打装置から取り出し、ステ
アリン酸亜鉛等のバインダーを添加して混練し、射出成
形機にて成形する。Then, the composite powder 4 is taken out of the impact device, a binder such as zinc stearate is added and kneaded, and the mixture is molded by an injection molding machine.
該成形物を焼結炉内に配置し、まずバインダーを揮散
させた後、1100℃に加熱し焼成して、第2図(c)に示
す複合焼結体5を作成した。The molded product was placed in a sintering furnace, and after the binder was first evaporated, it was heated to 1100 ° C. and baked to produce a composite sintered body 5 shown in FIG. 2 (c).
ところで、上記実施例では射出成形機にて成形した
が、ホットプレス、HIP、CIP等の成形方法を用いてもよ
く、また、粉末粒子間にて発生するアーク放電にて焼結
を行なう通電焼結法により複合焼結体5を製造してもよ
いことは明白である。By the way, in the above embodiment, molding was performed by an injection molding machine, but a molding method such as hot pressing, HIP, CIP or the like may be used, and electric sintering in which sintering is performed by arc discharge generated between powder particles. It is clear that the composite sintered body 5 may be manufactured by the sintering method.
尚、該通電焼結法とは、黒鉛等の通電性電極にて粉末
を500〜1000Kg/cm2の圧力でプレスすると共に、該電極
間に1000KVで2000cpmのパルス電力を30〜100sec間印加
するものである。In addition, the electric current sintering method is to press the powder with a conductive electrode such as graphite at a pressure of 500 to 1000 kg / cm 2 and apply a pulse power of 2000 cpm at 1000 KV between the electrodes for 30 to 100 seconds. Things.
該通電方法によると、上記のごとく粉末粒子間にてア
ーク放電が発生するため、該粉末粒子表面の酸化被膜等
が除去され、粒子間の結合力が強力となる作用がある。According to the energization method, an arc discharge is generated between the powder particles as described above, so that an oxide film or the like on the surface of the powder particles is removed, and the bonding force between the particles is enhanced.
該通電焼結を行なう場合には、上記Al2O3粉末に代え
て、窒化アルミニウム、炭化シリコン、窒化チタン及び
窒化珪素等の通電性セラミックを用いる。When conducting the electric current sintering, an electric conductive ceramic such as aluminum nitride, silicon carbide, titanium nitride and silicon nitride is used instead of the Al 2 O 3 powder.
上記のごとく本発明の実施例について詳細に説明した
が、本発明の精神から逸れないかぎりで、種々の異なる
実施例は容易に構成できるから、本発明は前記特許請求
の範囲において記載した限定以外、特定の実施例に制約
されるものではない。Although the embodiments of the present invention have been described in detail as described above, various different embodiments can be easily configured without departing from the spirit of the present invention, and therefore, the present invention is not limited to those described in the claims. , Is not limited to a particular embodiment.
(発明の効果) 以上説明したように、本発明によれば、本発明の複合
焼結体の製造方法では、金属粉末粒子を核とし、該金属
粉末粒子表面にセラミック粉末粒子を静電吸着させるの
で、金属粉末粒子とセラミック粉末粒子とが一様に混合
され、更に、該吸着しているセラミック粉末粒子を、金
属粉末粒子表面に衝打し侵着された後、成形及び焼結時
にセラミック粉末粒子が金属粉末粒子から脱落せず、よ
って、一様に金属粉末粒子とセラミック粉末粒子とが一
様に分散され、内部強度に偏りがない複合焼結体の製造
方法を提供できる。(Effects of the Invention) As described above, according to the present invention, in the method for producing a composite sintered body of the present invention, metal powder particles are used as nuclei, and ceramic powder particles are electrostatically adsorbed on the surface of the metal powder particles. Therefore, the metal powder particles and the ceramic powder particles are uniformly mixed, and furthermore, the adsorbed ceramic powder particles are impacted and impinged on the surface of the metal powder particles. It is possible to provide a method for producing a composite sintered body in which the particles do not fall off from the metal powder particles, the metal powder particles and the ceramic powder particles are uniformly dispersed, and the internal strength is not uneven.
第1図は、本発明による製造方法の工程を示すフロー
図、第2図は各工程での断面図である。 1……吸着粉末、2……SUS304粉末、3……Al2O3粉末
粒子、4……複合粉末、5……複合焼結体。FIG. 1 is a flowchart showing steps of a manufacturing method according to the present invention, and FIG. 2 is a cross-sectional view of each step. 1 ...... adsorption powder, 2 ...... SUS304 powder, 3 ...... Al 2 O 3 powder particles, 4 ...... composite powder, 5 ...... composite sintered body.
───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22C 1/05 B22F 1/00 - 3/26 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 6 , DB name) C22C 1/05 B22F 1/00-3/26
Claims (4)
小であるセラミック粉末とを静電気帯電させた容器内に
て混合し、金属粉末粒子表面にセラミック粉末粒子を吸
着せしめるステップと、該セラミック粉末粒子を衝打し
金属粉末粒子表面に侵着せしめるステップと、該ステッ
プ終了後、該金属粉末を成形し焼成するステップとを有
することを特徴とする複合焼結体の製造方法。A step of mixing a metal powder and a ceramic powder having a particle diameter smaller than the particle diameter of the metal powder in an electrostatically charged container, and adsorbing the ceramic powder particles on the surface of the metal powder particles; A method for producing a composite sintered body, comprising: a step of hitting the ceramic powder particles to infiltrate the surface of the metal powder particles; and, after the step, forming and firing the metal powder.
とする請求項(1)記載の複合焼結体の製造方法。2. A method according to claim 1, wherein said metal particles are made of SUS steel.
(Al2O3)からなることを特徴とする請求項(1)記載
の複合焼結体の製造方法。3. The method according to claim 1, wherein said ceramic particles are made of aluminum oxide (Al 2 O 3 ).
セラミック粉末の粒径は4〜5μmであることを特徴と
する請求項(1)記載の複合焼結体の製造方法。4. The metal powder has a particle size of 40 to 50 μm,
The method for producing a composite sintered body according to claim 1, wherein the particle size of the ceramic powder is 4 to 5 m.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2064928A JP2890629B2 (en) | 1990-03-15 | 1990-03-15 | Manufacturing method of composite sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2064928A JP2890629B2 (en) | 1990-03-15 | 1990-03-15 | Manufacturing method of composite sintered body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03264603A JPH03264603A (en) | 1991-11-25 |
JP2890629B2 true JP2890629B2 (en) | 1999-05-17 |
Family
ID=13272193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2064928A Expired - Lifetime JP2890629B2 (en) | 1990-03-15 | 1990-03-15 | Manufacturing method of composite sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2890629B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH042743A (en) * | 1990-04-20 | 1992-01-07 | Kimiko Sakata | Special ceramics dispersion strengthened alloy as well as its manufacture and its working method |
JPH09310103A (en) * | 1996-05-21 | 1997-12-02 | Toyota Central Res & Dev Lab Inc | Composite material and method for producing the same |
JP3523524B2 (en) * | 1999-05-06 | 2004-04-26 | 山川産業株式会社 | Nozzle filler for steel making and manufacturing method thereof |
JP4001438B2 (en) * | 1999-05-31 | 2007-10-31 | 三井金属鉱業株式会社 | Method for producing composite copper fine powder |
KR101227428B1 (en) * | 2011-02-24 | 2013-01-29 | 연세대학교 산학협력단 | Oxygen atoms-dispersed metal-based composite material and method for manufacturing the same |
KR101269451B1 (en) * | 2011-06-27 | 2013-05-30 | 연세대학교 산학협력단 | Oxygen atoms-dispersed metal-based composite material and method for manufacturing the same |
RU2725893C2 (en) * | 2014-07-21 | 2020-07-07 | Нуово Пиньоне СРЛ | Method of making machine components by additive production |
-
1990
- 1990-03-15 JP JP2064928A patent/JP2890629B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH03264603A (en) | 1991-11-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2890629B2 (en) | Manufacturing method of composite sintered body | |
Groza | Field-activated sintering | |
EP0580208A3 (en) | Method of producing magnetic rotor parts | |
JP2002501949A5 (en) | ||
JPH10163055A (en) | Manufacture of high electric resistance rare earth permanent magnet | |
CN110491611A (en) | A kind of novel high-energy ceramics carbon resistance and preparation method thereof | |
JP2001298913A (en) | Brush | |
JPH0598311A (en) | Sintered composite and manufacturing method thereof | |
SU822991A1 (en) | Plant for electric-pulse pressing of powder articles | |
JP2694895B2 (en) | Method for producing temperature characteristic functional composite particles by electrostatic treatment | |
JP7087830B2 (en) | Manufacturing method of RTB-based sintered magnet | |
JPH05152613A (en) | Thermoelectric conversion material | |
JP5517816B2 (en) | Ceramic body with conductive layer, and joined body of ceramic and metal | |
JPH04218606A (en) | Heat resistant composite sintered compact and production thereof | |
JP2001348277A (en) | Method and device for spark plasma sintering | |
JP2007180373A5 (en) | ||
JPH03285002A (en) | Manufacture of radial bearing | |
JPH0525462A (en) | Production of conductive abrasive grain and electrolytic grinding stone | |
JPH0412049A (en) | Production of sintered ceramic material | |
JPH0617102A (en) | Caking method by sintering | |
JPH0762559A (en) | Formation of powder film | |
JPH0473907A (en) | Permanent magnet and manufacture thereof | |
JPH06314605A (en) | Manufacture of rare earth bonded magnet | |
JP2784837B2 (en) | Degreasing method of ceramic molded body | |
JP3419338B2 (en) | Method of firing magnetic core |