[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2512835B2 - Method for producing silica fine particles - Google Patents

Method for producing silica fine particles

Info

Publication number
JP2512835B2
JP2512835B2 JP3020344A JP2034491A JP2512835B2 JP 2512835 B2 JP2512835 B2 JP 2512835B2 JP 3020344 A JP3020344 A JP 3020344A JP 2034491 A JP2034491 A JP 2034491A JP 2512835 B2 JP2512835 B2 JP 2512835B2
Authority
JP
Japan
Prior art keywords
particle size
particles
fine particles
distribution
seed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3020344A
Other languages
Japanese (ja)
Other versions
JPH04240112A (en
Inventor
和彦 阪井
龍彦 足立
信雅 森
真 所司
秀和 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Nitto Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd filed Critical Ube Nitto Kasei Co Ltd
Priority to JP3020344A priority Critical patent/JP2512835B2/en
Publication of JPH04240112A publication Critical patent/JPH04240112A/en
Application granted granted Critical
Publication of JP2512835B2 publication Critical patent/JP2512835B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)
  • Silicon Polymers (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、粒径分布が単分散状の
シリカ微粒子の製造方法に関し、とりわけ液晶表示装置
用スペーサーや標準粒子として好適なシリカ微粒子の製
造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing fine silica particles having a monodispersed particle size distribution, and more particularly to a method for producing fine silica particles suitable as a spacer for liquid crystal display devices and standard particles.

【0002】[0002]

【従来の技術】単分散シリカ微粒子を製造する方法は、
(St▲o▼ber、J.Colloid and I
nterface Sci.,26,62−69(19
68)あるいは下平高次郎らにより、粉体及び粉末冶金
23,4,137(1976))に記載されている。こ
の方法はシリコンアルコキシドを強アルカリの存在下で
加水分解重縮合反応させて単分散微粒子を得るものであ
るが、液中のシリカ濃度がおよそ0.1mol /l(重量
百分率としてシリカ6g/l)以下でないと単分散微粒
子が生成しないとされている。
2. Description of the Related Art A method for producing monodisperse silica fine particles is
(St.ober, J. Colloid and I.
interface Sci. , 26, 62-69 (19
68) or Kojiro Shimodaira et al., Powder and Powder Metallurgy 23, 4, 137 (1976)). In this method, a silicon polyalkoxide is subjected to a hydrolytic polycondensation reaction in the presence of a strong alkali to obtain monodispersed fine particles, and the concentration of silica in the liquid is about 0.1 mol / l (silica 6 g / l as a weight percentage). It is said that the monodisperse fine particles are not generated unless it is below.

【0003】また前記の文献に記載されている方法で
は、シリコンペントキシドを原料にして最大2μmまで
の粒子が合成されているが、原料が一般的なエトキシド
より高価であり経済的ではない。そこでミクロンオーダ
ーの粒子を合成するために、特開昭62−52119
号公報、特開昭63−94224号公報に2つの方法
が提案されているが、これらの方法には、いずれも以下
に説明する技術的課題があった。
In the method described in the above document, particles of up to 2 μm are synthesized using silicon pentoxide as a raw material, but the raw material is more expensive than general ethoxide and is not economical. Therefore, in order to synthesize micron-order particles, Japanese Patent Laid-Open No. 62-52119 has been proposed.
JP, two ways in JP-A-63 -94224 are proposed, these methods, both had technical problems described below.

【0004】[0004]

【発明が解決しようとする課題】前記に開示されてい
る方法は、シード粒子は用いないが、アルコキシドを連
続的に添加していく過程において、添加初期(反応初
期)に生成した粒子がシードとなり、その後添加された
アルコキシドによって成長を続けていく方法である。こ
の方法は常にアンモニア及び水の濃度を一定に保つ方法
を採用しているのが特徴である。具体的には、アンモニ
ア水及びアルコールの混合液に、アンモニアをアルコー
ルで稀釈した液及びシリコンアルコキシドをアルコール
で稀釈した液あるいはアルコキシドのみの液を、アンモ
ニアおよび水の濃度が変化しないように一定の割合で別
々に滴下混合するものである。
In the method disclosed above, seed particles are not used, but in the process of continuously adding alkoxide, particles formed in the initial stage of addition (initial stage of reaction) serve as seeds. The method is to continue the growth with the added alkoxide. This method is characterized in that it always adopts a method of keeping the concentrations of ammonia and water constant. Specifically, in a mixed solution of ammonia water and alcohol, a solution obtained by diluting ammonia with alcohol and a solution obtained by diluting silicon alkoxide with alcohol or a solution containing only alkoxide is mixed at a constant ratio so that the concentration of ammonia and water does not change. In this case, they are separately dropped and mixed.

【0005】しかし、実施例における生成した単分散微
粒子の粒径の変動率([σn-1 /X]×100、
σn-1 :標準偏差、X:平均粒径)は、0.3μmが1
0%、1.8μmが5%、5.26μmが4%、14.
3μmが4%であり、液晶スペーサーとして使用する場
合の範囲(<10μm)の粒径では、4%ぐらいが限界
と思われ、平均粒径が5.26μmの場合は標準偏差が
0.21μmであるのに対して、標準偏差が0.1μm
以下であることが望ましいとされる液晶スペーサー用と
しては不充分である。
However, the fluctuation rate ([σ n-1 / X] × 100,
σ n-1 : standard deviation, X: average particle size), 0.3 μm is 1
0%, 1.8 μm is 5%, 5.26 μm is 4%, 14.
3μm is 4%, and when used as a liquid crystal spacer, the particle size in the range (<10μm) seems to be about 4%. When the average particle size is 5.26μm, the standard deviation is 0.21μm. However, the standard deviation is 0.1 μm
The following is not sufficient for a liquid crystal spacer which is considered desirable.

【0006】一方、前記公報には、シリコンアルコキ
シド、アンモニア、水、アルコールからシード粒子を作
製し、これを前記の原料液を徐々に添加して粒径を成長
させるにあたり、各段階で所定量の原料液を加え終わっ
た直後、NaOH水溶液を添加して生成粒子の分散を安
定させたヒールゾルとすることを特徴とする製造方法が
開示されている。この方法で作製したシリカ微粒子を液
晶用スペーサーとして使用する場合は、粒子内部にNa
イオンが残留しそれらが溶出して、アルカリに弱い液
晶分子を劣化させるおそれがある。また、の方法に
おいは、アルコキシドを追加して添加するとき、添加さ
れたアルコキシドが反応系中に既に生成されているシリ
カ粒子の粒径を成長させるものとしてのみ添加、消費さ
れるとは限らない。すなわち追加添加されたアルコキシ
ドの一部から新たにシリカのシード粒子が生成し、アル
コキシドの一部は新たに生成したシード粒子の粒径を成
長させるものとして消費される。したがって比較的大き
な粒径のシリカ粒子と共に新たに副生する小さな粒子の
生成が避けられない。
On the other hand, in the above publication, seed particles are prepared from silicon alkoxide, ammonia, water and alcohol, and the raw material liquid is gradually added thereto to grow the particle size. Disclosed is a manufacturing method characterized in that, immediately after the addition of the raw material liquid, an aqueous solution of NaOH is added to form a heel sol in which the dispersion of generated particles is stabilized. When the silica fine particles produced by this method are used as a spacer for liquid crystal, Na is used inside the particles.
+ Ions may remain and elute, which may deteriorate liquid crystal molecules that are weak against alkali. Also, in the method of
The scent is added when adding the alkoxide.
Alkoxide that has already formed in the reaction system
Added and consumed only to grow the particle size
It is not always possible. That is, the added alkoxy
Silica seed particles are newly generated from a part of the
A portion of the coxides formed the size of the newly formed seed particles.
It is consumed as a lengthening factor. Therefore relatively large
Of small particles that are newly by-produced with silica particles of various sizes
Generation is inevitable.

【0007】そこで、本発明者らは、上記問題点が解決
できる単分散状シリカ微粒子の製造方法について鋭意検
討して、本願発明を完成した。
Therefore, the inventors of the present invention completed the present invention by earnestly studying a method for producing monodisperse silica fine particles which can solve the above problems.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に、本発明は、シリコンアルコキシドの加水分解及び重
縮合反応によって粒径が単分散のシード粒子を生成せし
め、次いで該シード粒子の分散液に触媒の存在下でシリ
コンアルコキシドを添加して、該シード粒子を成長させ
て粒径を増大させる成長過程を経て単分散シリカ微粒子
を得るにあたり、目標とする粒径に対して該成長過程を
複数回とするとともに、各成長過程の終了後に多分散状
にある微粒子を分級して単分散状とし、次いで、この分
級された単分散状微粒子をシード粒子として成長させる
操作を繰返すことを特徴とする。
In order to achieve the above object, the present invention is to produce seed particles having a monodisperse particle size by the hydrolysis and polycondensation reaction of silicon alkoxide, and then the dispersion liquid of the seed particles. In the presence of a catalyst, silicon alkoxide is added to the seed particles to grow the seed particles to increase the particle size. It is characterized by repeating the operation of repeating the operation of growing the classified monodisperse fine particles as seed particles after classifying the polydisperse fine particles into monodisperse particles after each growth process. .

【0009】この製造方法では、シード粒子、アンモニ
ア、水、アルコールからなる溶液にアルコキシドのみ、
あるいはアルコキシドをアルコールで稀釈した液を添加
して加水分解を行なわせ、生じた加水分解生成物をシー
ド粒子に重ねていくことにより粒径を大きくする。
In this manufacturing method, only the alkoxide is added to the solution containing seed particles, ammonia, water and alcohol.
Alternatively, a solution obtained by diluting an alkoxide with alcohol is added to cause hydrolysis, and the resulting hydrolysis product is superposed on seed particles to increase the particle size.

【0010】シリコンアルコキシドは、アルコキシル基
の炭素数が4以下の粒子が好ましいが、メトキシド及び
エトキシドが入手のしやすさ及び安価なことから好適に
用いられる。また、溶媒は、アンモニア及びアルコキシ
ドと混合するものであれば、いずれの溶媒を用いても良
いが、炭素数が4以下のアルキルアルコールすなわち、
メタノール、エタノール、プロパノール、ブタノールを
用いることが望ましい。
The silicon alkoxide is preferably particles having an alkoxyl group having 4 or less carbon atoms, but methoxide and ethoxide are preferably used because they are easily available and inexpensive. Further, as the solvent, any solvent may be used as long as it is a mixture with ammonia and an alkoxide, but an alkyl alcohol having 4 or less carbon atoms, that is,
It is desirable to use methanol, ethanol, propanol or butanol.

【0011】シード粒子から目的の粒径の微粒子を合成
する場合、目的の径の粒子の他にそれらと分布が重なら
ない小さい粒子しか生成しないことが必要である。この
場合小粒径モード側の粒子群の分布のうち、少なくとも
最大径(Smax)が得ようとする目的の粒子の平均径
(X )に対して1/2より小さいことが必要である。
このとき、小さい方の分布の平均粒径(X)はX
maxとなるが、Xに対するSmaxの比が2/3
より小さいことが分級をより容易にする。反対に小さい
粒子の最大径が、目的の粒子の平均径に対して1/2よ
りも大きい場合は、分級を繰り返しても完全に除去する
ことは難しいのみならず、分級操作に非常に時間がかか
り経済的ではない。また分級前のシード粒子に小さい粒
子が混入していると、シード粒子と同時にそれらも成長
していくので、Smax/Xが1/2を超えてしまい
分級困難になる。
When synthesizing fine particles having a desired particle size from seed particles, it is necessary to generate only small particles having a distribution not overlapping with those having a desired particle size. In this case, it is necessary that at least the maximum diameter (S max ) of the distribution of the particle groups on the small particle size mode side is smaller than 1/2 of the average diameter (X L ) of the target particles to be obtained. .
At this time, the average particle size (X s ) of the smaller distribution is X s <
S max , but the ratio of S max to X s is 2/3
Smaller makes classification easier. On the contrary, when the maximum diameter of the small particles is larger than 1/2 of the average diameter of the target particles, it is not only difficult to completely remove the particles even if the classification is repeated, but the classification operation takes a very long time. It is not economical. Also, if small particles are mixed in the seed particles before classification, they also grow at the same time as the seed particles, so that S max / X L exceeds 1/2 and classification becomes difficult.

【0012】目的の径の単分散微粒子は、上記の2つの
分布をもつ(バイモーダル)な粒径分布のシリカ微粒子
の分散液を湿式あるいは乾燥分級して小さい方の粒子を
除去することにより得られる。湿式分級は合成後の液か
ら揮発成分を取り除いて乾燥した粉体を有機溶媒等に分
散させ、フルイあるいは遠心沈降方式の分級装置あるい
は遠心機による沈降、自然沈降等により小さい粒子を取
り除けばよい。また合成後の液を直接、フルイ、分級装
置、遠心及び自然沈降等によって小さい粒子を取り除い
てもよいが、アンモニアの容器外への漏れを防止するた
めには装置が複雑となるためロータリーエバポレータ
ー、分留器等を使用して、合成後の液から沸点の低いア
ンモニア、アルコールを除去して水分散液とし、その後
湿式分級して小さい粒子を取り除くことがより望まし
い。
The monodisperse fine particles having a desired diameter are obtained by wet or dry classification of a dispersion liquid of silica fine particles having a bimodal particle size distribution having the above two distributions to remove smaller particles. To be In the wet classification, the volatile components are removed from the liquid after synthesis and the dried powder is dispersed in an organic solvent or the like, and smaller particles may be removed by sedimentation by a sieve or centrifugal sedimentation type classifier or a centrifuge, natural sedimentation and the like. In addition, the liquid after synthesis may be directly removed by a sieve, a classifier, a centrifugal separator, a natural sedimenter, or the like, but in order to prevent ammonia from leaking out of the container, the device becomes complicated, so a rotary evaporator, It is more preferable to remove ammonia and alcohol having a low boiling point from the liquid after synthesis to obtain an aqueous dispersion using a fractionator or the like, and then perform wet classification to remove small particles.

【0013】フルイあるいはメンブランフィルター等の
多孔質膜を通して分級する場合は、孔径が大きい粒子と
小さい粒子の平均径の間にあるものを使用するが、粒径
がおよそ1ミクロンを超えるようになると粒子の沈降が
速くなり、分級途中で粒子の堆積による目詰まりを起し
やすくなる。そのため、超音波照射あるいはフィルター
上の分散液を撹拌するなどして大きい方の粒子がフルイ
及びフィルター上に沈降するのを防止することが好まし
い。
When classifying through a porous membrane such as a sieve or membrane filter, particles having a large pore size and those between the average diameters of small particles are used, but when the particle size exceeds about 1 micron, Sedimentation becomes faster, and clogging due to accumulation of particles tends to occur during classification. Therefore, it is preferable to prevent the larger particles from settling on the sieve and the filter by irradiating ultrasonic waves or stirring the dispersion liquid on the filter.

【0014】 max/X<0.5の条件内でシード
粒子を大きくする場合は、合成液中のシリカ微粒子の濃
度を従来の方法よりも上げることができる。例えばシリ
カ分として10%を超える濃度で、合成することが可能
である。
[0014] When S max / X L <seed particles size Ru camphor in 0.5 conditions, the concentration of the silica fine particles in the synthesis solution can be increased than the conventional method. For example, it is possible to synthesize with a silica content of more than 10%.

【0015】[0015]

【実施例】《実施例1》20lの容量の円筒型反応容器
にメタノール14,800ml及び25%アンモニア水
4,090mlを入れて混合し、30℃の恒温槽にセット
した。この液にテトラエトキシシラン1,110mlの全
量を撹拌しながら一度に添加し、まず平均粒径0.3μ
mの粒子を生成させた。6時間以上熟成したのち、ロー
タリーエバポレーターを用いてアルコール及びアンモニ
アを取り除き、13.0重量%のシリカ微粒子の水分散
液とした。
EXAMPLES Example 1 In a cylindrical reaction vessel having a capacity of 20 l, 14,800 ml of methanol and 4,090 ml of 25% ammonia water were added and mixed, and the mixture was set in a constant temperature bath at 30 ° C. To this solution, add 1,110 ml of tetraethoxysilane all at once with stirring.
m particles were produced. After aging for 6 hours or more, alcohol and ammonia were removed using a rotary evaporator to obtain a 13.0 wt% silica fine particle aqueous dispersion.

【0016】得られた0.3μmの水分散液282.6
mlを、20l反応容器中でメタノール8,780ml及び
25%アンモニア水5,480mlと混合し、次いでテト
ラエトキシシラン3,500mlを撹拌下において5g/
分の速さで滴下した。滴下終了から6時間以上撹拌しな
がら熟成を行なった。液中には1.0μmの単分散微粒
子が生成していた。ロータリーエバポレーターでアルコ
ール及びアンモニアを取り除いて12.0重量%のシリ
カ微粒子の水分散液を得た。
The resulting 0.3 μm aqueous dispersion 282.6
ml in a 20 l reaction vessel with 8,780 ml of methanol and 5,480 ml of 25% aqueous ammonia, then 3,500 ml of tetraethoxysilane under stirring at 5 g /
It was dripped at the speed of minute. After completion of dropping, the mixture was aged for 6 hours or more with stirring. In the liquid, 1.0 μm monodisperse fine particles were formed. Alcohol and ammonia were removed by a rotary evaporator to obtain a 12.0 wt% silica fine particle aqueous dispersion.

【0017】得られた1.0μmの水分散液1450ml
を、20l反応容器中でメタノール11,600ml及び
25%アンモニア水5,000mlと混合し、次いでテト
ラエトキシシラン1,950mlを撹拌下10.0g/分
の速さで滴下した。滴下終了から6時間以上撹拌しなが
ら熟成を行なった。液中にはお互いに重なり合わない2
種の分布をもつ球状粒子が生成していた。
1450 ml of the obtained 1.0 μm aqueous dispersion
Was mixed with 11,600 ml of methanol and 5,000 ml of 25% aqueous ammonia in a 20-liter reaction vessel, and then 1,950 ml of tetraethoxysilane was added dropwise with stirring at a rate of 10.0 g / min. After completion of dropping, the mixture was aged for 6 hours or more with stirring. Do not overlap each other in the liquid 2
Spherical particles with a distribution of species were formed.

【0018】電子顕微鏡及び粒度分布計による測定の結
果、大きい方の平均粒径 は1.90μm、小さい分
布の粒子は、最大径Smaxが0.73μm、平均粒径
も0.73μmであり、Smax 0.38
であった。ロータリーエバポレーターによってアルコー
ル及びアンモニアを取り除いて水分散液としたのち、湿
式分級して平均粒径の小さい方の分布の粒子を取り除い
た。得られた単分散1.90μm粒子の平均粒径は粒子
径の変動率(=標準偏差[μm]/平均粒径[μm])
は2.2%であった。
As a result of measurement with an electron microscope and a particle size distribution meter, the larger average particle size X L was 1.90 μm, and the particles with a smaller distribution had a maximum size S max of 0.73 μm and an average particle size R S of 0. 73 μm and S max / X L = 0.38
Met. Alcohol and ammonia were removed by a rotary evaporator to obtain an aqueous dispersion, which was then wet-classified to remove particles having a smaller average particle size distribution. The average particle size of the obtained monodisperse 1.90 μm particles is the variation rate of the particle size (= standard deviation [μm] / average particle size [μm]).
Was 2.2%.

【0019】得られた1.90μmの単分散シリカ微粒
子を13.4重量%含む水分散液143ml、25%アン
モニア水429ml及びメタノール1143mlを2000
mlの容器に入れ、30℃の恒温槽にセットし撹拌下テト
ラエトキシシラン286mlを毎分1gの割合で滴下し
た。滴下終了後6時間以上撹拌しながら熟成を行った。
143 ml of an aqueous dispersion containing 13.4% by weight of the obtained 1.90 μm monodisperse silica fine particles, 429 ml of 25% aqueous ammonia and 1143 ml of methanol were added to 2000 parts.
The mixture was placed in a 30 ml container, set in a constant temperature bath at 30 ° C., and 286 ml of tetraethoxysilane was added dropwise at a rate of 1 g per minute while stirring. After the completion of dropping, the mixture was aged with stirring for 6 hours or more.

【0020】電子顕微鏡及び粒度分布計による測定か
ら、お互いに重なり合わない2種の分布をもつ球状粒子
を得た。電子顕微鏡による粒径の測定を行なった結果、
分布の大きい方の平均粒径XL は2.99μmであり、
小さい分布の方は最大径Smax が1.16μm、平均粒
径は0.82μmであり、Smax /XL =0.39であ
った。得られた粒子の分散液をエバポレーターによって
アンモニア及びメタノールを取り除いて水分散液とした
のち、湿式分級して粒径分布が小さい方の粒子を取り除
いた。最終的に得られた単分散シリカ微粒子の平均粒径
は2.99μm、粒子径の標準偏差は0.048μm、
変動率は1.61%となった。
From measurement by an electron microscope and a particle size distribution meter, spherical particles having two kinds of distributions which do not overlap each other were obtained. As a result of measuring the particle size by an electron microscope,
The average particle size X L of the larger distribution is 2.99 μm,
In the smaller distribution, the maximum diameter S max was 1.16 μm, the average particle diameter was 0.82 μm, and S max / X L = 0.39. Ammonia and methanol were removed from the obtained dispersion liquid of the particles by an evaporator to obtain an aqueous dispersion liquid, which was then wet-classified to remove particles having a smaller particle size distribution. The average particle diameter of the finally obtained monodisperse silica fine particles is 2.99 μm, and the standard deviation of the particle diameter is 0.048 μm.
The variation rate was 1.61%.

【0021】《実施例2》実施例1で作製した粒径が約
3.0μmの単分散シリカ微粒子をシード粒子とした。
前記シード粒子を16.6重量%含む水分散液を196
ml用意し、また25%アンモニア水500ml及びメタノ
ール1000ml、テトラエトキシシランを250mlとす
る他は実施例1にしたがってシリカ微粒子を作製した。
電子顕微鏡による粒径の測定を行なった結果、分布の大
きい方の平均粒径XL は4.18μmであり、分布の小
さい方は最大径Smax が2.0μm、平均粒径は1.1
4μmであり、Smax /XL =0.48であった。得ら
れた微粒子を湿式分級して小さい方の粒子を取り除いた
ところ、平均粒径4.18μm、粒子径の標準偏差は
0.056μm、変動率は1.35%となった。
Example 2 The monodisperse silica fine particles having a particle size of about 3.0 μm produced in Example 1 were used as seed particles.
196 an aqueous dispersion containing 16.6% by weight of the seed particles
Silica fine particles were prepared in accordance with Example 1 except that 25 ml of 25% aqueous ammonia, 500 ml of methanol, and 250 ml of tetraethoxysilane were used.
As a result of measuring the particle size by an electron microscope, the average particle size X L of the larger distribution is 4.18 μm, and the maximum size S max of the smaller distribution is 2.0 μm and the average particle size is 1.1.
4 μm, and S max / X L = 0.48. When the obtained fine particles were wet classified to remove the smaller particles, the average particle size was 4.18 μm, the standard deviation of the particle size was 0.056 μm, and the variation rate was 1.35%.

【0022】《実施例3》 実施例1で作製した粒径が約3.0μmのものをシード
粒子とした。前記シード粒子を16.6重量%含む水分
散液を142ml用意し、また25%アンモニア水63
6ml及びメタノール727ml、テトラエトキシシラ
ンを455mlとする他は実施例1にしたがってシリカ
微粒子を作製した。電子顕微鏡による粒径の測定を行な
った結果、分布の大きい方の平均粒径Xは4.97μ
mであり、分布の小さい方は最大径 maxが2.2μ
m、平均粒径は1.54μmであり、 max/X
0.44であった。湿式分級して小さい方の粒子を取り
除いたところ、平均粒径は4.97μm、粒子径の標準
偏差は0.083μm、変動率は1.68%となった。
Example 3 The seed particles having a particle size of about 3.0 μm prepared in Example 1 were used as seed particles. 142 ml of an aqueous dispersion containing 16.6% by weight of the seed particles was prepared, and 25% ammonia water 63
Silica fine particles were produced according to Example 1 except that 6 ml, methanol 727 ml, and tetraethoxysilane were 455 ml. As a result of measuring the particle size by an electron microscope, the average particle size X L of the larger distribution is 4.97 μ.
m, and the smaller diameter has a maximum diameter S max of 2.2 μ.
m, the average particle size is 1.54 μm, and S max / X L =
It was 0.44 . When the smaller particles were removed by wet classification, the average particle diameter was 4.97 μm, the standard deviation of the particle diameter was 0.083 μm, and the variation rate was 1.68%.

【0023】[0023]

【発明の効果】以上、実施例で詳細に説明したように、
本発明にかかる製造方法は、数段階かけて粒径を大きく
する方法であるが、例えば1μmから2μm粒子を合成
する場合、同数の1μm粒子から重量で8倍の2μmシ
リカが生成する。言い換えればシリカ濃度を同じくして
合成すると1回の1μmの粒子で約8回2μmのシリカ
微粒子の合成ができることになる。したがって各粒径の
粒子をシード粒子としてストックしておけば、短時間で
目的の粒子径の合成が可能となる。
As described above in detail in the embodiments,
The production method according to the present invention is a method of increasing the particle size in several steps. For example, when synthesizing 1 μm to 2 μm particles, the same number of 1 μm particles produces 8 times the weight of 2 μm silica. In other words, when synthesizing with the same silica concentration, it is possible to synthesize silica fine particles of 2 μm about 8 times with one particle of 1 μm. Therefore, if particles of each particle size are stocked as seed particles, the desired particle size can be synthesized in a short time.

【0024】また本発明では、合成液中のシリカ濃度を
最大で約10%まで高めても単分散微粒子を得ることが
できることから、小さいバッチ容量で大量の単分散微粒
子の合成が可能となる。
Further, according to the present invention, the monodisperse fine particles can be obtained even if the concentration of silica in the synthesis solution is increased up to about 10%, so that a large amount of the monodisperse fine particles can be synthesized with a small batch volume.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 シリコンアルコキシドの加水分解及び重
縮合反応によって粒径が単分散のシード粒子を生成せし
め、次いで該シード粒子の分散液に触媒の存在下でシリ
コンアルコキシドを添加して、該シード粒子を成長させ
て粒径を増大させる成長過程を経て単分散シリカ微粒子
を得るにあたり、目標とする粒径に対して該成長過程を
複数回とするとともに、各成長過程の終了後に多分散状
にある微粒子を分級して単分散状とし、次いで、この分
級された単分散状微粒子をシード粒子として成長させる
操作を繰返すことを特徴とするシリカ微粒子の製造方
法。
1. A seed particle having a monodisperse particle size is produced by hydrolysis and polycondensation reaction of a silicon alkoxide, and then a silicon alkoxide is added to a dispersion liquid of the seed particle in the presence of a catalyst to obtain the seed particle. In order to obtain the monodispersed silica fine particles through the growth process of growing the particle size and increasing the particle size, the growth process is performed a plurality of times with respect to the target particle size and is in a polydisperse state after the end of each growth process. A method for producing silica fine particles, which comprises repeating the operation of classifying the fine particles into a monodisperse state and then growing the classified monodisperse fine particles as seed particles.
【請求項2】 前記各成長過程の終了後における多分散
状微粒子の粒径分布が、大粒径モード側の分布と小粒径
モード側の分布の2つの分布を有し、この2つの分布は
相互に重なり合わず、大粒径モード側の平均粒径は、小
粒径モード側の分布の最大粒径の2倍以上であることを
特徴とする請求項1記載のシリカ微粒子の製造方法。
2. The particle size distribution of the polydisperse fine particles after the completion of each growth process has two distributions, a distribution on the large particle size mode side and a distribution on the small particle size mode side. 2. The method for producing silica fine particles according to claim 1, wherein the average particle diameters on the large particle size mode side are at least twice the maximum particle diameter of the distribution on the small particle size mode side. .
JP3020344A 1991-01-22 1991-01-22 Method for producing silica fine particles Expired - Lifetime JP2512835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3020344A JP2512835B2 (en) 1991-01-22 1991-01-22 Method for producing silica fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3020344A JP2512835B2 (en) 1991-01-22 1991-01-22 Method for producing silica fine particles

Publications (2)

Publication Number Publication Date
JPH04240112A JPH04240112A (en) 1992-08-27
JP2512835B2 true JP2512835B2 (en) 1996-07-03

Family

ID=12024521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3020344A Expired - Lifetime JP2512835B2 (en) 1991-01-22 1991-01-22 Method for producing silica fine particles

Country Status (1)

Country Link
JP (1) JP2512835B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302227A (en) * 2000-04-26 2001-10-31 Ube Nitto Kasei Co Ltd Method for producing silica particles

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038049A (en) * 2000-07-28 2002-02-06 Ube Nitto Kasei Co Ltd Silica-based fine particles and method for producing the same
TW200502279A (en) * 2003-02-27 2005-01-16 Ube Nitto Kasei Co Method for producing polyorganosiloxane particles and method for producing silica particles
JP2011202181A (en) * 2011-07-08 2011-10-13 Ube Nitto Kasei Co Ltd Method of preparing silica particles
CN104003409B (en) * 2014-06-11 2016-01-20 北京化工大学 A kind of preparation method of controlled monodisperse spherical Large stone nano silicon
US11312634B2 (en) 2017-03-31 2022-04-26 Jgc Catalysts And Chemicals Ltd. Production method for dispersion liquid of silica particle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210016A (en) * 1987-02-26 1988-08-31 Tokuyama Soda Co Ltd Method for producing inorganic oxide particles
JPH0829933B2 (en) * 1987-04-21 1996-03-27 三菱化学株式会社 Method for producing spherical silica

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302227A (en) * 2000-04-26 2001-10-31 Ube Nitto Kasei Co Ltd Method for producing silica particles

Also Published As

Publication number Publication date
JPH04240112A (en) 1992-08-27

Similar Documents

Publication Publication Date Title
EP2103364B1 (en) Process for manufacture of nanometric, monodisperse and stable metallic silver and product obtained therefrom
KR910009573B1 (en) Process for the production silica
Zhang et al. Preparation of monodisperse silica particles with controllable size and shape
CA1309839C (en) Silica colloids and spherical silicas and processes for the production thereof
CN1974385B (en) A kind of preparation method of monodisperse silica sol
CN101492164A (en) Method of manufacturing monodisperse silicon dioxide microsphere
JPH09510686A (en) Concentrated suspension of precipitated silica, process for its preparation and use of this suspension
JP2512835B2 (en) Method for producing silica fine particles
CN101857675A (en) Preparation method of high-purity spherical full-pore silica gel particles
US6090440A (en) Composite solid particle and method for producing same
CN115283688B (en) A method for preparing gold nanoclusters using solid-phase kinetic control method
JP3330984B2 (en) Method for producing monodisperse spherical silica
CN109928398A (en) A kind of silicon dioxide microsphere, preparation method and its usage
JP2558908B2 (en) Method for producing magnetic fine particles
JP3724789B2 (en) Method for producing spherical resin fine particles
JPH10203820A (en) Production of silica grain
JP2009007213A (en) Method for manufacturing barium sulfate particle
JP2722627B2 (en) Method for growing silica core particles
JP2734083B2 (en) Method for producing transparent quartz glass molded body
JP4993811B2 (en) Modified sol-gel silica particles and method for producing the same
RU2486133C1 (en) Method of producing silica sols soluble in anhydrous organic solvents
CN117466303A (en) Preparation method of hollow silicon dioxide
CN119750599A (en) Method for preparing high-purity micron-sized monodisperse spherical silicon dioxide by membrane screening
JPS62207709A (en) Preparation of silica sphere
JP2023110668A (en) Method for producing silica particles

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090430

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100430

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 15

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 15

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 15

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 15

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 15

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110430

Year of fee payment: 15

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350