[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2021009828A - Coated conductor and method for manufacturing the same - Google Patents

Coated conductor and method for manufacturing the same Download PDF

Info

Publication number
JP2021009828A
JP2021009828A JP2019123842A JP2019123842A JP2021009828A JP 2021009828 A JP2021009828 A JP 2021009828A JP 2019123842 A JP2019123842 A JP 2019123842A JP 2019123842 A JP2019123842 A JP 2019123842A JP 2021009828 A JP2021009828 A JP 2021009828A
Authority
JP
Japan
Prior art keywords
insulating film
film
insulating
molecular orientation
coated conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019123842A
Other languages
Japanese (ja)
Other versions
JP7247038B2 (en
Inventor
康孝 近藤
Yasutaka Kondo
康孝 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2019123842A priority Critical patent/JP7247038B2/en
Publication of JP2021009828A publication Critical patent/JP2021009828A/en
Application granted granted Critical
Publication of JP7247038B2 publication Critical patent/JP7247038B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Insulated Conductors (AREA)
  • Processes Specially Adapted For Manufacturing Cables (AREA)

Abstract

To provide a coated conductor excellent in abrasion resistance.SOLUTION: In a coated conductor, a belt-like insulating coating material (3) is spirally around the outer periphery of a conductor wire (1) extending in one direction. The insulating coating material contains an insulating film. The insulating coating material may include an adhesive layer on at least one main surface of the insulating film. An angle φ formed by a molecular orientation axis of the insulating film and a longitudinal direction of the insulating coating material is 10° to 80°, and an angle ω formed by the molecular orientation axis of the insulating film and an extension direction of the conductor is 10° or less.SELECTED DRAWING: Figure 3

Description

本発明は、導線に絶縁性の被覆材を巻きつけた被覆導体およびその製造方法に関する。 The present invention relates to a coated conductor in which an insulating coating material is wound around a conducting wire, and a method for manufacturing the same.

導線の表面に絶縁性の被覆材を巻きつけた被覆導体は、電線やケーブル等に用いられている。被覆導体には、耐熱性、電気絶縁性、耐薬品性、難燃性のほか、耐摩耗性、耐カットスルー性(切断抵抗性)等の耐久特性が要求される。 A coated conductor in which an insulating coating material is wound around the surface of a conducting wire is used for electric wires, cables, and the like. The coated conductor is required to have durability characteristics such as heat resistance, electrical insulation, chemical resistance, flame retardancy, wear resistance, and cut-through resistance (cutting resistance).

特許文献1には、ポリイミドフィルムと接着層としてのフッ素樹脂層とを積層した多層フィルムを被覆材として用いることにより、高温での優れた切断抵抗性を示すことが記載されている。特許文献2には、所定のひずみ時応力を有するポリイミドフィルムとフッ素樹脂層とを積層した被覆材が耐摩耗性に優れることが記載されている。 Patent Document 1 describes that a multilayer film obtained by laminating a polyimide film and a fluororesin layer as an adhesive layer is used as a coating material to exhibit excellent cutting resistance at high temperatures. Patent Document 2 describes that a coating material obtained by laminating a polyimide film having a predetermined strain stress and a fluororesin layer is excellent in wear resistance.

特開平10−100340号公報Japanese Unexamined Patent Publication No. 10-10040 国際公開第2014/192733号International Publication No. 2014/192733

航空機、ロケット、宇宙船等の航空宇宙用途に用いられるケーブルは、一般用途のケーブルに比べて、機内への設置の際の摩擦や飛行中の振動による摩擦に対して、より高い耐久性(耐摩耗性)が要求される。また、航空宇宙用途のケーブルは、軽量化に対する需要が高く、被覆材の厚みを小さくして軽量化を図りながら、耐摩耗性を向上することが求められている。 Cables used for aerospace applications such as aircraft, rockets, and spacecraft are more durable (resistant) to friction during installation in the aircraft and friction due to vibration during flight than cables for general use. Abrasion resistance) is required. Further, there is a high demand for weight reduction of cables for aerospace applications, and it is required to improve wear resistance while reducing the thickness of the covering material to reduce the weight.

被覆導体は、一方向に延在する導線の外周に帯状の絶縁被覆材を螺旋状に巻きつけたものである。絶縁被覆材は絶縁フィルムを含み、絶縁フィルムの一方または両方の主面上に接着層を備えていてもよい。接着層はフッ素樹脂を含むものが好ましい。絶縁フィルムは、好ましくはポリイミドフィルムである。絶縁フィルムは、基準厚み75μmで規格化した分子配向度MOR_cが1.3以上であってもよい。 The coated conductor is formed by spirally winding a band-shaped insulating coating material around the outer circumference of a conducting wire extending in one direction. The insulating coating material includes an insulating film and may have an adhesive layer on one or both main surfaces of the insulating film. The adhesive layer preferably contains a fluororesin. The insulating film is preferably a polyimide film. The insulating film may have a standard thickness of 75 μm and a molecular orientation degree MOR_c of 1.3 or more.

絶縁フィルムの分子配向軸と導線の延在方向が略平行であることにより、被覆導体の耐摩耗性を向上できる。絶縁フィルムの分子配向軸と導線の延在方向とのなす角度ωは、10°以下が好ましい。 Since the molecular orientation axis of the insulating film and the extending direction of the conducting wire are substantially parallel, the wear resistance of the coated conductor can be improved. The angle ω formed by the molecular orientation axis of the insulating film and the extending direction of the conducting wire is preferably 10 ° or less.

絶縁フィルムの分子配向軸と導線の延在方向を略平行とするためには、絶縁フィルムが、絶縁被覆材の長手方向に対して平行でも直交でもない方向に分子配向軸を有することが好ましい。絶縁フィルムの分子配向軸と絶縁被覆材の長手方向とのなす角度φは、10°〜80°が好ましい。 In order to make the molecular orientation axis of the insulating film substantially parallel to the extending direction of the conducting wire, it is preferable that the insulating film has a molecular orientation axis in a direction that is neither parallel nor orthogonal to the longitudinal direction of the insulating coating material. The angle φ formed by the molecular orientation axis of the insulating film and the longitudinal direction of the insulating coating material is preferably 10 ° to 80 °.

絶縁被覆材の長手方向に対して平行でも直交でもない方向に分子配向軸を有する絶縁フィルは、例えば、斜め延伸フィルムを所定の幅にスリットすることにより得られる。搬送方向と平行または直交する方向に分子配向軸を有するフィルムを、斜め方向にスリットしてもよい。 An insulating fill having a molecular orientation axis in a direction that is neither parallel nor orthogonal to the longitudinal direction of the insulating coating material can be obtained, for example, by slitting a diagonally stretched film to a predetermined width. A film having a molecular orientation axis in a direction parallel to or orthogonal to the transport direction may be slit in an oblique direction.

本発明の被覆導体は、絶縁フィルムの分子配向軸と導線の延在方向が略平行であり、絶縁被覆材の厚みが小さい場合でも耐摩耗性に優れるため、航空宇宙用途のケーブル等に好適である。 The coated conductor of the present invention is suitable for cables for aerospace applications because the molecular orientation axis of the insulating film and the extending direction of the conducting wire are substantially parallel to each other and excellent wear resistance even when the thickness of the insulating coating material is small. is there.

被覆導体の斜視図である。It is a perspective view of a coated conductor. 帯状の被覆材の長手方向と分子配向軸の関係を説明するための図である。It is a figure for demonstrating the relationship between the longitudinal direction of a strip-shaped covering material, and the molecular orientation axis. 導線に被覆材を巻きつける様子を示す模式図である。It is a schematic diagram which shows the state of winding a covering material around a conducting wire. 導線に被覆材を巻きつける様子を示す模式図である。It is a schematic diagram which shows the state of winding a covering material around a conducting wire.

[被覆導体の構成]
図1は、直径Dの導線1に、幅Wの帯状の絶縁被覆材3を螺旋状に巻きつけた被覆導体の斜視図である。本発明の被覆導体は、導線1の延在方向(A−A線に沿った方向)と、絶縁被覆材3のコア層としての絶縁フィルムの分子配向軸pが(略)平行であることを1つの特徴とする。
[Construction of coated conductor]
FIG. 1 is a perspective view of a coated conductor in which a strip-shaped insulating coating material 3 having a width W is spirally wound around a conducting wire 1 having a diameter D. In the coated conductor of the present invention, the extending direction of the conducting wire 1 (the direction along the AA line) and the molecular orientation axis p of the insulating film as the core layer of the insulating coating material 3 are (omitted) parallel. It is one of the features.

被覆導体に用いる導線1は、導体であればどのような材料でもよく、通常は、銅、アルミニウム、ステンレス等の金属が用いられる。金属は合金でもよく、表面が各種材料でメッキされていてもよい。導線の金属材料としては、導電性の観点から銅が好ましく、軽量化の観点からはアルミニウム等も好ましい。導線1は単線でもよく、複数の金属線(素線)を撚り合わせたものでもよい。導線1の直径Dは、0.2〜10mm程度である。 The conductor 1 used for the coated conductor may be any material as long as it is a conductor, and usually a metal such as copper, aluminum, or stainless steel is used. The metal may be an alloy, and the surface may be plated with various materials. As the metal material of the conducting wire, copper is preferable from the viewpoint of conductivity, and aluminum or the like is also preferable from the viewpoint of weight reduction. The lead wire 1 may be a single wire or a twisted plurality of metal wires (strand wires). The diameter D of the lead wire 1 is about 0.2 to 10 mm.

被覆材3は、一方向に延在する帯状の絶縁テープである。被覆材3の幅Wは、導線1の直径Dや、被覆材の巻きつけ角度θ等に応じて適宜設定すればよい。幅Wは、例えば1〜50mm程度である。被覆材3は絶縁性であり、絶縁フィルムを含む。被覆材3は、好ましくは、絶縁フィルムをコア層として、絶縁フィルムの少なくとも一方の面に接着層を備える。被覆材3は絶縁フィルムの両面に接着層を備えていてもよい。 The covering material 3 is a strip-shaped insulating tape extending in one direction. The width W of the covering material 3 may be appropriately set according to the diameter D of the conducting wire 1, the winding angle θ of the covering material, and the like. The width W is, for example, about 1 to 50 mm. The covering material 3 is insulating and contains an insulating film. The covering material 3 preferably has an insulating film as a core layer and has an adhesive layer on at least one surface of the insulating film. The covering material 3 may be provided with adhesive layers on both sides of the insulating film.

被覆材3の厚みは、5〜100μm程度である。軽量化の観点から、被覆材の厚みは小さい方が好ましい。被覆材3の厚みは、50μm以下、30μm以下、25μm以下または23μm以下であってもよい。 The thickness of the covering material 3 is about 5 to 100 μm. From the viewpoint of weight reduction, it is preferable that the thickness of the covering material is small. The thickness of the covering material 3 may be 50 μm or less, 30 μm or less, 25 μm or less, or 23 μm or less.

被覆材3のコア層としての絶縁フィルムは、分子配向度の面内異方性を有しており、フィルム面内の一方向に分子配向軸を有する。分子配向軸とは、フィルム面内で分子配向度が最も大きい方向である。分子配向度が面内異方性を有するフィルムは、分子配向軸と平行な向に沿って外力を付与した際の機械強度(引張強度、引裂強度、耐擦傷性、耐摩耗性等)が高い傾向がある。 The insulating film as the core layer of the covering material 3 has an in-plane anisotropy of the degree of molecular orientation, and has a molecular orientation axis in one direction in the film surface. The molecular orientation axis is the direction in which the degree of molecular orientation is the largest in the film plane. A film having an in-plane anisotropy of molecular orientation has high mechanical strength (tensile strength, tear strength, scratch resistance, wear resistance, etc.) when an external force is applied along a direction parallel to the molecular orientation axis. Tend.

分子配向軸を有するフィルムは、例えば、延伸により形成される。フィルムの形成過程において、フィルムを少なくとも一方向に延伸すると、延伸方向にポリマー分子が優先的に配向する。延伸に代えて弛緩処理(少なくとも一方向に縮める処理)によっても、所定方向に分子配向軸を有するフィルムが得られる。 A film having a molecular orientation axis is formed, for example, by stretching. In the film forming process, when the film is stretched in at least one direction, the polymer molecules are preferentially oriented in the stretching direction. A film having a molecular orientation axis in a predetermined direction can also be obtained by a relaxation treatment (a treatment of shrinking in at least one direction) instead of stretching.

一般的な延伸フィルムは、フィルム製造時の搬送方向(MD)、または搬送方向と直交する幅方向(TD)に分子配向軸を有する。このようなフィルムを、搬送方向に沿って帯状に切断(スリット)すると、分子配向軸は、テープの延在方向と平行または直交となる。 A general stretched film has a molecular orientation axis in the transport direction (MD) at the time of film production or in the width direction (TD) orthogonal to the transport direction. When such a film is cut (slit) in a strip shape along the transport direction, the molecular orientation axis becomes parallel or orthogonal to the tape extending direction.

図2は、被覆導体の形成に用いられる帯状の被覆材の平面図である。被覆材3は帯状のテープである。絶縁フィルムの分子配向軸pは、テープの長手方向(B−B線に沿った方向)と平行でも直交でもなく、被覆材3の長手方向と絶縁フィルムの分子配向軸pとのなす角度(配向角)φは10〜80°である。分子配向軸の方向(配向角)は、マイクロ波方式の分子配向計や、偏光を利用した複屈折計(位相差測定装置)等により測定できる。 FIG. 2 is a plan view of a strip-shaped covering material used for forming a covering conductor. The covering material 3 is a strip-shaped tape. The molecular orientation axis p of the insulating film is neither parallel nor orthogonal to the longitudinal direction of the tape (direction along the BB line), and the angle (orientation) formed by the longitudinal direction of the covering material 3 and the molecular orientation axis p of the insulating film. Angle) φ is 10 to 80 °. The direction (orientation angle) of the molecular orientation axis can be measured by a microwave type molecular orientation meter, a birefringence meter (phase difference measuring device) using polarized light, or the like.

長手方向に対して斜め方向に分子配向軸を有するフィルムを作製し、長手方向に沿って帯状にスリットすることにより、斜め方向に分子配向軸を有する被覆材が得られる。斜め方向に分子配向軸を有するフィルムは、例えば斜め延伸法により作製できる。フィルムの幅方向の両端をピンテンターやクリップテンター等により固定し、一端のテンターと他端のテンターの走行速度や走行軌跡に差を設けることにより、斜め方向に分子配向軸を有する斜め延伸フィルムが得られる。具体的には、一端のテンターによる保持開始点から保持解除点までの距離を他端のテンターによる保持開始点から保持解除点までの距離に比べて長くする方法、テンターの走行軌跡(テンターレールの形状)を全体的にカーブさせる方法、一端のテンターと他端のテンターを異なる走行軌跡に沿って移動させる方法、一端のテンターと他端のテンターを異なる速度で移動させる方法等が挙げられる。これらの複数を組み合わせてもよい。 By producing a film having a molecular orientation axis oblique to the longitudinal direction and slitting it in a strip shape along the longitudinal direction, a coating material having a molecular orientation axis diagonally can be obtained. A film having a molecular orientation axis in the oblique direction can be produced, for example, by an oblique stretching method. By fixing both ends of the film in the width direction with a pin tenter, clip tenter, etc., and providing a difference in the traveling speed and traveling locus between the tenter at one end and the tenter at the other end, a diagonally stretched film having a molecular orientation axis in the oblique direction can be obtained. Be done. Specifically, a method of making the distance from the holding start point by the tenter at one end to the holding release point longer than the distance from the holding start point by the tenter at the other end to the holding release point, the traveling trajectory of the tenter (the tenter rail). A method of curving the entire shape), a method of moving the tenter at one end and the tenter at the other end along different traveling trajectories, a method of moving the tenter at one end and the tenter at the other end at different speeds, and the like can be mentioned. A plurality of these may be combined.

フィルムの切断方向を調整することにより、斜め方向に分子配向軸を有する帯状のフィルムを得ることもできる。例えば、長手方向に平行または直交する分子配向軸を有するフィルムを、長手方向に直交でも平行でもない方向に沿って切断すれば、分子配向軸が傾斜した帯状のフィルムが得られる。 By adjusting the cutting direction of the film, a strip-shaped film having a molecular orientation axis in an oblique direction can also be obtained. For example, if a film having a molecular orientation axis parallel or orthogonal to the longitudinal direction is cut along a direction that is neither orthogonal nor parallel to the longitudinal direction, a strip-shaped film having an inclined molecular orientation axis can be obtained.

被覆材が絶縁フィルムの表面に接着層を備える場合は、接着層を設けた後にスリットを実施してもよく、スリット後のフィルム上に接着層を設けてもよい。生産性の観点からは、絶縁フィルム上に接着層を設けた被覆材を所定の幅Wにスリットする方法が好ましい。 When the covering material has an adhesive layer on the surface of the insulating film, the slit may be performed after the adhesive layer is provided, or the adhesive layer may be provided on the film after the slit. From the viewpoint of productivity, a method of slitting a covering material having an adhesive layer on an insulating film into a predetermined width W is preferable.

[被覆材の巻きつけ]
帯状の被覆材3(以下、単に「絶縁テープ」とも記載する)を導線1の外周に螺旋状に巻きつけて、被覆導体を作製する。絶縁テープの巻きつけは、一般的な被覆導線の作製と同様の手順により実施すればよい。図1に示すように、螺旋のn周目の絶縁テープ31上の一部に、n+1周目の絶縁テープ32の一部が重なるように巻きつけることが好ましい。
[Wrapping of covering material]
A strip-shaped covering material 3 (hereinafter, also simply referred to as “insulating tape”) is spirally wound around the outer circumference of the conducting wire 1 to prepare a covering conductor. Wrapping of the insulating tape may be carried out by the same procedure as that for producing a general coated wire. As shown in FIG. 1, it is preferable to wind the spiral on the insulating tape 31 on the nth lap so that a part of the insulating tape 32 on the n + 1 lap overlaps.

図3および図4は、直径Dの導線1に、幅Wの絶縁テープ3を巻きつけ角度θで螺旋状に巻きつける様子を示す平面図である。巻きつけ角度θは、導線1の延在方向(A−A線)と絶縁テープ3の長手方向(B−B線)とのなす角度に等しい。 3 and 4 are plan views showing a state in which an insulating tape 3 having a width W is wound around a conducting wire 1 having a diameter D and spirally wound at an angle θ. The winding angle θ is equal to the angle formed by the extending direction (AA wire) of the lead wire 1 and the longitudinal direction (BB wire) of the insulating tape 3.

前述のように、絶縁テープ3のコア層(絶縁フィルム)の配向軸pは、導線1の延在方向と略平行である。絶縁フィルムの分子配向軸pと導線1の延在方向とのなす角度ωは、10°以下が好ましく、5°以下がより好ましく、3°以下がさらに好ましい。ωは2°以下、1°以下または0°でもよい。 As described above, the orientation axis p of the core layer (insulating film) of the insulating tape 3 is substantially parallel to the extending direction of the conducting wire 1. The angle ω formed by the molecular orientation axis p of the insulating film and the extending direction of the lead wire 1 is preferably 10 ° or less, more preferably 5 ° or less, still more preferably 3 ° or less. ω may be 2 ° or less, 1 ° or less, or 0 °.

ωが小さいことにより、被覆導体の耐摩耗性が向上する傾向がある。絶縁フィルムの配向軸pが、被覆導体の延在方向と平行であれば、被覆導体の延在方向に沿って外力が付与された場合(絶縁フィルムの配向方向に沿って外力が付与された場合)の絶縁フィルムの機械強度が高い。そのため、延在方向に沿った擦れ等に対する耐久性が向上し、耐摩耗性が向上すると考えられる。 The small ω tends to improve the wear resistance of the coated conductor. If the orientation axis p of the insulating film is parallel to the extending direction of the covering conductor, when an external force is applied along the extending direction of the covering conductor (when an external force is applied along the extending direction of the insulating film). ) The mechanical strength of the insulating film is high. Therefore, it is considered that the durability against rubbing along the extending direction is improved and the wear resistance is improved.

導線1の延在方向(A−A線)を基準として、B−B線の回転方向と配向軸pの回転方向が等しい場合は、ω=θ―φの関係が成り立つ。例えば、図3ではA−A線に対して、配向軸pの方向およびB−B線の方向がいずれも反時計回りであり、ω=θ―φを満たす。図4に示すように、B−B線の回転方向(A−A線に対して半時計回り)と配向軸pの回転方向(A−A線に対して時計回り)が逆である場合は、ω=φ―θの関係が成り立つ。すなわち、角度ωは、巻きつけ角度θと配向角φの差の絶対値|θ−φ|に等しい。 When the rotation direction of the BB line and the rotation direction of the orientation axis p are equal to each other with respect to the extension direction (AA line) of the lead wire 1, the relationship of ω = θ−φ is established. For example, in FIG. 3, the direction of the orientation axis p and the direction of the BB line are both counterclockwise with respect to the AA line, and ω = θ−φ is satisfied. As shown in FIG. 4, when the rotation direction of the BB line (counterclockwise with respect to the AA line) and the rotation direction of the orientation axis p (clockwise with respect to the AA line) are opposite. , Ω = φ−θ. That is, the angle ω is equal to the absolute value | θ−φ | of the difference between the winding angle θ and the orientation angle φ.

巻きつけ角度θは、φ−10°〜φ+10°が好ましく、φ−5°〜φ+5°がより好ましく、φ−3°〜φ+3°がさらに好ましい。θはφ±2°またはφ±1°の範囲内であってもよい。 The winding angle θ is preferably φ-10 ° to φ + 10 °, more preferably φ-5 ° to φ + 5 °, and even more preferably φ-3 ° to φ + 3 °. θ may be in the range of φ ± 2 ° or φ ± 1 °.

絶縁テープが重なるように螺旋状に巻きつける際の巻きつけ角度θは、一般に20〜70°程度であり、分子配向軸がテープの延在方向と平行または直交である場合(配向角φが0°または90°である場合)、ωは20°〜70°となる。絶縁テープの長手方向に対して斜め方向に分子配向軸を有し、配向角φが10°〜80°の範囲であれば、ωを10°以内に調整できる。ωを小さくするためには、配向角φは20°〜70°がより好ましく、30°〜65°がさらに好ましい。 The winding angle θ when spirally winding the insulating tapes so as to overlap is generally about 20 to 70 °, and the molecular orientation axis is parallel or orthogonal to the extending direction of the tape (the orientation angle φ is 0). (If ° or 90 °), ω will be between 20 ° and 70 °. If the insulating tape has a molecular orientation axis oblique to the longitudinal direction and the orientation angle φ is in the range of 10 ° to 80 °, ω can be adjusted within 10 °. In order to reduce ω, the orientation angle φ is more preferably 20 ° to 70 °, further preferably 30 ° to 65 °.

絶縁テープを巻きつける向き(フィルムの表裏)が反転すると、角度ωが異なる。絶縁テープを巻きつける向きは、角度ωが小さくなるように設定すればよい。角度ωが小さくなる向きに絶縁フィルムを巻きつければ、上記のように、巻きつけ角度θ、配向角φおよび角度ωは、ω=|θ−φ|を満たす。 When the direction in which the insulating tape is wound (the front and back of the film) is reversed, the angle ω is different. The direction in which the insulating tape is wound may be set so that the angle ω becomes small. If the insulating film is wound in a direction in which the angle ω becomes smaller, the winding angle θ, the orientation angle φ, and the angle ω satisfy ω = | θ−φ | as described above.

絶縁テープ3の幅W、および巻きつけ角度θは、被覆導体における絶縁テープの重なり率Rpが所定範囲となるように調整してもよい。重なり率(「ラップ率」ともいう)Rpは、螺旋のn周目の絶縁テープ31とn+1周目の絶縁テープ32との重なり幅Q(図1参照)、および絶縁テープの幅Wを用いて、下記式で定義される。
Rp(%)=100×Q/W
The width W of the insulating tape 3 and the winding angle θ may be adjusted so that the overlap ratio Rp of the insulating tape on the coated conductor is within a predetermined range. The overlap ratio (also referred to as “wrap ratio”) Rp uses the overlap width Q (see FIG. 1) between the insulating tape 31 on the nth lap of the spiral and the insulating tape 32 on the n + 1 lap, and the width W of the insulating tape. , Defined by the following formula.
Rp (%) = 100 x Q / W

重なり率Rpが0より大きく50%未満の場合は、導線1の延在方向に沿ってみると、一部の領域では導線の外周に絶縁テープが2重巻かれており、他の領域では導線の外周に絶縁テープが1重に巻かれている。重なり率Rpが50%の場合は、全領域で導線の外周に絶縁テープが2重に巻かれている。重なり率Rpが50%より大きく66.7%未満の場合は、絶縁テープが2重に巻かれている領域と3重に巻かれている領域が存在する。重なり率Rpが66.7%の場合は、全領域で導線の外周に絶縁テープが3重に巻かれており、重なり率Rpが66.7%より大きく75%未満の場合は、絶縁テープが3重に巻かれている領域と4重に巻かれている領域が存在する。 When the overlap ratio Rp is greater than 0 and less than 50%, when looking along the extending direction of the lead wire 1, the insulating tape is double-wound around the outer circumference of the lead wire in some areas, and the lead wire is double-wrapped in other regions. A single layer of insulating tape is wrapped around the outer circumference of the cable. When the overlap ratio Rp is 50%, the insulating tape is doubly wound around the outer circumference of the lead wire in the entire region. When the overlap ratio Rp is larger than 50% and less than 66.7%, there are a region where the insulating tape is double-wound and a region where the insulating tape is triple-wound. When the overlap ratio Rp is 66.7%, the insulating tape is triple-wrapped around the outer circumference of the lead wire in the entire area, and when the overlap ratio Rp is larger than 66.7% and less than 75%, the insulating tape is used. There is a triple-wound area and a quadruple-wound area.

導線の直径D、絶縁テープの幅W、絶縁テープの重なり幅Q、重なり率Rpおよび巻きつけ角度θは、以下の関係を満たす。
πD×cosθ=W−Q=W×(1−Rp/100)
The diameter D of the conducting wire, the width W of the insulating tape, the overlapping width Q of the insulating tape, the overlapping ratio Rp, and the winding angle θ satisfy the following relationships.
πD × cos θ = W−Q = W × (1-Rp / 100)

設備面や製品仕様等の制約により、導線の直径D、絶縁テープの幅Wおよび重なり率Rpが所定値に定められている場合がある。その場合、巻きつけ角度θも一定の値となるため、絶縁テープ31の配向角φを調整して、角度ωを上記範囲とすればよい。一方、絶縁テープの配向角φが所定値である場合は、巻きつけ角度θを調整して、角度ωを上記範囲とすればよい。導線の直径D、絶縁テープの配向角φおよび重なり率Rpが所定値に定められている場合は、巻きつけ角度θに加えて、絶縁テープのスリット幅Wを調整すればよい。 Due to restrictions on equipment, product specifications, etc., the diameter D of the lead wire, the width W of the insulating tape, and the overlap ratio Rp may be set to predetermined values. In that case, since the winding angle θ is also a constant value, the orientation angle φ of the insulating tape 31 may be adjusted so that the angle ω is within the above range. On the other hand, when the orientation angle φ of the insulating tape is a predetermined value, the winding angle θ may be adjusted so that the angle ω is within the above range. When the diameter D of the conducting wire, the orientation angle φ of the insulating tape, and the overlap ratio Rp are set to predetermined values, the slit width W of the insulating tape may be adjusted in addition to the winding angle θ.

導線1へ絶縁テープ3の巻きつけは、標準電線被覆機械(ラッピングマシーン)等を用いて行ってもよい。巻きつけの際に絶縁テープに掛ける張力は、縮緬皺(wrinkling)の発生を避けるのに十分なだけの張力から、ネックダウンを生じさせるのに十分に強い張力の範囲まで、広く変化させることができる。仮に張力が低い場合でも、巻きつけ後のヒートシール時の熱(例えば、240℃〜500℃)により絶縁テープが縮むため、良好な密着性で導線を被覆できる。ヒートシールを行う場合は、絶縁テープ(絶縁フィルムおよび接着層)の厚み、導線の材料、生産ラインの速度、オーブンの長さ等に応じて、条件を適宜設定すればよい。 The insulating tape 3 may be wound around the lead wire 1 by using a standard electric wire covering machine (wrapping machine) or the like. The tension applied to the insulating tape during wrapping can vary widely, from a tension sufficient to avoid wrinkling to a range of tension strong enough to cause neck down. it can. Even if the tension is low, the insulating tape shrinks due to the heat during heat sealing after winding (for example, 240 ° C. to 500 ° C.), so that the lead wire can be covered with good adhesion. When heat sealing is performed, the conditions may be appropriately set according to the thickness of the insulating tape (insulating film and adhesive layer), the material of the conducting wire, the speed of the production line, the length of the oven, and the like.

導線1の周りに絶縁テープ3を巻きつけた後、さらに別の絶縁材料を重ね合わせて巻きつけてもよい。絶縁テープに重ねる別の絶縁材料は配向軸を有していてもよく、有していなくてもよい。絶縁テープに重ねる別の絶縁材料は配向軸を有し、その配向軸方向が導線の延在方向と(略)平行であれば、被覆導体の耐摩耗性がさらに向上する傾向がある。 After wrapping the insulating tape 3 around the lead wire 1, another insulating material may be overlapped and wound. Another insulating material overlaid on the insulating tape may or may not have an orientation axis. Another insulating material overlaid on the insulating tape has an orientation axis, and if the orientation axis direction is (omitted) parallel to the extending direction of the conductor, the wear resistance of the coated conductor tends to be further improved.

[絶縁被覆材の好ましい形態]
上記のように、絶縁被覆材(絶縁テープ)3は、絶縁フィルムを含み、好ましくは絶縁フィルムの少なくとも一方の面に接着層を備える。
[Preferable form of insulating coating material]
As described above, the insulating coating material (insulating tape) 3 includes an insulating film, and preferably has an adhesive layer on at least one surface of the insulating film.

<絶縁フィルム>
絶縁フィルムとしては、種々のポリマー材料からなるフィルムを用いることができる。絶縁フィルムはフィラーを含んでいてもよい。フィラーの材料としては、シリカ、酸化チタン、アルミナ、窒化珪素、窒化ホウ素、リン酸水素カルシウム、リン酸カルシウム、雲母等が挙げられる。
<Insulation film>
As the insulating film, a film made of various polymer materials can be used. The insulating film may contain a filler. Examples of the filler material include silica, titanium oxide, alumina, silicon nitride, boron nitride, calcium hydrogen phosphate, calcium phosphate, and mica.

絶縁フィルムのポリマー材料としては、ポリウレタン樹脂、ポリ(メタ)アクリル樹脂、ポリビニル樹脂、ポリスチレン樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリエーテルスルホン樹脂、ポリエーテルエーテルケトン樹脂等が挙げられる。これらの中でも、耐熱性、電気絶縁性、耐薬品性、および難燃性等の諸特性に優れることから、ポリイミド樹脂を含むフィルム(ポリイミドフィルム)が好ましい。 As the polymer material of the insulating film, polyurethane resin, poly (meth) acrylic resin, polyvinyl resin, polystyrene resin, polyethylene resin, polypropylene resin, polyimide resin, polyamide resin, polyacetal resin, polycarbonate resin, polyester resin, polyphenylene ether resin, polyphenylene. Examples thereof include sulfide resin, polyether sulfone resin, and polyether ether ketone resin. Among these, a film containing a polyimide resin (polyimide film) is preferable because it is excellent in various properties such as heat resistance, electrical insulation, chemical resistance, and flame retardancy.

(ポリイミドフィルム)
ポリイミドフィルムの作製方法は特に限定されないが、一般には、前駆体としてのポリアミド酸を膜状に形成した後、ポリアミド酸を脱水環化(イミド化)することにより得られる。ポリアミド酸は、通常、ジアミンとテトラカルボン酸二無水物(以下、単に「酸二無水物」と記載する場合がある)とを、実質的に等モル量で有機溶媒中に溶解させ、重合することにより得られる。
(Polyimide film)
The method for producing the polyimide film is not particularly limited, but it is generally obtained by forming a polyamic acid as a precursor into a film and then dehydrating and cyclizing (imidizing) the polyamic acid. Polyamide acid is usually polymerized by dissolving diamine and tetracarboxylic dianhydride (hereinafter, may be simply referred to as "acid dianhydride") in an organic solvent in substantially equal molar amounts. Obtained by

ジアミンとしては、4,4’−ジアミノジフェニルプロパン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルスルフィド、3,3’−ジアミノジフェニルスルホン、4,4’−ジアミノジフェニルスルホン、4,4’−オキシジアニリン、3,3’−オキシジアニリン、3,4’−オキシジアニリン、4,4’−ジアミノジフェニルジエチルシラン、4,4’−ジアミノジフェニルシラン、4,4’−ジアミノジフェニルエチルホスフィンオキシド、4,4’−ジアミノジフェニル−N−メチルアミン、4,4’−ジアミノジフェニル−N−フェニルアミン、パラフェニレンジアミン、ビス{4−(4−アミノフェノキシ)フェニル}スルホン、ビス{4−(3−アミノフェノキシ)フェニル}スルホン、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ビス(3−アミノフェノキシ)ビフェニル、1,3−ビス(3−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(3−アミノフェノキシ)ベンゼン、3,3’−ジアミノベンゾフェノン、4,4'−ジアミノベンゾフェノン、2,2’−ジメチル−4,4’−ジアミノビフェニル、2,2−ビス(4−アミノフェノキシフェニル)プロパン、3,3’−ジヒドロキシ−4,4’−ジアミノ−1,1’−ビフェニル等が挙げられる。これらの中でも、パラフェニレンジアミン(PDA、4,4’−オキシジアニリン(ODA)、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン(BAPP)、3,4’−オキシジアニリン、1,3−ビス(4−アミノフェノキシ)ベンゼンが好ましい。 As the diamine, 4,4'-diaminodiphenylpropane, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfide, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 4, 4'-oxydianiline, 3,3'-oxydianiline, 3,4'-oxydianiline, 4,4'-diaminodiphenyldiethylsilane, 4,4'-diaminodiphenylsilane, 4,4'-diamino Diphenylethylphosphine oxide, 4,4'-diaminodiphenyl-N-methylamine, 4,4'-diaminodiphenyl-N-phenylamine, paraphenylenediamine, bis {4- (4-aminophenoxy) phenyl} sulfone, bis {4- (3-Aminophenoxy) phenyl} sulfone, 4,4'-bis (4-aminophenoxy) biphenyl, 4,4'-bis (3-aminophenoxy) biphenyl, 1,3-bis (3-amino) Phenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (3-aminophenoxy) benzene, 3,3'-diaminobenzophenone , 4,4'-diaminobenzophenone, 2,2'-dimethyl-4,4'-diaminobiphenyl, 2,2-bis (4-aminophenoxyphenyl) propane, 3,3'-dihydroxy-4,4'- Examples thereof include diamino-1,1'-biphenyl and the like. Among these, para-phenylenediamine (PDA, 4,4'-oxydianiline (ODA), 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP), 3,4'-oxydi Aniline and 1,3-bis (4-aminophenoxy) benzene are preferred.

酸二無水物としては、ピロメリット酸二無水物、2,3,6,7−ナフタレンテトラカルボン酸二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ビフェニルテトラカルボン酸二無水物、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン酸二無水物、p−フェニレンビス(トリメリット酸モノエステル酸無水物)、4,4’−オキシジフタル酸二無水物等が挙げられる。これらの中でも、ピロメリット酸二無水物(PMDA)、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA)、3,3’,4,4’−ビフェニルテトラカルボン酸二無水物(BPDA)が好ましい。 Examples of the acid dianhydride include pyromellitic dianhydride, 2,3,6,7-naphthalenetetracarboxylic dianhydride, 3,3', 4,4'-benzophenonetetracarboxylic dianhydride, 2, 2', 3,3'-biphenyltetracarboxylic dianhydride, 3,3', 4,4'-biphenyltetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propanoic acid Examples thereof include dianhydride, p-phenylenebis (trimellitic acid monoesteric dianhydride), 4,4'-oxydiphthalic dianhydride and the like. Among these, pyromellitic dianhydride (PMDA), 3,3', 4,4'-benzophenonetetracarboxylic dianhydride (BTDA), 3,3', 4,4'-biphenyltetracarboxylic dianhydride Anhydride (BPDA) is preferred.

ポリアミド酸の重合に用いる有機溶媒は、ポリアミド酸を溶解可能であれば特に限定されない。有機溶媒としては、N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N−メチル−2−ピロリドン(NMP)等のアミド系溶媒が好ましく、中でもDMFおよびDMAcが好ましい。 The organic solvent used for the polymerization of the polyamic acid is not particularly limited as long as the polyamic acid can be dissolved. As the organic solvent, amide-based solvents such as N, N-dimethylformamide (DMF), N, N-dimethylacetamide (DMAc) and N-methyl-2-pyrrolidone (NMP) are preferable, and DMF and DMAc are particularly preferable.

有機溶媒にモノマー(ジアミンおよび酸二無水物)を溶解させ、撹拌することによりポリアミド酸の重合が進行する。モノマーは、一度に添加してもよく、複数回に分けて添加してもよい。モノマーの添加順序を調整することにより、モノマーのシーケンスを調整し、ポリイミドの諸物性を制御できる。例えば、第一段階として柔軟な化学構造を有するセグメントを形成した後、第二段階として剛直な化学構造を有するセグメントを形成することによりブロック共重合体を形成してもよい。 Polymerization of polyamic acid proceeds by dissolving a monomer (diamine and acid dianhydride) in an organic solvent and stirring the mixture. The monomer may be added at once or may be added in a plurality of times. By adjusting the order of adding the monomers, the sequence of the monomers can be adjusted and various physical properties of the polyimide can be controlled. For example, a block copolymer may be formed by forming a segment having a flexible chemical structure as a first step and then forming a segment having a rigid chemical structure as a second step.

柔軟な化学構造を有するセグメントは、ジアミン成分としてODAを含み、酸二無水物としてBTDAを含むことが好ましい。酸二無水物成分のうちBTDAを10〜30モル%含むことが好ましく、ジアミン成分のうちODAを40〜60モル%含むことが好ましい。剛直な化学構造を有するセグメントは、酸二無水物成分としてPDA、PMDA、BPDA等を含むことが好ましく、中でもPDAとPMDAを主成分とすることがより好ましい。ポリイミド全体のジアミン成分のうち40〜60モル%がPDAであることが好ましく、ポリイミド全体の酸二無水物成分のうち45モル%〜65モル%がPMDAであることが好ましい。 The segment having a flexible chemical structure preferably contains ODA as a diamine component and BTDA as an acid dianhydride. The acid dianhydride component preferably contains 10 to 30 mol% of BTDA, and the diamine component preferably contains 40 to 60 mol% of ODA. The segment having a rigid chemical structure preferably contains PDA, PMDA, BPDA, etc. as an acid dianhydride component, and more preferably contains PDA and PMDA as main components. It is preferable that 40 to 60 mol% of the diamine component of the entire polyimide is PDA, and 45 mol% to 65 mol% of the acid dianhydride component of the entire polyimide is PMDA.

ポリアミド酸溶液からポリイミドフィルムを製造する際のイミド化は、熱イミド化法および化学イミド化法のいずれでもよく、両者を併用してもよい。化学イミド化では、ポリアミド酸溶液に脱水剤およびイミド化触媒を添加することが好ましい。脱水剤としては、無水酢酸等の酸無水物が好ましい。イミド化触媒としては、イソキノリン、キノリン、β−ピコリン、ピリジン、ジメチルピリジン、ジエチルピリジン等の第三級アミン類が好ましい。 The imidization when producing the polyimide film from the polyamic acid solution may be either a thermal imidization method or a chemical imidization method, or both may be used in combination. In chemical imidization, it is preferable to add a dehydrating agent and an imidization catalyst to the polyamic acid solution. As the dehydrating agent, an acid anhydride such as acetic anhydride is preferable. As the imidization catalyst, tertiary amines such as isoquinoline, quinoline, β-picoline, pyridine, dimethylpyridine and diethylpyridine are preferable.

ポリアミド酸溶液からのポリイミドフィルムの作製は、一般には、ポリアミド酸溶液を支持体上に流延し、支持体上で加熱した後、支持体からゲルフィルムを引き剥がし、ゲルフィルムの両端を保持して搬送しながら加熱して、溶媒等を除去するとともに残ったアミド酸をイミド化することにより行われる。支持体からゲルフィルムを引き剥がした後、延伸することにより、所定方向に配向軸を有するポリイミドフィルムが得られる。 In the preparation of a polyimide film from a polyamic acid solution, generally, the polyamic acid solution is cast on a support, heated on the support, and then the gel film is peeled off from the support to hold both ends of the gel film. It is carried out by heating while transporting the film to remove the solvent and the like and imidize the remaining amic acid. By peeling the gel film from the support and then stretching it, a polyimide film having an orientation axis in a predetermined direction can be obtained.

ゲルフィルムを延伸して所定方向に分子を配向させる場合、ゲルフィルムの残存揮発成分量(ゲル残揮)は、固形分100重量部に対して60〜500重量部が好ましく100〜400重量部がより好ましい。ゲル残揮が500重量部以下であれば、ポリイミドフィルムの分子配向角が均一となりやすく、ゲル残揮が60重量部以上であれば、ポリイミドフィルムの平滑性が良好となりやすい。 When the gel film is stretched and the molecules are oriented in a predetermined direction, the amount of residual volatile components (gel residual volatilization) of the gel film is preferably 60 to 500 parts by weight, preferably 100 to 400 parts by weight, based on 100 parts by weight of the solid content. More preferred. When the gel residual volatilization is 500 parts by weight or less, the molecular orientation angle of the polyimide film tends to be uniform, and when the gel residual volatilization is 60 parts by weight or more, the smoothness of the polyimide film tends to be good.

(絶縁フィルムの分子配向度)
ポリマーフィルムにおける分子の配向の程度を表す指標として、分子配向度(Molecular Orientation Ratio:MOR)がある。MORは、マイクロ波方式の分子配向計を用いて測定する。接着層を形成後の被覆材における絶縁フィルムの分子配向度を測定する場合は、接着層を除去して絶縁フィルム単体で測定を行う。
(Molecular orientation of insulating film)
There is a degree of molecular orientation (MOR) as an index showing the degree of orientation of molecules in a polymer film. MOR is measured using a microwave type molecular orientation meter. When measuring the degree of molecular orientation of the insulating film in the coating material after forming the adhesive layer, the adhesive layer is removed and the measurement is performed with the insulating film alone.

MORが1の場合は分子配向が等方性であり、MORが1より大きいフィルムは分子配向度の面内異方性を有する。MORが大きいほど、分子配向度の面内異方性が大きく、被覆導体の耐摩耗性が向上する傾向がある。 When the MOR is 1, the molecular orientation is isotropic, and the film having a MOR greater than 1 has an in-plane anisotropy of the degree of molecular orientation. The larger the MOR, the larger the in-plane anisotropy of the molecular orientation, and the more the wear resistance of the coated conductor tends to be improved.

分子配向の異方性の程度が同等である場合、試料(フィルム)の厚みが大きいほど分子配向計により測定されるMORの値は大きくなる。そのため、分子配向の異方性の程度を評価する際には、所定の基準厚みに換算した規格化分子配向:MOR_cが用いられる。
MOR_c=(tc/t)×(MOR−1)+1
tは試料の厚み、tcは基準厚みである。
When the degree of anisotropy of molecular orientation is the same, the larger the thickness of the sample (film), the larger the value of MOR measured by the molecular orientation meter. Therefore, when evaluating the degree of anisotropy of molecular orientation, normalized molecular orientation: MOR_c converted to a predetermined reference thickness is used.
MOR_c = (tc / t) × (MOR-1) +1
t is the thickness of the sample and tc is the reference thickness.

絶縁フィルムの基準厚みtc=75μmで規格化した分子配向度MOR_cは、1.3以上が好ましく、1.4以上がより好ましく、1.5以上がさらに好ましい。MOR_cは、1.6以上、1.7以上または1.8以上であってもよい。絶縁フィルムのMOR_cが大きいほど、被覆導体の耐摩耗性が向上する傾向がある。MOR_cの上限は特に限定されないが、一般には5以下である。MOR_cは4以下または3以下であってもよい。 The molecular orientation degree MOR_c standardized with the reference thickness tk = 75 μm of the insulating film is preferably 1.3 or more, more preferably 1.4 or more, and further preferably 1.5 or more. MOR_c may be 1.6 or more, 1.7 or more, or 1.8 or more. The larger the MOR_c of the insulating film, the more the wear resistance of the coated conductor tends to improve. The upper limit of MOR_c is not particularly limited, but is generally 5 or less. MOR_c may be 4 or less or 3 or less.

絶縁フィルムの厚みは特に限定されない。被覆導体を軽量化する観点から、絶縁フィルムの厚みは小さい方が好ましい。絶縁フィルムの厚みは、25μm以下が好ましく、20μm以下がより好ましく、19μm以下がさらに好ましい。絶縁フィルムの厚みは18μm以下であってもよい。前述のように、本発明においては、絶縁フィルムの分子配向軸と導線の延在方向とを略平行とすることにより耐摩耗性を向上できるため、絶縁フィルムの厚みが小さい場合でも耐摩耗性に優れる被覆導体を形成できる。 The thickness of the insulating film is not particularly limited. From the viewpoint of reducing the weight of the coated conductor, it is preferable that the thickness of the insulating film is small. The thickness of the insulating film is preferably 25 μm or less, more preferably 20 μm or less, and even more preferably 19 μm or less. The thickness of the insulating film may be 18 μm or less. As described above, in the present invention, the wear resistance can be improved by making the molecular orientation axis of the insulating film substantially parallel to the extending direction of the conducting wire, so that the wear resistance can be improved even when the thickness of the insulating film is small. An excellent coated conductor can be formed.

絶縁フィルムの厚みの下限は特に限定されないが、取扱い性および機械強度を確保する観点から5μm以上が好ましく、7μm以上がより好ましい。絶縁フィルムの厚みおよび被覆材の厚みは、接触厚み計を用いて測定する。 The lower limit of the thickness of the insulating film is not particularly limited, but is preferably 5 μm or more, and more preferably 7 μm or more from the viewpoint of ensuring handleability and mechanical strength. The thickness of the insulating film and the thickness of the covering material are measured using a contact thickness meter.

<接着層>
絶縁被覆材の接着層の材料は、導線と絶縁フィルムとの接着性を向上できるものであれば特に限定されない。ヒートシールにより接着性を向上可能であることから、熱可塑性樹脂が好ましく、中でも、絶縁性および耐薬品性等の観点から、フッ素樹脂が好ましい。
<Adhesive layer>
The material of the adhesive layer of the insulating coating material is not particularly limited as long as it can improve the adhesiveness between the conducting wire and the insulating film. A thermoplastic resin is preferable because the adhesiveness can be improved by heat sealing, and a fluororesin is particularly preferable from the viewpoint of insulating property and chemical resistance.

フッ素樹脂は分子中にフッ素原子を含むポリマーであり、テトラフルオロエチレン重合体、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン・パーフルオロ(アルキルビニルエーテル)共重合体、テトラフルオロエチレン・エチレン共重合体、ポリクロロトリフルオロエチレン、エチレン・クロロトリフルオロエチレン共重合体、ポリフッ化ビニリデン、フッ化ビニリデン・ヘキサフルオロプロピレン共重合体およびポリフッ化ビニル等が挙げられる。中でも、テトラフルオロエチレン重合体、またはテトラフルオロエチレン・パーフルオロ(アルキルビニルエーテル)共重合体が好ましい。 Fluororesin is a polymer containing a fluorine atom in its molecule, and is a tetrafluoroethylene polymer, a tetrafluoroethylene / hexafluoropropylene copolymer, a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, or a tetrafluoroethylene / ethylene. Examples thereof include copolymers, polychlorotrifluoroethylene, ethylene / chlorotrifluoroethylene copolymers, polyvinylidene fluoride, vinylidene fluoride / hexafluoropropylene copolymers and polyvinyl fluoride. Of these, a tetrafluoroethylene polymer or a tetrafluoroethylene perfluoro (alkyl vinyl ether) copolymer is preferable.

接着層の厚みは、接着性を発現可能であれば特に限定されず、例えば、0.5〜13μm程度である。絶縁フィルムの一方の面に複数の接着層を形成してもよい。絶縁フィルムの両面に接着層を設ける場合、表裏の接着層の材料および厚みは同一でもよく異なっていてもよい。接着層の表面や絶縁フィルムの表面には、接着性向上等を目的として、コロナ放電処理やプラズマ放電処理等の表面処理を施してもよい。 The thickness of the adhesive layer is not particularly limited as long as the adhesiveness can be exhibited, and is, for example, about 0.5 to 13 μm. A plurality of adhesive layers may be formed on one surface of the insulating film. When the adhesive layers are provided on both sides of the insulating film, the materials and thicknesses of the adhesive layers on the front and back surfaces may be the same or different. The surface of the adhesive layer and the surface of the insulating film may be subjected to surface treatment such as corona discharge treatment or plasma discharge treatment for the purpose of improving adhesiveness.

節煙フィルムの主面上に接着剤層を形成する方法としては、フィルム状の接着層をラミネートする方法、コア層としての絶縁フィルムと接着層とを多層共押出により形成する方法、絶縁フィルム上に接着層を構成する樹脂を含む溶液または分散液(ディスパージョン)を塗布する方法等が挙げられる。ディスパージョンとしては、接着層を構成する樹脂材料を水または有機溶剤に分散したものが用いられる。ディスパージョンの固形成分濃度は、10〜70重量%程度である。ディスパージョンは、適切な厚みに達するまで複数回塗布してもよい。絶縁フィルムの主面上に接着層を形成後に、加熱焼成を行ってもよい。 As a method of forming an adhesive layer on the main surface of a smoke-saving film, a method of laminating a film-like adhesive layer, a method of forming an insulating film as a core layer and an adhesive layer by multi-layer coextrusion, and a method of forming an adhesive layer on an insulating film. Examples thereof include a method of applying a solution or a dispersion (dispersion) containing a resin constituting the adhesive layer. As the dispersion, a resin material constituting the adhesive layer dispersed in water or an organic solvent is used. The solid component concentration of the dispersion is about 10 to 70% by weight. The dispersion may be applied multiple times until a suitable thickness is reached. After forming the adhesive layer on the main surface of the insulating film, heating and firing may be performed.

[被覆導体の用途]
被覆導体は、各種の電線やケーブル等に用いられる。本発明の被覆導体は、耐摩耗性に優れるため、航空宇宙用の電線・ケーブル等としても有用である。
[Use of coated conductor]
The coated conductor is used for various electric wires, cables and the like. Since the coated conductor of the present invention has excellent wear resistance, it is also useful as an electric wire / cable for aerospace.

以下に実施例を示して本発明をより詳細に説明するが、本発明は下記の実施例に限定されるものではない。 The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to the following Examples.

[測定方法]
<ポリイミドフィルムの分子配向軸および分子配向度>
マイクロ波方式分子配向計(王子計測機器製「MOA−6015」)を用いてポリイミドフィルムの分子配向度(MOR)および配向角(φ)を求めた。ポリイミドフィルムの厚みtと基準厚みtc=75μmから、下記式に基づいて、基準厚み75μmで規格化した分子配向度MOR_cを算出した。
MOR_c=(tc/t)(MOR−1)+1
[Measuring method]
<Molecular orientation axis and degree of molecular orientation of polyimide film>
The degree of molecular orientation (MOR) and orientation angle (φ) of the polyimide film were determined using a microwave type molecular orientation meter (“MOA-6015” manufactured by Oji Measuring Instruments). From the thickness t of the polyimide film and the reference thickness tc = 75 μm, the molecular orientation degree MOR_c standardized at the reference thickness of 75 μm was calculated based on the following formula.
MOR_c = (tc / t) (MOR-1) +1

<被覆導体の耐摩耗性>
スクレープ摩耗試験機(WELLMAN製「REPEATED SCRAPE ABRASION TESTER(CAT.158L238G1)」を用い、英国規格協会航空機部品仕様(British Standard Institution Aerospace Series)「BS EN3475−503」に則って、被覆導体の摩耗試験を実施した。5回の試験値の平均値を被覆導体の耐磨耗回数とした。
<Abrasion resistance of coated conductor>
Using a scrape wear tester (WELLMAN's "REPEATED SCRAPE ABRASION TESTER (CAT.158L238G1)", British Standards Association aircraft parts specifications (British Standard Aerospace Series) "BS EN3475-503" The average value of the five test values was taken as the number of times the coated conductor was abraded.

[実施例1]
<ポリイミド前駆体の調製>
重合容器にジメチルホルムアミド(DMF)を326.0kg投入し、2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン(BAPP):14.7kg、4,4’−オキシジアニリン(ODA):6.6kg、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物(BTDA):9.8kg、およびピロメリット酸二無水物(PMDA):6.9kgを順に添加した後、50分間攪拌して溶解させた。その後、パラフェニレンジアミン(PDA):7.5kg、およびPMDA:15.6kgを添加し、1時間攪拌して溶解させた。別途調整しておいたPMDAのDMF溶液(7wt%)を上記反応液に徐々に添加し、23℃における粘度が2400ポイズに達したところで添加を止め、ポリイミド前駆体(ポリアミド酸溶液)を得た。
[Example 1]
<Preparation of polyimide precursor>
326.0 kg of dimethylformamide (DMF) was added to the polymerization vessel, and 2,2-bis [4- (4-aminophenoxy) phenyl] propane (BAPP): 14.7 kg, 4,4'-oxydianiline (ODA). ): After adding 6.6 kg, 3,3', 4,4'-benzophenonetetracarboxylic dianhydride (BTDA): 9.8 kg, and pyromellitic dianhydride (PMDA): 6.9 kg in order. , Stirred for 50 minutes to dissolve. Then, 7.5 kg of para-phenylenediamine (PDA) and 15.6 kg of PMDA were added and stirred for 1 hour to dissolve. A separately adjusted DMF solution of PMDA (7 wt%) was gradually added to the above reaction solution, and the addition was stopped when the viscosity at 23 ° C. reached 2400 poisons to obtain a polyimide precursor (polyamic acid solution). ..

<ポリイミドフィルムの作製>
上記のポリイミド前駆体に、下記の量の無水酢酸(化学脱水剤)およびイソキノリン(触媒)を添加し、さらに、DMFを添加して固形分濃度10wt%のワニスを調製した。
無水酢酸:ポリアミド酸のアミド酸ユニット1モルに対して2.7モル
イソキノリン:ポリアミド酸のアミド酸ユニット1モルに対して0.6モル
<Manufacturing of polyimide film>
The following amounts of acetic anhydride (chemical dehydrating agent) and isoquinolin (catalyst) were added to the above-mentioned polyimide precursor, and DMF was further added to prepare a varnish having a solid content concentration of 10 wt%.
Acetic anhydride: 2.7 mol per mol of amic acid unit of polyamic acid Isoquinoline: 0.6 mol per mol of amic acid unit of polyamic acid

上記のワニスを、0℃に冷却したリップ幅520mmのダイスから連続的に吐出して、SUS製のエンドレスベルト上にに流延し、50℃から100℃の範囲で段階的に100秒間加熱し、自己支持性を有するゲルフィルムとした。エンドレスベルトから引き剥がしたゲルフィルムの両端をテンターに固定し、長手方向にテンターを移動させながら20℃から100℃の範囲で段階的に加熱した。この際、左右のテンターの走行速度差を10%として、斜め方向に延伸を行った。 The above varnish is continuously discharged from a die having a lip width of 520 mm cooled to 0 ° C., cast on an endless belt made of SUS, and heated stepwise for 100 seconds in the range of 50 ° C. to 100 ° C. , A gel film having self-supporting property. Both ends of the gel film peeled off from the endless belt were fixed to the tenter, and the tenter was gradually heated in the range of 20 ° C. to 100 ° C. while moving the tenter in the longitudinal direction. At this time, stretching was performed in an oblique direction with the difference in running speed between the left and right tenters being 10%.

その後、150℃から400℃の範囲で段階的に加熱して、乾燥およびイミド化を行った。得られたポリイミドフィルムの厚みは17μmであり、長手方向を基準とする配向角φは32°、MOR_cは2.0であった。 Then, it was heated stepwise in the range of 150 ° C. to 400 ° C. to dry and imidize. The thickness of the obtained polyimide film was 17 μm, the orientation angle φ with respect to the longitudinal direction was 32 °, and MOR_c was 2.0.

<絶縁被覆材の作製>
ポリイミドフィルムの両面に、テトラフルオロエチレン・ヘキサフルオロプロピレン共重合体(FEP)の水性ディスパージョンを塗布し、150℃で65秒乾燥した後、410℃で15秒間焼成して、ポリイミドフィルムの両面のそれぞれに、厚み約2μmのFEP層が設けられた積層体を得た。この積層体を、幅5.0mmの帯状にスリットして、絶縁テープを得た。
<Manufacturing of insulating coating material>
An aqueous dispersion of tetrafluoroethylene / hexafluoropropylene copolymer (FEP) was applied to both sides of the polyimide film, dried at 150 ° C. for 65 seconds, and then fired at 410 ° C. for 15 seconds to form both sides of the polyimide film. A laminate having a FEP layer having a thickness of about 2 μm was obtained for each. This laminate was slit into a strip having a width of 5.0 mm to obtain an insulating tape.

<被覆導体の作製>
直径0.8mmの導線(Phelps doges製「High performance conductor Nickel coated copper」(AWG:20、CONST:19/32))に、絶縁テープの重なり幅Qが2.5mm、重なり率Rpが50%(2重巻き)となるように、巻きつけ角度θ=28°で上記の絶縁テープを螺旋状に巻きつけて、被覆導体を作製した。導線の延在方向とポリイミドフィルムの分子配向軸とのなす角度ωは4°であった。
<Manufacturing of coated conductor>
A conductor wire with a diameter of 0.8 mm ("High performance angle copper coated copper" (AWG: 20, CONST: 19/32) manufactured by Philps doges) has an overlapping width Q of 2.5 mm and an overlap ratio Rp of 50% (AWG: 20, CONST: 19/32). The above-mentioned insulating tape was spirally wound at a winding angle θ = 28 ° so as to be double-wound) to prepare a coated conductor. The angle ω formed by the extending direction of the conducting wire and the molecular orientation axis of the polyimide film was 4 °.

[実施例2〜4および比較例3,4]
ポリイミドフィルムの作製において、ゲルフィルムを20℃から100℃の範囲で段階的に加熱しながら搬送する際の左右のテンターの走行速度差を表1に示すように変更した。さらに、テープのスリット幅W、および巻きつけ角度θを表1に示すように変更した。比較例4では、ポリイミドフィルムの作製において、ダイスからのワニスの吐出量を実施例1の60%に低減して厚みを調整し、被覆導体の作製において、絶縁テープの重なり率Rpが66.7%(3重巻き)となるように、巻きつけ角度θを調整した。これらの変更点以外は実施例1と同様にして被覆導体を作製した。
[Examples 2 to 4 and Comparative Examples 3 and 4]
In the production of the polyimide film, the difference in running speed between the left and right tenters when the gel film was conveyed while being heated stepwise in the range of 20 ° C. to 100 ° C. was changed as shown in Table 1. Further, the slit width W of the tape and the winding angle θ were changed as shown in Table 1. In Comparative Example 4, in the production of the polyimide film, the discharge amount of the varnish from the die was reduced to 60% of that of Example 1 to adjust the thickness, and in the production of the coated conductor, the overlap ratio Rp of the insulating tape was 66.7. The winding angle θ was adjusted so as to be% (triple winding). A coated conductor was produced in the same manner as in Example 1 except for these changes.

[実施例5〜7および比較例2]
ポリイミドフィルムの作製において、ゲルフィルムを20℃から100℃の範囲で段階的に加熱しながら搬送する際に、左右のテンターの走行速度差を表1に示すように変更するとともに、左右のテンター間の距離を4%縮めた。さらに、テープのスリット幅W、および巻きつけ角度θを表1に示すように変更した。実施例7では、ポリイミドフィルムの作製において、ダイスからのワニスの吐出量を実施例1の70%に低減して厚みを調整し、被覆導体の作製において、絶縁テープの重なり率Rpが66.7%(3重巻き)となるように、巻きつけ角度θを調整した。これらの変更点以外は実施例1と同様にして被覆導体を作製した。
[Examples 5 to 7 and Comparative Example 2]
In the production of the polyimide film, when the gel film is conveyed while being heated stepwise in the range of 20 ° C. to 100 ° C., the difference in running speed between the left and right tenters is changed as shown in Table 1, and the distance between the left and right tenters is changed. The distance was reduced by 4%. Further, the slit width W of the tape and the winding angle θ were changed as shown in Table 1. In Example 7, in the production of the polyimide film, the discharge amount of the varnish from the die was reduced to 70% of that in Example 1 to adjust the thickness, and in the production of the coated conductor, the overlap ratio Rp of the insulating tape was 66.7. The winding angle θ was adjusted so as to be% (triple winding). A coated conductor was produced in the same manner as in Example 1 except for these changes.

[比較例1]
ポリイミドフィルムの作製において、ゲルフィルムを20℃から100℃の範囲で段階的に加熱しながら搬送する際に、左右のテンターの走行速度差を設けず、左右のテンター間の距離を18%拡げて、幅方向に延伸した。それ以外は実施例1と同様にして被覆導体を作製した。
[Comparative Example 1]
In the production of the polyimide film, when the gel film is conveyed while being heated stepwise in the range of 20 ° C. to 100 ° C., the distance between the left and right tenters is increased by 18% without providing a difference in running speed between the left and right tenters. , Stretched in the width direction. A coated conductor was produced in the same manner as in Example 1 except for the above.

[評価結果]
上記の実施例および比較例におけるポリイミドフィルム(ゲルフィルム)の延伸条件、ポリイミドフィルムの特性、被覆導体の作製条件、および耐摩耗性の評価結果を、表1に示す。
[Evaluation results]
Table 1 shows the stretching conditions of the polyimide film (gel film), the characteristics of the polyimide film, the manufacturing conditions of the coated conductor, and the evaluation results of the wear resistance in the above Examples and Comparative Examples.

Figure 2021009828
Figure 2021009828

実施例1〜7の被覆導体は、耐摩耗回数が400回を超えており、優れた耐摩耗性を示した。実施例と比較例の対比から、導線の延在方向とポリイミドフィルムの配向軸とのなす角度ωが小さいほど、耐摩耗性が向上する傾向あることが分かる。また、実施例1と実施例6との対比から、角度ωが同程度の場合は、ポリイミドフィルムの分子配向度が大きいほど、被覆導体の耐摩耗性が高いことが分かる。 The coated conductors of Examples 1 to 7 had a wear resistance of more than 400 times, and exhibited excellent wear resistance. From the comparison between the examples and the comparative examples, it can be seen that the smaller the angle ω formed by the extending direction of the conducting wire and the orientation axis of the polyimide film, the better the wear resistance tends to be. Further, from the comparison between Example 1 and Example 6, it can be seen that when the angle ω is about the same, the larger the degree of molecular orientation of the polyimide film, the higher the wear resistance of the coated conductor.

1 導線
3 絶縁被覆材(絶縁テープ)

1 Lead wire 3 Insulation coating material (insulation tape)

Claims (8)

第一方向に延在する導線の外周に帯状の絶縁被覆材を螺旋状に巻きつけた被覆導体であって、
前記絶縁被覆材は絶縁フィルムを含み、
前記絶縁フィルムの分子配向軸と前記絶縁被覆材の長手方向とのなす角度φが10°〜80°であり、前記絶縁フィルムの分子配向軸と前記第一方向とのなす角度ωが10°以下である、被覆導体。
A coated conductor in which a band-shaped insulating coating material is spirally wound around the outer circumference of a conducting wire extending in the first direction.
The insulating coating material contains an insulating film and contains an insulating film.
The angle φ formed by the molecular orientation axis of the insulating film and the longitudinal direction of the insulating coating material is 10 ° to 80 °, and the angle ω formed by the molecular orientation axis of the insulating film and the first direction is 10 ° or less. Is a coated conductor.
前記絶縁フィルムがポリイミドを含む、請求項1に記載の被覆導体。 The coated conductor according to claim 1, wherein the insulating film contains polyimide. 前記絶縁フィルムの基準厚み75μmで規格化した分子配向度MOR_cが、1.3以上である、請求項1または2に記載の被覆導体。 The coated conductor according to claim 1 or 2, wherein the molecular orientation degree MOR_c standardized with a reference thickness of 75 μm of the insulating film is 1.3 or more. 前記絶縁被覆材は、前記絶縁フィルムの少なくとも一方の主面上に接着層を備える、請求項1〜3のいずれか1項に記載の被覆導体。 The coated conductor according to any one of claims 1 to 3, wherein the insulating coating material includes an adhesive layer on at least one main surface of the insulating film. 前記接着層がフッ素樹脂を含む、請求項4に記載の被覆導体。 The coated conductor according to claim 4, wherein the adhesive layer contains a fluororesin. 第一方向に延在する導線の外周に帯状の絶縁被覆材を螺旋状に巻きつける被覆導体の製造方法であって、
前記絶縁被覆材は絶縁フィルムを含み、前記絶縁フィルムの分子配向軸と前記絶縁被覆材の長手方向とのなす角度φが10°〜80°であり、
前記絶縁フィルムの分子配向軸と前記第一方向とのなす角度ωが10°以下となるように、前記導線の外周に前記絶縁被覆材を巻きつける、被覆導体の製造方法。
A method for manufacturing a coated conductor in which a band-shaped insulating coating material is spirally wound around the outer circumference of a conducting wire extending in the first direction.
The insulating coating material includes an insulating film, and the angle φ formed by the molecular orientation axis of the insulating film and the longitudinal direction of the insulating coating material is 10 ° to 80 °.
A method for manufacturing a coated conductor, in which the insulating coating material is wound around the outer periphery of the conducting wire so that the angle ω formed by the molecular orientation axis of the insulating film and the first direction is 10 ° or less.
前記絶縁被覆材の前記絶縁フィルムは、搬送方向と分子配向軸とのなす角度が10°〜80°である斜め延伸フィルムを、搬送方向と平行にスリットしたものである、請求項6に記載の被覆導体の製造方法。 The sixth aspect of the present invention, wherein the insulating film of the insulating coating material is a diagonally stretched film having an angle formed by a transport direction and a molecular orientation axis of 10 ° to 80 °, slit in parallel with the transport direction. A method for manufacturing a coated conductor. 前記絶縁被覆材の前記絶縁フィルムは、搬送方向と平行または直交する方向に分子配向軸を有するフィルムを、搬送方向に対して10°〜80°の方向に沿ってスリットしたものである、請求項6に記載の被覆導体の製造方法。

The insulating film of the insulating coating material is a film having a molecular orientation axis in a direction parallel to or orthogonal to the transport direction, slit along a direction of 10 ° to 80 ° with respect to the transport direction. The method for producing a coated conductor according to 6.

JP2019123842A 2019-07-02 2019-07-02 Covered conductor and its manufacturing method Active JP7247038B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019123842A JP7247038B2 (en) 2019-07-02 2019-07-02 Covered conductor and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019123842A JP7247038B2 (en) 2019-07-02 2019-07-02 Covered conductor and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021009828A true JP2021009828A (en) 2021-01-28
JP7247038B2 JP7247038B2 (en) 2023-03-28

Family

ID=74200147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019123842A Active JP7247038B2 (en) 2019-07-02 2019-07-02 Covered conductor and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7247038B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024154613A1 (en) * 2023-01-18 2024-07-25 矢崎総業株式会社 Insulated electric wire and method for producing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199270A (en) * 2013-03-29 2014-10-23 コニカミノルタ株式会社 Production method of optical film
WO2014192733A1 (en) * 2013-05-31 2014-12-04 株式会社カネカ Insulated coating material and use of same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4716225B2 (en) 2007-05-15 2011-07-06 ナガセケムテックス株式会社 Photoresist stripper composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014199270A (en) * 2013-03-29 2014-10-23 コニカミノルタ株式会社 Production method of optical film
WO2014192733A1 (en) * 2013-05-31 2014-12-04 株式会社カネカ Insulated coating material and use of same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024154613A1 (en) * 2023-01-18 2024-07-25 矢崎総業株式会社 Insulated electric wire and method for producing same

Also Published As

Publication number Publication date
JP7247038B2 (en) 2023-03-28

Similar Documents

Publication Publication Date Title
EP3006209B1 (en) Insulated coating material and use of same
US8530746B2 (en) Polyimides and fluoropolymer bonding layer with improved internal adhesive strength
JP6907378B2 (en) Insulation coating material with excellent wear resistance
US8691131B2 (en) Polyimide film
US20100209681A1 (en) Polyimide films comprising fluoropolymer coating and methods
JP2000085007A (en) Biaxially oriented polyimide film and its production
JP7247038B2 (en) Covered conductor and its manufacturing method
US10703860B2 (en) Insulating coating material having excellent wear resistance
JPH0559829B2 (en)
US8816217B2 (en) Polyimides and fluoropolymer bonding layer with improved copper heat seal strength
CN106008969B (en) Polyimide film
JP2007197696A (en) Low heat-shrinking and highly adhesive polyimide film
JP2007169494A (en) Aromatic polyimide film, cover-lay film and flexible laminated plate
JP2007197697A (en) Low heat-shrinking and highly adhesive polyimide film
US20240336801A1 (en) Electrically insulated wires and cables
JP2007197699A (en) Low heat-shrinking and highly adhesive polyimide film and its manufacturing method
JP2007177030A (en) Low heat-shrinkable and highly adhesive polyimide film
JP2007177031A (en) Polyimide film having low heat shrinkage/high adhesiveness and method for producing the same
JP2007197698A (en) Low-heat shrinking and highly adhesive polyimide film and its manufacturing method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200721

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230315

R150 Certificate of patent or registration of utility model

Ref document number: 7247038

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150