JP2020180037A - Inorganic solid oxide - Google Patents
Inorganic solid oxide Download PDFInfo
- Publication number
- JP2020180037A JP2020180037A JP2020039157A JP2020039157A JP2020180037A JP 2020180037 A JP2020180037 A JP 2020180037A JP 2020039157 A JP2020039157 A JP 2020039157A JP 2020039157 A JP2020039157 A JP 2020039157A JP 2020180037 A JP2020180037 A JP 2020180037A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- inorganic solid
- solid oxide
- positive electrode
- carbonaceous
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910003480 inorganic solid Inorganic materials 0.000 title claims abstract description 244
- 239000003575 carbonaceous material Substances 0.000 claims abstract description 100
- 239000007774 positive electrode material Substances 0.000 claims description 120
- 238000000576 coating method Methods 0.000 claims description 66
- 239000000203 mixture Substances 0.000 claims description 66
- -1 alkaline earth metal titanate Chemical class 0.000 claims description 63
- 239000011248 coating agent Substances 0.000 claims description 62
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 54
- 239000012752 auxiliary agent Substances 0.000 claims description 46
- 239000008151 electrolyte solution Substances 0.000 claims description 33
- 229910001416 lithium ion Inorganic materials 0.000 claims description 24
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims description 21
- 229910003481 amorphous carbon Inorganic materials 0.000 claims description 18
- 239000010439 graphite Substances 0.000 claims description 16
- 229910002804 graphite Inorganic materials 0.000 claims description 16
- 239000000126 substance Substances 0.000 claims description 13
- 229910052751 metal Inorganic materials 0.000 claims description 12
- 239000002184 metal Substances 0.000 claims description 12
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 claims description 10
- 229910013870 LiPF 6 Inorganic materials 0.000 claims description 9
- 229910052783 alkali metal Inorganic materials 0.000 claims description 8
- 150000001340 alkali metals Chemical class 0.000 claims description 8
- 238000004519 manufacturing process Methods 0.000 claims description 8
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 7
- 229910003002 lithium salt Inorganic materials 0.000 claims description 7
- 159000000002 lithium salts Chemical class 0.000 claims description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 6
- 239000010936 titanium Substances 0.000 claims description 6
- 229910052719 titanium Inorganic materials 0.000 claims description 6
- 239000010955 niobium Substances 0.000 claims description 4
- 229910052758 niobium Inorganic materials 0.000 claims description 4
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 74
- 239000000463 material Substances 0.000 description 52
- 239000002904 solvent Substances 0.000 description 40
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 32
- 238000000034 method Methods 0.000 description 31
- 239000004020 conductor Substances 0.000 description 23
- 229910052799 carbon Inorganic materials 0.000 description 19
- 239000002245 particle Substances 0.000 description 19
- 238000004458 analytical method Methods 0.000 description 18
- 239000007773 negative electrode material Substances 0.000 description 18
- 238000001069 Raman spectroscopy Methods 0.000 description 17
- 150000002500 ions Chemical class 0.000 description 17
- 230000000737 periodic effect Effects 0.000 description 17
- 238000010304 firing Methods 0.000 description 16
- 239000011267 electrode slurry Substances 0.000 description 15
- 229920005989 resin Polymers 0.000 description 15
- 239000011347 resin Substances 0.000 description 15
- 239000011230 binding agent Substances 0.000 description 14
- 239000002134 carbon nanofiber Substances 0.000 description 13
- 239000000843 powder Substances 0.000 description 13
- 239000004743 Polypropylene Substances 0.000 description 12
- 239000003792 electrolyte Substances 0.000 description 12
- 239000011149 active material Substances 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 10
- 230000000694 effects Effects 0.000 description 10
- 239000006230 acetylene black Substances 0.000 description 9
- 230000008859 change Effects 0.000 description 9
- 229910052744 lithium Inorganic materials 0.000 description 9
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 9
- 239000007787 solid Substances 0.000 description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 8
- 230000006872 improvement Effects 0.000 description 8
- 229920002451 polyvinyl alcohol Polymers 0.000 description 8
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 7
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 239000004698 Polyethylene Substances 0.000 description 7
- 230000032683 aging Effects 0.000 description 7
- 229910052782 aluminium Inorganic materials 0.000 description 7
- 239000002041 carbon nanotube Substances 0.000 description 7
- 229910021393 carbon nanotube Inorganic materials 0.000 description 7
- 229920002678 cellulose Polymers 0.000 description 7
- 150000003949 imides Chemical class 0.000 description 7
- 238000002156 mixing Methods 0.000 description 7
- 229920000573 polyethylene Polymers 0.000 description 7
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 7
- 239000011734 sodium Substances 0.000 description 7
- 238000001291 vacuum drying Methods 0.000 description 7
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 229920000049 Carbon (fiber) Polymers 0.000 description 6
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 6
- 239000002033 PVDF binder Substances 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 239000004917 carbon fiber Substances 0.000 description 6
- 238000003763 carbonization Methods 0.000 description 6
- 239000001913 cellulose Substances 0.000 description 6
- 239000002131 composite material Substances 0.000 description 6
- 150000005676 cyclic carbonates Chemical class 0.000 description 6
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 5
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 5
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 5
- 150000001768 cations Chemical class 0.000 description 5
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 5
- 239000011572 manganese Substances 0.000 description 5
- 229910052759 nickel Inorganic materials 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 229910001415 sodium ion Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 238000002411 thermogravimetry Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- 229910013872 LiPF Inorganic materials 0.000 description 4
- 101150058243 Lipf gene Proteins 0.000 description 4
- 108010000020 Platelet Factor 3 Proteins 0.000 description 4
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000001354 calcination Methods 0.000 description 4
- 238000001035 drying Methods 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- 150000002170 ethers Chemical class 0.000 description 4
- 229910052731 fluorine Inorganic materials 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 4
- 229960001553 phloroglucinol Drugs 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 229920003048 styrene butadiene rubber Polymers 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 229910013716 LiNi Inorganic materials 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 229910002367 SrTiO Inorganic materials 0.000 description 3
- 150000001342 alkaline earth metals Chemical class 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- 239000012298 atmosphere Substances 0.000 description 3
- JRPBQTZRNDNNOP-UHFFFAOYSA-N barium titanate Chemical compound [Ba+2].[Ba+2].[O-][Ti]([O-])([O-])[O-] JRPBQTZRNDNNOP-UHFFFAOYSA-N 0.000 description 3
- 229910002113 barium titanate Inorganic materials 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- DOYSIZKQWJYULQ-UHFFFAOYSA-N 1,1,2,2,2-pentafluoro-n-(1,1,2,2,2-pentafluoroethylsulfonyl)ethanesulfonamide Chemical compound FC(F)(F)C(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)C(F)(F)F DOYSIZKQWJYULQ-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- JPYHHZQJCSQRJY-UHFFFAOYSA-N Phloroglucinol Natural products CCC=CCC=CCC=CCC=CCCCCC(=O)C1=C(O)C=C(O)C=C1O JPYHHZQJCSQRJY-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 238000001237 Raman spectrum Methods 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 239000002174 Styrene-butadiene Substances 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 125000004390 alkyl sulfonyl group Chemical group 0.000 description 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 2
- 229910052788 barium Inorganic materials 0.000 description 2
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052793 cadmium Inorganic materials 0.000 description 2
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 150000005678 chain carbonates Chemical class 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 150000004292 cyclic ethers Chemical class 0.000 description 2
- 150000001983 dialkylethers Chemical class 0.000 description 2
- 238000004455 differential thermal analysis Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- MTZQAGJQAFMTAQ-UHFFFAOYSA-N ethyl benzoate Chemical compound CCOC(=O)C1=CC=CC=C1 MTZQAGJQAFMTAQ-UHFFFAOYSA-N 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910001849 group 12 element Inorganic materials 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000012212 insulator Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 150000002576 ketones Chemical class 0.000 description 2
- 150000002596 lactones Chemical class 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- QPJVMBTYPHYUOC-UHFFFAOYSA-N methyl benzoate Chemical compound COC(=O)C1=CC=CC=C1 QPJVMBTYPHYUOC-UHFFFAOYSA-N 0.000 description 2
- 229910000484 niobium oxide Inorganic materials 0.000 description 2
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 description 2
- 239000010450 olivine Substances 0.000 description 2
- 229910052609 olivine Inorganic materials 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- QCDYQQDYXPDABM-UHFFFAOYSA-N phloroglucinol Chemical compound OC1=CC(O)=CC(O)=C1 QCDYQQDYXPDABM-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 239000011295 pitch Substances 0.000 description 2
- 229910052696 pnictogen Inorganic materials 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000000565 sealant Substances 0.000 description 2
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229910052712 strontium Inorganic materials 0.000 description 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 2
- VEALVRVVWBQVSL-UHFFFAOYSA-N strontium titanate Chemical compound [Sr+2].[O-][Ti]([O-])=O VEALVRVVWBQVSL-UHFFFAOYSA-N 0.000 description 2
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical class O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 2
- HHVIBTZHLRERCL-UHFFFAOYSA-N sulfonyldimethane Chemical compound CS(C)(=O)=O HHVIBTZHLRERCL-UHFFFAOYSA-N 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- WLNBMPZUVDTASE-HXIISURNSA-N (2r,3r,4s,5r)-2-amino-3,4,5,6-tetrahydroxyhexanal;sulfuric acid Chemical compound [O-]S([O-])(=O)=O.O=C[C@H]([NH3+])[C@@H](O)[C@H](O)[C@H](O)CO.O=C[C@H]([NH3+])[C@@H](O)[C@H](O)[C@H](O)CO WLNBMPZUVDTASE-HXIISURNSA-N 0.000 description 1
- SSYDTHANSGMJTP-ZXZARUISSA-N (3s,4r)-oxolane-3,4-diol Chemical compound O[C@H]1COC[C@H]1O SSYDTHANSGMJTP-ZXZARUISSA-N 0.000 description 1
- ZXMGHDIOOHOAAE-UHFFFAOYSA-N 1,1,1-trifluoro-n-(trifluoromethylsulfonyl)methanesulfonamide Chemical compound FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F ZXMGHDIOOHOAAE-UHFFFAOYSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- MBDUIEKYVPVZJH-UHFFFAOYSA-N 1-ethylsulfonylethane Chemical compound CCS(=O)(=O)CC MBDUIEKYVPVZJH-UHFFFAOYSA-N 0.000 description 1
- YBJCDTIWNDBNTM-UHFFFAOYSA-N 1-methylsulfonylethane Chemical compound CCS(C)(=O)=O YBJCDTIWNDBNTM-UHFFFAOYSA-N 0.000 description 1
- SFPQDYSOPQHZAQ-UHFFFAOYSA-N 2-methoxypropanenitrile Chemical compound COC(C)C#N SFPQDYSOPQHZAQ-UHFFFAOYSA-N 0.000 description 1
- FPPLREPCQJZDAQ-UHFFFAOYSA-N 2-methylpentanedinitrile Chemical compound N#CC(C)CCC#N FPPLREPCQJZDAQ-UHFFFAOYSA-N 0.000 description 1
- JHUUPUMBZGWODW-UHFFFAOYSA-N 3,6-dihydro-1,2-dioxine Chemical compound C1OOCC=C1 JHUUPUMBZGWODW-UHFFFAOYSA-N 0.000 description 1
- VWIIJDNADIEEDB-UHFFFAOYSA-N 3-methyl-1,3-oxazolidin-2-one Chemical compound CN1CCOC1=O VWIIJDNADIEEDB-UHFFFAOYSA-N 0.000 description 1
- ZXVONLUNISGICL-UHFFFAOYSA-N 4,6-dinitro-o-cresol Chemical group CC1=CC([N+]([O-])=O)=CC([N+]([O-])=O)=C1O ZXVONLUNISGICL-UHFFFAOYSA-N 0.000 description 1
- GKZFQPGIDVGTLZ-UHFFFAOYSA-N 4-(trifluoromethyl)-1,3-dioxolan-2-one Chemical compound FC(F)(F)C1COC(=O)O1 GKZFQPGIDVGTLZ-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229910016467 AlCl 4 Inorganic materials 0.000 description 1
- 229910017008 AsF 6 Inorganic materials 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910020366 ClO 4 Inorganic materials 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical group F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- 229920006369 KF polymer Polymers 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013075 LiBF Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910015118 LiMO Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- 229910001228 Li[Ni1/3Co1/3Mn1/3]O2 (NCM 111) Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- 229910020808 NaBF Inorganic materials 0.000 description 1
- 229910021314 NaFeO 2 Inorganic materials 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- RFFFKMOABOFIDF-UHFFFAOYSA-N Pentanenitrile Chemical compound CCCCC#N RFFFKMOABOFIDF-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 229910018286 SbF 6 Inorganic materials 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910000971 Silver steel Inorganic materials 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- DHXVGJBLRPWPCS-UHFFFAOYSA-N Tetrahydropyran Chemical compound C1CCOCC1 DHXVGJBLRPWPCS-UHFFFAOYSA-N 0.000 description 1
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 1
- 235000010724 Wisteria floribunda Nutrition 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- QXZNUMVOKMLCEX-UHFFFAOYSA-N [Na].FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F Chemical compound [Na].FC(F)(F)S(=O)(=O)NS(=O)(=O)C(F)(F)F QXZNUMVOKMLCEX-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910001413 alkali metal ion Inorganic materials 0.000 description 1
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 1
- 125000005910 alkyl carbonate group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 229910001422 barium ion Inorganic materials 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical class OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 229910001423 beryllium ion Inorganic materials 0.000 description 1
- PWOSZCQLSAMRQW-UHFFFAOYSA-N beryllium(2+) Chemical compound [Be+2] PWOSZCQLSAMRQW-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- ZTCLFSRIWSZUHZ-UHFFFAOYSA-N but-1-yne;carbonic acid Chemical compound CCC#C.OC(O)=O ZTCLFSRIWSZUHZ-UHFFFAOYSA-N 0.000 description 1
- KVNRLNFWIYMESJ-UHFFFAOYSA-N butyronitrile Chemical compound CCCC#N KVNRLNFWIYMESJ-UHFFFAOYSA-N 0.000 description 1
- NCMHKCKGHRPLCM-UHFFFAOYSA-N caesium(1+) Chemical compound [Cs+] NCMHKCKGHRPLCM-UHFFFAOYSA-N 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- WEUCVIBPSSMHJG-UHFFFAOYSA-N calcium titanate Chemical compound [O-2].[O-2].[O-2].[Ca+2].[Ti+4] WEUCVIBPSSMHJG-UHFFFAOYSA-N 0.000 description 1
- SYLNJGIBLUVXCG-UHFFFAOYSA-N carbonic acid;prop-1-yne Chemical compound CC#C.OC(O)=O SYLNJGIBLUVXCG-UHFFFAOYSA-N 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 230000032677 cell aging Effects 0.000 description 1
- 229920003086 cellulose ether Polymers 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 150000003983 crown ethers Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- UAEWCWCMYQAIDR-UHFFFAOYSA-N diethyl methyl phosphate Chemical compound CCOP(=O)(OC)OCC UAEWCWCMYQAIDR-UHFFFAOYSA-N 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- 150000004862 dioxolanes Chemical class 0.000 description 1
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- GUVUOGQBMYCBQP-UHFFFAOYSA-N dmpu Chemical compound CN1CCCN(C)C1=O GUVUOGQBMYCBQP-UHFFFAOYSA-N 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000005621 ferroelectricity Effects 0.000 description 1
- HDNHWROHHSBKJG-UHFFFAOYSA-N formaldehyde;furan-2-ylmethanol Chemical compound O=C.OCC1=CC=CO1 HDNHWROHHSBKJG-UHFFFAOYSA-N 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000007849 furan resin Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- ZTOMUSMDRMJOTH-UHFFFAOYSA-N glutaronitrile Chemical compound N#CCCCC#N ZTOMUSMDRMJOTH-UHFFFAOYSA-N 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 229910021480 group 4 element Inorganic materials 0.000 description 1
- 229910021478 group 5 element Inorganic materials 0.000 description 1
- 229910021476 group 6 element Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000010416 ion conductor Substances 0.000 description 1
- LRDFRRGEGBBSRN-UHFFFAOYSA-N isobutyronitrile Chemical compound CC(C)C#N LRDFRRGEGBBSRN-UHFFFAOYSA-N 0.000 description 1
- 150000003951 lactams Chemical class 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 description 1
- 229910052451 lead zirconate titanate Inorganic materials 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229940095102 methyl benzoate Drugs 0.000 description 1
- XTBFPVLHGVYOQH-UHFFFAOYSA-N methyl phenyl carbonate Chemical compound COC(=O)OC1=CC=CC=C1 XTBFPVLHGVYOQH-UHFFFAOYSA-N 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000002048 multi walled nanotube Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Substances OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920005673 polypropylene based resin Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- UKDIAJWKFXFVFG-UHFFFAOYSA-N potassium;oxido(dioxo)niobium Chemical compound [K+].[O-][Nb](=O)=O UKDIAJWKFXFVFG-UHFFFAOYSA-N 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 229910001419 rubidium ion Inorganic materials 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- SIXSYDAISGFNSX-UHFFFAOYSA-N scandium atom Chemical compound [Sc] SIXSYDAISGFNSX-UHFFFAOYSA-N 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000002109 single walled nanotube Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- VCCATSJUUVERFU-UHFFFAOYSA-N sodium bis(fluorosulfonyl)azanide Chemical compound FS(=O)(=O)N([Na])S(F)(=O)=O VCCATSJUUVERFU-UHFFFAOYSA-N 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- UYLYBEXRJGPQSH-UHFFFAOYSA-N sodium;oxido(dioxo)niobium Chemical compound [Na+].[O-][Nb](=O)=O UYLYBEXRJGPQSH-UHFFFAOYSA-N 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910001427 strontium ion Inorganic materials 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 150000003527 tetrahydropyrans Chemical class 0.000 description 1
- 238000009210 therapy by ultrasound Methods 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 1
- YFNKIDBQEZZDLK-UHFFFAOYSA-N triglyme Chemical compound COCCOCCOCCOC YFNKIDBQEZZDLK-UHFFFAOYSA-N 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 239000012808 vapor phase Substances 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
本発明は、新規な無機固体酸化物等に関する。 The present invention relates to novel inorganic solid oxides and the like.
チタン酸バリウム(BaTiO3)等の無機固体酸化物は、強誘電性等の性質を有しており、このような無機固体酸化物を電極に含有させる技術も知られつつある。 Inorganic solid oxides such as barium titanate (BaTIO 3 ) have properties such as ferroelectricity, and techniques for incorporating such inorganic solid oxides into electrodes are becoming known.
例えば、特許文献1には、集電体上に活物質を含む電極合材層が形成されてなる電池用電極において、上記電極合材層は、比誘電率12以上の無機化合物を含有することを特徴とする電極が開示されている。
For example, in
本発明の目的は、新規な無機固体酸化物等を提供することにある。 An object of the present invention is to provide a novel inorganic solid oxide or the like.
前記のように、電極に無機固体酸化物を含有させる技術が知られている。なお、このような無機固体酸化物は、通常、非導電性である。 As described above, a technique for incorporating an inorganic solid oxide into an electrode is known. In addition, such an inorganic solid oxide is usually non-conductive.
このような強誘電性能を示す無機固体酸化物を電極合材に添加すると、放電容量は増加(改善)するものの、電子伝導性が低いため、副作用として直流抵抗が増加するという問題がある。また、活物質を無機固体酸化物で被覆する技術が知られているが、焼結法では、無機固体酸化物で被覆された活物質粒子内でのLiイオンの拡散抵抗が大きくなり、その結果、放電容量が低下するという問題がある。 When an inorganic solid oxide exhibiting such ferroelectric performance is added to the electrode mixture, the discharge capacity is increased (improved), but the electron conductivity is low, so that there is a problem that the DC resistance increases as a side effect. Further, a technique of coating an active material with an inorganic solid oxide is known, but in the sintering method, the diffusion resistance of Li ions in the active material particles coated with the inorganic solid oxide increases, and as a result, the diffusion resistance of Li ions increases. , There is a problem that the discharge capacity decreases.
このような中、本発明者は、無機固体酸化物の従来の用途(利用方法)とは全く別の観点で、無機固体酸化物を炭素質で被覆することにより新規な材料が得られることを見出した。このような材料は、極めて意外なことに、電極(特に正極)の構成成分として使用することで、放電容量を効率よく向上又は改善しうること、特に、導電性を示すことができ、導電性を損なうことなく、導電性と放電容量の向上又は改善とを両立できること、その結果、直流抵抗の増加を抑制(改善)しうること等を見出し、さらなる検討を重ねて本発明を完成した。 Under these circumstances, the present inventor has found that a new material can be obtained by coating an inorganic solid oxide with a carbonaceous material from a completely different viewpoint from the conventional use (utilization method) of the inorganic solid oxide. I found it. Surprisingly, such a material can efficiently improve or improve the discharge capacity by using it as a component of an electrode (particularly a positive electrode), and in particular, can exhibit conductivity and is conductive. The present invention has been completed through further studies, finding that both conductivity and improvement or improvement of discharge capacity can be achieved without impairing the above, and as a result, an increase in DC resistance can be suppressed (improved).
すなわち、本発明は、以下の発明等に関する。
[1] 炭素質で被覆された無機固体酸化物(無機固体酸化物を炭素質で被覆(コーティング)した材料)。
[2] 無機固体酸化物と炭素質材料(炭素質原料、炭素質前駆体)との焼結体(焼成物)である、[1]に記載の無機固体酸化物(又は材料)。
[3] 導電性である、[1]又は[2]に記載の無機固体酸化物(又は材料)。
[4] 無機固体酸化物が強誘電体である[1]〜[3]のいずれか一つに記載の無機固体酸化物(又は材料)。
[5] 無機固体酸化物が、チタン及びニオブから選択された少なくとも1種の金属を含有する酸化物である、[1]〜[4]のいずれか一つに記載の無機固体酸化物(又は材料)。
[6] 無機固体酸化物が、ペロブスカイト型酸化物である、[1]〜[5]のいずれか一つに記載の無機固体酸化物(又は材料)。
[7] 無機固体酸化物が、チタン酸アルカリ土類金属及びニオブ酸アルカリ金属から選択された少なくとも1種を含む、[1]〜[6]のいずれか一つに記載の無機固体酸化物(又は材料)。
[8] 炭素質が、アモルファスカーボン及び/又はグラファイトを含む、[1]〜[7]のいずれか一つに記載の無機固体酸化物(又は材料)。
[9] 無機固体酸化物を炭素質で被覆し、[1]〜[8]のいずれか一つに記載の無機固体酸化物(又は材料)を製造する方法。
[10] 無機固体酸化物と炭素質材料との混合物(無機固体酸化物及び炭素質材料を含む組成物)を焼成(焼結)処理する、[9]に記載の製造方法。
[11] [1]〜[8]のいずれか一つに記載の無機固体酸化物を(第1の導電助剤、第1の導電性材料として)含む正極合材。
[12] [1]〜[8]のいずれか一つに記載の無機固体酸化物(又は材料)を含む正極活物質層(又は正極活物質層を有する正極)。
[13] [1]〜[8]のいずれか一つに記載の無機固体酸化物(又は材料)の割合が、正極活物質層全体に対して0.05〜10質量%である、[12]に記載の正極活物質層(又は正極)。
[14] [1]〜[8]のいずれか一つに記載の無機固体酸化物(又は材料)の割合が、正極活物質100質量部に対して、0.1質量部以上である、[12]又は[13]に記載の正極活物質層(又は正極)。
[15] さらに、導電助剤(第2の導電助剤、第2の導電性材料)を含み、導電助剤(第2の導電助剤)100質量部に対する、[1]〜[8]のいずれか一つに記載の無機固体酸化物(第1の導電助剤、第1の導電性材料)の割合が、0.1〜95質量部である、[12]〜[14]のいずれか一つに記載の正極活物質層(又は正極)。
[16] 正極活物質層の塗工質量(例えば、正極合材の塗工質量)が10mg/cm2以上である[12]〜[15]のいずれか一つに記載の正極活物質層(又は正極)。
[17] リチウムイオンを吸蔵・放出可能な正極活物質を含有し、リチウムイオン二次電池に用いるための、[12]〜[16]のいずれか一つに記載の正極活物質層(又は正極)。
[18] [12]〜[17]のいずれか一つに記載の正極活物質層(又は正極)を備えた電池。
[19] さらに、リチウム塩を含有する電解液を備えた、リチウムイオン二次電池である、[18]に記載の電池。
[20] リチウム塩が、LiPF6及びリチウムビス(フルオロスルホニル)イミドから選択された少なくとも1種を含む、[19]に記載の電池。
That is, the present invention relates to the following inventions and the like.
[1] Inorganic solid oxide coated with carbonaceous material (material obtained by coating (coating) the inorganic solid oxide with carbonaceous material).
[2] The inorganic solid oxide (or material) according to [1], which is a sintered body (fired product) of an inorganic solid oxide and a carbonaceous material (carbonaceous raw material, carbonaceous precursor).
[3] The inorganic solid oxide (or material) according to [1] or [2], which is conductive.
[4] The inorganic solid oxide (or material) according to any one of [1] to [3], wherein the inorganic solid oxide is a ferroelectric substance.
[5] The inorganic solid oxide (or) according to any one of [1] to [4], wherein the inorganic solid oxide is an oxide containing at least one metal selected from titanium and niobium. material).
[6] The inorganic solid oxide (or material) according to any one of [1] to [5], wherein the inorganic solid oxide is a perovskite-type oxide.
[7] The inorganic solid oxide according to any one of [1] to [6], wherein the inorganic solid oxide contains at least one selected from an alkaline earth metal titanate and an alkali metal niobate. Or material).
[8] The inorganic solid oxide (or material) according to any one of [1] to [7], wherein the carbonaceous material contains amorphous carbon and / or graphite.
[9] The method for producing an inorganic solid oxide (or material) according to any one of [1] to [8] by coating the inorganic solid oxide with carbonaceous material.
[10] The production method according to [9], wherein a mixture (composition containing an inorganic solid oxide and a carbonaceous material) of an inorganic solid oxide and a carbonaceous material is fired (sintered).
[11] A positive electrode mixture containing the inorganic solid oxide according to any one of [1] to [8] (as a first conductive auxiliary agent and a first conductive material).
[12] A positive electrode active material layer (or a positive electrode having a positive electrode active material layer) containing the inorganic solid oxide (or material) according to any one of [1] to [8].
[13] The proportion of the inorganic solid oxide (or material) according to any one of [1] to [8] is 0.05 to 10% by mass with respect to the entire positive electrode active material layer, [12]. ] The positive electrode active material layer (or positive electrode).
[14] The ratio of the inorganic solid oxide (or material) according to any one of [1] to [8] is 0.1 part by mass or more with respect to 100 parts by mass of the positive electrode active material. 12] or [13]. The positive electrode active material layer (or positive electrode).
[15] Further, a conductive auxiliary agent (second conductive auxiliary agent, second conductive material) is contained, and 100 parts by mass of the conductive auxiliary agent (second conductive auxiliary agent) of [1] to [8]. Any one of [12] to [14], wherein the proportion of the inorganic solid oxide (first conductive auxiliary agent, first conductive material) according to any one is 0.1 to 95 parts by mass. The positive electrode active material layer (or positive electrode) according to one.
[16] The positive electrode active material layer according to any one of [12] to [15], wherein the coating mass of the positive electrode active material layer (for example, the coating mass of the positive electrode mixture) is 10 mg / cm 2 or more. Or positive electrode).
[17] The positive electrode active material layer (or positive electrode) according to any one of [12] to [16], which contains a positive electrode active material capable of storing and releasing lithium ions and is used in a lithium ion secondary battery. ).
[18] A battery comprising the positive electrode active material layer (or positive electrode) according to any one of [12] to [17].
[19] The battery according to [18], which is a lithium ion secondary battery further provided with an electrolytic solution containing a lithium salt.
[20] The battery according to [19], wherein the lithium salt contains at least one selected from LiPF 6 and lithium bis (fluorosulfonyl) imide.
本発明によれば、新規な無機固体酸化物等を提供できる。このような無機固体酸化物(材料)は、炭素質で被覆されており、特に、本発明の一態様では、このような炭素質で被覆された無機固体酸化物で、電極(特に正極)を構成することにより、無機固体酸化物を配合しない場合に比べて、放電容量[特に、塗工質量との関係で、比較的高い電気量ないし電流(例えば、1C以上)における放電容量]を改善又は向上しうる。 According to the present invention, a novel inorganic solid oxide or the like can be provided. Such an inorganic solid oxide (material) is coated with a carbonaceous substance, and in particular, in one aspect of the present invention, such a carbonic substance-coated inorganic solid oxide is used to form an electrode (particularly a positive electrode). By constructing the composition, the discharge capacity [particularly, the discharge capacity at a relatively high amount of electricity or current (for example, 1C or more) in relation to the coating mass] is improved or improved as compared with the case where the inorganic solid oxide is not blended. Can be improved.
また、本発明の別の態様では、上記のような炭素質で被覆された無機固体酸化物は、導電性を示す無機固体酸化物を得ることができ、電極(正極等)を構成する導電性材料(導電助剤)等として使用しうる。そして、このように電極(特に正極)を構成することにより、導電性材料ないし導電助剤の一部又は全部と置換しても導電性を損なうことがなく、特に、導電性と放電容量の改善又は向上とを効率良く両立しうる。 Further, in another aspect of the present invention, the inorganic solid oxide coated with the carbonaceous material as described above can obtain an inorganic solid oxide exhibiting conductivity, and the conductivity constituting the electrode (positive electrode or the like) can be obtained. It can be used as a material (conductive aid) or the like. By forming the electrode (particularly the positive electrode) in this way, the conductivity is not impaired even if it is replaced with a part or all of the conductive material or the conductive auxiliary agent, and in particular, the conductivity and the discharge capacity are improved. Alternatively, improvement can be efficiently compatible.
無機固体酸化物(炭素質で被覆された無機固体酸化物)と、放電容量(さらには導電性、導電性と放電容量との両立)との関係については、従来知られておらず、このような知見が得られたことは極めて意外である。 The relationship between the inorganic solid oxide (inorganic solid oxide coated with carbonaceous material) and the discharge capacity (furthermore, conductivity, compatibility between conductivity and discharge capacity) has not been known in the past. It is extremely surprising that such findings were obtained.
[炭素質で被覆された無機固体酸化物]
本発明の無機固体酸化物は、炭素質で被覆(コーティング、コート)されている。換言すれば、本発明の材料(新規材料)は、炭素質で被覆(コーティング)した無機固体酸化物ということができる。このような材料は、無機固体酸化物と炭素質との複合材料(コンポジット)であってもよい。
[Carbonaceous coated inorganic solid oxide]
The inorganic solid oxide of the present invention is coated (coated, coated) with carbonaceous material. In other words, the material (new material) of the present invention can be said to be an inorganic solid oxide coated with carbonaceous material. Such a material may be a composite material (composite) of an inorganic solid oxide and a carbonaceous substance.
このような無機固体酸化物(以下、炭素質コート無機固体酸化物等ということがある)は、炭素質で被覆されており、被覆の形態等にもよるが、特に、導電性を有してもよい(導電性材料であってもよい)。 Such an inorganic solid oxide (hereinafter, may be referred to as a carbonaceous coated inorganic solid oxide or the like) is coated with carbonaceous material, and has conductivity in particular, although it depends on the form of coating and the like. It may be (may be a conductive material).
(無機固体酸化物)
無機固体酸化物としては、特に限定されないが、通常、絶縁体[誘電体、常温(例えば、15〜35℃)において絶縁体]であってもよく、特に強誘電体であってもよい。
(Inorganic solid oxide)
The inorganic solid oxide is not particularly limited, but may be an insulator [dielectric, an insulator at room temperature (for example, 15 to 35 ° C.)], and may be a ferroelectric in particular.
無機固体酸化物の比誘電率は、例えば、15以上、好ましくは20以上、さらに好ましくは100以上、特に好ましくは200以上であってもよい。 The relative permittivity of the inorganic solid oxide may be, for example, 15 or more, preferably 20 or more, more preferably 100 or more, and particularly preferably 200 or more.
無機固体酸化物の比誘電率の上限値は、特に限定されないが、例えば、5000等が挙げられる。 The upper limit of the relative permittivity of the inorganic solid oxide is not particularly limited, and examples thereof include 5000 and the like.
なお、比誘電率は、所定の温度[例えば、常温(15〜35℃)]における値であってもよい。 The relative permittivity may be a value at a predetermined temperature [for example, normal temperature (15 to 35 ° C.)].
無機固体酸化物は、ペロブスカイト型構造を有していてもよい(ペロブスカイト型酸化物であってもよい)。このようなペロブスカイト型酸化物は、ABO3(式中、A及びBは互いに異なる元素を示す)で表される酸化物である。 The inorganic solid oxide may have a perovskite-type structure (may be a perovskite-type oxide). Such a perovskite-type oxide is an oxide represented by ABO 3 (in the formula, A and B represent different elements).
無機固体酸化物は、例えば、典型元素[例えば、アルカリ土類金属又は周期表第2族元素(例えば、マグネシウム等)、周期表第12族元素(例えば、亜鉛、カドミウム等)、周期表第13族元素(例えば、アルミニウム、ガリウム、インジウム等)、周期表第15族元素(例えば、アンチモン等)]、遷移元素[例えば、周期表第3族元素(例えば、スカンジウム等)、周期表第4族元素(例えば、チタン、ジルコニウム、ハフニウム等)、周期表第5族元素(例えば、バナジウム、ニオブ、タンタル等)、周期表第6族元素(例えば、クロム、モリブデン、タングステン等)、周期表第7族元素(例えば、マンガン等)、周期表第9族元素(例えば、コバルト等)、周期表第10族元素(例えば、ニッケル等)、周期表第11族元素(例えば、銅等)等]等の元素を少なくとも含む酸化物であってもよい。 The inorganic solid oxide is, for example, a typical element [for example, an alkaline earth metal or a Group 2 element of the Periodic Table (for example, magnesium), a Group 12 element of the Periodic Table (for example, zinc, cadmium, etc.), and the 13th Periodic Table. Group elements (eg, aluminum, gallium, indium, etc.), Periodic Table Group 15 elements (eg, Antimon, etc.)], Transition elements [eg, Periodic Table Group 3 elements (eg, Scandium, etc.), Periodic Table Group 4 Elements (eg, titanium, zirconium, hafnium, etc.), Periodic Table Group 5 elements (eg, vanadium, niobium, tantalum, etc.), Periodic Table Group 6 elements (eg, chromium, molybdenum, tungsten, etc.), Periodic Table No. 7. Group elements (eg, manganese, etc.), Periodic Table Group 9 elements (eg, cobalt, etc.), Periodic Table Group 10 elements (eg, nickel, etc.), Periodic Table Group 11 elements (eg, copper, etc.)], etc. It may be an oxide containing at least the element of.
これらの中でも、特に、無機固体酸化物は、チタン及びニオブから選択された少なくとも1種の元素(金属)を含む酸化物であってもよい。 Among these, the inorganic solid oxide may be an oxide containing at least one element (metal) selected from titanium and niobium.
なお、このような酸化物において、上記元素は、ペロブスカイト型酸化物の元素Bであってもよい。 In such an oxide, the element may be the element B of the perovskite type oxide.
ペロブスカイト型酸化物において、元素Aとしては、特に限定されないが、例えば、典型元素[例えば、アルカリ金属又は周期表第1族元素(例えば、リチウム、ナトリウム、カリウム等)、アルカリ土類金属又は周期表第2族元素(例えば、マグネシウム、カルシウム、ストロンチウム、バリウム等)、周期表第12族元素(例えば、カドミウム等)、周期表第15族元素(例えば、ビスマス等)]、遷移元素[例えば、周期表第3族元素(例えば、ランタノイド等)等]等から選択された少なくとも1種の元素等であってもよい。
In the perovskite type oxide, the element A is not particularly limited, but for example, a typical element [for example, an alkali metal or a
これらの中でも、特に、無機固体酸化物(ペロブスカイト型酸化物)は、元素Aとして、アルカリ金属(例えば、リチウム、ナトリウム、カリウム等)、アルカリ土類金属(例えば、カルシウム、バリウム、ストロンチウム等)等を有する酸化物であってもよい。 Among these, in particular, the inorganic solid oxide (perovskite type oxide) is an element A such as an alkali metal (for example, lithium, sodium, potassium, etc.), an alkaline earth metal (for example, calcium, barium, strontium, etc.) and the like. It may be an oxide having.
具体的な無機固体酸化物としては、例えば、チタン酸化物[例えば、例えば、チタン酸カルシウム(CaTiO3)、チタン酸ストロンチウム(SrTiO3)、チタン酸バリウム(BaTiO3)等のチタン酸アルカリ土類金属、チタン酸ジルコン酸鉛(Pb(Zr,Ti)O3)等]、ジルコニウム酸化物[例えば、BaZrO3等]、ニオブ酸化物[例えば、ニオブ酸リチウム(LiNbO3)、ニオブ酸ナトリウム(NaNbO3)、ニオブ酸カリウム(KNbO3)のニオブ酸アルカリ金属等]、タンタル酸化物(例えば、LiTaO3等)、スズ酸化物(例えば、CaSnO3、BaSnO3等)等が挙げられる。無機固体酸化物は、単独で又は2種以上組み合わせて使用してもよい。 Specific examples of the inorganic solid oxide include alkali titanate earths such as titanium oxide [for example, calcium titanate (CaTIO 3 ), strontium titanate (SrTiO 3 ), barium titanate (BaTIO 3 ) and the like. Metals, lead zirconate titanate (Pb (Zr, Ti) O 3 ), etc.], zirconium oxide [eg, BaZrO 3, etc.], nioboxide [eg, lithium niobate (LiNbO 3 ), sodium niobate (NaNbO) 3 ), alkali metal niobate of potassium niobate (KNbO 3 ), etc.], tantalum oxide (for example, LiTaO 3, etc.), tin oxide (for example, CaSnO 3 , BaSnO 3, etc.) and the like. Inorganic solid oxides may be used alone or in combination of two or more.
これらの中でも、チタン酸化物(例えば、チタン酸ストロンチウム、チタン酸バリウム等のチタン酸アルカリ土類金属)、ニオブ酸化物(例えば、ニオブ酸リチウム等のニオブ酸アルカリ金属)等を好適に使用してもよい。 Among these, titanium oxide (for example, alkaline earth metal titanate such as strontium titanate and barium titanate), niobium oxide (for example, alkali metal niobate such as lithium niobate) and the like are preferably used. May be good.
無機固体酸化物(又は炭素質で被覆された無機固体酸化物)の形状は、特に限定されないが、通常、粒子状であってもよい。 The shape of the inorganic solid oxide (or the inorganic solid oxide coated with carbonaceous material) is not particularly limited, but may be usually in the form of particles.
このような粒子状の無機固体酸化物(又は炭素質で被覆された無機固体酸化物)の平均粒子径は、例えば、0.001〜30μm、好ましくは0.01〜10μm、さらに好ましくは0.1〜1μmであってもよい。 The average particle size of such particulate inorganic solid oxide (or inorganic solid oxide coated with carbonaceous material) is, for example, 0.001 to 30 μm, preferably 0.01 to 10 μm, and more preferably 0. It may be 1 to 1 μm.
なお、平均粒子径は、例えば、レーザー回折/散乱式粒度分布計(例えば、日機装社製、マイクロトラックMT−3300EX2)を用いて、無機固体酸化物を所定の分散媒(例えば、1質量%NaCl水溶液)に分散させた分散液における測定値(粒子径、分散径)であってもよい。 For the average particle size, for example, a laser diffraction / scattering type particle size distribution meter (for example, Microtrac MT-3300EX2 manufactured by Nikkiso Co., Ltd.) is used to disperse the inorganic solid oxide as a predetermined dispersion medium (for example, 1% by mass NaCl). It may be a measured value (particle size, dispersion size) in the dispersion liquid dispersed in the aqueous solution).
無機固体酸化物(又は炭素質で被覆された無機固体酸化物)の平均粒子径は、後述する正極活物質層の厚み以下であってもよく、例えば、正極活物質層の厚みの1倍以下、0.9倍以下、0.8倍以下、0.7倍以下、0.6倍以下、0.5倍以下、0.4倍以下などであってもよい。 The average particle size of the inorganic solid oxide (or the inorganic solid oxide coated with carbonaceous material) may be equal to or less than the thickness of the positive electrode active material layer described later, and is, for example, 1 times or less the thickness of the positive electrode active material layer. , 0.9 times or less, 0.8 times or less, 0.7 times or less, 0.6 times or less, 0.5 times or less, 0.4 times or less, and the like.
(炭素質、炭素質で被覆された無機固体酸化物及びその製造方法)
無機固体酸化物は炭素質で被覆されている。このような炭素質で被覆された無機固体酸化物によれば、効率よく充放電容量を向上できる等の効果が得られうる。この理由は定かではないが、例えば、正極活物質層では、通常、正極活物質ないしそのイオン(例えば、リチウムイオン)の濃度勾配が生じるが、そうすると、充放電容量が低下しやすくなると考えられる。しかし、炭素質で被覆された無機固体酸化物を配合することで、正極活物質ないしそのイオン(例えば、リチウムイオン)の移動度が増加し、このような濃度勾配が抑制ないし緩和される(そのため充放電深度が深くなる)ことで、充放電容量が改善するものと考えられる。
(Carbonaceous, carbonaceous coated inorganic solid oxide and its manufacturing method)
Inorganic solid oxides are coated with carbonaceous. According to such a carbonaceous-coated inorganic solid oxide, effects such as efficient charge / discharge capacity can be obtained. The reason for this is not clear, but for example, in the positive electrode active material layer, a concentration gradient of the positive electrode active material or its ions (for example, lithium ions) is usually generated, but it is considered that the charge / discharge capacity tends to decrease. However, by blending an inorganic solid oxide coated with a carbonaceous substance, the mobility of the positive electrode active material or its ions (for example, lithium ions) is increased, and such a concentration gradient is suppressed or relaxed (hence). It is considered that the charge / discharge capacity is improved by increasing the charge / discharge depth).
被覆の形態は、特に限定されず、無機固体酸化物に炭素質が付着(物理的又は化学的に付着)する形態等であってもよいが、特に、無機固体酸化物と炭素質材料(炭素質の原料又は前駆体)との焼結体の形態で被覆していてもよい。 The form of the coating is not particularly limited, and may be a form in which carbonaceous material adheres (physically or chemically adheres) to the inorganic solid oxide, and in particular, the inorganic solid oxide and carbonaceous material (carbon). It may be coated in the form of a sintered body with a quality raw material or precursor).
このような被覆の形態では、無機固体酸化物(例えば、無機固体酸化物の表面)と炭素質とが一体化(コンポジット化)していてもよく、例えば、アモルファス状の炭素質及び/又はグラフェン(グラファイト)状の炭素質で無機固体酸化物を被覆しやすい。 In the form of such a coating, the inorganic solid oxide (for example, the surface of the inorganic solid oxide) and the carbonaceous material may be integrated (composited), for example, the amorphous carbonaceous material and / or graphite. It is a (graphite) -like carbonaceous material and easily coats inorganic solid oxides.
炭素質(無機固体酸化物を被覆する炭素質)としては、被覆の形態に応じて適宜選択できるが、例えば、導電性炭素材料(例えば、黒鉛、カーボンブラック、カーボンナノチューブ、炭素繊維等)等であってもよく、特に、アモルファスカーボン(不定形炭素、無定形炭素)、グラファイト(又はグラファイト状又はグラファイト層、例えば、グラフェン)であってもよい。無機固体酸化物は、1種又は2種以上の(異なる)炭素質で被覆されていてもよい。 The carbon substance (carbon substance that coats the inorganic solid oxide) can be appropriately selected depending on the form of the coating, and for example, a conductive carbon material (for example, graphite, carbon black, carbon nanotube, carbon fiber, etc.) or the like can be used. It may be, in particular, amorphous carbon (amorphous carbon, amorphous carbon), graphite (or graphite-like or graphite layer, eg graphene). The inorganic solid oxide may be coated with one or more (different) carbonaceous substances.
このような無機固体酸化物と一体化する態様で炭素質を被覆することで、導電性を有する無機固体酸化物を得やすい(無機固体酸化物に導電性を発現ないし付与しやすい)。また、導電性を効率よく発現しつつ、放電容量を改善ないし向上しやすい。 By coating the carbonaceous material in a manner integrated with such an inorganic solid oxide, it is easy to obtain a conductive inorganic solid oxide (it is easy to develop or impart conductivity to the inorganic solid oxide). In addition, it is easy to improve or improve the discharge capacity while efficiently exhibiting conductivity.
なお、無機固体酸化物と炭素質が一体化していること(例えば、アモルファスカーボン層やグラファイト層の形成)や導電性を有することは、公知の方法により確認できる。例えば、炭素質の存在又は形成(炭素化の進行)は、ラマン分析等により確認しうる。 It can be confirmed by a known method that the inorganic solid oxide and the carbonaceous material are integrated (for example, the formation of an amorphous carbon layer or a graphite layer) and that the carbonaceous material has conductivity. For example, the presence or formation of carbonaceous material (progress of carbonization) can be confirmed by Raman analysis or the like.
より具体的な態様では、例えば、炭素質[例えば、アモルファスカーボン(アモルファスカーボンを含む炭素質で被覆された無機固体酸化物)]は、ラマン分析(ラマンスペクトル)において、特定のバンド(ラマンバンド)[例えば、Gバンド(例えば、1550cm−1〜1650cm−1等の1580cm−1又はその付近を含むバンド)、Dバンド(例えば、1300cm−1〜1400cm−1等の1350cm−1又はその付近を含むバンド)、G’バンド(例えば、2650cm−1〜2750cm−1の範囲内)、D+D’バンド(例えば、2800cm−1〜3000cm−1の範囲内)、2D’バンド(例えば、3100cm−1〜3300cm−1の範囲内)から選択された少なくとも1つのバンド(特に、少なくともGバンド及び/又はDバンド)]を示してもよい。 In a more specific embodiment, for example, a carbonaceous substance [for example, amorphous carbon (an inorganic solid oxide coated with a carbonaceous substance containing amorphous carbon)] is a specific band (Raman band) in Raman analysis (Raman spectrum). including [e.g., G-band (e.g., 1550 cm -1 1650 cm -1 such as a band including the 1580 cm -1 or near the), D-band (e.g., the 1350 cm -1 or near such 1300cm -1 ~1400cm -1 band), G 'band (e.g., in the range of 2650cm -1 ~2750cm -1), D + D' band (e.g., in the range of 2800cm -1 ~3000cm -1), 2D 'band (e.g., 3100cm -1 ~3300cm At least one band selected from (within the range of -1 ) (particularly at least G band and / or D band)] may be indicated.
なお、グラファイト(グラファイト自体)は、ラマン分析(ラマンスペクトル)において、1580cm−1付近にバンド(単一のバンド)を示してもよく、グラファイトを一部に含む炭素質(例えば、アモルファスカーボン及びグラファイトを含む炭素質)では、この1580cm−1を含むバンド(例えば、Gバンド)を示してもよい。 Graphite (graphite itself) may show a band (single band) in the vicinity of 1580 cm -1 in Raman analysis (Raman spectrum), and carbonaceous substances containing graphite as a part (for example, amorphous carbon and graphite). In (carbonaceous chondrite containing), a band containing this 1580 cm- 1 (for example, G band) may be shown.
炭素質は、無機固体酸化物の少なくとも一部を被覆(又は無機固体酸化物の少なくとも一部と一体化)していればよく、無機固体酸化物(又はその表面)の全部を被覆していてもよく、一部を被覆していて(又は被覆していない部分を有していて)もよい。 The carbonaceous material may cover at least a part of the inorganic solid oxide (or integrate with at least a part of the inorganic solid oxide), and may cover the entire inorganic solid oxide (or its surface). It may be partially covered (or may have an uncovered portion).
炭素質の割合は、特に限定されず、ごく少量ないし微量(例えば、検出限界以下)であってもよいが、無機固体酸化物100質量部に対して、例えば、0.01質量部以上(例えば、0.02質量部以上)、好ましくは0.05質量部以上(例えば、0.07質量部以上)、さらに好ましくは0.1質量部以上(例えば、0.12質量部以上)であってもよく、0.15質量部以上、0.2質量部以上、0.3質量部以上、0.5質量部以上、0.7質量部以上、0.8質量部以上、1質量部以上等であってもよい。 The ratio of carbonaceous material is not particularly limited and may be a very small amount or a trace amount (for example, below the detection limit), but for example, 0.01 part by mass or more (for example) with respect to 100 parts by mass of the inorganic solid oxide. , 0.02 parts by mass or more), preferably 0.05 parts by mass or more (for example, 0.07 parts by mass or more), and more preferably 0.1 parts by mass or more (for example, 0.12 parts by mass or more). Also, 0.15 parts by mass or more, 0.2 parts by mass or more, 0.3 parts by mass or more, 0.5 parts by mass or more, 0.7 parts by mass or more, 0.8 parts by mass or more, 1 part by mass or more, etc. It may be.
なお、炭素質の割合の上限値は、特に限定されず、例えば、無機固体酸化物100質量部に対して、1000質量部、800質量部、500質量部、300質量部、200質量部、100質量部、80質量部、50質量部、30質量部、20質量部、10質量部、5質量部、3質量部等であってもよい。 The upper limit of the carbon content is not particularly limited, and for example, 1000 parts by mass, 800 parts by mass, 500 parts by mass, 300 parts by mass, 200 parts by mass, and 100 parts by mass with respect to 100 parts by mass of the inorganic solid oxide. It may be a mass part, 80 mass part, 50 mass part, 30 mass part, 20 mass part, 10 mass part, 5 mass part, 3 mass part and the like.
炭素質の割合は、特に限定されず、ごく少量ないし微量(例えば、検出限界以下)であってもよいが、無機固体酸化物及び炭素質の総量(炭素質で被覆された無機固体酸化物)に対して、0.01質量%以上(例えば、0.02質量%以上)、好ましくは0.05質量%以上(例えば、0.07質量%以上)、さらに好ましくは0.1質量%以上(例えば、0.12質量%以上)程度であってもよく、0.15質量%以上、0.2質量%以上、0.3質量%以上、0.5質量%以上、0.7質量%以上、0.8質量%以上、1質量部%以上等であってもよい。 The proportion of carbonaceous material is not particularly limited and may be a very small amount or a very small amount (for example, below the detection limit), but the total amount of inorganic solid oxide and carbonaceous material (inorganic solid oxide coated with carbonaceous material). With respect to 0.01% by mass or more (for example, 0.02% by mass or more), preferably 0.05% by mass or more (for example, 0.07% by mass or more), and more preferably 0.1% by mass or more (for example, 0.1% by mass or more). For example, it may be about 0.12% by mass or more), 0.15% by mass or more, 0.2% by mass or more, 0.3% by mass or more, 0.5% by mass or more, 0.7% by mass or more. , 0.8% by mass or more, 1 part by mass or more, and the like.
なお、炭素質の割合の上限値は、特に限定されず、例えば、無機固体酸化物及び炭素質の総量(炭素質で被覆された無機固体酸化物)に対して、99.9質量%、99.5質量%、99質量%、95質量%、90質量%、80質量%、70質量%、60質量%、50質量%、40質量%、30質量%、20質量%、10質量%、8質量%、5質量%、3質量%、2質量%以下、1.5質量%、1質量%、0.5質量%等であってもよい。 The upper limit of the proportion of carbonaceous material is not particularly limited, and is, for example, 99.9% by mass or 99 with respect to the total amount of inorganic solid oxide and carbonaceous material (inorganic solid oxide coated with carbonaceous material). .5% by mass, 99% by mass, 95% by mass, 90% by mass, 80% by mass, 70% by mass, 60% by mass, 50% by mass, 40% by mass, 30% by mass, 20% by mass, 10% by mass, 8 It may be mass%, 5 mass%, 3 mass%, 2 mass% or less, 1.5 mass%, 1 mass%, 0.5 mass% and the like.
炭素質の厚み(炭素質で形成された被覆層の厚み)は、特に限定されず、ごく薄い厚み(例えば、検出限界以下)であってもよいが、例えば、0.2nm以上(例えば、0.3nm〜100μm)、好ましくは0.5nm以上(例えば、0.6〜50μm)、さらに好ましくは0.6nm以上(例えば、0.7nm〜30μm)程度であってもよい。 The thickness of the carbonaceous material (thickness of the coating layer formed of the carbonaceous material) is not particularly limited and may be a very thin thickness (for example, below the detection limit), but is, for example, 0.2 nm or more (for example, 0). It may be about 0.3 nm to 100 μm), preferably 0.5 nm or more (for example, 0.6 to 50 μm), and more preferably about 0.6 nm or more (for example, 0.7 nm to 30 μm).
なお、炭素質の割合や厚みは、例えば、TGA(熱重量分析)等により測定・算出してもよい。例えば、炭素質の割合は、TGA分析にて重量変化(重量減少)を測定することで算出・算定してもよく、炭素質の厚み(平均厚み)は、当該重量変化と無機固体酸化物の表面積[(平均)粒子径から求められる(平均)表面積]及び炭素質の密度に基づいて算出・算定してもよい。 The ratio and thickness of carbonaceous material may be measured and calculated by, for example, TGA (thermogravimetric analysis) or the like. For example, the carbonaceous ratio may be calculated and calculated by measuring the weight change (weight loss) by TGA analysis, and the carbonaceous thickness (average thickness) is the weight change and the inorganic solid oxide. It may be calculated / calculated based on the surface area [(average) surface area obtained from the (average) particle size] and the density of carbonaceous material.
本発明の無機固体酸化物(炭素質コート無機固体酸化物)は、無機固体酸化物を被覆(コーティング、コート)することで製造できる。 The inorganic solid oxide (carbonic coated inorganic solid oxide) of the present invention can be produced by coating (coating, coating) the inorganic solid oxide.
被覆方法としては、炭素質の被覆の態様に応じて選択でき、例えば、無機固体酸化物に炭素質を塗布する方法[例えば、炭素質を付着する(まぶす)方法、炭素質を含む溶媒組成物を無機固体酸化物に塗布(スプレー等)ないし浸漬する(さらに必要に応じて乾燥させる)方法等]等であってもよく、特に、無機固体酸化物と炭素質材料との混合物[無機固体酸化物と炭素質材料を含む組成物、炭素質材料が付着した(炭素質材料が被覆された)無機固体酸化物]を焼成処理(炭化処理)する方法であってもよい。このような焼成処理により、無機固体酸化物に炭素質を効率よく一体化(コンポジット化、グラファイト層を形成)しやすい。 The coating method can be selected according to the mode of coating the carbonaceous material. For example, a method of applying the carbonaceous material to the inorganic solid oxide [for example, a method of adhering (sprinkling) the carbonaceous material, a solvent composition containing the carbonaceous material). May be applied to an inorganic solid oxide (spray, etc.) or immersed (further, if necessary, dried), etc.], and in particular, a mixture of the inorganic solid oxide and a carbonaceous material [inorganic solid oxidation] A method may be used in which a composition containing a substance and a carbonaceous material and an inorganic solid oxide to which the carbonaceous material is attached (coated with the carbonaceous material) are fired (carbonized). By such a firing treatment, it is easy to efficiently integrate carbonaceous material into the inorganic solid oxide (composite, form a graphite layer).
炭素質材料としては、炭素質を形成可能な材料(炭素含有材料)であれば、特に限定されず、有機材料(有機化合物)、例えば、樹脂又はポリマー{例えば、ビニル系樹脂[例えば、ビニルアルコ−ル系樹脂(例えば、ポリビニルアルコール等)、アミド系樹脂(例えば、ポリアクリルアミド、ポリビニルピロリドン等)、アミン系樹脂(例えば、ポリエチレンイミン等)、ハロゲン含有樹脂(例えば、ポリ塩化ビニル等)等]、フェノール樹脂、フラン樹脂、エポキシ樹脂、セルロース系樹脂[例えば、セルロース、セルロース誘導体(例えば、セルロースエーテル、セルロースエステル等)等]、ピッチ系材料(例えば、ピッチ等)等}、低分子ないし非ポリマー型成分{例えば、芳香族化合物[例えば、フェノール系化合物(例えば、フェノール、フロログルシノール等)等]、タール等}等が挙げられる。炭素質材料(炭素質の前駆体、炭素前駆体)は、単独で又は2種以上組み合わせてもよい。 The carbonaceous material is not particularly limited as long as it is a material capable of forming a carbonaceous substance (carbon-containing material), and is an organic material (organic compound), for example, a resin or a polymer {for example, a vinyl resin [for example, vinyl alcohol]. Lu-based resins (eg, polyvinyl alcohol, etc.), amide-based resins (eg, polyacrylamide, polyvinylpyrrolidone, etc.), amine-based resins (eg, polyethyleneimine, etc.), halogen-containing resins (eg, polyvinyl chloride, etc.)], Phenolic resins, furan resins, epoxy resins, cellulose-based resins [eg, cellulose, cellulose derivatives (eg, cellulose ethers, cellulose esters, etc.), etc.], pitch-based materials (eg, pitch, etc.)}, low molecular weight or non-polymeric types Ingredients {for example, aromatic compounds [for example, phenolic compounds (for example, phenol, fluoroglucolcinol, etc.)], tar, etc.} and the like can be mentioned. The carbonaceous material (carbonaceous precursor, carbonaceous precursor) may be used alone or in combination of two or more.
炭素質材料は、無機固体酸化物の分解点(分解温度)以下の温度で炭素化する材料であってもよい。換言すれば、炭素質材料の炭素化温度は、無機固体酸化物の分解点以下であってもよい。なお、炭素化温度は、その種類(例えば、低分子化合物、ポリマー等)にかかわらず、TG−DTA分析(熱重量示差熱分析)分析等により測定しうる。無機固体酸化物の分解点も、同様にTG−DTA分析(熱重量示差熱分析)分析等により測定しうる。 The carbonaceous material may be a material that carbonizes at a temperature equal to or lower than the decomposition point (decomposition temperature) of the inorganic solid oxide. In other words, the carbonization temperature of the carbonaceous material may be equal to or lower than the decomposition point of the inorganic solid oxide. The carbonization temperature can be measured by TG-DTA analysis (thermogravimetric differential thermal analysis) or the like regardless of the type (for example, low molecular weight compound, polymer, etc.). The decomposition point of the inorganic solid oxide can also be measured by TG-DTA analysis (thermogravimetric differential thermal analysis) or the like.
また、炭素質材料は、効率よく炭素質で被覆する等の観点から、溶媒に対して可溶性であってもよい。 Further, the carbonaceous material may be soluble in a solvent from the viewpoint of efficiently coating with carbonaceous material.
無機固体酸化物と炭素質材料との混合物は、これらを混合することで得ることができ、混合方法は特に限定されない。例えば、溶媒中(溶媒の存在下)で、無機固体酸化物と炭素質材料とを混合し、溶媒を除去することで混合物を得てもよい(無機固体酸化物に炭素質材料を付着させてもよい)。 A mixture of the inorganic solid oxide and the carbonaceous material can be obtained by mixing them, and the mixing method is not particularly limited. For example, the mixture may be obtained by mixing the inorganic solid oxide and the carbonaceous material in a solvent (in the presence of the solvent) and removing the solvent (adhering the carbonic material to the inorganic solid oxide). May be good).
溶媒としては、炭素質材料の種類等に応じて適宜選択でき、特に限定されず、例えば、後述の溶媒(水、有機溶媒等)等を使用してもよい。溶媒は、炭素質材料を溶解可能な溶媒であってもよく、炭素質材料を溶解してもよい。 The solvent can be appropriately selected depending on the type of carbonaceous material and the like, and is not particularly limited, and for example, a solvent (water, organic solvent, etc.) described later may be used. The solvent may be a solvent capable of dissolving the carbonaceous material, or may dissolve the carbonaceous material.
混合物は、焼成に先立って、予備焼成(炭素化、予備炭化)処理してもよい。このような予備焼成は、混合物中の不純物(例えば、溶媒、低分子成分等)を除去するための工程であってもよい。また、予備焼成は、炭素質材料の炭素化度合いを調整するための工程であってもよい。なお、予備焼成では、後述の除去を効率良く行いうるよう、適宜条件を調整してもよい。 The mixture may be pre-calcined (carbonized, pre-carbonized) prior to calcination. Such pre-baking may be a step for removing impurities (for example, solvent, low molecular weight components, etc.) in the mixture. Further, the pre-calcination may be a step for adjusting the degree of carbonization of the carbonaceous material. In the pre-baking, the conditions may be adjusted as appropriate so that the removal described later can be performed efficiently.
予備焼成において、予備焼成温度は、炭素質材料の種類等に応じて選択でき、例えば、650℃以下(例えば、150〜600℃)、好ましくは550℃以下(例えば、200〜500℃)、さらに好ましくは450℃以下(例えば、250〜400℃)等であってもよい。 In the pre-baking, the pre-baking temperature can be selected according to the type of carbonaceous material and the like, for example, 650 ° C or lower (for example, 150 to 600 ° C), preferably 550 ° C or lower (for example, 200 to 500 ° C), and further. It may be preferably 450 ° C. or lower (for example, 250 to 400 ° C.).
予備焼成は、通常、非酸化性雰囲気下(窒素、ヘリウム、アルゴン中など)で行ってもよい。 Pre-baking may usually be carried out in a non-oxidizing atmosphere (in nitrogen, helium, argon, etc.).
予備焼成は、撹拌下で行ってもよい。また、予備焼成は、常圧下で行ってもよく、減圧下で行ってもよい。 Pre-baking may be performed under stirring. Further, the preliminary firing may be performed under normal pressure or under reduced pressure.
予備焼成時間は、炭素質材料の種類等に応じて適宜選択でき、特に限定されず、例えば、10分以上、20分以上、30分以上等であってもよい。 The pre-baking time can be appropriately selected depending on the type of carbonaceous material and the like, and is not particularly limited, and may be, for example, 10 minutes or more, 20 minutes or more, 30 minutes or more.
なお、予備焼成後、必要に応じて、過剰な炭素質材料(無機固体酸化物に付着ないしコートしなかった炭素質材料)を除去してもよい。除去(分離)方法としては、特に限定されず、予備焼成物(予備焼成後の混合物)を適当な溶媒(後述の溶媒等)で洗浄する方法等が挙げられる。 After the pre-baking, the excess carbonaceous material (carbonaceous material that has not adhered to or coated with the inorganic solid oxide) may be removed, if necessary. The removal (separation) method is not particularly limited, and examples thereof include a method of washing the pre-baked product (mixture after pre-firing) with an appropriate solvent (solvent described later, etc.).
焼成(炭化)処理において、焼成温度は、炭素質材料の種類等に応じて選択できるが、例えば、500℃以上(例えば、500〜4000℃)、好ましくは550℃以上(例えば、550〜3000℃)、さらに好ましくは600℃以上(例えば、600〜2500℃)等であってもよく、650℃以上(例えば、650〜2000℃)等であってもよい。なお、焼成温度の上限値は、特に限定されず、炭素化(導電性)の観点からは高温であってもよいが、無機固体酸化物としての機能を効率良く担保・実現するという観点からは、無機固体酸化物の分解点(分解温度)以下(又は耐熱温度)であってもよい。 In the firing (carbonization) treatment, the firing temperature can be selected depending on the type of carbonaceous material and the like, and is, for example, 500 ° C. or higher (for example, 500 to 4000 ° C.), preferably 550 ° C. or higher (for example, 550 to 3000 ° C.). ), More preferably 600 ° C. or higher (for example, 600 to 2500 ° C.), 650 ° C. or higher (for example, 650 to 2000 ° C.), or the like. The upper limit of the firing temperature is not particularly limited and may be high from the viewpoint of carbonization (conductivity), but from the viewpoint of efficiently guaranteeing and realizing the function as an inorganic solid oxide. , It may be below the decomposition point (decomposition temperature) of the inorganic solid oxide (or heat resistant temperature).
焼成は、通常、非酸化性雰囲気下(窒素、ヘリウム、アルゴン中など)で行ってもよい。 Firing may usually be carried out in a non-oxidizing atmosphere (in nitrogen, helium, argon, etc.).
焼成は、撹拌下で行ってもよい。また、焼成は、常圧下で行ってもよく、減圧下で行ってもよい。 The firing may be carried out under stirring. Further, the firing may be performed under normal pressure or reduced pressure.
焼成時間は、炭素質材料の種類等に応じて適宜選択でき、特に限定されず、例えば、10分以上、30分以上、60分以上、120分以上等であってもよい。 The firing time can be appropriately selected depending on the type of carbonaceous material and the like, and is not particularly limited, and may be, for example, 10 minutes or more, 30 minutes or more, 60 minutes or more, 120 minutes or more, and the like.
(炭素質で被覆された無機固体酸化物の用途等)
炭素質コート無機固体酸化物は、例えば、電極の構成成分(電極を構成する成分)として使用できる。特に、電極の中でも、正極の構成成分とすることで、放電容量等を向上又は改善しうる。
(Use of inorganic solid oxide coated with carbonaceous material, etc.)
The carbonaceous coated inorganic solid oxide can be used, for example, as a component of the electrode (component of the electrode). In particular, among the electrodes, the discharge capacity and the like can be improved or improved by using the constituent components of the positive electrode.
また、導電性を有する炭素質コート無機固体酸化物は、導電性材料として使用できる。そのため、このような無機固体酸化物は、電極等を構成する導電性材料として使用できる。 Further, the carbonaceous coated inorganic solid oxide having conductivity can be used as a conductive material. Therefore, such an inorganic solid oxide can be used as a conductive material constituting an electrode or the like.
[炭素質コート無機固体酸化物で被覆された正極活物質]
本発明の別の態様では、本発明の正極活物質は、粒子状の炭素質コート無機固体酸化物で被覆(コーティング、コート)されている。換言すれば、本発明の材料は、炭素質コート無機固体酸化物で被覆(コーティング)した正極活物質ということができる。このような材料は、炭素質コート無機固体酸化物と正極活物質との複合材料(コンポジット)であってもよい。
[Positive electrode active material coated with carbonaceous coated inorganic solid oxide]
In another aspect of the invention, the positive electrode active material of the invention is coated (coated, coated) with a particulate carbonaceous coated inorganic solid oxide. In other words, the material of the present invention can be said to be a positive electrode active material coated with a carbonaceous coated inorganic solid oxide. Such a material may be a composite material (composite) of a carbonaceous coated inorganic solid oxide and a positive electrode active material.
なお、粒子状の炭素質コート無機固体酸化物は、正極活物質の少なくとも一部を被覆(又は無機固体酸化物の少なくとも一部と一体化)していればよく、正極活物質(又はその表面)の全部を被覆していてもよく、一部を被覆していて(又は被覆していない部分を有していて)もよい。 The particulate carbonaceous coated inorganic solid oxide may cover at least a part of the positive electrode active material (or be integrated with at least a part of the inorganic solid oxide), and the positive electrode active material (or its surface) may be coated. ) May be completely covered, or a part may be covered (or may have an uncovered portion).
正極活物質を被覆するときに用いる粒子状の炭素質コート無機固体酸化物としては、前記した無機固体酸化物と同様のものを使用してもよく、ニオブ酸化物(例えば、ニオブ酸リチウム等のニオブ酸アルカリ金属)等を好適に使用してもよい。 As the particulate carbonaceous coated inorganic solid oxide used for coating the positive electrode active material, the same as the above-mentioned inorganic solid oxide may be used, and niobium oxide (for example, lithium niobate or the like) may be used. (Alkalimetal niobate) and the like may be preferably used.
ここで、本発明者は、炭素質コート無機固体酸化物の平均粒子径が小さいほど、放電容量に与える影響が大きい、即ち放電容量をより一層改善又は向上しうることを見出した。 Here, the present inventor has found that the smaller the average particle size of the carbonaceous coated inorganic solid oxide, the greater the influence on the discharge capacity, that is, the discharge capacity can be further improved or improved.
正極活物質を被覆するときに用いる粒子状の炭素質コート無機固体酸化物の平均粒子径は、例えば、5μm以下、好ましくは2μm以下、より好ましくは1μm以下であってもよい。なお、下限値は、特に限定されず、例えば、0.001μm以上である。 The average particle size of the particulate carbonaceous coated inorganic solid oxide used for coating the positive electrode active material may be, for example, 5 μm or less, preferably 2 μm or less, and more preferably 1 μm or less. The lower limit is not particularly limited, and is, for example, 0.001 μm or more.
炭素質コート無機固体酸化物で被覆された正極活物質の平均粒子径は、正極活物質層の厚み以下であってもよく、例えば、正極活物質層の厚みの1倍以下、0.9倍以下、0.8倍以下、0.7倍以下、0.6倍以下、0.5倍以下、0.4倍以下などであってもよい。 The average particle size of the positive electrode active material coated with the carbonaceous coated inorganic solid oxide may be equal to or less than the thickness of the positive electrode active material layer, for example, 1 times or less and 0.9 times the thickness of the positive electrode active material layer. Below, it may be 0.8 times or less, 0.7 times or less, 0.6 times or less, 0.5 times or less, 0.4 times or less, and the like.
炭素質の割合や厚みは、前記と同様の割合や厚みであってもよい。 The ratio and thickness of carbonaceous material may be the same ratio and thickness as described above.
正極活物質を粒子状の炭素質コート無機固体酸化物で被覆する方法としては、炭素質コート無機固体酸化物の被覆の態様に応じて選択できる。例えば、正極活物質に粒子状の炭素質コート無機固体酸化物を塗布する方法[例えば、炭素質コート無機固体酸化物を付着する(まぶす)方法、炭素質コート無機固体酸化物を含む溶媒組成物を正極活物質に塗布(スプレー等)ないし浸漬する(さらに必要に応じて乾燥させる)方法等]等であってもよく、特に、正極活物質と炭素質コート無機固体酸化物材料との混合物[正極活物質と炭素質コート無機固体酸化物材料を含む組成物、炭素質コート無機固体酸化物材料が付着した(炭素質コート無機固体酸化物材料が被覆された)正極活物質]を焼成処理する方法であってもよい。このような焼成処理により、正極活物質に該無機固体酸化物を効率よく一体化(コンポジット化)しやすい。 The method of coating the positive electrode active material with the particulate carbonaceous coated inorganic solid oxide can be selected depending on the mode of coating the carbonaceous coated inorganic solid oxide. For example, a method of applying a particulate carbonaceous coated inorganic solid oxide to a positive electrode active material [for example, a method of adhering (spraying) a carbonaceous coated inorganic solid oxide, a solvent composition containing a carbonaceous coated inorganic solid oxide. Is applied to the positive electrode active material (spray, etc.) or immersed (further, if necessary, dried), etc.], and in particular, a mixture of the positive electrode active material and the carbonaceous coated inorganic solid oxide material [ A composition containing a positive electrode active material and a carbonaceous coated inorganic solid oxide material, and a positive electrode active material to which a carbonaceous coated inorganic solid oxide material is attached (coated with a carbonic coated inorganic solid oxide material)] are fired. It may be a method. By such a firing treatment, it is easy to efficiently integrate (composite) the inorganic solid oxide with the positive electrode active material.
正極活物質と炭素質コート無機固体酸化物との混合物は、これらを混合することで得ることができ、混合方法は特に限定されない。例えば、溶媒中(溶媒の存在下)で、正極活物質と炭素質コート無機固体酸化物とを混合し、溶媒を除去することで混合物を得てもよい(正極活物質に炭素質コート無機固体酸化物材料を付着させてもよい)。 A mixture of the positive electrode active material and the carbonaceous coated inorganic solid oxide can be obtained by mixing them, and the mixing method is not particularly limited. For example, the positive electrode active material and the carbonaceous coated inorganic solid oxide may be mixed in a solvent (in the presence of the solvent), and the mixture may be obtained by removing the solvent (carbonic coated inorganic solid on the positive electrode active material). Oxide material may be attached).
溶媒としては、炭素質コート無機固体酸化物材料の種類等に応じて適宜選択でき、特に限定されず、例えば、後述の溶媒(水、有機溶媒等)等を使用してもよい。溶媒は、無機固体酸化物材料を溶解可能な溶媒であってもよく、無機固体酸化物材料を溶解してもよい。 The solvent can be appropriately selected depending on the type of carbonaceous coated inorganic solid oxide material and the like, and is not particularly limited, and for example, a solvent (water, organic solvent, etc.) described later may be used. The solvent may be a solvent capable of dissolving the inorganic solid oxide material, or may dissolve the inorganic solid oxide material.
焼成処理において、焼成温度は、炭素質コート無機固体酸化物材料の種類等に応じて選択できるが、例えば、500℃以上(例えば、500〜4000℃)、好ましくは550℃以上(例えば、550〜3000℃)、さらに好ましくは600℃以上(例えば、600〜2500℃)等であってもよく、650℃以上(例えば、650〜2000℃)等であってもよい。なお、焼成温度の上限値は、特に限定されず、炭素質コート無機固体酸化物としての機能を効率良く担保・実現するという観点からは、炭素質コート無機固体酸化物の分解点(分解温度)以下(又は耐熱温度)であってもよい。 In the calcination treatment, the calcination temperature can be selected depending on the type of carbonaceous coated inorganic solid oxide material and the like, and is, for example, 500 ° C. or higher (for example, 500 to 4000 ° C.), preferably 550 ° C. or higher (for example, 550 to 550 ° C.). 3000 ° C.), more preferably 600 ° C. or higher (for example, 600 to 2500 ° C.), 650 ° C. or higher (for example, 650 to 2000 ° C.), or the like. The upper limit of the firing temperature is not particularly limited, and from the viewpoint of efficiently guaranteeing and realizing the function as the carbonaceous coated inorganic solid oxide, the decomposition point (decomposition temperature) of the carbonic coated inorganic solid oxide. It may be the following (or heat resistant temperature).
焼成は、通常、非酸化性雰囲気下(窒素、ヘリウム、アルゴン中など)で行ってもよい。 Firing may usually be carried out in a non-oxidizing atmosphere (in nitrogen, helium, argon, etc.).
焼成は、撹拌下で行ってもよい。また、焼成は、常圧下で行ってもよく、減圧下で行ってもよい。 The firing may be carried out under stirring. Further, the firing may be performed under normal pressure or reduced pressure.
焼成時間は、炭素質材料の種類等に応じて適宜選択でき、特に限定されず、例えば、10分以上、30分以上、60分以上、120分以上等であってもよい。 The firing time can be appropriately selected depending on the type of carbonaceous material and the like, and is not particularly limited, and may be, for example, 10 minutes or more, 30 minutes or more, 60 minutes or more, 120 minutes or more, and the like.
以上により、本発明の別の態様では、平均粒子径5μm以下の粒子状である炭素質コート無機固体酸化物で被覆された正極活物質(正極活物質を該炭素質コート無機固体酸化物で被覆(コーティング)した材料)であってもよい。また、この正極活物質(又は材料)は、該炭素質コート無機固体酸化物がニオブ酸アルカリ金属を含むものであってもよい。 As described above, in another aspect of the present invention, a positive electrode active material coated with a carbonaceous coated inorganic solid oxide having an average particle diameter of 5 μm or less (the positive electrode active material is coated with the carbonic coated inorganic solid oxide). (Coated material) may be used. Further, in the positive electrode active material (or material), the carbonaceous coated inorganic solid oxide may contain an alkali metal niobate.
以下、代表的な態様として、正極を構成する態様について詳述する。 Hereinafter, as a typical aspect, an aspect constituting the positive electrode will be described in detail.
[正極]
正極は、正極活物質層を有している。このような正極活物質層は、例えば、後述するように、正極合材(正極活物質を含む正極合材)を用いて[例えば、正極合材(正極活物質組成物)の塗工(塗布)により]形成されうる。
[Positive electrode]
The positive electrode has a positive electrode active material layer. For such a positive electrode active material layer, for example, as will be described later, a positive electrode mixture (positive electrode mixture containing a positive electrode active material) is used [for example, coating (coating) of a positive electrode mixture (positive electrode active material composition). )] Can be formed.
本発明では、この正極活物質層(又は正極合材)に、炭素質コート無機固体酸化物を含有させることを特徴とする。 The present invention is characterized in that the positive electrode active material layer (or the positive electrode mixture) contains a carbonaceous coated inorganic solid oxide.
(正極活物質)
正極活物質としては、各種イオン(リチウムイオン、ナトリウムイオン等)を吸蔵・放出可能であれば良く、例えば、従来公知の二次電池(リチウムイオン二次電池やナトリウムイオン二次電池)等で使用される正極活物質等を用いることができる。
(Positive electrode active material)
As the positive electrode active material, various ions (lithium ion, sodium ion, etc.) may be stored and released, and for example, it is used in a conventionally known secondary battery (lithium ion secondary battery, sodium ion secondary battery, etc.). A positive electrode active material or the like to be used can be used.
リチウムイオンを吸蔵・放出可能な活物質(例えば、リチウムイオン二次電池の活物質)としては、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム、LiNi1−x−yCoxMnyO2やLiNi1−x−yCoxAlyO2(0≦x≦1、0≦y≦1)で表される三元系酸化物などの遷移金属酸化物、LiAPO4(A=Fe、Mn、Ni、Co)などのオリビン構造を有する化合物、遷移金属を複数取り入れた固溶材料(電気化学的に不活性な層状のLi2MnO3と、電気化学的に活性な層状のLiMO2(M=Co、Niなどの遷移金属)との固溶体)、LiCoxMn1−xO2(0≦x≦1)、LiNixMn1−xO2(0≦x≦1)、Li2APO4F(A=Fe、Mn、Ni、Co)などのフッ化オリビン構造を有する化合物、硫黄などを用いることができる。これらを単独で使用してもよく、複数組み合わせて使用してもよい。 The lithium ion absorbing and releasing active material capable (e.g., the active material of the lithium ion secondary battery) The lithium cobaltate, lithium nickelate, lithium manganate, Ya LiNi 1-x-y Co x Mn y O 2 Transition metal oxides such as ternary oxides represented by LiNi 1-xy Co x Al y O 2 (0 ≦ x ≦ 1, 0 ≦ y ≦ 1), LiAPO 4 (A = Fe, Mn, Solid-soluble materials (electrochemically inactive layered Li 2 MnO 3 and electrochemically active layered LiMO 2 (M =) incorporating a plurality of compounds having an olivine structure such as Ni and Co) and transition metals. Solid solution with transition metals such as Co and Ni)), LiCo x Mn 1-x O 2 (0 ≦ x ≦ 1), LiNi x Mn 1-x O 2 (0 ≦ x ≦ 1), Li 2 APO 4 F Compounds having an olivine fluoride structure such as (A = Fe, Mn, Ni, Co), sulfur and the like can be used. These may be used alone or in combination of two or more.
ナトリウムイオンを吸蔵・放出可能な活物質(例えば、ナトリウムイオン二次電池の活物質)としては、NaNiO2、NaCoO2、NaMnO2、NaVO2、NaFeO2、Na(NiXMn1−X)O2(0<X<1)、Na(FeXMn1−X)O2(0<X<1)、NaVPO4F、Na2FePO4F、Na3V2(PO4)3等が挙げられる。これらを単独で使用してもよく、複数組み合わせて使用してもよい。 Examples of active materials capable of occluding and releasing sodium ions (for example, active materials of sodium ion secondary batteries) include NaNiO 2 , NaCoO 2 , NamnO 2 , NaVO 2 , NaFeO 2 , and Na (Ni X Mn 1-X ) O. 2 (0 <X <1), Na (Fe X Mn 1-X ) O 2 (0 <X <1), NaVPO 4 F, Na 2 FePO 4 F, Na 3 V 2 (PO 4 ) 3, etc. Be done. These may be used alone or in combination of two or more.
正極活物質は単独で又は2種以上組み合わせて使用してもよい。 The positive electrode active material may be used alone or in combination of two or more.
これらの中でも、特に、リチウムイオンを吸蔵・放出可能な正極活物質を好適に使用してもよい。このような正極活物質は、例えば、非水系電解液を利用したリチウムイオン二次電池等に使用される。このような非水系は、水系に比べて、通常、イオン伝導度が低いが、本発明では、このような場合であっても、効率よく放電容量の改善等を効率よく実現しうる。 Among these, a positive electrode active material capable of occluding and releasing lithium ions may be preferably used. Such a positive electrode active material is used, for example, in a lithium ion secondary battery or the like using a non-aqueous electrolyte solution. Such a non-aqueous system usually has a lower ionic conductivity than an aqueous system, but in the present invention, even in such a case, improvement of the discharge capacity and the like can be efficiently realized.
(他の成分)
正極活物質層(正極合材)は、他の成分(正極活物質及び炭素質コート無機固体酸化物以外の成分)を含んでいてもよい。
(Other ingredients)
The positive electrode active material layer (positive electrode mixture) may contain other components (components other than the positive electrode active material and the carbonaceous coated inorganic solid oxide).
このような他の成分としては、特に限定されないが、例えば、導電助剤(導電物質、導電性材料)、炭素質コートされていない無機固体酸化物、結着剤等が挙げられる。 Examples of such other components include, but are not limited to, conductive aids (conductive substances, conductive materials), carbonaceous-coated inorganic solid oxides, binders, and the like.
導電助剤としては、例えば、カーボンブラック(例えば、アセチンブラック等)、グラファイト、カーボンナノチューブ(例えば、単層カーボンナノチューブ、多層カーボンナノチューブ等)、炭素繊維(例えば、気相法炭素繊維等)、金属粉末材料等が挙げられる。導電助剤は、単独で又は2種以上組み合わせて使用してもよい。 Examples of the conductive auxiliary agent include carbon black (for example, acetyline black, etc.), graphite, carbon nanotubes (for example, single-walled carbon nanotubes, multi-walled carbon nanotubes, etc.), carbon fibers (for example, vapor-phase carbon fibers, etc.), and the like. Examples include metal powder materials. The conductive auxiliary agent may be used alone or in combination of two or more.
なお、導電性を有する炭素質コート無機固体酸化物は、それ自体、導電助剤(導電性材料)として使用しうる。このような場合、上記導電助剤(導電性材料)は、炭素質コート無機固体酸化物でない導電助剤(導電性材料)ということができる。このような場合、炭素質コート無機固体酸化物は第1の導電助剤(第1の導電性材料)、上記導電助剤(炭素質コート無機固体酸化物でない導電助剤)は、第2の導電助剤(第2の導電性材料)ということができる。 The carbonaceous coated inorganic solid oxide having conductivity can be used as a conductive auxiliary agent (conductive material) by itself. In such a case, the conductive auxiliary agent (conductive material) can be said to be a conductive auxiliary agent (conductive material) that is not a carbonaceous-coated inorganic solid oxide. In such a case, the carbonaceous coated inorganic solid oxide is the first conductive auxiliary agent (first conductive material), and the conductive auxiliary agent (the conductive auxiliary agent that is not the carbonic coated inorganic solid oxide) is the second. It can be called a conductive auxiliary agent (second conductive material).
結着剤(バインダー)としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系樹脂;スチレン−ブタジエンゴム、ニトリルブタジエンゴム等の合成ゴム;ポリアミドイミド等のポリアミド系樹脂;ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂;ポリ(メタ)アクリル系樹脂;ポリアクリル酸;カルボキシメチルセルロース等のセルロース系樹脂;等が挙げられる。結着剤は単独で又は2種以上組み合わせて使用してもよい。 Examples of the binder (binder) include fluororesins such as polyvinylidene fluoride and polytetrafluoroethylene; synthetic rubbers such as styrene-butadiene rubber and nitrile butadiene rubber; polyamide resins such as polyamideimide; polyethylene, polypropylene and the like. Polypropylene-based resin; poly (meth) acrylic-based resin; polyacrylic acid; cellulose-based resin such as carboxymethyl cellulose; and the like. The binder may be used alone or in combination of two or more.
(正極活物質層)
正極活物質層において、正極活物質の割合(正極合材のうち固形分全体に対する正極活物質の割合)は、例えば、50質量%以上(例えば、60質量%以上、70質量%以上)程度の範囲から選択してもよく、75質量%以上(例えば、80質量%以上)、好ましくは85質量%以上(例えば、88質量%以上)、さらに好ましくは90質量%以上であってもよい。
(Positive electrode active material layer)
In the positive electrode active material layer, the ratio of the positive electrode active material (the ratio of the positive electrode active material to the total solid content in the positive electrode mixture) is, for example, about 50% by mass or more (for example, 60% by mass or more, 70% by mass or more). It may be selected from the range, and may be 75% by mass or more (for example, 80% by mass or more), preferably 85% by mass or more (for example, 88% by mass or more), and more preferably 90% by mass or more.
なお、正極活物質層において、正極活物質の割合の上限値は、特に限定されないが、例えば、99.5質量%、99質量%、98.5質量%、98質量%、97.5質量%、97質量%、96質量%、95質量%、94質量%、93質量%等であってもよい。 In the positive electrode active material layer, the upper limit of the ratio of the positive electrode active material is not particularly limited, but is, for example, 99.5% by mass, 99% by mass, 98.5% by mass, 98% by mass, 97.5% by mass. , 97% by mass, 96% by mass, 95% by mass, 94% by mass, 93% by mass, and the like.
なお、これらの下限値と上限値とを適宜組み合わせて適当な範囲(例えば、90〜99質量%等)を設定してもよい(他も同じ)。 An appropriate range (for example, 90 to 99% by mass) may be set by appropriately combining these lower limit values and upper limit values (others are the same).
正極活物質層において、炭素質コート無機固体酸化物の存在形態は、特に限定されず、正極活物質を被覆する形態(正極活物質との焼結体等)、正極活物質に含有(ドープ)する形態、正極活物質と分離して存在する形態、これらが混在した形態等のいずれであってもよく、特に、コスト面や効率よく放電容量を向上又は上昇させる等の観点から、正極活物質と分離した形態であってもよい。 In the positive electrode active material layer, the present form of the carbonaceous coated inorganic solid oxide is not particularly limited, and is contained in the positive electrode active material in the form of coating the positive electrode active material (such as a sintered body with the positive electrode active material) or in the positive electrode active material (dope). The positive electrode active material may be in any of a form in which the positive electrode is used, a form in which the positive electrode active material is separated from the positive electrode active material, a form in which these are mixed, and the like, and in particular, from the viewpoint of cost and efficiency in improving or increasing the discharge capacity. It may be in a form separated from.
正極活物質層において、炭素質コート無機固体酸化物(又は炭素質コート無機固体酸化物で被覆された正極活物質における該炭素質コート無機固体酸化物、以下同じ)の割合は、例えば、0.01質量%以上(例えば、0.05質量%以上)程度の範囲から選択してもよく、0.1質量%以上(例えば、0.2質量%以上)、好ましくは0.3質量%以上(例えば、0.4質量%以上)、さらに好ましくは0.5質量%以上(例えば、0.7質量%以上、0.8質量%以上等)であってもよい。 In the positive electrode active material layer, the ratio of the carbonaceous coated inorganic solid oxide (or the carbonic coated inorganic solid oxide in the positive electrode active material coated with the carbonic coated inorganic solid oxide, the same applies hereinafter) is, for example, 0. It may be selected from the range of about 01% by mass or more (for example, 0.05% by mass or more), 0.1% by mass or more (for example, 0.2% by mass or more), preferably 0.3% by mass or more (for example, 0.3% by mass or more). For example, it may be 0.4% by mass or more), more preferably 0.5% by mass or more (for example, 0.7% by mass or more, 0.8% by mass or more, etc.).
なお、正極活物質層において、炭素質コート無機固体酸化物の割合の上限値は、特に限定されないが、例えば、20質量%、19質量%、18質量%、17質量%、16質量%、15質量%、14質量%、13質量%、12質量%、11質量%、10質量%、9質量%、8質量%、7質量%、6質量%、5質量%、4質量%、3質量%、2質量%、1.5質量%等であってもよい。 The upper limit of the proportion of the carbonaceous coated inorganic solid oxide in the positive electrode active material layer is not particularly limited, but is, for example, 20% by mass, 19% by mass, 18% by mass, 17% by mass, 16% by mass, and 15%. Mass%, 14 mass%, 13 mass%, 12 mass%, 11 mass%, 10 mass%, 9 mass%, 8 mass%, 7 mass%, 6 mass%, 5 mass%, 4 mass%, 3 mass% , 2% by mass, 1.5% by mass, etc.
炭素質コート無機固体酸化物の割合は、例えば、正極活物質100質量部に対して、0.01質量部以上(例えば、0.05質量部以上)程度の範囲から選択してもよく、0.1質量部以上(例えば、0.2質量部以上)、好ましくは0.3質量部以上(例えば、0.4質量部以上)、さらに好ましくは0.5質量部以上(例えば、0.7質量部以上、0.8質量部以上、0.9質量部以上、1質量部以上等)であってもよい。 The ratio of the carbonaceous coated inorganic solid oxide may be selected from the range of, for example, about 0.01 part by mass or more (for example, 0.05 part by mass or more) with respect to 100 parts by mass of the positive electrode active material, and is 0. .1 parts by mass or more (for example, 0.2 parts by mass or more), preferably 0.3 parts by mass or more (for example, 0.4 parts by mass or more), more preferably 0.5 parts by mass or more (for example, 0.7 parts by mass). It may be (mass part or more, 0.8 parts by mass or more, 0.9 parts by mass or more, 1 part by mass or more, etc.).
なお、正極活物質100質量部に対する、炭素質コート無機固体酸化物の割合の上限値は、特に限定されないが、例えば、20質量部、19質量部、18質量部、17質量部、16質量部、15質量部、14質量部、13質量部、12質量部、11質量部、10質量部、9質量部、8質量部、7質量部、6質量部、5質量部、4質量部、3質量部、2質量部、1.5質量部等であってもよい。 The upper limit of the ratio of the carbonaceous coated inorganic solid oxide to 100 parts by mass of the positive electrode active material is not particularly limited, but is, for example, 20 parts by mass, 19 parts by mass, 18 parts by mass, 17 parts by mass, and 16 parts by mass. , 15 parts by mass, 14 parts by mass, 13 parts by mass, 12 parts by mass, 11 parts by mass, 10 parts by mass, 9 parts by mass, 8 parts by mass, 7 parts by mass, 6 parts by mass, 5 parts by mass, 4 parts by mass, 3 parts. It may be a mass part, 2 parts by mass, 1.5 parts by mass, or the like.
正極活物質層が導電助剤(炭素質コート無機固体酸化物でない導電助剤)を含む場合、正極活物質層において、導電助剤(第2の導電助剤、第2の導電性材料)の割合は、例えば、0.1質量%以上(例えば、0.2質量%以上)程度の範囲から選択してもよく、0.3質量%以上(例えば、0.4質量%以上)、好ましくは0.5質量%以上(例えば、0.8質量%以上)、さらに好ましくは1質量%以上(例えば、1.2質量%以上、1.5質量%以上、1.8質量%以上、2質量%以上、2.2質量%以上、2.5質量%以上等)であってもよい。 When the positive electrode active material layer contains a conductive auxiliary agent (a conductive auxiliary agent that is not a carbonaceous coated inorganic solid oxide), in the positive positive material active material layer, the conductive auxiliary agent (second conductive auxiliary agent, second conductive material) The ratio may be selected from the range of, for example, about 0.1% by mass or more (for example, 0.2% by mass or more), and is preferably 0.3% by mass or more (for example, 0.4% by mass or more). 0.5% by mass or more (for example, 0.8% by mass or more), more preferably 1% by mass or more (for example, 1.2% by mass or more, 1.5% by mass or more, 1.8% by mass or more, 2% by mass) % Or more, 2.2% by mass or more, 2.5% by mass or more, etc.).
なお、正極活物質層が導電助剤(炭素質コート無機固体酸化物でない導電助剤)を含む場合、正極活物質層において、導電助剤(第2の導電助剤、第2の導電性材料)の割合の上限値は、特に限定されないが、例えば、30質量%、29質量%、28質量%、27質量%、26質量%、25質量%、24質量%、23質量%、22質量%、21質量%、20質量%、19質量%、18質量%、17質量%、16質量%、15質量%、14質量%、13質量%、12質量%、11質量%、10質量%、9質量%、8質量%以下、7質量%、6質量%、5質量%、4質量%等であってもよい。 When the positive electrode active material layer contains a conductive auxiliary agent (a conductive auxiliary agent that is not a carbonaceous coated inorganic solid oxide), the conductive auxiliary agent (second conductive auxiliary agent, second conductive material) is contained in the positive electrode active material layer. The upper limit of the ratio of) is not particularly limited, but is, for example, 30% by mass, 29% by mass, 28% by mass, 27% by mass, 26% by mass, 25% by mass, 24% by mass, 23% by mass, and 22% by mass. , 21% by mass, 20% by mass, 19% by mass, 18% by mass, 17% by mass, 16% by mass, 15% by mass, 14% by mass, 13% by mass, 12% by mass, 11% by mass, 10% by mass, 9 It may be mass%, 8 mass% or less, 7 mass%, 6 mass%, 5 mass%, 4 mass% and the like.
正極活物質層が導電助剤(第2の導電助剤、第2の導電性材料)を含む場合、炭素質コート無機固体酸化物(第1の導電助剤、第1の導電性材料)の割合は、例えば、導電助剤(第2の導電助剤、第2の導電性材料)100質量部に対して、0.01質量部以上(例えば、0.02質量部以上)程度の範囲から選択してもよく、0.03質量部以上(例えば、0.05質量部以上)、好ましくは0.1質量部以上(例えば、0.15質量部以上)、さらに好ましくは0.2質量部以上(例えば、0.25質量部以上、0.3質量部以上等)であってもよく、0.5質量部以上、1質量部以上、3質量部以上、5質量部以上、10質量部以上、15質量部以上、20質量部以上、25質量部以上、30質量部以上等であってもよい。 When the positive electrode active material layer contains a conductive auxiliary agent (second conductive auxiliary agent, second conductive material), the carbonaceous coated inorganic solid oxide (first conductive auxiliary agent, first conductive material) The ratio is, for example, from a range of about 0.01 parts by mass or more (for example, 0.02 parts by mass or more) with respect to 100 parts by mass of the conductive aid (second conductive auxiliary agent, second conductive material). It may be selected, and may be selected by 0.03 parts by mass or more (for example, 0.05 parts by mass or more), preferably 0.1 parts by mass or more (for example, 0.15 parts by mass or more), and more preferably 0.2 parts by mass. The above (for example, 0.25 parts by mass or more, 0.3 parts by mass or more, etc.) may be used, and 0.5 parts by mass or more, 1 part by mass or more, 3 parts by mass or more, 5 parts by mass or more, and 10 parts by mass or more. As mentioned above, it may be 15 parts by mass or more, 20 parts by mass or more, 25 parts by mass or more, 30 parts by mass or more, and the like.
なお、正極活物質層が導電助剤(第2の導電助剤、第2の導電性材料)を含む場合、導電助剤(第2の導電助剤、第2の導電性材料)100質量部に対する、炭素質コート無機固体酸化物(第1の導電助剤、第1の導電性材料)の割合の上限値は、特に限定されないが、例えば、2000質量部、1500質量部、1200質量部、1000質量部、900質量部、800質量部、700質量部、600質量部、500質量部、400質量部、300質量部、200質量部、150質量部、100質量部、95質量部、90質量部、85質量部、80質量部、70質量部、60質量部、50質量部等であってもよい。 When the positive electrode active material layer contains a conductive auxiliary agent (second conductive auxiliary agent, second conductive material), 100 parts by mass of the conductive auxiliary agent (second conductive auxiliary agent, second conductive material). The upper limit of the ratio of the carbonaceous coated inorganic solid oxide (first conductive auxiliary agent, first conductive material) to the carbonaceous coated inorganic solid oxide is not particularly limited, but is, for example, 2000 parts by mass, 1500 parts by mass, and 1200 parts by mass. 1000 parts by mass, 900 parts by mass, 800 parts by mass, 700 parts by mass, 600 parts by mass, 500 parts by mass, 400 parts by mass, 300 parts by mass, 200 parts by mass, 150 parts by mass, 100 parts by mass, 95 parts by mass, 90 parts by mass. Parts, 85 parts by mass, 80 parts by mass, 70 parts by mass, 60 parts by mass, 50 parts by mass, and the like may be used.
正極活物質層が結着剤を含む場合、正極活物質層において、結着剤の割合は、例えば、0.1質量%以上(例えば、0.2質量%以上)程度の範囲から選択してもよく、0.3質量%以上(例えば、0.4質量%以上)、好ましくは0.5質量%以上(例えば、0.8質量%以上)、さらに好ましくは1質量%以上(例えば、1.2質量%以上、1.5質量%以上、1.8質量%以上、2質量%以上、2.2質量%以上、2.5質量%以上等)であってもよい。 When the positive electrode active material layer contains a binder, the proportion of the binder in the positive electrode active material layer is selected from, for example, about 0.1% by mass or more (for example, 0.2% by mass or more). It may be 0.3% by mass or more (for example, 0.4% by mass or more), preferably 0.5% by mass or more (for example, 0.8% by mass or more), and more preferably 1% by mass or more (for example, 1). .2% by mass or more, 1.5% by mass or more, 1.8% by mass or more, 2% by mass or more, 2.2% by mass or more, 2.5% by mass or more, etc.).
なお、正極活物質層が結着剤を含む場合、正極活物質層において、結着剤の割合の上限値は、特に限定されないが、例えば、30質量%、29質量%、28質量%、27質量%、26質量%、25質量%、24質量%、23質量%、22質量%、21質量%、20質量%、19質量%、18質量%、17質量%、16質量%、15質量%、14質量%、13質量%、12質量%、11質量%、10質量%、9質量%、8質量%以下、7質量%、6質量%、5質量%、4質量%等であってもよい。 When the positive electrode active material layer contains a binder, the upper limit of the proportion of the binder in the positive electrode active material layer is not particularly limited, but is, for example, 30% by mass, 29% by mass, 28% by mass, 27. Mass%, 26 mass%, 25 mass%, 24 mass%, 23 mass%, 22 mass%, 21 mass%, 20 mass%, 19 mass%, 18 mass%, 17 mass%, 16 mass%, 15 mass% , 14% by mass, 13% by mass, 12% by mass, 11% by mass, 10% by mass, 9% by mass, 8% by mass or less, 7% by mass, 6% by mass, 5% by mass, 4% by mass, etc. Good.
正極活物質層の塗工質量は、特に限定されず、例えば、1mg/cm2以上(例えば、1〜5mg/cm2)等であってもよい。特に、本発明では、正極活物質層の塗工質量を比較的大きい量、例えば、5mg/cm2以上(例えば、6mg/cm2以上、7mg/cm2以上、8mg/cm2以上、9mg/cm2以上)程度、通常、10mg/cm2以上(例えば、12mg/cm2以上)、好ましくは15mg/cm2以上(例えば、16mg/cm2以上)、さらに好ましくは17mg/cm2以上(例えば、18mg/cm2以上)であってもよく、19mg/cm2以上、20mg/cm2以上、21mg/cm2以上、22mg/cm2以上、23mg/cm2以上、24mg/cm2以上、25mg/cm2以上、28mg/cm2以上、30mg/cm2以上、32mg/cm2以上、35mg/cm2以上、38mg/cm2以上、40mg/cm2以上、42mg/cm2以上、45mg/cm2以上、48mg/cm2以上、50mg/cm2以上等とすることもできる。 The coating mass of the positive electrode active material layer is not particularly limited, and may be, for example, 1 mg / cm 2 or more (for example, 1 to 5 mg / cm 2 ). In particular, in the present invention, the coating mass of the positive electrode active material layer is applied in a relatively large amount, for example, 5 mg / cm 2 or more (for example, 6 mg / cm 2 or more, 7 mg / cm 2 or more, 8 mg / cm 2 or more, 9 mg / cm / About cm 2 or more, usually 10 mg / cm 2 or more (for example, 12 mg / cm 2 or more), preferably 15 mg / cm 2 or more (for example, 16 mg / cm 2 or more), and more preferably 17 mg / cm 2 or more (for example). , 18 mg / cm 2 or more), 19 mg / cm 2 or more, 20 mg / cm 2 or more, 21 mg / cm 2 or more, 22 mg / cm 2 or more, 23 mg / cm 2 or more, 24 mg / cm 2 or more, 25 mg / Cm 2 or more, 28 mg / cm 2 or more, 30 mg / cm 2 or more, 32 mg / cm 2 or more, 35 mg / cm 2 or more, 38 mg / cm 2 or more, 40 mg / cm 2 or more, 42 mg / cm 2 or more, 45 mg / cm It can be 2 or more, 48 mg / cm 2 or more, 50 mg / cm 2 or more, and the like.
このような比較的大きい塗工質量とすることで、炭素質コート無機固体酸化物による、放電容量の改善ないし向上効果等を効率よく得やすいようである。この理由は定かではないが、塗工質量が大きい程、前記のような正極活物質層における正極活物質ないしそのイオン(例えば、リチウムイオン)の濃度勾配がより大きくなり、そのため、充放電容量の低下の程度もより大きくなると考えられる。しかし、炭素質で被覆された無機固体酸化物を配合することで、濃度勾配を効率よく抑制ないし緩和できるため、充放電容量の改善効果がより顕著に現れるものと考えられる。 By setting such a relatively large coating mass, it seems that it is easy to efficiently obtain the improvement or improvement effect of the discharge capacity by the carbonaceous coated inorganic solid oxide. The reason for this is not clear, but the larger the coating mass, the larger the concentration gradient of the positive electrode active material or its ions (for example, lithium ions) in the positive electrode active material layer as described above, and therefore, the charge / discharge capacity. The degree of decline is also expected to be greater. However, it is considered that the effect of improving the charge / discharge capacity is more remarkable because the concentration gradient can be efficiently suppressed or relaxed by blending the inorganic solid oxide coated with carbonaceous material.
なお、正極活物質層の塗工質量の上限値は、特に限定されないが、例えば、200mg/cm2、180mg/cm2、150mg/cm2、120mg/cm2、100mg/cm2、90mg/cm2、80mg/cm2、70mg/cm2以上、60mg/cm2、55mg/cm2、50mg/cm2、45mg/cm2、40mg/cm2、35mg/cm2、30mg/cm2等であってもよい。 The upper limit of the coating mass of the positive electrode active material layer is not particularly limited, but is, for example, 200 mg / cm 2 , 180 mg / cm 2 , 150 mg / cm 2 , 120 mg / cm 2 , 100 mg / cm 2 , 90 mg / cm. 2 , 80 mg / cm 2 , 70 mg / cm 2 , 60 mg / cm 2 , 55 mg / cm 2 , 50 mg / cm 2 , 45 mg / cm 2 , 40 mg / cm 2 , 35 mg / cm 2 , 30 mg / cm 2, etc. You may.
正極活物質層の厚みは、正極活物質層における各成分の割合等に応じて適宜選択できるが、10μm以上(例えば、12μm以上)程度の範囲から選択してもよく、例えば、15μm以上(例えば、15μm以上)、好ましくは20μm以上(例えば、21μm以上)、さらに好ましくは25μm以上(例えば、26μm以上)等であってもよく、30μm以上(例えば、35μm以上、38μm以上、40μm以上、42μm以上、45μm以上、48μm以上、50μm以上等)であってもよい。 The thickness of the positive electrode active material layer can be appropriately selected according to the ratio of each component in the positive electrode active material layer, but may be selected from a range of about 10 μm or more (for example, 12 μm or more), for example, 15 μm or more (for example, 12 μm or more). , 15 μm or more), preferably 20 μm or more (for example, 21 μm or more), more preferably 25 μm or more (for example, 26 μm or more), and 30 μm or more (for example, 35 μm or more, 38 μm or more, 40 μm or more, 42 μm or more). , 45 μm or more, 48 μm or more, 50 μm or more, etc.).
なお、正極活物質層の厚みの上限値は、特に限定されないが、例えば、500μm、300μm、250μm、200μm、180μm、150μm、120μm、100μm、80μm、70μm、60μm、50μm、40μm等であってもよい。 The upper limit of the thickness of the positive electrode active material layer is not particularly limited, but may be, for example, 500 μm, 300 μm, 250 μm, 200 μm, 180 μm, 150 μm, 120 μm, 100 μm, 80 μm, 70 μm, 60 μm, 50 μm, 40 μm, or the like. Good.
正極活物質層(正極)の電極密度は、例えば、2g/cc以上(例えば、2.1g/cc以上、2.4g/cc以上)、好ましくは2.5g/cc以上(例えば、2.6g/cc以上、2.9g/cc以上)、さらに好ましくは3.0g/cc以上(例えば、3.1g/cc以上)等であってもよい。 The electrode density of the positive electrode active material layer (positive electrode) is, for example, 2 g / cc or more (for example, 2.1 g / cc or more, 2.4 g / cc or more), preferably 2.5 g / cc or more (for example, 2.6 g). / Cc or more, 2.9 g / cc or more), more preferably 3.0 g / cc or more (for example, 3.1 g / cc or more) or the like.
正極活物質層(正極)の電極密度の上限値は、特に限定されないが、例えば、4g/cc、3.9g/cc、3.8g/cc、3.7g/cc、3.6g/cc等であってもよい。 The upper limit of the electrode density of the positive electrode active material layer (positive electrode) is not particularly limited, but for example, 4 g / cc, 3.9 g / cc, 3.8 g / cc, 3.7 g / cc, 3.6 g / cc, etc. It may be.
(正極活物質層の形成方法及び正極)
正極活物質層は、例えば、正極合材(正極材料)を用いて(代表的には、塗工(塗布)することで)形成できる。このような正極合材は、正極活物質層の構成成分を含んでいる。
(Method of forming positive electrode active material layer and positive electrode)
The positive electrode active material layer can be formed, for example, by using a positive electrode mixture (positive electrode material) (typically, by coating (coating)). Such a positive electrode mixture contains a constituent component of the positive electrode active material layer.
すなわち、正極合材は、炭素質コート無機固体酸化物(第1の導電助剤、第1の導電性材料)を含んでいればよく、通常、さらに、正極活物質(さらには、導電助剤(第2の導電助剤、第2の導電性材料)、結着剤等の他の成分)を含んでいてもよい。 That is, the positive electrode mixture may contain a carbonaceous coated inorganic solid oxide (first conductive auxiliary agent, first conductive material), and usually further, a positive electrode active material (further, a conductive auxiliary agent) may be further contained. (Second conductive auxiliary agent, second conductive material), other components such as a binder) may be contained.
正極合材は、正極活物質層の形成方法に応じて、溶媒を含んでいてもよい。なお、このような溶媒を含む正極合材において、各成分は、溶媒に溶解状態であっても、溶媒に分散した状態であってもよい。 The positive electrode mixture may contain a solvent depending on the method for forming the positive electrode active material layer. In the positive electrode mixture containing such a solvent, each component may be in a state of being dissolved in the solvent or in a state of being dispersed in the solvent.
溶媒(各成分を分散または溶解する溶媒)としては特に限定されず、従来公知の各材料を用いることができ、例えば、窒素含有溶媒[例えば、ラクタム類(例えば、N−メチルピロリドン)、アミド類(又は鎖状アミド類、例えば、ジメチルホルムアミド、ジメチルアセトアミド)等]、ケトン類[例えば、鎖状ケトン(例えば、アセトン、メチルエチルケトン等)等]、エーテル類[例えば、環状エーテル類(例えば、テトラヒドロフラン等)等]、アルコール類(例えば、エタノール等)、エステル類(例えば、酢酸エチル等)、カーボネート類(例えば、エチレンカーボネート、プロピレンカーボネート、ジエチルカーボネート等)、水等が挙げられる。溶媒は、単独で又は2種以上組み合わせて使用してもよい。 The solvent (solvent for dispersing or dissolving each component) is not particularly limited, and each conventionally known material can be used. For example, a nitrogen-containing solvent [for example, lactams (for example, N-methylpyrrolidone), amides) (Or chain amides, such as dimethylformamide, dimethylacetamide)], ketones [eg, chain ketones (eg, acetone, methylethylketone, etc.)], ethers [eg, cyclic ethers (eg, tetrahydrofuran, etc.) ) Etc.], alcohols (eg, ethanol, etc.), esters (eg, ethyl acetate, etc.), carbonates (eg, ethylene carbonate, propylene carbonate, diethyl carbonate, etc.), water and the like. The solvent may be used alone or in combination of two or more.
溶媒の使用量は特に限定されず、製造方法や、使用する材料に応じて適宜決定すればよい。 The amount of the solvent used is not particularly limited, and may be appropriately determined according to the production method and the material used.
溶媒を含む正極合材において、固形分(溶媒以外の成分)の割合(濃度)は、例えば、10質量%以上(例えば、11質量%以上、15質量%以上)、好ましくは20質量%以上(例えば、21質量%以上、25質量%以上)、さらに好ましくは30質量%以上(例えば、31質量%以上、35質量%以上)程度であってもよい。該割合(濃度)の上限値は、特に限定されないが、例えば、99質量%、95質量%、90質量%、85質量%、80質量%等であってもよい。 In the positive electrode mixture containing a solvent, the ratio (concentration) of the solid content (components other than the solvent) is, for example, 10% by mass or more (for example, 11% by mass or more, 15% by mass or more), preferably 20% by mass or more ( For example, it may be about 21% by mass or more, 25% by mass or more), and more preferably about 30% by mass or more (for example, 31% by mass or more, 35% by mass or more). The upper limit of the ratio (concentration) is not particularly limited, but may be, for example, 99% by mass, 95% by mass, 90% by mass, 85% by mass, 80% by mass, or the like.
正極活物質層は、正極合材を用いて形成できる。正極は、通常、正極活物質層と正極集電体と(正極集電体上に形成された正極活物質層)を備えていてもよい。このような正極活物質層は、代表的には、正極合材を正極集電体に塗工(塗布)することで正極活物質層を形成してもよい。 The positive electrode active material layer can be formed by using a positive electrode mixture. The positive electrode may usually include a positive electrode active material layer and a positive electrode current collector (a positive electrode active material layer formed on the positive electrode current collector). Such a positive electrode active material layer may typically form a positive electrode active material layer by applying (coating) a positive electrode mixture to a positive electrode current collector.
正極集電体の材料としては、特に限定されず、例えば、アルミニウム、アルミニウム合金、SUS(ステンレス鋼)、チタン等の導電性金属が使用できる。 The material of the positive electrode current collector is not particularly limited, and for example, a conductive metal such as aluminum, aluminum alloy, SUS (stainless steel), or titanium can be used.
なお、正極(正極集電体)の形状は、特に限定されないが、例えば、シート状であっても(シート状に成形されていても)よい。 The shape of the positive electrode (positive electrode current collector) is not particularly limited, but may be, for example, a sheet shape (may be formed into a sheet shape).
正極活物質層の形成方法(塗工方法)は、特に限定されず、例えば、(i)正極合材を正極集電体に慣用の塗布法(例えば、ドクターブレード法等)で塗布(さらには乾燥)する方法、(ii)正極集電体を正極合材に浸漬(さらには乾燥)する方法、(iii)正極合材で形成されたシートを正極集電体に接合(例えば、導電性接着剤を介して接合)し、プレス(さらには乾燥)する方法、(iv)液状潤滑剤を添加した正極合材を正極集電体上に塗布又は流延して、所望の形状に成形した後、液状潤滑剤を除去する(さらには、次いで、一軸又は多軸方向に延伸する)方法、(v)正極合材(又は正極活物質、無機固体酸化物、導電助剤等の正極活物質層を形成する固形分)を電解液でスラリー化し、半固体状態として集電体(正極集電体)に転写し、乾燥させずに電極(正極)として使用する方法等が挙げられる。 The method for forming the positive electrode active material layer (coating method) is not particularly limited, and for example, (i) the positive electrode mixture is applied to the positive electrode current collector by a conventional coating method (for example, the doctor blade method) (furthermore. Method of (drying), (ii) method of immersing (further drying) the positive electrode current collector in the positive electrode mixture, (iii) joining the sheet formed of the positive electrode mixture to the positive electrode current collector (for example, conductive adhesion). A method of joining through an agent) and pressing (further drying), (iv) a positive electrode mixture to which a liquid lubricant is added is applied or cast on a positive electrode current collector, and then formed into a desired shape. , A method of removing the liquid lubricant (and then stretching in the uniaxial or multiaxial direction), (v) Positive electrode active material layer of positive electrode mixture (or positive electrode active material, inorganic solid oxide, conductive auxiliary agent, etc.) (Solid content) is slurried with an electrolytic solution, transferred to a current collector (positive electrode current collector) as a semi-solid state, and used as an electrode (positive electrode) without being dried.
なお、正極合材(正極活物質層)は、必要に応じて、形成又は塗工(塗布)後、乾燥してもよく、加圧(プレス)してもよい。 The positive electrode mixture (positive electrode active material layer) may be dried or pressed (pressed) after being formed or coated (coated), if necessary.
なお、このような方法[塗工(塗工工程)]において、塗工質量を前記範囲となるようにする(調整する)ことで、より一層効率よく、炭素質コート無機固体酸化物による、放電容量の改善ないし向上効果等を効率よく得やすいようである。 In such a method [coating (coating process)], by setting (adjusting) the coating mass within the above range, more efficiently, discharge by the carbonaceous coated inorganic solid oxide. It seems that it is easy to efficiently obtain the improvement or improvement effect of the capacity.
[正極の用途]
正極は、例えば、電池(充放電機構を有する電池)、蓄電(電気化学)デバイス(又はこれらを構成するイオン伝導体の材料)等に用いることができる。
[Use of positive electrode]
The positive electrode can be used, for example, in a battery (a battery having a charge / discharge mechanism), a storage (electrochemical) device (or a material of an ionic conductor constituting them), or the like.
具体的には、正極は、例えば、一次電池、二次電池(例えば、リチウム(イオン)二次電池)、燃料電池、電解コンデンサ、電気二重層キャパシタ、太陽電池、エレクトロクロミック表示素子等を構成する正極として使用しうる。 Specifically, the positive electrode constitutes, for example, a primary battery, a secondary battery (for example, a lithium (ion) secondary battery), a fuel cell, an electrolytic capacitor, an electric double layer capacitor, a solar cell, an electrochromic display element, and the like. Can be used as a positive electrode.
以下、電池(特にリチウムイオン二次電池)を例に挙げて説明する。電池は、正極及び負極を少なくとも含んでいる。 Hereinafter, a battery (particularly a lithium ion secondary battery) will be described as an example. The battery includes at least a positive electrode and a negative electrode.
(負極)
負極は、負極活物質を含んでおり、負極活物質層を形成してもよい。このような負極は、負極活物質そのもの(例えば、リチウム金属等)で構成されていてもよく、負極集電体と負極活物質層とで構成されていてもよい。このような負極活物質層は、例えば、負極合材(負極活物質を含む負極合材)を用いて[例えば、負極合材(負極活物質組成物)の塗工(塗布)により]形成される。より具体的には、負極活物質層[又は負極活物質を含む負極合材(負極活物質組成物)]が、負極集電体状に形成(負極集電体に担持)されてなるものであってもよく、通常、シート状に成形されていてもよい。
(Negative electrode)
The negative electrode contains a negative electrode active material, and a negative electrode active material layer may be formed. Such a negative electrode may be composed of the negative electrode active material itself (for example, lithium metal or the like), or may be composed of a negative electrode current collector and a negative electrode active material layer. Such a negative electrode active material layer is formed, for example, by using a negative electrode mixture (negative electrode mixture containing a negative electrode active material) [for example, by coating (coating) a negative electrode mixture (negative electrode active material composition)]. To. More specifically, the negative electrode active material layer [or the negative electrode mixture containing the negative electrode active material (negative electrode active material composition)] is formed in the form of a negative electrode current collector (supported on the negative electrode current collector). It may be present, and usually, it may be formed into a sheet.
負極活物質としては、各種電池(例えば、リチウム二次電池)等で使用される従来公知の負極活物質等を用いることができ、各種イオン(例えば、リチウムイオン)を吸蔵・放出可能なものであればよい。 As the negative electrode active material, a conventionally known negative electrode active material or the like used in various batteries (for example, a lithium secondary battery) or the like can be used, and various ions (for example, lithium ions) can be occluded and released. All you need is.
具体的には、人造黒鉛、天然黒鉛等の黒鉛材料、石炭、石油ピッチから作られるメソフェーズ焼成体、難黒鉛化性炭素等の炭素材料、Si、Si合金、SiO等のSi系負極材料、Sn合金等のSn系負極材料、リチウム金属、リチウム−アルミニウム合金等のリチウム合金を用いることができる。負極活物質は、単独で又は2種以上組み合わせて使用してもよい。 Specifically, graphite materials such as artificial graphite and natural graphite, mesophase calcined products made from coal and petroleum pitch, carbon materials such as non-graphitizable carbon, Si-based negative electrode materials such as Si, Si alloy and SiO, Sn. Sn-based negative electrode materials such as alloys and lithium alloys such as lithium metal and lithium-aluminum alloy can be used. The negative electrode active material may be used alone or in combination of two or more.
負極合材は、さらに、導電助剤(導電物質)、結着剤、溶媒等を含んでいてもよい。導電助剤、結着剤、溶媒等としては、前記と同様の成分を使用できる。また、その使用割合等も前記と同様である。 The negative electrode mixture may further contain a conductive auxiliary agent (conductive substance), a binder, a solvent and the like. As the conductive auxiliary agent, the binder, the solvent and the like, the same components as described above can be used. Further, the usage ratio and the like are the same as described above.
なお、負極(又は負極合材)は、炭素質コート無機固体酸化物や、炭素質コートされていない無機固体酸化物を含んでいてもよいが、電池性能の観点から、(実質的に)含んでいなくてもよい。 The negative electrode (or the negative electrode mixture) may contain a carbonaceous coated inorganic solid oxide or an inorganic solid oxide that is not carbonaceous coated, but from the viewpoint of battery performance, it is (substantially) contained. You don't have to.
負極集電体の材料としては、例えば、銅、鉄、ニッケル、銀、ステンレス鋼(SUS)等の導電性金属を用いることができる。 As the material of the negative electrode current collector, for example, a conductive metal such as copper, iron, nickel, silver, or stainless steel (SUS) can be used.
負極の製造方法としては、正極の製造方法と同様の方法を採用してもよい。 As a method for manufacturing the negative electrode, the same method as the method for manufacturing the positive electrode may be adopted.
(電解液)
電池は、電解液を備えていてもよい。電解液は、少なくとも電解質を含んでいる。電解質としては、特に限定されず、電解液において使用される電解質を使用できる。なお、電解液は、正極活物質層又は正極合材に含まれていてもよい。
(Electrolytic solution)
The battery may include an electrolyte. The electrolyte contains at least an electrolyte. The electrolyte is not particularly limited, and the electrolyte used in the electrolytic solution can be used. The electrolytic solution may be contained in the positive electrode active material layer or the positive electrode mixture.
このような電解質としては、使用目的等に応じて適宜選択でき、アニオンとカチオンとの塩(電解質塩)を使用できる。 As such an electrolyte, a salt of an anion and a cation (electrolyte salt) can be appropriately selected depending on the purpose of use and the like.
アニオンとしては、例えば、ホウ素系イオン[例えば、BF4 −、BF(CF3)3 −、B(CN)4 −、B12F12−xHx(式中、Xは12未満の数)等]、リン系イオン{例えば、PF6 −、PFm(CnF2n+1)6−m −(式中、mは1〜5、nは1以上を示す)で表されるイオン[例えば、PF3(CF3)3 −、PF3(C2F5)3 −、PF3(C3F7)3 −、PF3(C4F9)3 −等]、PF2O2 −等}、アンチモン系イオン(例えば、SbF6 −等)、ヒ素系イオン(例えば、AsF6 −等)、過塩素酸イオン(ClO4 −)、チオシアン酸イオン(NCS−)、アルミニウム系イオン(例えば、AlCl4 −、AlF4 −等)、スルホン酸系イオン(例えば、CF3SO3 −、FSO3 −等)、メチド系イオン(例えば、C[(CF3SO2)3]−等)、ジニトロアミンアニオン((O2N)2N−)、シアナミドイオン(例えば、N[(CN)2]−等)、トリアゾラートイオン(例えば、ジシアノトリアゾラートイオン等)、イミドイオン{例えば、フルオロスルホニルイミドイオン[例えば、ビス(フルオロスルホニル)イミドイオン;(フルオロスルホニル)(トリフルオロメチルスルホニル)イミド、(フルオロスルホニル)(ペンタフルオロエチルスルホニル)イミド等の(フルオロスルホニル)(フルオロアルキルスルホニル)イミド(例えば、フルオロスルホニル)(フルオロC1−6アルキルスルホニル)イミド)のイオン]、フルオロアルキルスルホニルイミドイオン[例えば、ビス(トリフルオロメチルスルホニル)イミド、ビス(ペンタフルオロエチルスルホニル)イミド等のビス(フルオロアルキルスルホニル)イミド(例えば、ビス(フルオロC1−6アルキルスルホニル)イミド)等のイオン]等のフッ素含有スルホニルイミドイオン}等が挙げられる。 The anionic, for example, boron ions [e.g., BF 4 -, BF (CF 3) 3 -, B (CN) 4 -, B 12 F 12-x H x ( wherein, X is a number less than 12) Etc.], phosphorus-based ions {for example, PF 6 − , PF m (C n F 2n + 1 ) 6 − m − (in the formula, m indicates 1 to 5 and n indicates 1 or more) [for example, PF 3 (CF 3) 3 - , PF 3 (C 2 F 5) 3 -, PF 3 (C 3 F 7) 3 -, PF 3 (C 4 F 9) 3 - and the like], PF 2 O 2 -, etc. }, antimony-based ion (e.g., SbF 6 -, etc.), arsenic ions (e.g., AsF 6 -, etc.), perchloric acid ion (ClO 4 -), thiocyanate ion (NCS -), aluminum-based ions (e.g., AlCl 4 -, AlF 4 -, etc.), sulfonic acid-based ion (e.g., CF 3 SO 3 -, FSO 3 - , etc.), methide ion (e.g., C [(CF 3 SO 2 ) 3] - , etc.), dinitro Amin anion ((O 2 N) 2 N − ), cyanamide ion (eg N [(CN) 2 ] − etc.), triazolate ion (eg dicyanotriazolate ion etc.), imide ion {eg fluorosulfonyl Imidion [eg, bis (fluorosulfonyl) imide ion; (fluorosulfonyl) (fluoroalkylsulfonyl) imide (eg, fluorosulfonyl) (fluoroalkylsulfonyl) imide such as (fluorosulfonyl) (trifluoromethylsulfonyl) imide, (fluorosulfonyl) (pentafluoroethylsulfonyl) imide. Fluorosulfonyl) (fluoroC 1-6 alkylsulfonyl) imide) ions], fluoroalkylsulfonylimide ions [eg, bis (fluoroalkylsulfonyl) imides such as bis (trifluoromethylsulfonyl) imide, bis (pentafluoroethylsulfonyl) imide) ) Idions (eg, ions such as bis (fluoroC 1-6 alkylsulfonyl) imides)] and other fluorine-containing sulfonylimide ions} and the like.
カチオンとしては、例えば、金属イオン[又は金属カチオン、例えば、アルカリ金属イオン(例えば、リチウムイオン、ナトリウムイオン、カリウムイオン、ルビジウムイオン、セシウムイオン等)、アルカリ土類金属イオン(例えば、ベリリウムイオン、マグネシウムイオン、カルシウムイオン、ストロンチウムイオン、バリウムイオン等)、アルミニウムイオン等]、アンモニウムイオン(例えば、テトラエチルアンモニウムイオン、トリエチルメチルアンモニウムイオン等の第4級アンモニウムイオン)、ホスホニウムイオン(例えば、テトラメチルホスホニウムイオン等の第4級ホスホニウムイオン)等が挙げられる。 Examples of the cation include metal ions [or metal cations, for example, alkali metal ions (for example, lithium ion, sodium ion, potassium ion, rubidium ion, cesium ion, etc.), alkaline earth metal ions (for example, beryllium ion, magnesium). Ions, calcium ions, strontium ions, barium ions, etc.), aluminum ions, etc.], ammonium ions (eg, tetraethylammonium ions, triethylmethylammonium ions, etc., quaternary ammonium ions), phosphonium ions (eg, tetramethylphosphonium ions, etc.) (Quadrant phosphonium ion) and the like.
電解質において、アニオンとカチオンの組み合わせは特に限定されず、上記のアニオンとカチオンのいずれの組み合わせであってもよい(いずれの組み合わせで塩を形成してもよい)。 In the electrolyte, the combination of the anion and the cation is not particularly limited, and any combination of the above anion and the cation may be used (the salt may be formed by any combination).
具体的な電解質としては、例えば、リチウム塩[例えば、LiBF4、LiBF(CF3)3、LiB12F12−xHx、LiPF6、LiPF3(CF3)3、LiPF3(C2F5)3、LiPF3(C3F7)3、LiPF3(C4F9)3、LiSbF6、LiAsF6、LiClO4、LiSCN、LiAlF4、CF3SO3Li、LiC[(CF3SO2)3]、LiN(NO2)、LiN[(CN)2]、FSO3Li、PF2O2Li、リチウムビス(フルオロスルホニル)イミド(LiFSI)、リチウムビス(トリフルオロメチルスルホニル)イミド、リチウムビス(ペンタフルオロエチルスルホニル)イミド等]、非リチウム塩[例えば、これらのリチウム塩においてリチウム(イオン)を他の金属(イオン)に置換した塩(例えば、NaBF4、NaPF6、NaPF3(CF3)3、ナトリウムビス(フルオロスルホニル)イミド、ナトリウムビス(トリフルオロメチルスルホニル)イミド、ナトリウムビス(ペンタフルオロエチルスルホニル)イミド等)等]等}が挙げられる。電解質は、単独で又は2種以上組み合わせてもよい。 Specific electrolytes include, for example, lithium salts [for example, LiBF 4 , LiBF (CF 3 ) 3 , LiB 12 F 12-x H x , LiPF 6 , LiPF 3 (CF 3 ) 3 , LiPF 3 (C 2 F). 5 ) 3 , LiPF 3 (C 3 F 7 ) 3 , LiPF 3 (C 4 F 9 ) 3 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiSCN, LiAlF 4 , CF 3 SO 3 Li, LiC [(CF 3) 2 ) 3 ], LiN (NO 2 ), LiN [(CN) 2 ], FSO 3 Li, PF 2 O 2 Li, Lithium bis (fluorosulfonyl) imide (LiFSI), Lithium bis (trifluoromethylsulfonyl) imide, Lithium bis (pentafluoroethylsulfonyl) imide, etc.], non-lithium salts [for example, salts in which lithium (ion) is replaced with another metal (ion) in these lithium salts (eg, NaBF 4 , NaPF 6 , NaPF 3 (eg, NaPF 4 , NaPF 6 ) CF 3 ) 3 , sodium bis (fluorosulfonyl) imide, sodium bis (trifluoromethylsulfonyl) imide, sodium bis (pentafluoroethylsulfonyl) imide, etc.)] etc.} can be mentioned. The electrolyte may be used alone or in combination of two or more.
これらの中でも、LiPF6、LiFSI等が特に好ましい。このような電解質は、イオン伝導性が高く、炭素質で被覆された無機固体酸化物(さらには、比較的大きい塗工質量の正極活物質層)との組み合わせにおいて、効率よく充放電容量等を向上又は改善しやすいようである。 Among these, LiPF 6 , LiFSI and the like are particularly preferable. Such an electrolyte has high ionic conductivity, and when combined with an inorganic solid oxide coated with a carbonaceous material (furthermore, a positive electrode active material layer having a relatively large coating mass), it can efficiently charge / discharge capacity and the like. It seems easy to improve or improve.
電解液は、溶媒を含んでいてもよい。溶媒としては、特に限定されず、用途等に応じて選択でき、例えば、鎖状カーボネート[例えば、ジアルキルカーボネート(例えば、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)などのジC1−4アルキルカーボネート)、アルキルアリールカーボネート(例えば、炭酸メチルフェニル等のC1−4アルキルフェニルカーボネート)、ジアリールカーボネート(例えば、炭酸ジフェニル)等]、環状カーボネート[例えば、飽和環状カーボネート(例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、2,3−ジメチル炭酸エチレン、炭酸1,2−ブチレン等のアルキレンカーボネート(例えば、C2−6アルキレンカーボネート)、エリスリタンカーボネート等)、不飽和環状カーボネート(例えば、炭酸ビニレン、メチルビニレンカーボネート、エチルビニレンカーボネート等のアルケニレンカーボネート;2−ビニル炭酸エチレン)、フッ素含有環状カーボネート(例えば、フルオロエチレンカーボネート、4,5−ジフルオロエチレンカーボネート、トリフルオロプロピレンカーボネート)等]等のカーボネート類;鎖状エーテル類[例えば、アルカンジオールジアルキルエーテル(例えば、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル等)、ポリアルカンジオールジアルキルエーテル(例えば、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエ−テル)等]、環状エーテル類[例えば、テトラヒドロフラン類(例えば、テトラヒドロフラン、2−メチルテトラヒドロフラン、2,6−ジメチルテトラヒドロフラン)、テトラヒドロピラン類(例えば、テトラヒドロピラン)、ジオキサン類(例えば、1,4−ジオキサン)、ジオキソラン類(例えば、1,3−ジオキソラン)、クラウンエーテル等]等のエーテル類;鎖状エステル類[例えば、芳香族カルボン酸エステル類(例えば、安息香酸メチル、安息香酸エチル)等]、環状エステル類[又はラクトン類、例えば、γ−ブチロラクトン、γ−バレロラクトン、δ−バレロラクトン等]等のエステル(カルボン酸エステル)類;リン酸アルキルエステル(例えば、リン酸トリメチル、リン酸エチルジメチル、リン酸ジエチルメチル、リン酸トリエチル)等のリン酸エステル類;脂肪族ニトリル(例えば、アセトニトリル、プロピオニトリル、メトキシプロピオニトリル、グルタロニトリル、アジポニトリル、2−メチルグルタロニトリル、バレロニトリル、ブチロニトリル、イソブチロニトリル等)、芳香族ニトリル類(例えば、ベンゾニトリル、トルニトリル)等のニトリル類;スルホン類(例えば、ジメチルスルホン、エチルメチルスルホン、ジエチルスルホン等)、スルホラン類(例えば、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン)等のイオウ含有溶媒;ニトロメタン、1,3−ジメチル−2−イミダゾリジノン、1,3−ジメチル−3,4,5,6−テトラヒドロ−2(1H)−ピリミジノン、3−メチル−2−オキサゾリジノン等を挙げることができる。溶媒は、単独で又は2種以上組み合わせて使用してもよい。 The electrolytic solution may contain a solvent. The solvent is not particularly limited and can be selected depending on the intended use, for example, chain carbonate [for example, dialkyl carbonate (for example, dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), etc. DiC 1-4 alkyl carbonate), alkylaryl carbonate (eg, C 1-4 alkylphenyl carbonate such as methylphenyl carbonate), diaryl carbonate (eg, diphenyl carbonate), etc.], cyclic carbonate [eg, saturated cyclic carbonate (eg, saturated cyclic carbonate). , Ethylene carbonate (EC), propylene carbonate (PC), 2,3-dimethylethylene carbonate, alkylene carbonates such as 1,2-butylene carbonate (eg, C 2-6 alkylene carbonate), erythritan carbonate, etc., unsaturated Cyclic carbonate (eg, alkenylene carbonate such as vinylene carbonate, methyl vinylene carbonate, ethyl vinylene carbonate; 2-vinylcarbonate ethylene), fluorine-containing cyclic carbonate (eg, fluoroethylene carbonate, 4,5-difluoroethylene carbonate, trifluoropropylene carbonate) ) Etc.] and other carbonates; chain ethers [eg, alkanediol dialkyl ether (eg, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, etc.), polyalkanediol dialkyl ether (eg, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl, etc.) Ether), etc.], cyclic ethers [eg, tetrahydrofurans (eg, tetrahydrofuran, 2-methyltetra, 2,6-dimethyl tetrahydrofuran), tetrahydropyrans (eg, tetrahydropyran), dioxans (eg, 1, Ethers such as 4-dioxane), dioxolanes (eg, 1,3-dioxolane), crown ether, etc.; Chain esters [eg, aromatic carboxylic acid esters (eg, methyl benzoate, ethyl benzoate) Etc.], cyclic esters [or lactones such as γ-butyrolactone, γ-valerolactone, δ-valerolactone, etc.] and other esters (carboxylic acid esters); alkyl phosphate esters (eg, trimethyl phosphate, phosphorus) Phosphate esters such as ethyldimethyl acid acid, diethylmethyl phosphate, triethyl phosphate); aliphatic nitriles (eg) For example, acetonitrile, propionitrile, methoxypropionitrile, glutaronitrile, adipionitrile, 2-methylglutaronitrile, valeronitrile, butyronitrile, isobutyronitrile, etc.), aromatic nitriles (eg, benzonitrile, tolnitrile) Nitriles such as; sulfur-containing solvents such as sulfones (eg, dimethylsulfone, ethylmethylsulfone, diethylsulfone, etc.), sulfolanes (eg, sulfolane, 3-methylsulfone, 2,4-dimethylsulfone); nitromethane, 1, , 3-Dimethyl-2-imidazolidinone, 1,3-dimethyl-3,4,5,6-tetrahydro-2 (1H) -pyrimidinone, 3-methyl-2-oxazolidinone and the like. The solvent may be used alone or in combination of two or more.
これらの溶媒のうち、カーボネート類、エーテル類、エステル類等が代表的であり、特に、鎖状カーボネート(例えば、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート)、環状カーボネート(例えば、エチレンカーボネート、プロピレンカーボネート)、ラクトン(例えば、γ−ブチロラクトン、γ−バレロラクトン)等を好適に使用してもよい。 Among these solvents, carbonates, ethers, esters and the like are typical, and in particular, chain carbonates (eg, dimethyl carbonate, ethylmethyl carbonate, diethyl carbonate) and cyclic carbonates (eg, ethylene carbonate, propylene carbonate) are typical. ), A lactone (for example, γ-butyrolactone, γ-valerolactone) and the like may be preferably used.
電解液が溶媒を含む場合、電解液中の電解質の割合(濃度)は、特に限定されないが、例えば、0.5M(mol/L)以上(例えば、0.6M以上、0.7M以上等)、好ましくは0.8M以上(例えば、0.9M以上)、さらに好ましくは1M以上(例えば、1.1M以上)程度であってもよく、5M以下(例えば、4M以下、3.5M以下、3M以下、2.5M以下、2M以下、1.5M以下、1M以下、0.8M以下)等であってもよい。 When the electrolytic solution contains a solvent, the ratio (concentration) of the electrolyte in the electrolytic solution is not particularly limited, but is, for example, 0.5 M (mol / L) or more (for example, 0.6 M or more, 0.7 M or more, etc.). It may be preferably about 0.8 M or more (for example, 0.9 M or more), more preferably about 1 M or more (for example, 1.1 M or more), and 5 M or less (for example, 4 M or less, 3.5 M or less, 3 M or less). Below, 2.5M or less, 2M or less, 1.5M or less, 1M or less, 0.8M or less) and the like may be used.
なお、溶媒を含む電解液は、通常、非水電解液(水を実質的に含まない電解液)であってもよい。 The electrolytic solution containing a solvent may usually be a non-aqueous electrolytic solution (an electrolytic solution containing substantially no water).
(セパレータ)
電池はセパレータを備えていてもよい。セパレータは正極と負極とを隔てるように配置されるものである。セパレータには、特に制限がなく、本発明では、従来公知のセパレータのいずれも使用することができる。具体的なセパレータとしては、例えば、電解液(非水電解液)を吸収・保持し得るポリマーからなる多孔性シート(例えば、ポリオレフィン系微多孔質セパレータやセルロース系セパレータなど)、不織布セパレータ、多孔質金属体等が挙げられる。
(Separator)
The battery may include a separator. The separator is arranged so as to separate the positive electrode and the negative electrode. The separator is not particularly limited, and in the present invention, any conventionally known separator can be used. Specific examples of the separator include a porous sheet made of a polymer capable of absorbing and retaining an electrolytic solution (non-aqueous electrolytic solution) (for example, a polyolefin-based microporous separator, a cellulose-based separator, etc.), a non-woven fabric separator, and a porous material. Examples include metal bodies.
上記多孔性シートの材質としては、ポリエチレン、ポリプロピレン、ポリプロピレン/ポリエチレン/ポリプロピレンの3層構造を有する積層体等が挙げられる。 Examples of the material of the porous sheet include a laminate having a three-layer structure of polyethylene, polypropylene, and polypropylene / polyethylene / polypropylene.
上記不織布セパレータの材質としては、例えば、綿、レーヨン、アセテート、ナイロン、ポリエステル、ポリプロピレン、ポリエチレン、ポリイミド、アラミド、ガラス等が挙げられ、要求される機械的強度等に応じて、上記例示の材質を単独で又は2種以上組み合わせて使用してもよい。 Examples of the material of the non-woven fabric separator include cotton, rayon, acetate, nylon, polyester, polypropylene, polyethylene, polyimide, aramid, glass, etc., and the above-exemplified materials may be used according to the required mechanical strength and the like. It may be used alone or in combination of two or more.
(電池外装材)
電解液、正極、負極(さらにはセパレーター)等を備えた電池素子は、通常、電池使用時の外部からの衝撃、環境劣化等から電池素子を保護するため電池外装材に収容される。電池外装材の素材は特に限定されず従来公知の外装材はいずれも使用することができる。
(Battery exterior material)
A battery element including an electrolytic solution, a positive electrode, a negative electrode (further, a separator) and the like is usually housed in a battery exterior material in order to protect the battery element from external impact, environmental deterioration, etc. when the battery is used. The material of the battery exterior material is not particularly limited, and any conventionally known exterior material can be used.
電池(リチウムイオン二次電池等)の形状は特に限定されず、円筒型、角型、ラミネート型、コイン型、大型等、電池(リチウムイオン二次電池等)の形状として従来公知の形状はいずれも使用することができる。また、電気自動車、ハイブリッド電気自動車等に搭載するための高電圧電源(数10V〜数100V)として使用する場合には、個々の電池を直列に接続して構成される電池モジュールとすることもできる。 The shape of the battery (lithium ion secondary battery, etc.) is not particularly limited, and any conventionally known shape as the shape of the battery (lithium ion secondary battery, etc.) such as cylindrical type, square type, laminated type, coin type, large size, etc. Can also be used. Further, when used as a high-voltage power source (several tens of volts to several hundreds of volts) for mounting on an electric vehicle, a hybrid electric vehicle, or the like, the battery module may be configured by connecting individual batteries in series. ..
二次電池(リチウムイオン二次電池等)の定格充電電圧は特に限定されないが、3.6V以上、好ましくは4.1V以上、さらに好ましくは4.2V以上(例えば、4.2V超)であってもよく、4.3V以上(例えば、4.35V以上)であってもよい。定格充電電圧が高いほど、エネルギー密度を高めることはできるが、安全性の観点などから、定格充電電圧は、4.6V以下(例えば、4.5V以下)等であってもよい。 The rated charging voltage of the secondary battery (lithium ion secondary battery, etc.) is not particularly limited, but is 3.6 V or more, preferably 4.1 V or more, and more preferably 4.2 V or more (for example, more than 4.2 V). It may be 4.3V or more (for example, 4.35V or more). The higher the rated charging voltage is, the higher the energy density can be. However, from the viewpoint of safety, the rated charging voltage may be 4.6 V or less (for example, 4.5 V or less).
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例により制限を受けるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples.
実施例1(炭素質コートBaTiO 3 )
BaTiO3(富士フィルム和光純薬製 025−08972)を1g計量し、そこへフロログルシノール(東京化成工業社製)を0.2gずつ添加し、アセトンを加えフロログルシノールを溶解、超音波処理したのち、乾燥させることで無機固体酸化物−フロログルシノール混合物を得た。
Example 1 (Carbonaceous Coat BaTIO 3 )
Weigh 1 g of BaTIO 3 (manufactured by Fuji Film Wako Pure Chemical Industries, Ltd. 025-08972), add 0.2 g of phloroglucinol (manufactured by Tokyo Chemical Industry Co., Ltd.) to it, add acetone to dissolve phloroglucinol, and perform ultrasonic treatment. Then, it was dried to obtain an inorganic solid oxide-phloroglucinol mixture.
無機固体酸化物−フロログルシノール混合物を窒素中300℃で1時間炭素化させた後、NMP(N−メチルピロリドン)で余分な炭素成分を洗浄した。洗浄後、さらに窒素中700℃で2時間焼成した。得られた粉体は炭素質コート(カーボンコート)され黒色を帯びていた。 The inorganic solid oxide-phloroglucinol mixture was carbonized in nitrogen at 300 ° C. for 1 hour, and then the excess carbon components were washed with NMP (N-methylpyrrolidone). After washing, it was further calcined in nitrogen at 700 ° C. for 2 hours. The obtained powder was carbonaceous coated (carbon coated) and had a black tinge.
得られた粉体[炭素質コート無機固体酸化物(BaTiO3)]中の炭素質の割合は、0.19質量%であった。 The proportion of carbonaceous material in the obtained powder [carbonaceous coated inorganic solid oxide (BaTIO 3 )] was 0.19% by mass.
得られた炭素質コート無機固体酸化物のラマン分析結果を図1に示した。これによるとアモルファスカーボンに特有のD、G、G’、D+D’、2D’バンドが存在し、炭素質が存在することと、炭素質の状態がアモルファスカーボンであることがわかる。 The results of Raman analysis of the obtained carbonaceous coated inorganic solid oxide are shown in FIG. According to this, it can be seen that the D, G, G', D + D', and 2D' bands peculiar to amorphous carbon are present, the carbonaceous substance is present, and the carbonaceous state is amorphous carbon.
なお、炭素質の割合は、TGA分析(装置:リガク株式会社製 TG8120)により、条件:空気下、昇温速度10℃/分、最高温度700℃まで分析し、重量減少量により算定した。
The ratio of carbonaceous material was calculated by TGA analysis (apparatus: TG8120 manufactured by Rigaku Co., Ltd.) under the conditions: under air, heating rate 10 ° C./min,
また、ラマン分析(炭素質の存在・状態の確認)は、次のようにして行った。
測定装置:顕微ラマン(日本分光NRS−3100)
測定条件:532nmレーザー使用、対物レンズ20倍、CCD取り込み時間1秒、積算32回(分解能=4cm−1)
ラマン分析から、Gバンド(1550cm−1〜1650cm−1の範囲内)、Dバンド(1300cm−1〜1400cm−1の範囲内)、G’バンド(2650cm−1〜2750cm−1の範囲内)、D+D’バンド(2800cm−1〜3000cm−1の範囲内)、2D’バンド(3100cm−1〜3300cm−1の範囲内)の存在により炭素質の存在及び状態がわかる。
In addition, Raman analysis (confirmation of the existence and state of carbonaceous materials) was performed as follows.
Measuring device: Microscopic Raman (JASCO NRS-3100)
Measurement conditions: 532 nm laser used, objective lens 20 times,
From Raman analysis, G band (within the range of 1550 cm -1 to 1650 cm -1 ), D band (within the range of 1300 cm -1 to 1400 cm -1 ), G'band (within the range of 2650 cm -1 to 2750 cm -1 ), D + D 'band (in the range of 2800cm -1 ~3000cm -1), 2D' reveals the presence and condition of carbonaceous by the presence of the band (in the range of 3100cm -1 ~3300cm -1).
実施例2(炭素質コートSrTiO 3 )
実施例1において、BaTiO3に代えてSrTiO3(アルドリッチ製 517011−50G)を使用したこと以外は、実施例1と同様にして、粉体を得た。得られた粉体はカーボンコートされ黒色を帯びていた。
Example 2 (Carbonaceous Coat SrTiO 3 )
In Example 1, powder was obtained in the same manner as in Example 1 except that SrTiO 3 (51711-50G manufactured by Aldrich) was used instead of BaTiO 3 . The obtained powder was carbon-coated and had a black tinge.
得られた粉体[炭素質コート無機固体酸化物(SrTiO3)]中の炭素質の割合を、実施例1と同様にして測定・算出したところ、1.4質量%であった。 The proportion of carbonaceous material in the obtained powder [carbonaceous coated inorganic solid oxide (SrTIO 3 )] was measured and calculated in the same manner as in Example 1 and found to be 1.4% by mass.
さらに、実施例1と同様にして、得られた炭素質コート無機固体酸化物のラマン分析を行った。結果を図2に示す。これによるとアモルファスカーボンに特有のD、G、G’、D+D’、2D’バンドが存在し、炭素質が存在することと、炭素質の状態がアモルファスカーボンであることがわかる。 Further, Raman analysis of the obtained carbonaceous coated inorganic solid oxide was performed in the same manner as in Example 1. The results are shown in FIG. According to this, it can be seen that the D, G, G', D + D', and 2D' bands peculiar to amorphous carbon are present, the carbonaceous substance is present, and the carbonaceous state is amorphous carbon.
実施例3(炭素質コートLiNbO 3 )
実施例1において、BaTiO3に代えてLiNbO3(アルドリッチ製 254290−10G)を使用したこと以外は、実施例1と同様にして、粉体を得た。得られた粉体はカーボンコートされ黒色を帯びていた。
Example 3 (Carbonaceous Coat LiNbO 3 )
Powder was obtained in the same manner as in Example 1 except that LiNbO 3 (254290-10G manufactured by Aldrich) was used instead of BaTiO 3 . The obtained powder was carbon-coated and had a black tinge.
得られた粉体[炭素質コート無機固体酸化物(LiNbO3)]を、実施例1と同様にしてラマン分析した結果を図3に示す。これによるとアモルファスカーボンに特有のD、G、G’、D+D’、2D’バンドが存在し、炭素質が存在することと、炭素質の状態がアモルファスカーボンであることがわかる。 The results of Raman analysis of the obtained powder [carbonaceous coated inorganic solid oxide (LiNbO 3 )] in the same manner as in Example 1 are shown in FIG. According to this, it can be seen that the D, G, G', D + D', and 2D' bands peculiar to amorphous carbon are present, the carbonaceous substance is present, and the carbonaceous state is amorphous carbon.
なお、無機固体酸化物に対して炭素質の量(被覆量)が少なく、TGA分析で炭素質の量を算定することはできなかった(分析下限以下であった)が、上記の通り、ラマン分析により炭素質の存在は確認できた。 The amount of carbonaceous (coating amount) was smaller than that of the inorganic solid oxide, and the amount of carbonaceous could not be calculated by TGA analysis (it was below the lower limit of analysis), but as mentioned above, Raman. The presence of carbonaceous material was confirmed by analysis.
実施例4(炭素質コートの有無の比較)
正極活物質としてLiCoO2(ユミコア製KD20S)、実施例1で得られた炭素質コート無機固体酸化物(BaTiO3、第1の導電助剤)、導電助剤(第2の導電助剤)として、アセチレンブラック(デンカ工業製 HS−100)、カーボンナノチューブ(VGCF 昭和電工製)、炭素繊維(大阪ガスケミカル製 ドナカーボミルド)、バインダーとしてポリフッ化ビニリデン(PVDF クレハ製 ♯1120)、無機固体酸化物としてSrTiO3(アルドリッチ製 517011−50G)を用いた。
Example 4 (Comparison of presence / absence of carbonaceous coating)
LiCoO 2 (KD20S manufactured by Yumicore) as the positive electrode active material, the carbon-coated inorganic solid oxide (BaTIO 3 , the first conductive auxiliary agent) obtained in Example 1, and the conductive auxiliary agent (the second conductive auxiliary agent). , Acetylene black (HS-100 manufactured by Denka Kogyo), carbon nanotubes (VGCF Showa Denko), carbon fiber (Donna Carbomilled manufactured by Osaka Gas Chemical Co., Ltd.), polyvinylidene fluoride (PVDF Kureha # 1120) as a binder, inorganic solid oxide As SrTIO 3 (51711-50G manufactured by Aldrich) was used.
LiCoO2:炭素質コート無機固体酸化物(BaTiO3):アセチレンブラック:
VGCF:ドナカーボミルド:PVdF=93:1:1:1:1:3の質量比で秤量し、N−メチルピロリドン(NMP)を加えて自転公転ミキサーで分散させて、無機固体酸化物を含む正極スラリー(正極合材、固形分濃度75質量%)を作製した。
LiCoO 2 : Carbonaceous coated inorganic solid oxide (BaTIO 3 ): Acetylene black:
Weighed at a mass ratio of VGCF: Donna Carbomiled: PVdF = 93: 1: 1: 1: 1: 3, added N-methylpyrrolidone (NMP) and dispersed with a rotating revolution mixer to contain an inorganic solid oxide. A positive electrode slurry (positive electrode mixture, solid content concentration 75% by mass) was prepared.
同様にして、LiCoO2:アセチレンブラック:VGCF:ドナカーボミルド:PVdF=94:1:1:1:3の質量比で含む、炭素質コート無機固体酸化物を含まない正極スラリーを作製した。 Similarly, a positive electrode slurry containing a mass ratio of LiCoO 2 : acetylene black: VGCF: donacarbomilled: PVdF = 94: 1: 1: 1: 3 and containing no carbonaceous coated inorganic solid oxide was prepared.
さらに、同様にして、LiCoO2:炭素質コートされていない無機固体酸化物(BaTiO3):アセチレンブラック:VGCF:ドナカーボミルド:PVdF=93:1:1:1:1:3の質量比で含む、炭素質コート無機固体酸化物を含まない(炭素質コートされてない無機固体酸化物(BaTiO3)を含む)正極スラリーを作製した。 Further, similarly, at a mass ratio of LiCoO 2 : uncoated inorganic solid oxide (BaTIO 3 ): acetylene black: VGCF: donacarbomiled: PVdF = 93: 1: 1: 1: 1: 3. A positive electrode slurry containing, containing, and containing no carbonaceous coated inorganic solid oxide (containing uncarbonated inorganic solid oxide (BaTIO 3 )) was prepared.
各スラリーをアルミ箔上に片面塗工し、110℃のホットプレート上で乾燥させ、その後、110℃の真空乾燥炉で12時間減圧乾燥を行った。そして、真空乾燥後に、それぞれ、ロールプレス機でプレスした。なお、プレスは、電極密度が3.35g/cc〜3.5g/ccの範囲となるようにロールプレス機を調整して行った。 Each slurry was coated on one side of an aluminum foil, dried on a hot plate at 110 ° C., and then dried under reduced pressure in a vacuum drying oven at 110 ° C. for 12 hours. Then, after vacuum drying, each was pressed with a roll press machine. The press was performed by adjusting the roll press machine so that the electrode density was in the range of 3.35 g / cc to 3.5 g / cc.
このようにして、片面塗工質量53.50mg/cm2(厚み151μm)の正極活物質層を有する電極を作製した。 In this way, an electrode having a positive electrode active material layer having a single-sided coating mass of 53.50 mg / cm 2 (thickness 151 μm) was produced.
Liメタルをφ14mmで打ち抜き負極とした。その上に、1.2M LiPF6 エチレンカーボネート(EC)/エチルメチルカーボネート(EMC)=3/7(体積比)組成の電解液を35μL滴下し、ポリエチレン(PE)製16μmセパレータを重ね、更に同様の電解液を35μL滴下した。その上に、作製した電極をφ12mmに打ち抜いたものを正極として、積層し、コインセルを作製した。 Li metal was punched with a diameter of 14 mm to form a negative electrode. On top of that, 35 μL of an electrolytic solution having a composition of 1.2 M LiPF 6 ethylene carbonate (EC) / ethyl methyl carbonate (EMC) = 3/7 (volume ratio) was added dropwise, and a 16 μm separator made of polyethylene (PE) was overlaid. 35 μL of the electrolytic solution was added dropwise. A coin cell was prepared by laminating the prepared electrode, which was punched to φ12 mm, as a positive electrode.
得られたコインセルを、4.3V、0.1Cの定電流定電圧充電15時間終止、0.1Cの定電流放電3.0V終止の充放電を行い、セルのエージングとした。 The obtained coin cell was charged and discharged at 4.3 V, 0.1 C constant current constant voltage charge for 15 hours, and 0.1 C constant current discharge 3.0 V termination, and the cell was aged.
エージング後のセルを、4.3V、0.2Cの定電流定電圧8時間充電を行い、0.1C、3.0V終止の定電流放電を行った。 The cell after aging was charged at a constant current constant voltage of 4.3 V and 0.2 C for 8 hours, and discharged at a constant current of 0.1 C and 3.0 V at the end.
同様の充電方法で、0.2C、3.0V終止の定電流放電、1C、3.0V終止の定電流放電、1.25C、3.0V終止の定電流放電を行い、エージング後に合計4サイクル行った。 In the same charging method, 0.2C, 3.0V termination constant current discharge, 1C, 3.0V termination constant current discharge, 1.25C, 3.0V termination constant current discharge are performed, and a total of 4 cycles after aging. went.
0.1C放電、0.2C放電、1C放電時、放電開始2秒後の閉路電圧を測定し、電流と閉路電圧の関係より傾きを算出し、セルのDCR(直流抵抗値)として算出した。 At 0.1 C discharge, 0.2 C discharge, and 1 C discharge, the closed circuit voltage was measured 2 seconds after the start of discharge, and the gradient was calculated from the relationship between the current and the closed circuit voltage, and calculated as the DCR (DC resistance value) of the cell.
電極の活物質当たりの放電容量を含めた結果を表1に示す。なお、表1において、1C放電容量及びDCRは、無機固体酸化物を添加しない場合の値を「100.0」とした相対値である。 Table 1 shows the results including the discharge capacity per active material of the electrode. In Table 1, the 1C discharge capacity and DCR are relative values with the value when the inorganic solid oxide is not added set to "100.0".
表1の結果から明らかなように、炭素質コート無機固体酸化物(BaTiO3)を添加することで、放電容量が増加し、電池性能が向上していることが示された。 As is clear from the results in Table 1, it was shown that the addition of the carbonaceous coated inorganic solid oxide (BaTIO 3 ) increased the discharge capacity and improved the battery performance.
また、炭素質コート無機固体酸化物は、それ自体が導電性を示すためか、無機固体酸化物を配合しない(代わりに同量のアセチレンブラックを使用した)場合と同等ないしそれよりも低い抵抗値を示した。 In addition, the carbonaceous coated inorganic solid oxide has a resistance value equal to or lower than that when the inorganic solid oxide is not blended (instead, the same amount of acetylene black is used), probably because it exhibits conductivity by itself. showed that.
このように、炭素質でコートしているにもかかわらず、導電性を損なうことなく、放電容量を改善できたことは極めて意外なことといえる。 In this way, it is extremely surprising that the discharge capacity could be improved without impairing the conductivity even though it was coated with carbonaceous material.
一方、炭素質コートしない場合でも、上記の条件では、意外にも、放電容量が増加したが、抵抗値は大きくなった。 On the other hand, even when the carbonaceous coating was not performed, the discharge capacity was unexpectedly increased under the above conditions, but the resistance value was increased.
実施例5(異なる無機固体酸化物)
実施例4において、炭素質コートBaTiO3に代えて、実施例2及び実施例3で得られたいずれかの炭素質コート無機固体酸化物を使用したこと以外は、実施例4と同様にして、1C放電容量及びDCRの相対値(無機固体酸化物を添加しない場合の値を「100.0」とした相対値)を測定した。結果を表2に示す。
Example 5 (different inorganic solid oxide)
In the same manner as in Example 4, except that in Example 4, any of the carbonaceous coated inorganic solid oxides obtained in Examples 2 and 3 was used instead of the carbonaceous coated BaTiO 3 . The relative values of 1C discharge capacity and DCR (relative values with the value when no inorganic solid oxide was added were set to "100.0") were measured. The results are shown in Table 2.
表2の結果から明らかなように、無機固体酸化物の種類を変更した場合でも、同様の傾向が見られた。 As is clear from the results in Table 2, the same tendency was observed even when the type of the inorganic solid oxide was changed.
実施例6(塗工質量の変更)
実施例4及び5において、塗工質量を43.67mg/cm2(厚み127μm)又は28.80mg/cm2(厚み84μm)に変更したこと以外は、実施例4及び5と同様にして、1C放電容量及びDCRの相対値(無機固体酸化物を添加しない場合の値を「100.0」とした相対値)を測定した。結果をそれぞれ表3、表4に示す。
Example 6 (Change of coating mass)
1C in the same manner as in Examples 4 and 5 except that the coating mass was changed to 43.67 mg / cm 2 (thickness 127 μm) or 28.80 mg / cm 2 (thickness 84 μm) in Examples 4 and 5. The relative values of the discharge capacity and DCR (relative values with the value when no inorganic solid oxide was added were set to "100.0") were measured. The results are shown in Tables 3 and 4, respectively.
表3及び表4の結果から明らかなように、塗工質量を変更した場合でも、同様の傾向が見られた。 As is clear from the results in Tables 3 and 4, the same tendency was observed even when the coating mass was changed.
実施例7(塗工質量及び無機固体酸化物の変更)
実施例4において、塗工質量をさらに減らして19.43mg/cm2(厚み57μm)又は24.12mg/cm2(厚み70μm)に変更したり、炭素質コート無機固体酸化物の種類を変更したこと以外は、実施例4と同様にして、1C放電容量及びDCRの相対値(無機固体酸化物を添加しない場合の値を「100.0」とした相対値)を測定した。結果を表5に示す。
Example 7 (Change of coating mass and inorganic solid oxide)
In Example 4, the coating mass was further reduced to 19.43 mg / cm 2 (thickness 57 μm) or 24.12 mg / cm 2 (thickness 70 μm), or the type of carbonaceous coated inorganic solid oxide was changed. Except for this, the relative values of 1C discharge capacity and DCR (relative values with the value when no inorganic solid oxide was added was “100.0”) were measured in the same manner as in Example 4. The results are shown in Table 5.
表5の結果から明らかなように、塗工質量をさらに減らし、無機固体酸化物の種類を変更した場合でも、同様の傾向が見られた。 As is clear from the results in Table 5, the same tendency was observed even when the coating mass was further reduced and the type of the inorganic solid oxide was changed.
実施例8(電解液の変更)
実施例4及び5において、電解液を、LiPF6(濃度0.6M)及びLiFSI(濃度0.6M)を含むEC/MEC=3/7(体積比)組成の電解液としたこと以外は、実施例4及び5と同様にして、1C放電容量及びDCRの相対値(無機固体酸化物を添加しない場合の値を「100.0」とした相対値)を測定した[塗工質量53.50mg/cm2(厚み151μm)]。結果を表6に示す。
Example 8 (change of electrolytic solution)
Except that in Examples 4 and 5, the electrolytic solution was an electrolytic solution having an EC / MEC = 3/7 (volume ratio) composition containing LiPF 6 (concentration 0.6M) and LiFSI (concentration 0.6M). In the same manner as in Examples 4 and 5, the relative values of 1C discharge capacity and DCR (relative values with the value when no inorganic solid oxide was added were set to "100.0") were measured [coating mass 53.50 mg. / Cm 2 (thickness 151 μm)]. The results are shown in Table 6.
表6の結果から明らかなように、LiPF6の一部をよりイオン伝導度の高いLiFSIに置換した電解液を用いても同様の傾向があることが分かった。また、実施例4及び5の結果との対比から明らかなように、よりイオン伝導度が高いLiFSIを用いることで、より放電容量の改善効果及び抵抗低減効果が大きかった。 As is clear from the results in Table 6, it was found that the same tendency was observed even when an electrolytic solution in which a part of LiPF 6 was replaced with LiFSI having higher ionic conductivity was used. Further, as is clear from the comparison with the results of Examples 4 and 5, by using LiFSI having a higher ionic conductivity, the effect of improving the discharge capacity and the effect of reducing the resistance were larger.
実施例9(炭素質材料の変更)
ポリビニルアルコール(PVA)を70℃に加温した純水に溶解し、ポリビニルアルコール2質量%の水溶液を作製した。この水溶液中に、実施例1〜3で使用した無機固体酸化物(BaTiO3、SrTiO3、及びLiNbO3)を、それぞれ、ポリビニルアルコール:無機固体酸化物=1:10の質量比となるようにそれぞれ秤量し、自転公転ミキサーで2000rpmにて5分間分散させた。得られたスラリーをポリテトラフルオロエチレン(PTFE)シート上に滴下し、110℃のホットプレート上で乾燥させ、ポリビニルアルコール被覆無機固体酸化物を得た。これを窒素雰囲気中700℃で2時間焼成し、炭素質コート無機固体酸化物を得た。
Example 9 (Change of carbonaceous material)
Polyvinyl alcohol (PVA) was dissolved in pure water heated to 70 ° C. to prepare an aqueous solution of 2% by mass of polyvinyl alcohol. In this aqueous solution, the inorganic solid oxides (BaTIO 3 , SrTIO 3 , and LiNbO 3 ) used in Examples 1 to 3 were added so as to have a mass ratio of polyvinyl alcohol: inorganic solid oxide = 1:10, respectively. Each was weighed and dispersed at 2000 rpm for 5 minutes with a rotating and revolving mixer. The obtained slurry was dropped onto a polytetrafluoroethylene (PTFE) sheet and dried on a hot plate at 110 ° C. to obtain a polyvinyl alcohol-coated inorganic solid oxide. This was calcined at 700 ° C. for 2 hours in a nitrogen atmosphere to obtain a carbonaceous coated inorganic solid oxide.
得られた炭素質コート無機固体酸化物中の炭素質の割合を、実施例1と同様にして測定したところ、0.2質量%から1.1質量%であった。 The ratio of carbonaceous material in the obtained carbonaceous coated inorganic solid oxide was measured in the same manner as in Example 1 and found to be 0.2% by mass to 1.1% by mass.
また、実施例1と同様にして、ラマン分析より、炭素質(アモルファスカーボン)の存在を確認した。 Further, in the same manner as in Example 1, the presence of carbonaceous (amorphous carbon) was confirmed by Raman analysis.
実施例10(炭素質材料の変更)
実施例4において、実施例9で作製した炭素質コートBaTiO3を使用したこと以外は、実施例4と同様にして、1C放電容量及びDCRの相対値(無機固体酸化物を添加しない場合の値を「100.0」とした相対値)を測定した[塗工質量53.50mg/cm2(厚み151μm)]。結果を表7に示す。
Example 10 (Change of carbonaceous material)
In Example 4, the relative values of 1C discharge capacity and DCR (values when no inorganic solid oxide is added) are the same as in Example 4 except that the carbonaceous coated BaTiO 3 prepared in Example 9 is used. (Relative value with “100.0”) was measured [coating mass 53.50 mg / cm 2 (thickness 151 μm)]. The results are shown in Table 7.
表7の結果から明らかなように、炭素質材料をPVAとした場合でも、同様の傾向があることがわかった。 As is clear from the results in Table 7, it was found that there is a similar tendency even when the carbonaceous material is PVA.
実施例11(炭素質材料及び塗工質量の変更)
実施例10において、実施例9で作製した、炭素質コートBaTiO3、炭素質コートSrTiO3又は炭素質コートLiNbO3を使用し、塗工質量を19.43mg/cm2(厚み57μm)に変更したこと以外は、実施例10と同様にして、1C放電容量及びDCRの相対値(無機固体酸化物を添加しない場合の値を「100.0」とした相対値)を測定した。結果を表8に示す。
Example 11 (Change of carbonaceous material and coating mass)
In Example 10, the carbonaceous coat BaTiO 3 , the carbonaceous coat SrTiO 3 or the carbonaceous coat LiNbO 3 prepared in Example 9 was used, and the coating mass was changed to 19.43 mg / cm 2 (thickness 57 μm). Except for this, the relative values of 1C discharge capacity and DCR (relative values with the value when no inorganic solid oxide was added was “100.0”) were measured in the same manner as in Example 10. The results are shown in Table 8.
表8の結果から明らかなように、炭素質材料をPVAとし、塗工質量を変更した場合でも、同様の傾向があることがわかった。 As is clear from the results in Table 8, it was found that the same tendency was observed even when the carbonaceous material was PVA and the coating mass was changed.
実施例12(LiNbO 3 、平均粒子径1μm、塗工質量20mg/cm 2 )
正極活物質としてLiCoO2(ユミコア製 KD20S)、導電助剤としてアセチレンブラック(デンカ工業製 HS−100)、カーボンナノチューブ(VGCF 昭和電工製)、バインダーとしてポリフッ化ビニリデン(PVDF クレハ製 KFポリマー#1120)を用いた。また、無機固体酸化物として、LiNbO3(H.C.Starck製、平均粒子径1μm)を使用したこと以外は、実施例3と同様にして、粉体[炭素質コート無機固体酸化物(LiNbO3)]を用いた。得られた粉体はカーボンコートされ黒色を帯びていた。また、実施例1と同様にして、ラマン分析より、炭素質(アモルファスカーボン)の存在を確認した。
Example 12 (LiNbO 3 ,
LiCoO 2 (KD20S manufactured by Yumicore) as a positive electrode active material, acetylene black (HS-100 manufactured by Denka Industries) as a conductive auxiliary agent, carbon nanotubes (VGCF Showa Denko), polyvinylidene fluoride (KF polymer # 1120 manufactured by PVDF Kureha) as a binder. Was used. Further, in the same manner as in Example 3 except that LiNbO 3 (manufactured by HC Stark,
LiCoO2:アセチレンブラック:VGCF:PVDF:炭素質コートLiNbO3=90.5:3:2:3:1.5の質量比で秤量し、N−メチルピロリドン(NMP)を加えて自転公転ミキサーで分散させて、炭素質コートLiNbO3を含む正極スラリーを作製した。 LiCoO 2 : Acetylene black: VGCF: PVDF: Carbonic coat LiNbO 3 = 90.5: 3: 2: 3: 1.5 Weighed at a mass ratio, added N-methylpyrrolidone (NMP), and used a rotation / revolution mixer. The mixture was dispersed to prepare a positive electrode slurry containing a carbonaceous coat LiNbO 3 .
同様にして、カーボンコートしていないLiNbO3を同組成で含む正極スラリーを作製した。 Similarly, a positive electrode slurry containing LiNbO 3 without carbon coating having the same composition was prepared.
各正極スラリーをアルミ箔上に片面塗工し、110℃のホットプレート上で乾燥させ、その後110℃の真空乾燥炉で12時間減圧乾燥を行った。そして真空乾燥後にそれぞれロールプレス機でプレスした。プレスは電極密度が3.6g/ccとなるようにロールプレス機を調整した。 Each positive electrode slurry was coated on one side of an aluminum foil, dried on a hot plate at 110 ° C., and then dried under reduced pressure in a vacuum drying oven at 110 ° C. for 12 hours. Then, after vacuum drying, each was pressed with a roll press machine. For the press, the roll press machine was adjusted so that the electrode density was 3.6 g / cc.
このようにして片面塗工質量20mg/cm2(厚み70μm)の正極合材層を有する電極を作製した。 In this way, an electrode having a positive electrode mixture layer having a single-sided coating mass of 20 mg / cm 2 (thickness 70 μm) was produced.
負極活物質としてグラファイト(日立化成製 SMG)、導電助剤としてカーボンナノチューブ(VGCF 昭和電工製)、バインダーとしてスチレン・ブタジエンゴム(SBR、JSR製)、増粘剤としてカルボキシメチルセルロース(CMC ダイセル製)を用いた。 Graphite (SMG manufactured by Hitachi Chemical) as the negative electrode active material, carbon nanotube (VGCF Showa Denko) as the conductive auxiliary agent, styrene-butadiene rubber (SBR, JSR) as the binder, and carboxymethyl cellulose (CMC Dycel) as the thickener. Using.
CMC2%水溶液を作製し、グラファイト:VGCF:CMC:SBR=100:2:1:1の質量比で秤量し、自転公転ミキサーで分散させて、負極スラリーを作製した。 A 2% aqueous solution of CMC was prepared, weighed at a mass ratio of graphite: VGCF: CMC: SBR = 100: 2: 1: 1, and dispersed with a rotation / revolution mixer to prepare a negative electrode slurry.
負極スラリーを銅箔上に片面塗工し、80℃のホットプレート上で乾燥させ、その後、100℃の真空乾燥炉で12時間減圧乾燥を行った。そして真空乾燥後に電極密度が1.5g/ccとなるようにロールプレス機でプレスした。 The negative electrode slurry was coated on one side of a copper foil, dried on a hot plate at 80 ° C., and then dried under reduced pressure in a vacuum drying oven at 100 ° C. for 12 hours. Then, after vacuum drying, the electrodes were pressed with a roll press so that the electrode density was 1.5 g / cc.
このようにして、片面塗工質量9.6mg/cm2の負極合材層を有する電極を作製した。 In this way, an electrode having a negative electrode mixture layer having a single-sided coating mass of 9.6 mg / cm 2 was produced.
(ラミネート電池の作製)
前記で得られた正極及び負極をそれぞれカットし、極性導出リードを超音波で溶接し、25μmのPE製セパレータを介して該正極及び負極を対向させ、ラミネート外装で3方を封止した。未封止の1方より、電解液を700μL添加した。これにより4.2V、30mAhのラミネート電池(フルセル)を作製した。
(Making laminated batteries)
The positive electrode and the negative electrode obtained above were cut, and the polarity lead-out lead was ultrasonically welded, the positive electrode and the negative electrode were opposed to each other via a 25 μm PE separator, and three sides were sealed with a laminated exterior. 700 μL of electrolytic solution was added from the unsealed one. As a result, a 4.2 V, 30 mAh laminated battery (full cell) was produced.
なお、電解液は、LiPF6(濃度0.6M)及びLiFSI(濃度0.6M)を含むEC/MEC=3/7(体積比)組成の電解液を使用した。 As the electrolytic solution, an electrolytic solution having an EC / MEC = 3/7 (volume ratio) composition containing LiPF 6 (concentration 0.6M) and LiFSI (concentration 0.6M) was used.
得られたラミネート電池を、4.2V、0.5Cで5時間の定電流定電圧充電後、0.2C、2.75Vまでの定電流放電を行い、更に同様の充電後1C、2.75Vまでの定電流放電を行い、セルのエージングとした。 The obtained laminated battery is charged with a constant current constant voltage of 4.2 V and 0.5 C for 5 hours, then discharged with a constant current of 0.2 C and 2.75 V, and further charged at 1 C and 2.75 V. The constant current was discharged up to, and the cell was aged.
(1C放電容量)
エージング完了後のセルを、25℃で4.2V、1C(30mA)、0.6mA終止の充電後、25℃で1C、2.75Vの放電容量を測定した。また、放電後、同様の充電を25℃で行った後、−20℃にして3時間放置し、−20℃で1C、2.75Vの放電容量を測定した。電極の活物質当たりの放電容量を含めた結果を表9に示す。
(1C discharge capacity)
After the aging was completed, the cell was charged at 4.2 V, 1 C (30 mA) at 25 ° C., and at the end of 0.6 mA, and then the discharge capacity was measured at 25 ° C. at 1 C, 2.75 V. After discharging, the same charging was performed at 25 ° C., the temperature was adjusted to −20 ° C. and left for 3 hours, and the discharge capacity of 1C and 2.75V was measured at −20 ° C. Table 9 shows the results including the discharge capacity per active material of the electrode.
表9の結果から明らかなように、常温(25℃)での放電量は変わらないものの、負荷が強い−20℃での放電容量がLiNbO3の添加により改善した。また、カーボンコートされたLiNbO3は、カーボンコートしていないLiNbO3と比較して、−20℃での放電容量の改善効果が大きかった。 As is apparent from the results shown in Table 9, although does not change the discharge amount at room temperature (25 ° C.), the discharge capacity of the load is a strong -20 ° C. was improved by the addition of LiNbO 3. Further, the carbon-coated LiNbO 3 had a greater effect of improving the discharge capacity at −20 ° C. than the carbon-coated LiNbO 3 .
(DCR(相対値))
また、エージング完了後のセルを、実施例4と同様にして、充電深度(SOC)50%で、DCRの相対値(無機固体酸化物を添加しない場合の値を「100.0」とした相対値)を測定した。結果を表10に示す。
(DCR (relative value))
Further, in the cell after the completion of aging, the relative value of DCR (value when no inorganic solid oxide is added is set to "100.0" at a charging depth (SOC) of 50% in the same manner as in Example 4. Value) was measured. The results are shown in Table 10.
表10の結果から明らかなように、LiNbO3の添加により、抵抗値が低減した。また、カーボンコートされたLiNbO3は、カーボンコートしていないLiNbO3と比較して、抵抗値の低減効果が大きかった。 As can be seen from the results in Table 10, the addition of LiNbO 3, the resistance value was reduced. Further, the carbon-coated LiNbO 3 had a greater effect of reducing the resistance value than the carbon-uncoated LiNbO 3 .
(サイクル容量維持率)
さらに、エージング完了後のセルを、45℃にて、以下の充放電条件(サイクル条件)で、合計300サイクルのサイクル試験を行った。その結果を表11に示す。
(サイクル条件)
充電:4.2V、1C、0.6mA終止
放電:1C、2.75V終止
(Cycle capacity maintenance rate)
Further, the cell after the completion of aging was subjected to a cycle test of a total of 300 cycles at 45 ° C. under the following charge / discharge conditions (cycle conditions). The results are shown in Table 11.
(Cycle condition)
Charging: 4.2V, 1C, 0.6mA termination Discharge: 1C, 2.75V termination
表11の結果から明らかなように、LiNbO3の添加により、300サイクル後の容量維持率が改善した。また、カーボンコートされたLiNbO3は、カーボンコートしていないLiNbO3と比較して、サイクル容量維持率の改善効果が大きかった。 As is clear from the results in Table 11, the addition of LiNbO 3 improved the volume retention rate after 300 cycles. Further, the carbon-coated LiNbO 3 had a greater effect of improving the cycle capacity retention rate than the carbon-uncoated LiNbO 3 .
実施例13(平均粒子径1μm又は100〜300μm、塗工質量90mg/cm 2 )
0.3mm厚みのPPシートをトムソンカッターで加工して外形6cm×6cm、中心に開口部4cm×4cmを設けたドーナツ型のPP樹脂枠を作製した。このPP樹脂枠の片面にシーラント兼接着剤としてスリーボンド3315Eを塗布した後、15μmアルミ箔に張り付け、60℃の真空乾燥炉で12時間乾燥させた。乾燥後、PP樹脂枠外にリード接触箇所を1点設け、それ以外は樹脂枠に沿って金属集電体を切断し、正極集電体を作製した。
Example 13 (
A 0.3 mm thick PP sheet was processed with a Thomson cutter to prepare a donut-shaped PP resin frame having an outer diameter of 6 cm × 6 cm and an opening of 4 cm × 4 cm at the center. ThreeBond 3315E was applied to one side of the PP resin frame as a sealant and an adhesive, attached to a 15 μm aluminum foil, and dried in a vacuum drying oven at 60 ° C. for 12 hours. After drying, one lead contact point was provided outside the PP resin frame, and the other metal current collectors were cut along the resin frame to prepare a positive electrode current collector.
負極集電体についても正極集電体と同様にして、0.3mm厚みのPPシートを6cm×6cm、中心に開口部4.2cm×4.2cmを設けたドーナツ型のPP樹脂枠を作製した。このPP樹脂枠の片面にシーラント兼接着剤としてスリーボンド3315Eを塗布した後、15μmの銅箔に張り付け、正極集電体と同様にして乾燥させ、負極集電体を作製した。 As for the negative electrode current collector, a donut-shaped PP resin frame having a 0.3 mm thick PP sheet having a thickness of 6 cm × 6 cm and an opening of 4.2 cm × 4.2 cm at the center was produced in the same manner as the positive electrode current collector. .. ThreeBond 3315E was applied to one side of the PP resin frame as a sealant and an adhesive, and then attached to a copper foil of 15 μm and dried in the same manner as the positive electrode current collector to prepare a negative electrode current collector.
正極活物質としてLiNi1/3Co1/3Mn1/3O2(ユミコア製、MX7H)、導電助剤としてアセチレンブラック(デンカ工業製、HS−100)、カーボンナノチューブ(VGCF 昭和電工製)、炭素繊維(大阪ガスケミカル製:ドナカーボミルド)を用いた。また、無機固体酸化物として、LiNbO3(H.C.Starck製、平均粒子径1μm、以下「LiNbO3(1μm)」ともいう)、又はLiNbO3(アルドリッチ製、254290−10G、平均粒子径100〜300μm、以下「LiNbO3(100〜300μm)」ともいう)を使用したこと以外は、実施例3と同様にして、粉体[炭素質コート無機固体酸化物(LiNbO3)]を用いた。得られた粉体はカーボンコートされ黒色を帯びていた。また、実施例1と同様にして、ラマン分析より、炭素質(アモルファスカーボン)の存在を確認した。
LiNi 1/3 Co 1/3 Mn 1/3 O 2 (manufactured by Yumicore, MX7H) as positive electrode active material, acetylene black (manufactured by Denka Kogyo, HS-100) as conductive aid, carbon nanotubes (manufactured by VGCF Showa Denko), Carbon fiber (manufactured by Osaka Gas Chemicals: Donna Carbomilled) was used. Further, as an inorganic solid oxide, LiNbO 3 (manufactured by HC Stark,
正極活物質:HS−100:VGCF:ドナカーボミルド:炭素質コートLiNbO3を81:5:5:5:4の質量比で秤量し、電解液を固形分70%相当となるように秤量し、自転公転ミキサーで分散させて、正極スラリーを作製した。なお、電解液は、LiFSI(濃度2M)を含むEC/プロピレンカーボネート(PC)=3/7(体積比)組成の電解液と、LiPF6(濃度1M)を含むEC/PC=3/7(体積比)組成の電解液とを体積比2:1でブレンドした電解液を用いた。 Positive electrode active material: HS-100: VGCF: Donna carbomilled: Carbonaceous coat LiNbO 3 is weighed at a mass ratio of 81: 5: 5: 5: 4, and the electrolytic solution is weighed so as to have a solid content of 70%. , A positive electrode slurry was prepared by dispersing with a rotation / revolution mixer. The electrolytic solution was an electrolytic solution having an EC / propylene carbonate (PC) = 3/7 (volume ratio) composition containing LiFSI (concentration 2M) and EC / PC = 3/7 (concentration 1M) containing LiPF 6 (concentration 1M). An electrolytic solution blended with an electrolytic solution having a composition (volume ratio) at a volume ratio of 2: 1 was used.
作製した正極スラリーを正極集電体の開口部に、固形分の塗工質量が90mg/cm2(厚み200μm)となるように転写し、セルロースセパレータ(日本高度紙工業社製、TF4425、厚さ:25μm、不織布:空隙率71%)をを2枚重ねで正極スラリー上に設置し、その上にSUSのジグを置き、平板プレス機(テスター産業、SA−302)でシリンダ圧30MPaにて10秒間プレスした。プレス後、さらに前記と同じセパレータを1枚設置し、前記電解液を0.4g滴下して正極を作製した。 The prepared positive electrode slurry was transferred to the opening of the positive electrode current collector so that the coating mass of the solid content was 90 mg / cm 2 (thickness 200 μm), and a cellulose separator (manufactured by Nippon Advanced Paper Industry Co., Ltd., TF4425, thickness) was transferred. : 25 μm, non-woven fabric: porosity 71%) are placed on the positive electrode slurry in two layers, a SUS jig is placed on it, and a flat plate press (Tester Sangyo, SA-302) is used at a cylinder pressure of 30 MPa. Pressed for seconds. After the press, one sheet of the same separator as described above was further installed, and 0.4 g of the electrolytic solution was added dropwise to prepare a positive electrode.
また、カーボンコートしていないLiNbO3を用いたこと以外は前記と同様にして(前記と同じ組成、電解液で)、スラリー化し(正極スラリーを作製し)、正極を作製した。 Further, a positive electrode was prepared by slurrying (creating a positive electrode slurry) in the same manner as described above (with the same composition and electrolytic solution as described above) except that LiNbO 3 without carbon coating was used.
さらに、正極活物質:HS−100:VGCF:ドナカーボミルド=85:5:5:5の質量比で含む、無機固体酸化物を含まない正極スラリーを用いたこと以外は、前記と同様にして正極を作製した。 Further, the same as above except that the positive electrode slurry containing no inorganic solid oxide was used, which contained a positive electrode active material: HS-100: VGCF: donacarbomilled = 85: 5: 5: 5. A positive electrode was prepared.
負極活物質としてハードカーボン(クレハ製、カーボトロンP)、導電助剤としてアセチレンブラック(デンカ工業製 HS−100)、カーボンナノチューブ(VGCF 昭和電工製)、炭素繊維(大阪ガスケミカル製:ドナカーボミルド)を用いた。 Hard carbon (Kureha, Carbotron P) as negative electrode active material, acetylene black (HS-100, Denka Kogyo), carbon nanotube (VGCF Showa Denko), carbon fiber (Osaka Gas Chemicals: Dona Carbomilled) as conductive aid Was used.
負極活物質:HS−100:VGCF:ドナカーボミルド=87:2:4:7の質量比で秤量し、電解液を固形分50%相当になるように秤量し、自転公転ミキサーで分散させて、負極スラリーを作製した。なお、電解液は、正極で用いた電解液と同じものを用いた。 Negative electrode active material: HS-100: VGCF: Donna carbomilled = 87: 2: 4: 7 Weighed so that the solid content is equivalent to 50%, and dispersed with a rotation / revolution mixer. , Negative electrode slurry was prepared. The electrolytic solution used was the same as the electrolytic solution used for the positive electrode.
作製した負極スラリーを負極集電体の開口部に、固形分の塗工質量が35mg/cm2となるように転写したこと以外は正極と同様にして、負極を作製した。 A negative electrode was prepared in the same manner as the positive electrode except that the prepared negative electrode slurry was transferred to the opening of the negative electrode current collector so that the coating mass of the solid content was 35 mg / cm 2 .
以上により作製した正負極を対向させてラミネートフィルムで真空封止して、ラミネート電池(フルセル)を完成させた。 The positive and negative electrodes produced as described above were opposed to each other and vacuum-sealed with a laminated film to complete a laminated battery (full cell).
得られたラミネート電池を、以下の手順で充放電を行い、セルのエージングとした。
(エージングの手順)
・10mA定電流、4.2V終止充電後、10mA定電流、2.5V終止放電を2サイクル
・20mA、4.2Vの定電流定電圧で2mA終止充電後、20mA定電流、2.5V終止放電
・40mA、4.2Vの定電流定電圧で2mA終止充電後、40mA定電流、2.5V終止放電
エージング後のセルを開裂し、再度、真空封止することでガス抜きを行い、セルを完成させた。
The obtained laminated battery was charged and discharged according to the following procedure to obtain cell aging.
(Aging procedure)
・ 10mA constant current, 4.2V end charge, 10mA constant current, 2.5V end discharge for 2 cycles ・ 20mA, 4.2V constant current constant voltage, 2mA end charge, 20mA constant current, 2.5V end discharge・ After 2mA termination charging at a constant current constant voltage of 40mA and 4.2V, the cell after aging is opened with a constant current of 40mA and 2.5V termination discharge, and the cell is degassed by vacuum sealing again to complete the cell. I let you.
完成後のセルを40mA、4.2Vの定電流定電圧で4mA終止充電後、それぞれ、10mA、20mA、33mA、50mA、100mAで放電し、放電レート特性を確認した。電極の活物質当たりの放電容量を含めた結果を表12に示す。 After the completed cell was finally charged at 4 mA at a constant current constant voltage of 40 mA and 4.2 V, it was discharged at 10 mA, 20 mA, 33 mA, 50 mA, and 100 mA, respectively, and the discharge rate characteristics were confirmed. Table 12 shows the results including the discharge capacity of the electrode per active material.
表12の結果から明らかなように、LiNbO3の添加により放電容量が増加(改善)した。カーボンコートされたLiNbO3は、カーボンコートしていないLiNbO3と比較して、放電容量がより一層増加した。さらに、LiNbO3の平均粒子径が小さいほど放電容量は増加した。この理由としては、LiNbO3は、その平均粒子径が小さいほど厚膜電極内に広く分散するため、Liイオンの移動度が増加すると推定する。 As can be seen from the results in Table 12, the discharge capacity is increased (improved) by addition of LiNbO 3. The carbon-coated LiNbO 3 had a further increased discharge capacity as compared to the carbon-uncoated LiNbO 3 . Further, the discharge capacity as the average particle diameter of LiNbO 3 is small increased. The reason for this is that LiNbO 3 is widely dispersed in the thick film electrode as its average particle size is smaller, and it is presumed that the mobility of Li ions increases.
本発明によれば、新規な無機固体酸化物等を提供できる。 According to the present invention, a novel inorganic solid oxide or the like can be provided.
Claims (20)
19. The battery of claim 19, wherein the lithium salt comprises at least one selected from LiPF 6 and lithium bis (fluorosulfonyl) imide.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019084406 | 2019-04-25 | ||
JP2019084406 | 2019-04-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020180037A true JP2020180037A (en) | 2020-11-05 |
JP7522562B2 JP7522562B2 (en) | 2024-07-25 |
Family
ID=73023126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2020039157A Active JP7522562B2 (en) | 2019-04-25 | 2020-03-06 | Inorganic Solid Oxides |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7522562B2 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011070789A (en) * | 2008-09-26 | 2011-04-07 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
WO2013128677A1 (en) * | 2012-02-29 | 2013-09-06 | 新神戸電機株式会社 | Lithium-ion battery |
JP2014169193A (en) * | 2013-03-01 | 2014-09-18 | Nec Corp | Carbon material composed of nanocarbon and graphene or graphite compounded with each other, and method for producing the same |
WO2014175354A1 (en) * | 2013-04-26 | 2014-10-30 | 日産自動車株式会社 | Nonaqueous-electrolyte secondary battery |
WO2018203519A1 (en) * | 2017-05-01 | 2018-11-08 | テイカ株式会社 | Power storage device gas-generation inhibitor, power storage device positive electrode using power storage device gas-generation inhibitor, and power storage device |
JP2020117416A (en) * | 2019-01-23 | 2020-08-06 | 国立研究開発法人産業技術総合研究所 | Titanium oxide, method for producing titanium oxide, and lithium secondary battery using electrode active material containing titanium oxide |
-
2020
- 2020-03-06 JP JP2020039157A patent/JP7522562B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011070789A (en) * | 2008-09-26 | 2011-04-07 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
WO2013128677A1 (en) * | 2012-02-29 | 2013-09-06 | 新神戸電機株式会社 | Lithium-ion battery |
JP2014169193A (en) * | 2013-03-01 | 2014-09-18 | Nec Corp | Carbon material composed of nanocarbon and graphene or graphite compounded with each other, and method for producing the same |
WO2014175354A1 (en) * | 2013-04-26 | 2014-10-30 | 日産自動車株式会社 | Nonaqueous-electrolyte secondary battery |
WO2018203519A1 (en) * | 2017-05-01 | 2018-11-08 | テイカ株式会社 | Power storage device gas-generation inhibitor, power storage device positive electrode using power storage device gas-generation inhibitor, and power storage device |
JP2020117416A (en) * | 2019-01-23 | 2020-08-06 | 国立研究開発法人産業技術総合研究所 | Titanium oxide, method for producing titanium oxide, and lithium secondary battery using electrode active material containing titanium oxide |
Also Published As
Publication number | Publication date |
---|---|
JP7522562B2 (en) | 2024-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101444189B1 (en) | Nagative active material for sodium ion battery, method of preparing elecrode using thereof and sodium ion battery comprising same | |
JP5370937B2 (en) | Positive electrode active material, positive electrode and non-aqueous secondary battery | |
JP5897971B2 (en) | Electrode active material, electrode for non-aqueous secondary battery, non-aqueous secondary battery and method for producing electrode for non-aqueous secondary battery | |
JP2010287496A (en) | Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same | |
US20070190423A1 (en) | Negative electrode for lithium secondary battery and lithium secondary battery | |
JP5471527B2 (en) | Lithium secondary battery and electrode for lithium secondary battery | |
KR20170045300A (en) | Negative electrode for potassium ion secondary batteries, negative electrode for potassium ion capacitors, potassium ion secondary battery, potassium ion capacitor, and binder for negative electrodes of potassium ion secondary batteries or negative electrodes of potassium ion capacitors | |
JP2014017199A (en) | Electrode for lithium secondary battery and method for manufacturing the same, and lithium secondary battery and method for manufacturing the same | |
JP2018026497A (en) | Storage device manufacturing method and storage device pre-doping method | |
KR20230148175A (en) | Conductive undercoat agent | |
KR102217106B1 (en) | Composition for polymer electrolyte and lithium secondary battery comprising the same | |
JP2015118742A (en) | Nonaqueous electrolyte secondary battery | |
JP4916263B2 (en) | Power storage device | |
JP2012129095A (en) | Bipolar electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same | |
JP7492348B2 (en) | Positive electrode and battery equipped with the positive electrode | |
TWI600195B (en) | Nonaqueous electrolyte secondary battery and battery module using the same | |
KR20200018148A (en) | Anode For Lithium Secondary Battery, Method Of Making The Same and Lithium Secondary Battery comprising the Same | |
JP7199157B2 (en) | Electrolyte solution containing lithium iodide, and lithium ion battery using the same | |
CN115136343A (en) | Electrode for lithium ion secondary battery and lithium ion secondary battery | |
CN105439200A (en) | Anode active material, sodium ion battery and lithium ion battery | |
JP2016192272A (en) | Negative electrode for power storage element, power storage element and power storage device | |
JP2015187929A (en) | Nonaqueous electrolyte secondary battery | |
JP6503768B2 (en) | Lithium ion secondary battery | |
JP7522562B2 (en) | Inorganic Solid Oxides | |
JP2020184476A (en) | Method for manufacturing negative electrode active material for non-aqueous secondary batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200319 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20200319 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20221206 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20230816 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20230822 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20231020 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20231120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240213 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20240315 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20240702 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20240712 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7522562 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |