JP2021095396A - DITHIAPOLYETHER DIOL, METHOD FOR PRODUCING THE SAME, SnAg PLATING SOLUTION CONTAINING THAT DITHIAPOLYETHER DIOL, AND METHOD FOR FORMING PLATING FILM USING THAT SnAg PLATING SOLUTION - Google Patents
DITHIAPOLYETHER DIOL, METHOD FOR PRODUCING THE SAME, SnAg PLATING SOLUTION CONTAINING THAT DITHIAPOLYETHER DIOL, AND METHOD FOR FORMING PLATING FILM USING THAT SnAg PLATING SOLUTION Download PDFInfo
- Publication number
- JP2021095396A JP2021095396A JP2020203251A JP2020203251A JP2021095396A JP 2021095396 A JP2021095396 A JP 2021095396A JP 2020203251 A JP2020203251 A JP 2020203251A JP 2020203251 A JP2020203251 A JP 2020203251A JP 2021095396 A JP2021095396 A JP 2021095396A
- Authority
- JP
- Japan
- Prior art keywords
- organic phase
- dithiapolyetherdiol
- raw material
- plating solution
- plating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000007747 plating Methods 0.000 title claims abstract description 105
- 229910007637 SnAg Inorganic materials 0.000 title claims abstract description 36
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims description 23
- 150000002009 diols Chemical class 0.000 title claims description 8
- 229910052736 halogen Inorganic materials 0.000 claims abstract description 20
- 150000002367 halogens Chemical class 0.000 claims abstract description 20
- 239000012074 organic phase Substances 0.000 claims description 81
- -1 alkali metal salt Chemical class 0.000 claims description 67
- 239000000243 solution Substances 0.000 claims description 60
- 239000002994 raw material Substances 0.000 claims description 53
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 40
- 239000012535 impurity Substances 0.000 claims description 22
- 229910052783 alkali metal Inorganic materials 0.000 claims description 20
- 239000007864 aqueous solution Substances 0.000 claims description 20
- 239000003456 ion exchange resin Substances 0.000 claims description 20
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 20
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims description 19
- 239000007795 chemical reaction product Substances 0.000 claims description 17
- 239000008346 aqueous phase Substances 0.000 claims description 12
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 claims description 10
- 239000007788 liquid Substances 0.000 claims description 10
- 239000003960 organic solvent Substances 0.000 claims description 10
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000002156 mixing Methods 0.000 claims description 9
- 125000005843 halogen group Chemical group 0.000 claims description 8
- 125000003396 thiol group Chemical group [H]S* 0.000 claims description 8
- 238000006243 chemical reaction Methods 0.000 claims description 7
- 229910021645 metal ion Inorganic materials 0.000 claims description 7
- 239000000047 product Substances 0.000 claims description 6
- 238000007865 diluting Methods 0.000 claims description 4
- 238000001704 evaporation Methods 0.000 claims description 4
- 241001550224 Apha Species 0.000 claims 1
- 238000010586 diagram Methods 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 16
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 239000000203 mixture Substances 0.000 description 14
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 10
- 239000011259 mixed solution Substances 0.000 description 9
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 8
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- 239000002253 acid Substances 0.000 description 6
- 150000001875 compounds Chemical class 0.000 description 6
- 238000010790 dilution Methods 0.000 description 5
- 239000012895 dilution Substances 0.000 description 5
- 239000012467 final product Substances 0.000 description 5
- ZNSMNVMLTJELDZ-UHFFFAOYSA-N Bis(2-chloroethyl)ether Chemical compound ClCCOCCCl ZNSMNVMLTJELDZ-UHFFFAOYSA-N 0.000 description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- 239000003086 colorant Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229940098779 methanesulfonic acid Drugs 0.000 description 4
- 239000012071 phase Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 235000012431 wafers Nutrition 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 238000009713 electroplating Methods 0.000 description 3
- 125000004434 sulfur atom Chemical group 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- CNDCQWGRLNGNNO-UHFFFAOYSA-N 2-(2-sulfanylethoxy)ethanethiol Chemical compound SCCOCCS CNDCQWGRLNGNNO-UHFFFAOYSA-N 0.000 description 2
- RYKLZUPYJFFNRR-UHFFFAOYSA-N 3-hydroxypiperidin-2-one Chemical compound OC1CCCNC1=O RYKLZUPYJFFNRR-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- 230000005526 G1 to G0 transition Effects 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 229910001128 Sn alloy Inorganic materials 0.000 description 2
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 239000008139 complexing agent Substances 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- AICMYQIGFPHNCY-UHFFFAOYSA-J methanesulfonate;tin(4+) Chemical compound [Sn+4].CS([O-])(=O)=O.CS([O-])(=O)=O.CS([O-])(=O)=O.CS([O-])(=O)=O AICMYQIGFPHNCY-UHFFFAOYSA-J 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000007086 side reaction Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- YODZTKMDCQEPHD-UHFFFAOYSA-N thiodiglycol Chemical compound OCCSCCO YODZTKMDCQEPHD-UHFFFAOYSA-N 0.000 description 2
- 238000004724 ultra fast liquid chromatography Methods 0.000 description 2
- 239000001211 (E)-4-phenylbut-3-en-2-one Substances 0.000 description 1
- SYLONGMLAHNVOC-UHFFFAOYSA-N 2-[2-[2-(2-hydroxyethylsulfanyl)ethoxy]ethylsulfanyl]ethanol Chemical compound OCCSCCOCCSCCO SYLONGMLAHNVOC-UHFFFAOYSA-N 0.000 description 1
- LDLCZOVUSADOIV-UHFFFAOYSA-N 2-bromoethanol Chemical compound OCCBr LDLCZOVUSADOIV-UHFFFAOYSA-N 0.000 description 1
- 241000272875 Ardeidae Species 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- KECMLGZOQMJIBM-UHFFFAOYSA-N OCCOCCOCCCl Chemical compound OCCOCCOCCCl KECMLGZOQMJIBM-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910021607 Silver chloride Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 229910021626 Tin(II) chloride Inorganic materials 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910001508 alkali metal halide Inorganic materials 0.000 description 1
- 150000008045 alkali metal halides Chemical class 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 229930008407 benzylideneacetone Natural products 0.000 description 1
- 238000005282 brightening Methods 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000005695 dehalogenation reaction Methods 0.000 description 1
- 230000005595 deprotonation Effects 0.000 description 1
- 238000010537 deprotonation reaction Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 238000004255 ion exchange chromatography Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- GTBQRHOYAUGRPV-UHFFFAOYSA-N methanesulfonic acid;silver Chemical compound [Ag].CS(O)(=O)=O GTBQRHOYAUGRPV-UHFFFAOYSA-N 0.000 description 1
- PGGZKNHTKRUCJS-UHFFFAOYSA-N methanesulfonic acid;tin Chemical compound [Sn].CS(O)(=O)=O PGGZKNHTKRUCJS-UHFFFAOYSA-N 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 239000011736 potassium bicarbonate Substances 0.000 description 1
- 229910000028 potassium bicarbonate Inorganic materials 0.000 description 1
- 235000015497 potassium bicarbonate Nutrition 0.000 description 1
- TYJJADVDDVDEDZ-UHFFFAOYSA-M potassium hydrogencarbonate Chemical compound [K+].OC([O-])=O TYJJADVDDVDEDZ-UHFFFAOYSA-M 0.000 description 1
- 229940086066 potassium hydrogencarbonate Drugs 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229910001432 tin ion Inorganic materials 0.000 description 1
- 239000005028 tinplate Substances 0.000 description 1
- BWHOZHOGCMHOBV-BQYQJAHWSA-N trans-benzylideneacetone Chemical compound CC(=O)\C=C\C1=CC=CC=C1 BWHOZHOGCMHOBV-BQYQJAHWSA-N 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Electroplating And Plating Baths Therefor (AREA)
Abstract
【課題】ハロゲン含有量が少なく高純度のジチアポリエーテルジオール及びその製造方法を提供する。ジチアポリエーテルジオールは、SnAgめっき液に用いる場合、めっき液の安定性、めっき皮膜の外観及び膜厚の均一性を良好にする。【解決手段】ハロゲン含有量が10ppm未満であり、純度が80%以上であり、かつ下記一般式(1)又は(2)で表されるジチアポリエーテルジオールである。但し、一般式(1)又は(2)中、x及びyは任意の自然数である。【選択図】なしPROBLEM TO BE SOLVED: To provide a high-purity dithiapolyetherdiol having a low halogen content and a method for producing the same. When used in a SnAg plating solution, dithiapolyetherdiol improves the stability of the plating solution, the appearance of the plating film, and the uniformity of the film thickness. A dithiapolyetherdiol having a halogen content of less than 10 ppm, a purity of 80% or more, and represented by the following general formula (1) or (2). However, in the general formula (1) or (2), x and y are arbitrary natural numbers. [Selection diagram] None
Description
本発明は、SnAgめっき液に好適に用いられるスルフィド化合物の一種であるジチアポリエーテルジオール及びその製造方法に関する。詳しくは電気めっき法によりSnAgめっき膜を形成するためのSnAg合金めっき液に関する。更に詳しくは、SnAgめっき液を用いて半導体ウエハやプリント基板用のめっき皮膜を形成する方法に関するものである。 The present invention relates to dithiapolyetherdiol, which is a kind of sulfide compound preferably used for SnAg plating solution, and a method for producing the same. More specifically, the present invention relates to a SnAg alloy plating solution for forming a SnAg plating film by an electroplating method. More specifically, the present invention relates to a method for forming a plating film for a semiconductor wafer or a printed circuit board using a SnAg plating solution.
本発明者は、錫合金めっき液において用いられるスルフィド化合物として、下記の一般式(21)で示されるスルフィド化合物を提案した(特許文献1(請求項1、段落[0033])参照。)。式(21)中、nは1〜3である。 The present inventor has proposed a sulfide compound represented by the following general formula (21) as a sulfide compound used in a tin alloy plating solution (see Patent Document 1 (Claim 1, paragraph [0033])). In formula (21), n is 1-3.
このスルフィド化合物は、濃硫酸やアルキルスルホン酸等の脱水作用をもつ強酸中でチオジエタノール(n=0)を脱水縮合して得られる。このときの反応温度、反応時間及び精製条件を変えることにより、一般式(21)中のnの値を制御することができる。 This sulfide compound is obtained by dehydrating and condensing thiodiethanol (n = 0) in a strong acid having a dehydrating action such as concentrated sulfuric acid and alkyl sulfonic acid. By changing the reaction temperature, reaction time, and purification conditions at this time, the value of n in the general formula (21) can be controlled.
一方、従来より、ハロゲン化銀写真感光材料の現像処理に用いられるスルフィド化合物として、3,9−ジチア−6−オキサ−1,11−ウンデカンジオール(HOCH2CH2SCH2CH2OCH2CH2SCH2CH2OH)が開示されている(例えば、特許文献2(第14欄第18〜28行)参照。)。この化合物は、以下の方法により合成される。2−メルカプトエタノール15.6g、ビス−(2−クロロエチル)エーテル14.3g、炭酸ナトリウム10.6gを50%エタノールに溶解する。そして、その溶液を20時間還流し、溶媒を減圧留去する。次いで、熱無水エタノールと酢酸エチルで上記化合物を抽出する。以上により上記化合物は合成される。目的物(上記化合物)は蒸留で得られる。 On the other hand, conventionally, as a sulfide compound used for developing a silver halide photographic photosensitive material, 3,9-dithia-6-oxa-1,11-undecanediol (HOCH 2 CH 2 SCH 2 CH 2 OCH 2 CH 2) SCH 2 CH 2 OH) is disclosed (see, for example, Patent Document 2 (column 14, lines 18-28)). This compound is synthesized by the following method. Dissolve 15.6 g of 2-mercaptoethanol, 14.3 g of bis- (2-chloroethyl) ether and 10.6 g of sodium carbonate in 50% ethanol. Then, the solution is refluxed for 20 hours, and the solvent is distilled off under reduced pressure. Then, the above compound is extracted with hot absolute ethanol and ethyl acetate. As described above, the above compound is synthesized. The target product (the above compound) is obtained by distillation.
しかし、特許文献1に示されるスルフィド化合物は、強酸中でチオジエタノール(n=0)を脱水縮合して合成されることから、『HOCH2CH2SCH2CH2OH』と『HOCH2CH2SCH2CH2OH』の2分子が脱水縮合した二量体のみならず、この二量体に単一の上記分子が更に縮合した三量体、或いは四量体等の多量体が生成されてしまう。このため、錫合金めっき液に好適な純度の高いスルフィド化合物を生成することが難しい。これに起因して、このスルフィド化合物をSnAgめっき液に用いる場合、めっき時に析出するAg組成が安定せず、めっき皮膜の外観及び膜厚の均一性が損なわれる場合があった。 However, since the sulfide compound shown in Patent Document 1 is synthesized by dehydrating and condensing thiodiethanol (n = 0) in a strong acid, "HOCH 2 CH 2 SCH 2 CH 2 OH" and "HOCH 2 CH 2" Not only a dimer in which two molecules of "SCH 2 CH 2 OH" are dehydrated and condensed, but also a trimer in which the single above-mentioned molecule is further condensed on this dimer, or a multimer such as a tetramer is produced. It ends up. Therefore, it is difficult to produce a highly pure sulfide compound suitable for a tin alloy plating solution. Due to this, when this sulfide compound is used in the SnAg plating solution, the Ag composition precipitated at the time of plating may not be stable, and the appearance and uniformity of the film thickness of the plating film may be impaired.
この点、特許文献2に記載されたような2−メルカプトエタノールと、ビス−(2−クロロエチル)エーテルとの反応では、上述のような多量体が生成しない。しかしながら、特許文献2に記載されたような2−メルカプトエタノールと、ビス−(2−クロロエチル)エーテルとの反応では、主たる反応生成物としてのスルフィド化合物のほか、副生成物として塩化ナトリウム(NaCl)が生成される。更には、未反応の原料や副反応による有機不純物も残留する。
これらの残留物のために、特許文献2に示されるスルフィド化合物は、塩素含有量が多くかつ純度が低い。このように、塩素などのハロゲン含有量が多いスルフィド化合物をSnAgめっき液に用いる場合には、塩化銀などのハロゲン化銀を生成し、これに起因して、SnAgめっき液の安定性が悪化し易い課題があった。また純度が低いスルフィド化合物をSnAgめっき液に用いる場合には、めっき性能、特にめっき皮膜の外観が悪化し易く、めっき皮膜の膜厚の均一性が低下し易いといった課題があった。
In this regard, the reaction of 2-mercaptoethanol as described in Patent Document 2 with bis- (2-chloroethyl) ether does not produce the above-mentioned multimer. However, in the reaction between 2-mercaptoethanol and bis- (2-chloroethyl) ether as described in Patent Document 2, in addition to the sulfide compound as the main reaction product, sodium chloride (NaCl) as a by-product Is generated. Furthermore, unreacted raw materials and organic impurities due to side reactions also remain.
Due to these residues, the sulfide compound shown in Patent Document 2 has a high chlorine content and low purity. As described above, when a sulfide compound having a high halogen content such as chlorine is used in the SnAg plating solution, silver halide such as silver chloride is generated, and the stability of the SnAg plating solution deteriorates due to this. There was an easy task. Further, when a sulfide compound having low purity is used in the SnAg plating solution, there is a problem that the plating performance, particularly the appearance of the plating film, tends to deteriorate, and the uniformity of the film thickness of the plating film tends to deteriorate.
本発明の目的は、ハロゲン含有量が少なく高純度のジチアポリエーテルジオール及びその製造方法を提供することにある。本発明の別の目的は、SnAgめっき液に用いる場合、めっき液の安定性、めっき皮膜の外観及び膜厚の均一性を良好にするジチアポリエーテルジオール及びその製造方法を提供することにある。即ち、本発明の別の目的は、めっき液の安定性が良好なジチアポリエーテルジオールを含むSnAgめっき液、並びに外観及び膜厚の均一性が良好なめっき皮膜を形成する方法を提供することにある。 An object of the present invention is to provide a high-purity dithiapolyetherdiol having a low halogen content and a method for producing the same. Another object of the present invention is to provide a dithiapolyetherdiol and a method for producing the same, which, when used in a SnAg plating solution, improve the stability of the plating solution, the appearance of the plating film, and the uniformity of the film thickness. .. That is, another object of the present invention is to provide a SnAg plating solution containing dithiapolyetherdiol having good stability of the plating solution, and a method for forming a plating film having good appearance and film thickness uniformity. It is in.
本発明の第1の観点は、ハロゲン含有量が10ppm以下であり、純度が80%以上であり、かつ下記一般式(1)又は(2)で表されることを特徴とするジチアポリエーテルジオールである。但し、一般式(1)又は(2)中、x及びyは任意の自然数である。 The first aspect of the present invention is a dithiapolyether having a halogen content of 10 ppm or less, a purity of 80% or more, and represented by the following general formula (1) or (2). It is a diol. However, in the general formula (1) or (2), x and y are arbitrary natural numbers.
純度は、以下の方法により測定される。固定相としてオクタデシルシリカ(ODS)が充填された高速液体クロマトグラフィーカラム(島津製作所社製、Prominence UFLC)にて、純水を移動相として、メタノール濃度を10%〜100%まで段階的に変化させるグラジェント分析を行う。検出された全成分のピーク面積を100%とし、ジチアポリエーテルジオールのピーク面積の面積比を算出する。算出された面積比をジチアポリエーテルジオールの純度とする。2種以上のジチアポリエーテルジオールを含む場合、最もピーク面積の大きい成分のピーク面積の面積比を純度とする。
なお、本明細書において、一般式や式は、構造式である。
Purity is measured by the following method. In a high performance liquid chromatography column (Prominence UFLC manufactured by Shimadzu Corporation) filled with octadecyl silica (ODS) as a stationary phase, the methanol concentration is gradually changed from 10% to 100% using pure water as a mobile phase. Perform a gradient analysis. The area ratio of the peak area of the dithiapolyetherdiol is calculated, assuming that the peak area of all the detected components is 100%. The calculated area ratio is taken as the purity of the dithiapolyether diol. When two or more kinds of dithiapolyetherdiols are contained, the area ratio of the peak area of the component having the largest peak area is defined as the purity.
In addition, in this specification, a general formula and a formula are structural formulas.
本発明の第2の観点は、第1の観点に係る発明であって、JIS K0071−1(1998年)に準拠して測定されるハーゼン単位色数(APHA)が100以下であるジチアポリエーテルジオールである。 The second aspect of the present invention is the invention according to the first aspect, and the Hazen unit color number (APHA) measured according to JIS K0071-1 (1998) is 100 or less. It is an ether diol.
本発明の第3の観点は、第1又は第2の観点のジチアポリエーテルジオールを含むSnAgめっき液である。 A third aspect of the present invention is a SnAg plating solution containing the dithiapolyetherdiol of the first or second aspect.
本発明の第4の観点は、第3の観点のSnAgめっき液を用いてめっき皮膜を形成する工程を有することを特徴とするめっき皮膜の形成方法である。 A fourth aspect of the present invention is a method for forming a plating film, which comprises a step of forming a plating film using the SnAg plating solution of the third aspect.
本発明の第5の観点は、(a-1) 一方の末端にメルカプト基を有するアルコール化合物(原料A)と両末端にハロゲン基を有するエーテル化合物(原料B)とアルカリ性水溶液とを混合し加熱することによりアルカリ金属塩を含む反応生成液を得る工程、又は(a-2) 両末端にメルカプト基を有するエーテル化合物(原料A)と一方の末端にハロゲン基を有するアルコール化合物(原料B)とアルカリ性水溶液とを混合し加熱することによりアルカリ金属塩を含む反応生成液を得る工程と、(b) 前記工程(a-1)又は前記工程(a-2)の反応生成液に含まれる有機相と水相とを分離する工程と、(c) 前記有機相をイオン交換樹脂に接触させてハロゲン化物イオン及び金属イオンを除去する工程と、(d) 前記ハロゲン化物イオン及び金属イオンを除去した有機相を加熱することにより前記有機相中の不純物を蒸発させて除去する工程とを含むことを特徴とするジチアポリエーテルジオールの製造方法である。 The fifth aspect of the present invention is (a-1) to mix and heat an alcohol compound (raw material A) having a mercapto group at one end, an ether compound (raw material B) having a halogen group at both ends, and an alkaline aqueous solution. A step of obtaining a reaction product solution containing an alkali metal salt, or (a-2) an ether compound having a mercapto group at both ends (raw material A) and an alcohol compound having a halogen group at one end (raw material B). A step of obtaining a reaction product solution containing an alkali metal salt by mixing and heating with an alkaline aqueous solution, and (b) an organic phase contained in the reaction product solution of the step (a-1) or the step (a-2). The step of separating the aqueous phase from the aqueous phase, (c) the step of bringing the organic phase into contact with an ion exchange resin to remove the halide ion and the metal ion, and (d) the step of removing the halide ion and the metal ion. A method for producing a dithia polyether diol, which comprises a step of evaporating and removing impurities in the organic phase by heating the phase.
本発明の第6の観点は、第5の観点に係る発明であって、前記工程(b)と前記工程(c)の間に、(b-1) 前記有機相をアルカリ金属塩が溶解しない有機溶媒で希釈して前記有機相から前記アルカリ金属塩を分離する工程を更に含むジチアポリエーテルジオールの製造方法である。 The sixth aspect of the present invention is the invention according to the fifth aspect, in which the alkali metal salt does not dissolve (b-1) the organic phase between the step (b) and the step (c). A method for producing a dithiapolyetherdiol, further comprising a step of diluting with an organic solvent to separate the alkali metal salt from the organic phase.
本発明の第7の観点は、第5又は第6の観点に係る発明であって、前記工程(b)と前記工程(c)の間に、又は前記工程(b-1)と前記工程(c)の間に、(b-2) 前記有機相を活性炭に接触させる工程を更に含むジチアポリエーテルジオールの製造方法である。 The seventh aspect of the present invention is the invention according to the fifth or sixth aspect, which is between the step (b) and the step (c), or the step (b-1) and the step ( A method for producing a dithiapolyetherdiol, further comprising (b-2) a step of bringing the organic phase into contact with activated carbon during c).
本発明の第8の観点は、第5ないし第7の観点のいずれかに係る発明であって、 前記工程(d)における前記有機相中の不純物の蒸発が減圧下で行われるジチアポリエーテルジオールの製造方法である。 The eighth aspect of the present invention is the invention according to any one of the fifth to seventh aspects, in which the impurities in the organic phase in the step (d) are evaporated under reduced pressure. This is a method for producing a diol.
本発明の第1の観点のジチアポリエーテルジオールは、SnAgめっき液に用いられる場合には、上述した一般式(1)又は(2)において、分子中に酸素原子「−O−」を含むため、水との水素結合により、水溶性を向上させる効果がある。またヒドロキシル基「−OH」を含むため、これが親水基として作用し、水との水素結合により、更に水溶性を向上させる効果がある。またS原子間にエーテル結合「C−O−C」が存在することにより、ジチアポリエーテルジオール自体の安定性に優れ、かつ少なくともS原子を2個含むため、これらのS原子がめっき浴中の錫より貴な銀イオンを十分に錯体化する。またハロゲン含有量が10ppm以下と少ないため、めっき液中にハロゲン化銀が殆ど生成しない。これにより、このSnAgめっき液は使用中も保管中も長期間にわたって電解安定性及び経時安定性に優れる。また純度が80%以上であるため、副生成物が少なく、めっき電極表面へのジチアポリエーテルジオールの吸着が適切に行われる。これによりめっき皮膜の外観及び膜厚の均一性を良好になる。 When used in a SnAg plating solution, the dithiapolyetherdiol of the first aspect of the present invention contains an oxygen atom "-O-" in the molecule in the above-mentioned general formula (1) or (2). Therefore, it has the effect of improving water solubility by hydrogen bonding with water. Further, since it contains a hydroxyl group "-OH", it acts as a hydrophilic group and has an effect of further improving water solubility by hydrogen bonding with water. Further, since the ether bond "C-OC" is present between the S atoms, the stability of the dithiapolyetherdiol itself is excellent and at least two S atoms are contained, so that these S atoms are in the plating bath. Sufficiently complex silver ions, which are noble than tin. Moreover, since the halogen content is as low as 10 ppm or less, silver halide is hardly generated in the plating solution. As a result, this SnAg plating solution is excellent in electrolytic stability and aging stability for a long period of time during use and storage. Further, since the purity is 80% or more, there are few by-products, and the dithiapolyetherdiol is appropriately adsorbed on the surface of the plating electrode. This improves the appearance of the plating film and the uniformity of the film thickness.
本発明の第2の観点のジチアポリエーテルジオールは、ハーゼン単位色数(APHA)が100以下であるため、SnAgめっき液に用いられる場合には、めっき液が透明になる。 Since the dithiapolyetherdiol of the second aspect of the present invention has a Hazen unit color number (APHA) of 100 or less, the plating solution becomes transparent when used in the SnAg plating solution.
本発明の第3の観点のSnAgめっき液は、ジチアポリエーテルジオールを含むため、上述したように、電解安定性及び経時安定性に優れる。まためっき皮膜の外観及び膜厚の均一性を良好にする。 Since the SnAg plating solution according to the third aspect of the present invention contains dithiapolyetherdiol, it is excellent in electrolytic stability and stability over time as described above. It also improves the appearance of the plating film and the uniformity of the film thickness.
本発明の第4の観点の形成方法によれば、第3の観点のSnAgめっき液を用いるため、めっき皮膜の外観が良好で、膜厚が均一なめっき皮膜を作製することができる。 According to the method for forming the fourth aspect of the present invention, since the SnAg plating solution of the third aspect is used, a plating film having a good appearance and a uniform film thickness can be produced.
本発明の第5の観点の製造方法によれば、原料(A)と原料(B)とアルカリ性水溶液とを混合してアルカリ金属塩を含む反応水溶液を得る。この反応水溶液を有機相と水相に分離し、分離した有機相からハロゲン及び金属イオンを除去する。次いで有機相を加熱することにより不純物を除去して、目的物を得る。このため、ハロゲン含有量が少なく高純度のジチアポリエーテルジオールを製造することができる。 According to the production method of the fifth aspect of the present invention, the raw material (A), the raw material (B), and the alkaline aqueous solution are mixed to obtain a reaction aqueous solution containing an alkali metal salt. The reaction aqueous solution is separated into an organic phase and an aqueous phase, and halogens and metal ions are removed from the separated organic phase. Then, the organic phase is heated to remove impurities to obtain the desired product. Therefore, a high-purity dithiapolyetherdiol having a low halogen content can be produced.
本発明の第6の観点の製造方法によれば、分離した有機相をイオン交換樹脂で処理する前に、前記有機相をアルカリ金属塩が溶解しない有機溶媒で希釈する。このため、ハロゲン化物イオン及び金属イオンの含有量を大幅に低減させることができ、イオン交換樹脂による精製効率を高めることができる。 According to the production method of the sixth aspect of the present invention, before treating the separated organic phase with an ion exchange resin, the organic phase is diluted with an organic solvent in which an alkali metal salt is not dissolved. Therefore, the contents of the halide ion and the metal ion can be significantly reduced, and the purification efficiency of the ion exchange resin can be improved.
本発明の第7の観点の製造方法によれば、アルカリ金属塩を含む反応生成物を有機相と水相に分離した後であり、かつ分離した有機相からハロゲン化物イオンを除去する前に、有機相を活性炭に接触させる。これにより、有機相の着色不純物成分が活性炭に吸着除去され、ジチアポリエーテルジオールを透明にすることができる。 According to the production method of the seventh aspect of the present invention, after the reaction product containing the alkali metal salt is separated into an organic phase and an aqueous phase, and before removing the halide ion from the separated organic phase. The organic phase is brought into contact with activated carbon. As a result, the colored impurity component of the organic phase is adsorbed and removed by the activated carbon, and the dithiapolyetherdiol can be made transparent.
本発明の第8の観点の製造方法によれば、有機相中の不純物の除去を減圧下で行うことにより、有機相から不純物が蒸発し易くなり、より高純度のジチアポリエーテルジオールが得られる。 According to the production method of the eighth aspect of the present invention, by removing impurities in the organic phase under reduced pressure, impurities are easily evaporated from the organic phase, and a higher purity dithiapolyetherdiol can be obtained. Be done.
以下に、本発明の第1及び第2の実施形態のジチアポリエーテルジオールを製造する方法について説明する。 Hereinafter, a method for producing the dithiapolyetherdiol according to the first and second embodiments of the present invention will be described.
<第1の実施形態>
〔ジチアポリエーテルジオールの製造方法〕
(a-1) 原料(A)と原料(B)とアルカリ性水溶液との混合加熱工程
第1の実施形態の製造方法は、工程(a-1)を有する。工程(a-1)では、一方の末端にメルカプト基を有するアルコール化合物(原料A)と、両末端にハロゲン基を有するエーテル化合物(原料B)と、アルカリ性水溶液とを混合し加熱することによりアルカリ金属塩を含む反応生成液を得る。即ち、原料(A)は一方の末端にメルカプト基を有するアルコール化合物である(以下、原料(A1)ともいう)。例えば、以下の式(3)に示す2−メルカプトエタノールが挙げられる。
<First Embodiment>
[Manufacturing method of dithiapolyetherdiol]
(A-1) Mixing and Heating Step of Raw Material (A), Raw Material (B) and Alkaline Aqueous Solution The production method of the first embodiment includes the step (a-1). In the step (a-1), an alcohol compound having a mercapto group at one end (raw material A), an ether compound having a halogen group at both ends (raw material B), and an alkaline aqueous solution are mixed and heated to make an alkali. A reaction product containing a metal salt is obtained. That is, the raw material (A) is an alcohol compound having a mercapto group at one end (hereinafter, also referred to as a raw material (A1)). For example, 2-mercaptoethanol represented by the following formula (3) can be mentioned.
また原料(B)は両末端にハロゲン基を有するエーテル化合物である(以下、原料(B1)ともいう)。例えば、以下の式(4)〜式(8)に示す化合物が挙げられる。以下の表1に、式(3)の原料(A)とともに、原料(B)の式(4)〜式(8)で表されるエーテル化合物を示す。 The raw material (B) is an ether compound having halogen groups at both ends (hereinafter, also referred to as a raw material (B1)). For example, the compounds represented by the following formulas (4) to (8) can be mentioned. Table 1 below shows the ether compounds represented by the formulas (4) to (8) of the raw material (B) together with the raw material (A) of the formula (3).
第1の実施形態の製造方法のアルカリ性水溶液としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸水素カリウム等の水溶液が挙げられる。原料(A)と原料(B)とアルカリ性水溶液との混合に関しては、例えば、最初にアルカリ性水溶液に原料(A)を均一に混合することが好ましい。これにより、原料(A)の脱プロトン化を確実に行うことができる。混合時の発熱を抑制する理由で、混合前にアルカリ性水溶液を0℃〜10℃の温度に冷却しておくことが好ましい。次いでこの混合液に原料(B)を均一に混合し加熱することが好ましい。この加熱は、混合液を大気雰囲気下、40℃〜100℃の温度まで加熱し、3時間〜24時間保持して行うことが好ましい。これにより、脱ハロゲン化反応が起こり、主たる反応生成物であるジチアポリエーテルジオールと、副生成物であるハロゲン化アルカリ金属塩と、未反応の原料と、副反応により生成した有機不純物とが含まれる反応生成液が得られる。 Examples of the alkaline aqueous solution of the production method of the first embodiment include aqueous solutions of sodium hydroxide, potassium hydroxide, sodium carbonate, potassium hydrogencarbonate and the like. Regarding the mixing of the raw material (A), the raw material (B), and the alkaline aqueous solution, for example, it is preferable to first uniformly mix the raw material (A) with the alkaline aqueous solution. As a result, the deprotonation of the raw material (A) can be reliably performed. For the reason of suppressing heat generation during mixing, it is preferable to cool the alkaline aqueous solution to a temperature of 0 ° C. to 10 ° C. before mixing. Next, it is preferable to uniformly mix the raw material (B) with this mixed solution and heat it. This heating is preferably performed by heating the mixed solution to a temperature of 40 ° C. to 100 ° C. in an air atmosphere and holding it for 3 hours to 24 hours. As a result, a dehalogenation reaction occurs, and the main reaction product, dithiapolyetherdiol, the by-product, alkali metal halide, the unreacted raw material, and the organic impurities produced by the side reaction are formed. The contained reaction product is obtained.
(b) 反応生成液を有機相と水相に分離する工程
得られた反応生成液には、有機相と水相が混在しているため、有機相と水相とに分離する。反応生成液が少量であれば、分液ロートにより有機相と水相とに分離し、反応生成液が多量であれば遠心分離等により有機相と水相とに分離する。なお、有機相と水相とに分離し易くするため、反応生成液を濃縮してもよい。
(B) Step of separating the reaction product solution into an organic phase and an aqueous phase Since the obtained reaction product solution contains an organic phase and an aqueous phase, it is separated into an organic phase and an aqueous phase. If the amount of the reaction product is small, it is separated into an organic phase and an aqueous phase by a separating funnel, and if the amount of the reaction product is large, it is separated into an organic phase and an aqueous phase by centrifugation or the like. The reaction product may be concentrated in order to facilitate separation into the organic phase and the aqueous phase.
(b-1) 有機相をアルカリ金属塩が溶解しない有機溶媒で希釈する工程
分離した有機相を採取し、この有機相にアルカリ金属塩が溶解しない有機溶媒を加え、有機相を体積比で2倍〜10倍に希釈することが好ましい。即ち、希釈後の体積が希釈前の体積の2倍〜10倍になるように有機溶媒を加えることが好ましい。この有機溶媒としては、イソプロパノール、トルエンなどを用いることができる。これによりアルカリ金属塩が析出又は沈殿し易くなるため、このアルカリ金属塩を固液分離するとアルカリ金属塩の含有量が少ない有機相が得られる。
(b-1) Step of diluting the organic phase with an organic solvent in which the alkali metal salt does not dissolve. The separated organic phase is collected, an organic solvent in which the alkali metal salt does not dissolve is added to this organic phase, and the organic phase is divided into 2 by volume. It is preferable to dilute it 10 to 10 times. That is, it is preferable to add the organic solvent so that the volume after dilution is 2 to 10 times the volume before dilution. As the organic solvent, isopropanol, toluene and the like can be used. As a result, the alkali metal salt is easily precipitated or precipitated. Therefore, when the alkali metal salt is solid-liquid separated, an organic phase having a low alkali metal salt content can be obtained.
(b-2) 有機相を活性炭に接触させる工程
上記の工程(b)の有機相又は工程(b-1)を経た有機相を活性炭に接触させて、有色で異臭のある有機相を透明にするとともに脱臭することが好ましい。有機相が少量であれば、粒状の活性炭を有機相に混合して有機相を活性炭に接触させる。有機相が多量であれば、活性炭を充填したカラムに有機相を通過させて有機相を活性炭に接触させる。活性炭としては、例えば、フタムラ化学社製「太閤Kタイプ」、クラレ社製「クラレコール」、大阪ガスケミカル社製「精製白鷺」のような活性炭を使用することができる。なお、工程(b-2)は必要に応じて複数回実施してもよい。
活性炭を有機相に混合する場合、有機相の量(L)に対する活性炭の量(g)を1g/L〜200g/Lとすることが好ましい。活性炭を充填したカラムに有機相を通過させる場合、線速度LV(Linear Velocity)が0.1〜5となる流速でカラムに有機相を通過させることが好ましい。
(B-2) Step of bringing the organic phase into contact with activated carbon The organic phase of step (b) above or the organic phase that has undergone step (b-1) is brought into contact with activated carbon to make the colored and offensive odorous organic phase transparent. It is preferable to deodorize at the same time. If the organic phase is small, granular activated carbon is mixed with the organic phase to bring the organic phase into contact with the activated carbon. If the amount of the organic phase is large, the organic phase is passed through a column filled with activated carbon to bring the organic phase into contact with the activated carbon. As the activated carbon, for example, activated carbon such as "Taiko K type" manufactured by Futamura Chemical Co., Ltd., "Kuraraycol" manufactured by Kuraray Co., Ltd., and "Refined Shirasagi" manufactured by Osaka Gas Chemical Co., Ltd. can be used. The step (b-2) may be performed a plurality of times as needed.
When the activated carbon is mixed with the organic phase, the amount (g) of the activated carbon with respect to the amount (L) of the organic phase is preferably 1 g / L to 200 g / L. When the organic phase is passed through the column filled with activated carbon, it is preferable to pass the organic phase through the column at a flow velocity having a linear velocity LV (Linear Velocity) of 0.1 to 5.
(c) 有機相をイオン交換樹脂に接触させる工程
上記工程(b)の有機相、工程(b-1)を経た有機相又は工程(b-2)を経た有機相をイオン交換樹脂に接触させて、残存しているハロゲン化物イオン及び金属イオンを除去する。有機相が少量であれば、粒状のイオン交換樹脂を有機相に混合して有機相をイオン交換樹脂に接触させる。有機相が多量であれば、イオン交換樹脂を充填したカラムに有機相を通過させる。イオン交換樹脂としては、例えば、ピュロライト社製「Aシリーズ」及び「Cシリーズ」、住化ケムテックス社製「デュオライト」、三菱ケミカル社製「SKシリーズ」、「SAシリーズ」、「SMシリーズ」及び「SMUPB」のようなイオン交換樹脂を使用することができる。なお、工程(c)は必要に応じて複数回実施してもよい。
イオン交換樹脂を有機相に混合する場合、有機相の量(L)に対するイオン交換樹脂の量(g)を1g/L〜200g/Lとすることが好ましい。イオン交換樹脂を充填したカラムに有機相を通過させる場合、線速度LV(Linear Velocity)が0.1〜5となる流速でカラムに有機相を通過させることが好ましい。
(C) Step of bringing the organic phase into contact with the ion exchange resin The organic phase of the above step (b), the organic phase of the step (b-1) or the organic phase of the step (b-2) is brought into contact with the ion exchange resin. The remaining halide ion and metal ion are removed. If the amount of the organic phase is small, the granular ion exchange resin is mixed with the organic phase and the organic phase is brought into contact with the ion exchange resin. If the amount of the organic phase is large, the organic phase is passed through a column packed with an ion exchange resin. Examples of the ion exchange resin include "A series" and "C series" manufactured by Purolite, "Duolite" manufactured by Sumika Chemtex, "SK series", "SA series" and "SM series" manufactured by Mitsubishi Chemical Corporation. Ion exchange resins such as "SMUPB" can be used. The step (c) may be performed a plurality of times as needed.
When the ion exchange resin is mixed with the organic phase, the amount (g) of the ion exchange resin with respect to the amount (L) of the organic phase is preferably 1 g / L to 200 g / L. When the organic phase is passed through the column packed with the ion exchange resin, it is preferable to pass the organic phase through the column at a flow velocity having a linear velocity LV (Linear Velocity) of 0.1 to 5.
(d) 有機相中の不純物を除去する工程
上記工程(c)を経た有機相を加熱することにより有機相中の不純物を蒸発させて不純物を除去する。これにより、異臭が残っている有機相を脱臭するとともに、得られるジチアポリエーテルジオールの純度が高まる。上記不純物の蒸発は、0.001MPa〜0.01MPaの減圧下、温度40℃〜100℃、1時間〜24時間の条件で行うことが好ましい。これにより、有機相から不純物が蒸発し易くなる。
(D) Step of removing impurities in the organic phase By heating the organic phase that has undergone the above step (c), the impurities in the organic phase are evaporated and the impurities are removed. As a result, the organic phase in which the offensive odor remains is deodorized, and the purity of the obtained dithiapolyetherdiol is increased. The evaporation of the impurities is preferably carried out under a reduced pressure of 0.001 MPa to 0.01 MPa and a temperature of 40 ° C. to 100 ° C. for 1 hour to 24 hours. This facilitates the evaporation of impurities from the organic phase.
なお、上記実施形態においては、工程(b-1)において、有機相をアルカリ金属塩が溶解しない有機溶媒で希釈し、アルカリ金属塩を析出及び/又は沈殿させることにより有機相からアルカリ金属塩を除去している。しかし、有機相を純水で洗浄することで、アルカリ金属塩を有機相から除去することも可能である。 In the above embodiment, in the step (b-1), the organic phase is diluted with an organic solvent in which the alkali metal salt is not dissolved, and the alkali metal salt is precipitated and / or precipitated to remove the alkali metal salt from the organic phase. It is being removed. However, it is also possible to remove the alkali metal salt from the organic phase by cleaning the organic phase with pure water.
〔ジチアポリエーテルジオール〕
上記第1の実施形態の方法で製造されたジチアポリエーテルジオールは、ハロゲン含有量が10ppm以下であり、純度が80%以上であり、上述した一般式(1)で表される。好ましいハロゲン含有量は5ppm以下であり、好ましい純度は90%以上である。
[Dithiapolyetherdiol]
The dithiapolyetherdiol produced by the method of the first embodiment has a halogen content of 10 ppm or less and a purity of 80% or more, and is represented by the above-mentioned general formula (1). The preferred halogen content is 5 ppm or less and the preferred purity is 90% or more.
第1の実施形態のジチアポリエーテルジオールとしては、以下の式(9)〜(13)が例示される。一般式(1)中のxの数も併記する。xは1〜5の範囲にあることが、原料が入手し易いため、好ましい。 Examples of the dithiapolyetherdiol of the first embodiment include the following formulas (9) to (13). The number of x in the general formula (1) is also shown. It is preferable that x is in the range of 1 to 5 because the raw material is easily available.
<第2の実施の形態>
〔ジチアポリエーテルジオールの製造方法〕
次に本発明の第2の実施形態を説明する。第2の実施形態の製造方法は、工程(a-2)を有する。工程(a-2)では、両末端にメルカプト基を有するエーテル化合物(原料A)と、一方の末端にハロゲン基を有するアルコール化合物(原料B)と、アルカリ性水溶液とを混合し加熱することによりアルカリ金属塩を含む反応生成液を得る。第2の実施形態の製造方法では、原料(A)と原料(B)が第1の実施形態と異なるだけで、それ以外は、第2の実施形態の製造方法は、第1の実施形態と同様である。
<Second embodiment>
[Manufacturing method of dithiapolyetherdiol]
Next, a second embodiment of the present invention will be described. The manufacturing method of the second embodiment includes the step (a-2). In step (a-2), an ether compound having a mercapto group at both ends (raw material A), an alcohol compound having a halogen group at one end (raw material B), and an alkaline aqueous solution are mixed and heated to make an alkali. A reaction product containing a metal salt is obtained. In the production method of the second embodiment, the raw material (A) and the raw material (B) are different from those of the first embodiment. Other than that, the production method of the second embodiment is different from that of the first embodiment. The same is true.
第2の実施形態の製造方法では、原料(A)は両末端にメルカプト基を有するエーテル化合物である(以下、原料(A2)ともいう)。例えば、以下の式(14)に示すビス(2−メルカプトエチル)エーテルが挙げられる。 In the production method of the second embodiment, the raw material (A) is an ether compound having a mercapto group at both ends (hereinafter, also referred to as a raw material (A2)). For example, bis (2-mercaptoethyl) ether represented by the following formula (14) can be mentioned.
また原料(B)は一方の末端にハロゲン基を有するアルコール化合物である(以下、原料(B2)ともいう)。例えば、以下の式(15)〜式(17)に示す化合物が挙げられる。以下の表2に、式(14)の原料(A)とともに、原料(B)の式(15)〜式(17)で表されるアルコール化合物を示す。 The raw material (B) is an alcohol compound having a halogen group at one end (hereinafter, also referred to as a raw material (B2)). For example, compounds represented by the following formulas (15) to (17) can be mentioned. Table 2 below shows the alcohol compounds represented by the formulas (15) to (17) of the raw material (B) together with the raw material (A) of the formula (14).
〔ジチアポリエーテルジオール〕
第2の実施形態の方法で製造されたジチアポリエーテルジオールは、第1の実施形態の方法で製造されたジチアポリエーテルジオールと、その特性値は同じである。即ち、このジチアポリエーテルジオールは、ハロゲン含有量が10ppm以下であり、純度が80%以上であり、上述した一般式(2)で表される。好ましいハロゲン含有量は5ppm以下であり、好ましい純度は90%以上である。第2の実施形態のジチアポリエーテルジオールとしては、以下の式(18)〜(20)が例示される。一般式(2)中のyの数も併記する。yは1〜3の範囲にあることが、原料が入手し易いため、好ましい。
[Dithiapolyetherdiol]
The dithiapolyetherdiol produced by the method of the second embodiment has the same characteristic values as the dithiapolyetherdiol produced by the method of the first embodiment. That is, this dithiapolyetherdiol has a halogen content of 10 ppm or less and a purity of 80% or more, and is represented by the above-mentioned general formula (2). The preferred halogen content is 5 ppm or less and the preferred purity is 90% or more. Examples of the dithiapolyetherdiol of the second embodiment include the following formulas (18) to (20). The number of y in the general formula (2) is also described. It is preferable that y is in the range of 1 to 3 because the raw material is easily available.
〔SnAgめっき液及びこのめっき液を用いてめっき皮膜を形成する方法〕
本実施形態のSnAgめっき液は、第1及び第2の実施形態で製造されたジチアポリエーテルジオールを含むとともに、これ以外に、水に溶解して二価の錫イオンを生成する可溶性Sn塩、可溶性Ag塩及び添加剤を含む。ジチアポリエーテルジオールはAgイオンの錯体化剤として作用する。添加剤としては、酸電解質(遊離酸)、界面活性剤、酸化防止剤、Sn用の錯体化剤、pH調整剤、光沢化剤等が挙げられる。このSnAgめっき液は、例えば、可溶性錫塩、上記ジチアポリエーテルジオール及び添加剤と、水とを混合することにより調製することができる。
[SnAg plating solution and a method for forming a plating film using this plating solution]
The SnAg plating solution of the present embodiment contains the dithiapolyetherdiol produced in the first and second embodiments, and is also a soluble Sn salt that dissolves in water to generate divalent tin ions. , Soluble Ag salt and additives. The dithiapolyetherdiol acts as a complexing agent for Ag ions. Examples of the additive include an acid electrolyte (free acid), a surfactant, an antioxidant, a complexing agent for Sn, a pH adjusting agent, a brightening agent and the like. This SnAg plating solution can be prepared, for example, by mixing a soluble tin salt, the above-mentioned dithiapolyetherdiol and additives, and water.
本実施形態のSnAgめっき液を用いてめっき皮膜を形成する方法としては、電気めっき法による。めっき皮膜としては、半導体ウエハやプリント基板用のめっき皮膜が挙げられる。このSnAgめっき液のめっき時の液温は一般に70℃以下、好ましくは10℃〜40℃である。電気めっきによるめっき膜形成時の電流密度は、0.1A/dm2以上100A/dm2以下の範囲、好ましくは0.5A/dm2以上20A/dm2以下の範囲である。 As a method of forming a plating film using the SnAg plating solution of the present embodiment, an electroplating method is used. Examples of the plating film include plating films for semiconductor wafers and printed circuit boards. The liquid temperature of this SnAg plating liquid at the time of plating is generally 70 ° C. or lower, preferably 10 ° C. to 40 ° C. The current density at the time of forming a plating film by electroplating is in the range of 0.1 A / dm 2 or more and 100 A / dm 2 or less, preferably 0.5 A / dm 2 or more and 20 A / dm 2 or less.
第1及び第2の実施形態で製造されたジチアポリエーテルジオールを含むSnAgめっき液を被めっき物である電子部品に適用して、電子部品にめっき皮膜を形成することができる。電子部品としては、プリント基板、フレキシブルプリント基板、フィルムキャリア、半導体集積回路、抵抗、コンデンサ、フィルタ、インダクタ、サーミスタ、水晶振動子、スイッチ、リード線などが挙げられる。 The SnAg plating solution containing dithiapolyetherdiol produced in the first and second embodiments can be applied to an electronic component to be plated to form a plating film on the electronic component. Examples of electronic components include printed boards, flexible printed boards, film carriers, semiconductor integrated circuits, resistors, capacitors, filters, inductors, thermistors, crystal oscillators, switches, lead wires, and the like.
次に本発明の実施例を比較例とともに詳しく説明する。 Next, examples of the present invention will be described in detail together with comparative examples.
<実施例1>
40g(1モル)の水酸化ナトリウムを純水200mLに溶解させ、溶液を5℃まで冷却した。この水酸化ナトリウム水溶液に、原料(A)として、式(3)で表される2−メルカプトエタノール78.1g(1モル)を混合し、スターラーで撹拌して第1混合液を調製した。続いて、この第1混合液に、原料(B)として、式(4)で表されるビス(2−クロロエチル)エーテル71.5g(0.5モル)を混合し、スターラーで撹拌して第2混合液を調製した。この第2混合液を大気雰囲気下、80℃まで加熱し、80℃で12時間還流した。これにより原料(A)と原料(B)とが反応し、反応生成液が得られた。
<Example 1>
40 g (1 mol) of sodium hydroxide was dissolved in 200 mL of pure water and the solution was cooled to 5 ° C. 78.1 g (1 mol) of 2-mercaptoethanol represented by the formula (3) was mixed with this aqueous sodium hydroxide solution as a raw material (A), and the mixture was stirred with a stirrer to prepare a first mixed solution. Subsequently, 71.5 g (0.5 mol) of bis (2-chloroethyl) ether represented by the formula (4) as a raw material (B) is mixed with this first mixed solution, and the mixture is stirred with a stirrer to give the first mixture. Two mixed solutions were prepared. The second mixed solution was heated to 80 ° C. in an air atmosphere and refluxed at 80 ° C. for 12 hours. As a result, the raw material (A) and the raw material (B) reacted to obtain a reaction product.
この反応生成液を分液ロートに移して静置させ、有機相と水相の二相に分離した。分離した有機相に、2−イソプロパノールを混合して、有機相を体積比で5倍に希釈した。即ち、希釈後の体積が希釈前の体積の5倍になるように2−イソプロパノールを添加した。希釈により析出又は沈殿した固形分を濾過することにより、有機相から固形分を除去した。次に、有機相に粒状の活性炭(大阪ガスケミカル社製「精製白鷺」)を10g/Lの割合で混合し、1時間撹拌した。撹拌後、混合した液を濾過して活性炭を除去した。 The reaction product was transferred to a separating funnel and allowed to stand, and separated into two phases, an organic phase and an aqueous phase. 2-Isopropanol was mixed with the separated organic phase, and the organic phase was diluted 5-fold by volume. That is, 2-isopropanol was added so that the volume after dilution was 5 times the volume before dilution. The solids were removed from the organic phase by filtering the solids precipitated or precipitated by dilution. Next, granular activated carbon (“purified egret” manufactured by Osaka Gas Chemical Co., Ltd.) was mixed with the organic phase at a ratio of 10 g / L, and the mixture was stirred for 1 hour. After stirring, the mixed liquid was filtered to remove activated carbon.
活性炭を除去した有機相に、粒状のイオン交換樹脂(三菱ケミカル社製「SMUPB」)を200g/Lの割合で混合し、1時間撹拌した。撹拌後、混合した液を濾過してイオン交換樹脂を除去した。続いて、イオン交換樹脂を除去した有機相をナス型フラスコに移し、0.005MPaに減圧し、80℃で12時間加熱し、有機相中の不純物を蒸発させ、液状の最終生成物を得た。 Granular ion exchange resin (“SMUPB” manufactured by Mitsubishi Chemical Corporation) was mixed with the organic phase from which activated carbon had been removed at a ratio of 200 g / L, and the mixture was stirred for 1 hour. After stirring, the mixed liquid was filtered to remove the ion exchange resin. Subsequently, the organic phase from which the ion exchange resin had been removed was transferred to an eggplant-shaped flask, the pressure was reduced to 0.005 MPa, and the mixture was heated at 80 ° C. for 12 hours to evaporate impurities in the organic phase to obtain a liquid final product. ..
以下の表3に、実施例1及び次に述べる実施例2〜8及び比較例1〜2におけるジチアポリエーテルジオールの製造条件(その1)を示す。即ち、実施例1及び次に述べる実施例2〜8及び比較例1〜2において使用した原料(A)及び原料(B)の各種類を示す。表3中、式の番号は、実施形態で示した式の番号に対応する。 Table 3 below shows the production conditions (No. 1) of the dithiapolyetherdiol in Example 1 and Examples 2 to 8 and Comparative Examples 1 and 2 described below. That is, each type of the raw material (A) and the raw material (B) used in Example 1 and the following Examples 2 to 8 and Comparative Examples 1 and 2 is shown. In Table 3, the formula numbers correspond to the formula numbers shown in the embodiments.
また以下の表4に、実施例1及び次に述べる実施例2〜8及び比較例1〜2におけるジチアポリエーテルジオールの製造条件(その2)を示す。即ち、実施例1及び次に述べる実施例2〜8及び比較例1〜2における製造工程の有無を示す。表4中、工程の符号は、実施形態で示した工程の符号に対応する。 Further, Table 4 below shows the production conditions (No. 2) of the dithiapolyetherdiol in Example 1 and Examples 2 to 8 and Comparative Examples 1 and 2 described below. That is, the presence or absence of the manufacturing process in Example 1 and the following Examples 2 to 8 and Comparative Examples 1 and 2 is shown. In Table 4, the process code corresponds to the process code shown in the embodiment.
<実施例2〜8及び比較例1〜2>
実施例2〜8及び比較例1〜2では、表3に示すように、原料(A)の種類、原料(B)の種類をそれぞれ実施例1のものと同一にするか又は変更した。また表4に示すように、工程(a-1)、工程(b)、工程(b-1)、工程(b-2)、工程(c)、工程(d)を行うか又は行わなかった。
なお、実施例6では、工程(d)の不純物の除去を『常圧下』で行った。実施例7では、工程(b-2)の活性炭との接触を行わなかった。実施例8では、工程(b-1)の有機溶媒での希釈を行わなかった代わりに、純水を用いて体積比で5倍に希釈し、工程(c)のイオン交換樹脂との接触を10回繰り返し行った。比較例1では、工程(c)のイオン交換樹脂との接触及び工程(d)の不純物の除去を行わなかった。比較例2では、工程(d)の不純物の除去を行わなかった。それ以外は、実施例2〜8及び比較例1〜2では、実施例1と同様にして最終生成物を製造した。
<Examples 2 to 8 and Comparative Examples 1 to 2>
In Examples 2 to 8 and Comparative Examples 1 and 2, as shown in Table 3, the type of the raw material (A) and the type of the raw material (B) were the same as or changed from those of Example 1, respectively. Further, as shown in Table 4, step (a-1), step (b), step (b-1), step (b-2), step (c), and step (d) were performed or not performed. ..
In Example 6, impurities in step (d) were removed under "normal pressure". In Example 7, contact with the activated carbon in step (b-2) was not performed. In Example 8, instead of diluting with the organic solvent in step (b-1), it was diluted 5 times by volume with pure water, and contact with the ion exchange resin in step (c) was performed. It was repeated 10 times. In Comparative Example 1, contact with the ion exchange resin in step (c) and removal of impurities in step (d) were not performed. In Comparative Example 2, the impurities in step (d) were not removed. Other than that, in Examples 2 to 8 and Comparative Examples 1 and 2, the final product was produced in the same manner as in Example 1.
<実施例9>
40g(1モル)の水酸化ナトリウムを純水200mLに溶解させ、溶液を5℃まで冷却した。この水酸化ナトリウム水溶液に、原料(A)として、式(14)で表されるビス(2−メルカプトエチル)エーテル69.1g(0.5モル)を混合し、スターラーで撹拌して第3混合液を調製した。続いて、この第3混合液に、原料(B)として、式(15)で表される2−ブロモエタノール124.9g(1モル)を混合し、スターラーで撹拌して第4混合液を調製した。これ以降、実施例1と同様にして、最終生成物を得た。
<Example 9>
40 g (1 mol) of sodium hydroxide was dissolved in 200 mL of pure water and the solution was cooled to 5 ° C. 69.1 g (0.5 mol) of bis (2-mercaptoethyl) ether represented by the formula (14) as a raw material (A) is mixed with this aqueous sodium hydroxide solution, and the mixture is stirred with a stirrer for the third mixing. The liquid was prepared. Subsequently, 124.9 g (1 mol) of 2-bromoethanol represented by the formula (15) is mixed with this third mixed solution as a raw material (B) and stirred with a stirrer to prepare a fourth mixed solution. did. From this point onward, the final product was obtained in the same manner as in Example 1.
また以下の表5に、実施例9及び次に述べる実施例10〜11におけるジチアポリエーテルジオールの製造条件(その1)を示す。即ち、実施例9及び次に述べる実施例10〜11において使用した原料(A)及び原料(B)の各種類を示す。表5中、式の番号は、実施形態で示した式の番号に対応する。 Further, Table 5 below shows the production conditions (No. 1) of the dithiapolyetherdiol in Example 9 and Examples 10 to 11 described below. That is, each type of the raw material (A) and the raw material (B) used in Example 9 and Examples 10 to 11 described below is shown. In Table 5, the formula numbers correspond to the formula numbers shown in the embodiments.
また以下の表6に、実施例9及び次に述べる実施例10〜11におけるジチアポリエーテルジオールの製造条件(その2)を示す。即ち、実施例9及び次に述べる実施例10〜11における製造工程の有無を示す。表6中、工程の符号は、実施形態で示した工程の符号に対応する。 Further, Table 6 below shows the production conditions (No. 2) of the dithiapolyetherdiol in Example 9 and Examples 10 to 11 described below. That is, the presence or absence of the manufacturing process in Example 9 and Examples 10 to 11 described below is shown. In Table 6, the process code corresponds to the process code shown in the embodiment.
<実施例10〜11>
実施例10〜11では、表5に示すように、原料(A)の種類、原料(B)の種類をそれぞれ実施例9のものと同一にするか又は変更した。また表6に示すように、工程(a-2)、工程(b)、工程(b-1)、工程(b-2)、工程(c)、工程(d)を行った。実施例10〜11では、実施例9と同様にして最終生成物を製造した。
<Examples 10 to 11>
In Examples 10 to 11, as shown in Table 5, the type of the raw material (A) and the type of the raw material (B) were the same as or changed from those of Example 9, respectively. Further, as shown in Table 6, steps (a-2), step (b), step (b-1), step (b-2), step (c), and step (d) were performed. In Examples 10-11, the final product was produced in the same manner as in Example 9.
<比較試験及び評価>
実施例1〜11及び比較例1〜2で得られた13種類の最終生成物であるジチアポリエーテルジオールをサンプルとして、これらのサンプルについて、ハロゲン含有量、純度及び色味(ハーゼン単位色数)を次の方法で測定して評価した。またこれらのジチアポリエーテルジオールを用いてSnAgめっき液を調製し、めっき試験を行い、めっき液の安定性、めっき皮膜の外観及び膜厚の均一性を評価した。これらの結果を表7に示す。
<Comparative tests and evaluations>
Using dithiapolyetherdiol, which is the final product of 13 kinds obtained in Examples 1 to 11 and Comparative Examples 1 and 2, as samples, the halogen content, purity and color taste (Hazen unit color number) of these samples were taken. ) Was measured and evaluated by the following method. Further, a SnAg plating solution was prepared using these dithiapolyetherdiols, and a plating test was performed to evaluate the stability of the plating solution, the appearance of the plating film, and the uniformity of the film thickness. These results are shown in Table 7.
(a)ハロゲン含有量
サンプル中のハロゲン(F、Cl、Br、I)のイオン濃度をイオンクロマトグラフィー(島津製作所社製、Prominence HIC−SP)により定量することにより、ハロゲン含有量を算出した。
(A) Halogen content The halogen content was calculated by quantifying the ion concentration of halogen (F, Cl, Br, I) in the sample by ion chromatography (Prominence HIC-SP, manufactured by Shimadzu Corporation).
(b)純度
固定相としてオクタデシルシリカ(OSD)が充填された高速液体クロマトグラフィーカラム(島津製作所社製、Prominence UFLC)にサンプル(ジチアポリエーテルジオール)を導入した。純水を移動相として、メタノール濃度を10%〜100%まで濃度を段階的に変化させるグラジェント分析を行った。検出された全成分のピーク面積を100%とし、サンプルのピーク面積を、面積比で算出した((サンプルのピーク面積/全成分のピーク面積)×100(%))。算出された面積比をサンプルの純度とした。
(B) Purity A sample (dithiapolyetherdiol) was introduced into a high performance liquid chromatography column (Prominence UFLC, manufactured by Shimadzu Corporation) packed with octadecyl silica (OSD) as a stationary phase. Using pure water as the mobile phase, gradient analysis was performed in which the concentration of methanol was changed stepwise from 10% to 100%. The peak area of all the detected components was taken as 100%, and the peak area of the sample was calculated by the area ratio ((peak area of sample / peak area of all components) × 100 (%)). The calculated area ratio was used as the purity of the sample.
(c)色味(ハーゼン単位色数)
サンプル(ジチアポリエーテルジオール)をガラスセルに分取し、40℃に保温した状態で日本電色工業株式会社製の色彩・濁度同時測定器(型番:TZ6000)を用いて色彩を測定し、その値から色味としてのハーゼン単位色数(APHA)を求めた。
(C) Color (number of colors per Hazen)
A sample (dithiapolyetherdiol) was separated into a glass cell, and the color was measured using a color / turbidity simultaneous measuring device (model number: TZ6000) manufactured by Nippon Denshoku Kogyo Co., Ltd. while keeping the temperature at 40 ° C. , The number of Hazen unit colors (APHA) as a tint was obtained from the value.
(d)めっき試験
メタンスルホン酸錫水溶液に、遊離酸としてのメタンスルホン酸と、サンプル(ジチアポリエーテルジオール)と、ノニオン系界面活性剤(エチレンジアミンにポリオキシエチレンとポリオキシプロピレンを50:50の割合で付加させたもの)と光沢剤としてのベンジリデンアセトンとを混合して溶解させた。次いで、混合液に更にメタンスルホン酸銀水溶液を加えて混合した。そして最後にイオン交換水を加えて、下記組成のSnAgめっき液を建浴した。下記組成のSnAgめっき液中のAg量に対する上記ジチアポリエーテルジオールのモル比は1:1であった。なお、メタンスルホン酸錫水溶液は、金属錫板をメタンスルホン酸水溶液中で電解させることにより調製した。メタンスルホン酸銀水溶液は、金属銀板を、それぞれメタンスルホン酸水溶液中で電解させることにより調製した。
(D) Plating test In an aqueous solution of tin methanesulfonate, methanesulfonic acid as a free acid, a sample (dithiapolyetherdiol), and a nonionic surfactant (polyoxyethylene and polyoxypropylene in ethylenediamine 50:50) ) And benzylidene acetone as a brightener were mixed and dissolved. Then, an aqueous silver methanesulfonate solution was further added to the mixed solution and mixed. Finally, ion-exchanged water was added to bathe the SnAg plating solution having the following composition. The molar ratio of the dithiapolyetherdiol to the amount of Ag in the SnAg plating solution having the following composition was 1: 1. The tin methanesulfonic acid aqueous solution was prepared by electrolyzing a metal tin plate in the methanesulfonic acid aqueous solution. The silver methanesulfonic acid aqueous solution was prepared by electrolyzing each metal silver plate in the methanesulfonic acid aqueous solution.
(SnAgめっき液の組成)
メタンスルホン酸錫(Sn2+として):50g/L
メタンスルホン酸銀(Ag+として):0.005mol/L
メタンスルホン酸(遊離酸として):200g/L
ジチアポリエーテルジオール:0.005mol/L
ノニオン系界面活性剤:10g/L
光沢剤:10mg/L
イオン交換水:残部
(Composition of SnAg plating solution)
Tin methanesulfonate (as Sn2 +): 50 g / L
Silver methanesulfonate (as Ag +): 0.005 mol / L
Methanesulfonic acid (as free acid): 200 g / L
Dithia polyether diol: 0.005 mol / L
Nonionic surfactant: 10g / L
Brightener: 10 mg / L
Ion-exchanged water: balance
(d-1)めっき液の安定性
13種類の建浴したSnAg合金めっき液をガラス製の密封ボトルに各別に入れ、25℃で1ヶ月保管した。1ヶ月経過した後で、目視で液の外観を観察し、透明を維持しているものを「良好」とし、濁りや沈殿物が見られるものを「不良」とした。
(D-1) Stability of Plating Solution 13 types of SnAg alloy plating solutions that had been bathed were separately placed in a sealed glass bottle and stored at 25 ° C. for 1 month. After one month had passed, the appearance of the liquid was visually observed, and the one that maintained transparency was regarded as "good", and the one in which turbidity or precipitate was observed was regarded as "poor".
(d-2)めっき皮膜の外観
13種類の建浴したSnAg合金めっき液をめっき槽に各別に入れ、液中にカソードとしてパターンを形成したウエハを配置し、アノードとしてPt/Tiメッシュ板をそれぞれ配置し、めっき試験を行った。めっき条件としては、液温を25℃とし、通電電流を4A/dm2とし、めっき処理時間を25分間とした。めっき処理中、めっき液をカソードロッカーで撹拌した。パターン内に形成されためっき皮膜の外観をレーザー顕微鏡で観察した。めっき皮膜表面の表面粗さRaが2μm未満の皮膜を「良好」とし、表面粗さRaが2μm以上5μm未満の皮膜を「可」とし、表面粗さRaが5μm以上の皮膜を「不良」とした。これら3つの判断基準でめっき皮膜の外観を評価した。
(D-2) Appearance of plating film 13 types of SnAg alloy plating solutions that have been bathed are placed separately in a plating tank, a wafer with a pattern formed as a cathode is placed in the solution, and a Pt / Ti mesh plate is used as an anode. It was placed and a plating test was performed. As the plating conditions, the liquid temperature was 25 ° C., the energizing current was 4 A / dm 2 , and the plating treatment time was 25 minutes. During the plating process, the plating solution was stirred with a cathode rocker. The appearance of the plating film formed in the pattern was observed with a laser microscope. A film having a surface roughness Ra of less than 2 μm is regarded as “good”, a film having a surface roughness Ra of 2 μm or more and less than 5 μm is regarded as “possible”, and a film having a surface roughness Ra of 5 μm or more is regarded as “poor”. did. The appearance of the plating film was evaluated based on these three criteria.
(d-3)めっき皮膜の膜厚の均一性めっき試験
上記パターン内に形成されためっき皮膜の膜厚の均一性を調べた。10箇所のダイ内のめっき皮膜の膜厚の最大値(Tmax)と最小値(Tmin)と平均値(Tave)を求め、以下の式により、膜厚均一性を算出し、めっきが均一に行われたか評価した。
めっき皮膜の膜厚の均一性={(Tmax−Tmin)/(2×Tave)}×100(%)
めっき皮膜の膜厚の均一性が5%未満のものを「良好」とし、5%以上10%未満のものを「可」とし、10%以上のものを「不良」とした。これら3つの判断基準でめっき皮膜の膜厚の均一性を評価した。
(D-3) Uniformity of plating film thickness Plating test The uniformity of the film thickness of the plating film formed in the above pattern was investigated. Obtain the maximum value (Tmax), minimum value (Tmin), and average value (Tave) of the film thickness of the plating film in 10 dies, calculate the film thickness uniformity by the following formula, and perform uniform plating. I evaluated it.
Uniformity of plating film thickness = {(Tmax-Tmin) / (2 x Tave)} x 100 (%)
When the uniformity of the film thickness of the plating film was less than 5%, it was regarded as "good", when it was 5% or more and less than 10%, it was regarded as "OK", and when it was 10% or more, it was regarded as "bad". The uniformity of the film thickness of the plating film was evaluated based on these three criteria.
表4、表6及び表7から明らかなように、比較例1では、工程(c)のイオン交換樹脂との接触、及び工程(d)の不純物の除去を行わなかった。この比較例1では、ハロゲン含有量が「700ppm」と非常に多く、純度が「46%」と低く、色味のハーゼン単位色数が「120」と高かった。まためっき液の安定性、めっき皮膜の外観及び膜厚の均一性は、すべて「不良」であった。 As is clear from Tables 4, 6 and 7, in Comparative Example 1, contact with the ion exchange resin in step (c) and removal of impurities in step (d) were not performed. In Comparative Example 1, the halogen content was as high as "700 ppm", the purity was as low as "46%", and the number of Hazen unit colors of color was as high as "120". The stability of the plating solution, the appearance of the plating film, and the uniformity of the film thickness were all "poor".
また比較例2では、工程(d)の不純物の除去を行わなかった。この比較例2では、純度が「50%」と低かった。まためっき液の安定性、めっき皮膜の外観及び膜厚の均一性は、すべて「不良」であった。 Further, in Comparative Example 2, the impurities in the step (d) were not removed. In Comparative Example 2, the purity was as low as "50%". The stability of the plating solution, the appearance of the plating film, and the uniformity of the film thickness were all "poor".
これに対して、実施例1〜5及び実施例9〜11では、本発明の第5の観点の工程(a-1)又は工程(a-2)、工程(b)、工程(c)及び工程(d)を行った。実施例1〜5及び実施例9〜11では、得られた最終生成物がハロゲン含有量及び純度が本発明の第1の観点に示される範囲内にあり、かつこれらの最終生成物を含むSnAgめっき液を用いためっき試験結果であるめっき液の安定性、めっき皮膜の外観及び膜厚の均一性は、すべて「良好」であった。
実施例6では、工程(d)の不純物の除去を常圧下で行った。この実施例6では、純度が「80%」と若干低く、色味が「80」と高く、めっき皮膜の外観及び膜厚の均一性がそれぞれ「可」であった。
実施例7では、工程(b-2)の活性炭との接触を行わなかった。この実施例7では、ハロゲン含有量が「10ppm」と僅かに多く、色味のハーゼン単位色数が「240」と非常に高かったけれども、めっき液の安定性、めっき皮膜の外観及び膜厚の均一性は、すべて「良好」であった。
実施例8では、工程(b-1)において有機溶媒で希釈せずに純水で希釈した。この実施例8では、色味が「60」と若干高かったけれども、めっき液の安定性、めっき皮膜の外観及び膜厚の均一性は、すべて「良好」であった。
On the other hand, in Examples 1 to 5 and Examples 9 to 11, the step (a-1) or the step (a-2), the step (b), the step (c) and the step (c) of the fifth aspect of the present invention Step (d) was performed. In Examples 1-5 and 9-11, the obtained final products have a halogen content and purity within the range shown in the first aspect of the present invention, and SnAg containing these final products. The stability of the plating solution, the appearance of the plating film, and the uniformity of the film thickness, which were the results of the plating test using the plating solution, were all "good".
In Example 6, impurities in step (d) were removed under normal pressure. In Example 6, the purity was slightly low at "80%", the color was high at "80", and the appearance of the plating film and the uniformity of the film thickness were "possible", respectively.
In Example 7, contact with the activated carbon in step (b-2) was not performed. In this Example 7, the halogen content was slightly high at "10 ppm" and the number of Hazen unit colors of the tint was very high at "240", but the stability of the plating solution, the appearance of the plating film and the film thickness were high. The uniformity was all "good".
In Example 8, in step (b-1), the mixture was diluted with pure water without being diluted with an organic solvent. In Example 8, although the color was slightly high at "60", the stability of the plating solution, the appearance of the plating film, and the uniformity of the film thickness were all "good".
本発明のジチアポリエーテルジオールは、半導体ウエハやプリント基板用のはんだめっき皮膜などのような電子部品の一部を形成するためのSnAgめっき液に利用することができる。 The dithiapolyetherdiol of the present invention can be used as a SnAg plating solution for forming a part of an electronic component such as a solder plating film for a semiconductor wafer or a printed circuit board.
Claims (8)
(a-2) 両末端にメルカプト基を有するエーテル化合物(原料A)と一方の末端にハロゲン基を有するアルコール化合物(原料B)とアルカリ性水溶液とを混合し加熱することによりアルカリ金属塩を含む反応生成液を得る工程と、
(b) 前記工程(a-1)又は前記工程(a-2)の反応生成液に含まれる有機相と水相とを分離する工程と、
(c) 前記有機相をイオン交換樹脂に接触させてハロゲン化物イオン及び金属イオンを除去する工程と、
(d) 前記ハロゲン化物イオン及び金属イオンを除去した有機相を加熱することにより前記有機相中の不純物を蒸発させて除去する工程と
を含むことを特徴とするジチアポリエーテルジオールの製造方法。 (a-1) A reaction containing an alkali metal salt by mixing and heating an alcohol compound (raw material A) having a mercapto group at one end, an ether compound (raw material B) having a halogen group at both ends, and an alkaline aqueous solution. The process of obtaining the product solution, or
(a-2) Reaction containing an alkali metal salt by mixing and heating an ether compound (raw material A) having a mercapto group at both ends, an alcohol compound (raw material B) having a halogen group at one end, and an alkaline aqueous solution. The process of obtaining the product liquid and
(b) A step of separating the organic phase and the aqueous phase contained in the reaction product solution of the step (a-1) or the step (a-2), and
(c) A step of bringing the organic phase into contact with an ion exchange resin to remove halide ions and metal ions.
(d) A method for producing a dithiapolyetherdiol, which comprises a step of evaporating and removing impurities in the organic phase by heating the organic phase from which the halide ion and the metal ion have been removed.
(b-1) 前記有機相をアルカリ金属塩が溶解しない有機溶媒で希釈して前記有機相から前記アルカリ金属塩を分離する工程を更に含む請求項5に記載のジチアポリエーテルジオールの製造方法。 Between the step (b) and the step (c),
(b-1) The method for producing a dithiapolyetherdiol according to claim 5, further comprising a step of diluting the organic phase with an organic solvent in which the alkali metal salt does not dissolve and separating the alkali metal salt from the organic phase. ..
(b-2) 前記有機相を活性炭に接触させる工程を更に含む請求項5又は請求項6に記載のジチアポリエーテルジオールの製造方法。 Between the step (b) and the step (c), or between the step (b-1) and the step (c),
(b-2) The method for producing a dithiapolyetherdiol according to claim 5 or 6, further comprising a step of bringing the organic phase into contact with activated carbon.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/768,312 US20240116861A1 (en) | 2019-12-12 | 2020-12-11 | Dithiapolyether diol, method for producing same, snag plating solution containing dithiapolyether diol, and method for forming plating film with use of snag plating solution |
PCT/JP2020/046221 WO2021117852A1 (en) | 2019-12-12 | 2020-12-11 | Dithiapolyether diol, method for producing same, snag plating solution containing dithiapolyether diol, and method for forming plating film with use of snag plating solution |
KR1020227012534A KR20220113671A (en) | 2019-12-12 | 2020-12-11 | Dithiapolyetherdiol, its manufacturing method, SnAg plating solution containing dithiapolyetherdiol, and method for forming a plating film using SnAg plating solution |
TW109143750A TWI873245B (en) | 2019-12-12 | 2020-12-11 | Dithiopolyether diol, its production method, SnAg plating solution containing dithiopolyether diol, and method for forming plating film using SnAg plating solution |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019224523 | 2019-12-12 | ||
JP2019224523 | 2019-12-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2021095396A true JP2021095396A (en) | 2021-06-24 |
Family
ID=76430567
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020203251A Pending JP2021095396A (en) | 2019-12-12 | 2020-12-08 | DITHIAPOLYETHER DIOL, METHOD FOR PRODUCING THE SAME, SnAg PLATING SOLUTION CONTAINING THAT DITHIAPOLYETHER DIOL, AND METHOD FOR FORMING PLATING FILM USING THAT SnAg PLATING SOLUTION |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021095396A (en) |
TW (1) | TWI873245B (en) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59147350A (en) * | 1983-02-10 | 1984-08-23 | Fuji Photo Film Co Ltd | Method for developing silver halide photosensitive material |
JP6432667B2 (en) * | 2017-01-31 | 2018-12-05 | 三菱マテリアル株式会社 | Tin alloy plating solution |
-
2020
- 2020-12-08 JP JP2020203251A patent/JP2021095396A/en active Pending
- 2020-12-11 TW TW109143750A patent/TWI873245B/en active
Also Published As
Publication number | Publication date |
---|---|
TW202132267A (en) | 2021-09-01 |
TWI873245B (en) | 2025-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4634509A (en) | Method for production of aqueous quaternary ammonium hydroxide solution | |
EP0652041B1 (en) | Method for producing high purity hydroxides and alkoxides | |
CN101302632B (en) | Metal Plating Composition | |
JP4441726B2 (en) | Method for producing tin or tin alloy aliphatic sulfonic acid plating bath | |
US9657403B2 (en) | Method for preparing tin-silver alloy plating solution and plating solution prepared by same | |
US8293092B2 (en) | Alkaline electroplating bath having a filtration membrane | |
US8333834B2 (en) | High-purity aqueous copper sulfonate solution and method of producing same | |
KR20090085583A (en) | Efficient Gallium Thin Film Electroplating Method and Chemicals | |
JP2008266757A (en) | Tin or tin alloy electroplating solution | |
JPH1121692A (en) | Plating method and plating | |
JP2005307343A (en) | High-purity electrolytic copper and its production method | |
JP2021095396A (en) | DITHIAPOLYETHER DIOL, METHOD FOR PRODUCING THE SAME, SnAg PLATING SOLUTION CONTAINING THAT DITHIAPOLYETHER DIOL, AND METHOD FOR FORMING PLATING FILM USING THAT SnAg PLATING SOLUTION | |
KR20160018310A (en) | Tin Alloy Electroplating Solution Containing Perfluorinated Alkyl Surfactant for Solder Bump | |
WO2021117852A1 (en) | Dithiapolyether diol, method for producing same, snag plating solution containing dithiapolyether diol, and method for forming plating film with use of snag plating solution | |
TW200302128A (en) | Purification of onium hydroxides by electrodialysis | |
JPS6133914B2 (en) | ||
Morgan | CCCXLII.—Preparation and stability of cuprous nitrate and other cuprous salts in presence of nitriles | |
CN115161756B (en) | An electrolyte composition for cleaning OLED OPEN-MASK | |
KR101421503B1 (en) | High purity methane sulfonic acid copper salt and Method for manufacturing PCB plating solution having the same | |
KR102343152B1 (en) | High-concentration tin sulfonate aqueous solution and method for producing the same | |
JPH07507598A (en) | Electrochemical production method of dicarboxylic acid | |
CN106397287B (en) | electroplating additive | |
KR101738535B1 (en) | Tin-based electroplating solution for solder bump | |
TWI728396B (en) | Tin alloy plating solution | |
JP2023168652A (en) | Electrolytic gold plating solution, production method thereof, and plating method using the plating solution |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20231027 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20240315 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240903 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20250128 |