JP2014067629A - Nonaqueous electrolyte secondary battery - Google Patents
Nonaqueous electrolyte secondary battery Download PDFInfo
- Publication number
- JP2014067629A JP2014067629A JP2012212925A JP2012212925A JP2014067629A JP 2014067629 A JP2014067629 A JP 2014067629A JP 2012212925 A JP2012212925 A JP 2012212925A JP 2012212925 A JP2012212925 A JP 2012212925A JP 2014067629 A JP2014067629 A JP 2014067629A
- Authority
- JP
- Japan
- Prior art keywords
- positive electrode
- active material
- electrode active
- secondary battery
- electrolyte secondary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 56
- 239000007774 positive electrode material Substances 0.000 claims abstract description 109
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 23
- -1 lithium transition metal Chemical class 0.000 claims abstract description 16
- 229910052802 copper Inorganic materials 0.000 claims abstract description 15
- 239000002131 composite material Substances 0.000 claims abstract description 13
- 239000002905 metal composite material Substances 0.000 claims abstract description 10
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 9
- 229910052742 iron Inorganic materials 0.000 claims abstract description 9
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 9
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 9
- ZYXUQEDFWHDILZ-UHFFFAOYSA-N [Ni].[Mn].[Li] Chemical compound [Ni].[Mn].[Li] ZYXUQEDFWHDILZ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 229910052796 boron Inorganic materials 0.000 claims abstract description 5
- 229910052749 magnesium Inorganic materials 0.000 claims abstract description 5
- 229910052758 niobium Inorganic materials 0.000 claims abstract description 5
- 229910052719 titanium Inorganic materials 0.000 claims abstract description 5
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 5
- 239000011572 manganese Substances 0.000 claims description 18
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 239000011149 active material Substances 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 229910016118 LiMn1.5Ni0.5O4 Inorganic materials 0.000 claims description 3
- 229910052596 spinel Inorganic materials 0.000 abstract description 7
- 239000011029 spinel Substances 0.000 abstract description 7
- ZAUUZASCMSWKGX-UHFFFAOYSA-N manganese nickel Chemical compound [Mn].[Ni] ZAUUZASCMSWKGX-UHFFFAOYSA-N 0.000 abstract description 6
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 description 22
- 238000012360 testing method Methods 0.000 description 16
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 14
- 239000000203 mixture Substances 0.000 description 13
- 239000010949 copper Substances 0.000 description 12
- 239000007773 negative electrode material Substances 0.000 description 12
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 10
- 239000003792 electrolyte Substances 0.000 description 9
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 8
- 238000000354 decomposition reaction Methods 0.000 description 8
- 230000014759 maintenance of location Effects 0.000 description 8
- 238000002156 mixing Methods 0.000 description 7
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 6
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 6
- 239000003125 aqueous solvent Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000004090 dissolution Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- 239000002002 slurry Substances 0.000 description 6
- 239000008151 electrolyte solution Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 4
- 229910013870 LiPF 6 Inorganic materials 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- 241000156302 Porcine hemagglutinating encephalomyelitis virus Species 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000005520 cutting process Methods 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 239000006230 acetylene black Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 150000005678 chain carbonates Chemical class 0.000 description 3
- 150000005676 cyclic carbonates Chemical class 0.000 description 3
- 229960001484 edetic acid Drugs 0.000 description 3
- 238000005755 formation reaction Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 2
- QGHDLJAZIIFENW-UHFFFAOYSA-N 4-[1,1,1,3,3,3-hexafluoro-2-(4-hydroxy-3-prop-2-enylphenyl)propan-2-yl]-2-prop-2-enylphenol Chemical group C1=C(CC=C)C(O)=CC=C1C(C(F)(F)F)(C(F)(F)F)C1=CC=C(O)C(CC=C)=C1 QGHDLJAZIIFENW-UHFFFAOYSA-N 0.000 description 2
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 2
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 229910013290 LiNiO 2 Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 239000006258 conductive agent Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 239000002612 dispersion medium Substances 0.000 description 2
- 238000010828 elution Methods 0.000 description 2
- YCUBDDIKWLELPD-UHFFFAOYSA-N ethenyl 2,2-dimethylpropanoate Chemical compound CC(C)(C)C(=O)OC=C YCUBDDIKWLELPD-UHFFFAOYSA-N 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 2
- 229910001386 lithium phosphate Inorganic materials 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910052752 metalloid Inorganic materials 0.000 description 2
- BHIWKHZACMWKOJ-UHFFFAOYSA-N methyl isobutyrate Chemical compound COC(=O)C(C)C BHIWKHZACMWKOJ-UHFFFAOYSA-N 0.000 description 2
- KKQAVHGECIBFRQ-UHFFFAOYSA-N methyl propyl carbonate Chemical compound CCCOC(=O)OC KKQAVHGECIBFRQ-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000006722 reduction reaction Methods 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 229940014800 succinic anhydride Drugs 0.000 description 2
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 2
- HMXHUUDRVBXHBQ-UHFFFAOYSA-N (2-hydroxyacetyl) 2-hydroxyacetate Chemical compound OCC(=O)OC(=O)CO HMXHUUDRVBXHBQ-UHFFFAOYSA-N 0.000 description 1
- WDXYVJKNSMILOQ-UHFFFAOYSA-N 1,3,2-dioxathiolane 2-oxide Chemical compound O=S1OCCO1 WDXYVJKNSMILOQ-UHFFFAOYSA-N 0.000 description 1
- NZPSDGIEKAQVEZ-UHFFFAOYSA-N 1,3-benzodioxol-2-one Chemical compound C1=CC=CC2=C1OC(=O)O2 NZPSDGIEKAQVEZ-UHFFFAOYSA-N 0.000 description 1
- NJMWOUFKYKNWDW-UHFFFAOYSA-N 1-ethyl-3-methylimidazolium Chemical compound CCN1C=C[N+](C)=C1 NJMWOUFKYKNWDW-UHFFFAOYSA-N 0.000 description 1
- VUAXHMVRKOTJKP-UHFFFAOYSA-M 2,2-dimethylbutanoate Chemical compound CCC(C)(C)C([O-])=O VUAXHMVRKOTJKP-UHFFFAOYSA-M 0.000 description 1
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical compound O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910014689 LiMnO Inorganic materials 0.000 description 1
- 229910012672 LiTiO Inorganic materials 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910020810 Sn-Co Inorganic materials 0.000 description 1
- 229910018757 Sn—Co Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- KLARSDUHONHPRF-UHFFFAOYSA-N [Li].[Mn] Chemical compound [Li].[Mn] KLARSDUHONHPRF-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- QHGJSLXSVXVKHZ-UHFFFAOYSA-N dilithium;dioxido(dioxo)manganese Chemical compound [Li+].[Li+].[O-][Mn]([O-])(=O)=O QHGJSLXSVXVKHZ-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- AFOSIXZFDONLBT-UHFFFAOYSA-N divinyl sulfone Chemical compound C=CS(=O)(=O)C=C AFOSIXZFDONLBT-UHFFFAOYSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- HHEIMYAXCOIQCJ-UHFFFAOYSA-N ethyl 2,2-dimethylpropanoate Chemical compound CCOC(=O)C(C)(C)C HHEIMYAXCOIQCJ-UHFFFAOYSA-N 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- WDAXFOBOLVPGLV-UHFFFAOYSA-N isobutyric acid ethyl ester Natural products CCOC(=O)C(C)C WDAXFOBOLVPGLV-UHFFFAOYSA-N 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- RSNHXDVSISOZOB-UHFFFAOYSA-N lithium nickel Chemical compound [Li].[Ni] RSNHXDVSISOZOB-UHFFFAOYSA-N 0.000 description 1
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- CVMIVKAWUQZOBP-UHFFFAOYSA-L manganic acid Chemical compound O[Mn](O)(=O)=O CVMIVKAWUQZOBP-UHFFFAOYSA-L 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002738 metalloids Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 238000006864 oxidative decomposition reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229920001690 polydopamine Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、スピネル型リチウムニッケルマンガン複合酸化物を主要な正極活物質として用いた非水電解質二次電池に関する。 The present invention relates to a nonaqueous electrolyte secondary battery using a spinel type lithium nickel manganese composite oxide as a main positive electrode active material.
近年、リチウム二次電池に代表される非水電解質二次電池は、携帯電話機、携帯型コンピュータ、PDA、携帯型音楽プレイヤー等のモバイル用途に限らず、電動工具等のパワーツールや、電動自転車、電気自動車(EV)やハイブリッド電気自動車(HEV、PHEV)等の動力用、さらにはバックアップ電源や電力貯蔵等の蓄電用に至る中型から大型電池用途についても展開が進みつつあり、その用途が多様化してきている。 In recent years, non-aqueous electrolyte secondary batteries represented by lithium secondary batteries are not limited to mobile applications such as mobile phones, portable computers, PDAs, portable music players, power tools such as electric tools, electric bicycles, The use of medium-sized to large-sized batteries ranging from electric vehicles (EV) and hybrid electric vehicles (HEV, PHEV) to power sources, as well as storage power sources such as backup power sources and electric power storages, is being developed, and the applications are diversifying. Have been doing.
非水電解質二次電池は、主としてリチウムイオンを吸蔵・放出できる金属、合金、半金属もしくは炭素材料などを負極活物質とし、コバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、マンガン酸リチウム(LiMn2O4)等のリチウム遷移金属複合酸化物を正極活物質としている。これらのリチウム遷移金属複合酸化物からなる正極活物質のうち、ニッケル酸リチウムは、高容量であるという特徴を有する反面、安全性、性能的(例えば、過電圧が大きい)にコバルト酸リチウムに劣るといった問題が存在している。また、マンガン酸リチウムは、資源が豊富で安価であるが、低エネルギー密度であり、高温でマンガンが溶解するという問題がある。このため、現状では、リチウム含有遷移金属複合酸化物としてコバルト酸リチウムを用いることが主流となっている。 Non-aqueous electrolyte secondary batteries mainly use metals, alloys, metalloids, or carbon materials that can occlude and release lithium ions as negative electrode active materials, and include lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), and manganic acid. A lithium transition metal composite oxide such as lithium (LiMn 2 O 4 ) is used as the positive electrode active material. Among these positive electrode active materials composed of these lithium transition metal composite oxides, lithium nickelate is characterized by high capacity, but is inferior to lithium cobaltate in terms of safety and performance (for example, high overvoltage). A problem exists. In addition, lithium manganate is rich in resources and inexpensive, but has a problem of low energy density and dissolution of manganese at high temperatures. For this reason, at present, the use of lithium cobalt oxide as the lithium-containing transition metal composite oxide has become the mainstream.
しかしながら、コバルトは高価であるとともに資源としての存在量が少ない。最近では、EV、HEV、PHEV等の動力用、バックアップ電源や電力貯蔵用等の蓄電用の大型の非水電解質二次電池の開発が加速されている。このような大型の非水電解質電池には、小型・軽量化、また、低コスト化が要求されている。そのため、コバルト酸リチウムの代替となる、高容量密度かつ低コストの正極材料の開発が積極的に行われている。 However, cobalt is expensive and has a small abundance as a resource. Recently, development of large-sized non-aqueous electrolyte secondary batteries for power storage such as EV, HEV, PHEV, etc., and power storage such as backup power supply and power storage has been accelerated. Such a large non-aqueous electrolyte battery is required to be small in size and light in weight and low in cost. For this reason, positive electrode materials having a high capacity density and a low cost that can replace lithium cobalt oxide have been actively developed.
中でも、スピネル型ニッケルマンガン複合酸化物は、充放電電位が4.75V(vs.Li/Li+)付近と高く、原料にコバルトが含まれていないため、低コスト・高容量密度化が期待できる。しかしながら、スピネル型ニッケルマンガン複合酸化物は、充放電サイクルが進行すると、容量が次第に低下するという問題があった。こうした容量の低下は、非水電解質二次電池の充電末期に正極中からリチウムが存在しなくなることにより結晶構造が不安定になることに基づくものであると考えられている。 Among them, the spinel type nickel manganese composite oxide has a high charge / discharge potential of around 4.75 V (vs. Li / Li + ) and does not contain cobalt in the raw material, so that low cost and high capacity density can be expected. . However, the spinel-type nickel manganese composite oxide has a problem that the capacity gradually decreases as the charge / discharge cycle proceeds. Such a decrease in capacity is believed to be based on the fact that the crystal structure becomes unstable due to the absence of lithium from the positive electrode at the end of charging of the nonaqueous electrolyte secondary battery.
こうした問題に対して、下記特許文献1に開示されているリチウム二次電池では、正極活物質として、スピネル構造を有するリチウムマンガン複合酸化物と、層状構造を有するリチウムニッケル複合酸化物との混合物からなるものを用いることで、充放電サイクルを繰り返した際の容量の低下を抑制するようにしている。また、下記特許文献2に開示されているリチウム二次電池では、正極活物質として、nV級の正極材料(例えば、Li4Mn5O12、LiV2O5、LiMnO2等)と(n+1)V級の正極材料(例えば、LiMn2O4、LiCoO2、LiNiO2等)との混合物からなるものを用いることで、リチウムが放出されることによって生じ得る結晶破壊を抑制するようにしている。
With respect to such a problem, in the lithium secondary battery disclosed in Patent Document 1 below, as a positive electrode active material, a mixture of a lithium manganese composite oxide having a spinel structure and a lithium nickel composite oxide having a layered structure is used. By using this, a decrease in capacity when the charge / discharge cycle is repeated is suppressed. Further, in the lithium secondary battery disclosed in
一方、従来から、非水電解質二次電池の非水電解液における非水溶媒の還元分解を抑制するために、非水電解液にビニレンカーボネート(VC)を添加剤として添加する方法が知られている。この添加剤は、負極活物質が非水溶媒と直接反応しないようにするため、不動態化層とも称される負極表面被膜(SEI:Solid Electrolyte Interface.以下、「SEI」という。)を形成するものである。このように、VCを添加した非水電解液を用いると、最初の充電による負極へのリチウムの挿入前に、VCが自ら負極表面で還元分解を起こすことにより、負極活物質上にSEIを形成させ、負極上での非水電解液の不要な還元分解を防止することが知られている。 On the other hand, conventionally, there has been known a method of adding vinylene carbonate (VC) as an additive to a non-aqueous electrolyte in order to suppress reductive decomposition of a non-aqueous solvent in a non-aqueous electrolyte of a non-aqueous electrolyte secondary battery. Yes. In order to prevent the negative electrode active material from directly reacting with the non-aqueous solvent, this additive forms a negative electrode surface film (SEI: Solid Electrolyte Interface. Hereinafter referred to as “SEI”), which is also referred to as a passivation layer. Is. As described above, when a non-aqueous electrolytic solution to which VC is added is used, SEI is formed on the negative electrode active material by causing VC to undergo reductive decomposition on the negative electrode surface before lithium is inserted into the negative electrode by the first charge. It is known to prevent unnecessary reductive decomposition of the nonaqueous electrolytic solution on the negative electrode.
スピネル型ニッケルマンガン複合酸化物を正極活物質とする正極は、充電開始直後から急激に4.5V(vs.Li/Li+)以上の高電位まで上昇する電位プロファイルを有するため、充電初期から正極材料表面で非水電解液の酸化分解とそれに伴う正極活物質からのMnの溶出が生じ易い状態にある。このため、初期の充電過程において、対極の負極活物質表面上に適切なSEIが形成される前に、正極からのMn溶出物が負極に接し、負極活物質表面上でのMnの析出及びこれに伴う非水電解液の還元分解反応物の堆積が生じ易い。このMnの析出に伴う非水電解液の還元分解物の堆積が充電初期の段階から生じると、以後の初期充電工程においても負極上での適切なSEIの形成反応を阻害することになるため、負極上での不要な非水電解液の還元分解を防止することが困難となる。 A positive electrode using a spinel nickel-manganese composite oxide as a positive electrode active material has a potential profile that suddenly rises to a high potential of 4.5 V (vs. Li / Li + ) or more immediately after the start of charging. On the surface of the material, oxidative decomposition of the non-aqueous electrolyte and concomitant elution of Mn from the positive electrode active material are likely to occur. For this reason, in the initial charging process, before an appropriate SEI is formed on the surface of the negative electrode active material of the counter electrode, the Mn eluate from the positive electrode comes into contact with the negative electrode, and Mn precipitates on the surface of the negative electrode active material. As a result, deposition of a reductive decomposition reaction product of the non-aqueous electrolyte tends to occur. When the deposition of the reductive decomposition product of the nonaqueous electrolytic solution accompanying the precipitation of Mn occurs from the initial stage of charging, the appropriate SEI formation reaction on the negative electrode is inhibited in the subsequent initial charging process. It becomes difficult to prevent the reductive decomposition of the unnecessary nonaqueous electrolytic solution on the negative electrode.
負極での不要な非水電解液の還元分解は、負極内に適切に吸蔵されたLiが還元分解物へ取り込まれることにより負極電位が上昇し、この負極電位の上昇にしたがって、電池電圧の降下等の不具合を生じることになるため、大きな問題となっている。さらに、電池電圧降下が起こると、負極電位が負極集電体の銅の溶解電位(3.45V(vs.Li/Li+)付近)より高くなるため、非水電解液中に銅が徐々に溶出し、この非水電解液中に溶出した銅が負極上に電析して電池特性を阻害するという問題がある。 The reductive decomposition of the unnecessary nonaqueous electrolyte solution at the negative electrode increases the negative electrode potential by incorporating Li appropriately stored in the negative electrode into the reduced decomposition product, and the battery voltage decreases as the negative electrode potential increases. This is a big problem. Further, when the battery voltage drop occurs, the negative electrode potential becomes higher than the dissolution potential of copper in the negative electrode current collector (around 3.45 V (vs. Li / Li + )), so that the copper is gradually contained in the non-aqueous electrolyte. There is a problem in that the copper that is eluted and eluted in the non-aqueous electrolyte is electrodeposited on the negative electrode to inhibit the battery characteristics.
本発明の一の局面では、充放電電位が高いスピネル型ニッケルマンガン複合酸化物を正極活物質として用いる際に、第2の正極活物質を添加することによって、サイクル特性が良好となる。 In one aspect of the present invention, when a spinel nickel manganese composite oxide having a high charge / discharge potential is used as the positive electrode active material, the cycle characteristics are improved by adding the second positive electrode active material.
本願発明の一の局面の非水電解質二次電池は、第1正極活物質と第2正極活物質とを含む正極と、負極と、非水電解質とを備える非水電解質二次電池であって、
前記第1正極活物質は、一般式LiaMnxNiyM2−x−yO4(0.9≦a≦1.3、0<x≦1.6、0.4≦y<2、Mは、Fe、Mg、Zn、Co、Al、B、Nb、Mo、Cu及びTiからなる群から選ばれる少なくとも1種の元素)で表されるリチウムマンガンニッケル複合酸化物からなり、
前記第2正極活物質は、正極電位が2.0〜4.0V(vs.Li/Li+)になるまで充電したときの初期充電容量が200mAh/gを超えているリチウム遷移金属複合酸化物からなることを特徴とする。
A nonaqueous electrolyte secondary battery according to one aspect of the present invention is a nonaqueous electrolyte secondary battery including a positive electrode including a first positive electrode active material and a second positive electrode active material, a negative electrode, and a nonaqueous electrolyte. ,
The first positive electrode active material is represented by the general formula Li a Mn x Ni y M 2 -x-y O 4 (0.9 ≦ a ≦ 1.3,0 <x ≦ 1.6,0.4 ≦ y <2 , M is composed of a lithium manganese nickel composite oxide represented by Fe, Mg, Zn, Co, Al, B, Nb, Mo, Cu, and Ti).
The second positive electrode active material is a lithium transition metal composite oxide having an initial charge capacity exceeding 200 mAh / g when charged until the positive electrode potential becomes 2.0 to 4.0 V (vs. Li / Li + ). It is characterized by comprising.
第1正極活物質である一般式LiaMnxNiyM2−x−yO4(0.9≦a≦1.3、0<x≦1.6、0.4≦y<2、Mは、Fe、Mg、Zn、Co、Al、B、Nb、Mo、Cu及びTiからなる群から選ばれる少なくとも1種の元素)で表されるリチウムマンガンニッケル複合酸化物は、スピネル型ニッケルマンガン複合酸化物とも称されている化合物であり、5V近い高い充放電電位を有している。この第1正極活物質に対して、2.0〜4.0Vと低電位に充電電位を有し、かつ初期充電容量が200mAh/gと大きな第2正極活物質を混合することで、最初の充電時には、第1正極活物質の充電反応がほとんど生じない低電位で第2正極活物質のみの充電反応が先に生じることとなる。したがって、第2正極活物質での充電反応が生じている間は、負極活物質表面上では第1正極活物質からのMn溶出物による悪影響を受けることなく、適切なSEI形成反応を生じさせることが可能となる。 Formula Li a Mn x Ni y M 2 -x-y O 4 (0.9 ≦ a ≦ 1.3,0 <x ≦ 1.6,0.4 ≦ y <2 is a first positive electrode active material, The lithium manganese nickel composite oxide represented by M is at least one element selected from the group consisting of Fe, Mg, Zn, Co, Al, B, Nb, Mo, Cu and Ti is a spinel nickel manganese It is a compound also called a complex oxide, and has a high charge / discharge potential close to 5V. By mixing this first positive electrode active material with a second positive electrode active material having a charging potential as low as 2.0 to 4.0 V and a large initial charging capacity of 200 mAh / g, At the time of charging, the charging reaction of only the second positive electrode active material occurs first at a low potential where the charging reaction of the first positive electrode active material hardly occurs. Therefore, during the charging reaction with the second positive electrode active material, an appropriate SEI formation reaction is caused on the negative electrode active material surface without being adversely affected by the Mn eluate from the first positive electrode active material. Is possible.
このように、本発明の一の局面の非水電解質二次電池においては、最初の充電時に第1正極活物質からのMn溶出物の負極での析出の前に、適切なSEI形成を行うことができる。これにより、以後の第1正極活物質の高電位での充電反応が生じてMn溶出物が生成する可能性が高い状況となっても、負極活物質表面上での不要な還元反応の発生を抑制することが可能となる。そのため、本発明の非水電解質二次電池によれば、充電工程における電池電圧の降下等の不具合を抑制することが可能となり、また、電池電圧が降下することによって生じる負極集電体の成分(例えば、銅)の溶解析出が抑制されるので、負極集電体の成分の溶解析出に起因する電池特性の阻害という問題も解決できるようになる。 As described above, in the nonaqueous electrolyte secondary battery according to one aspect of the present invention, appropriate SEI formation is performed before the precipitation of the Mn eluate from the first positive electrode active material on the negative electrode during the first charge. Can do. As a result, even if the subsequent charging reaction of the first positive electrode active material occurs at a high potential and Mn elution is likely to be generated, generation of unnecessary reduction reaction on the surface of the negative electrode active material is prevented. It becomes possible to suppress. Therefore, according to the non-aqueous electrolyte secondary battery of the present invention, it is possible to suppress problems such as a decrease in battery voltage in the charging process, and the negative current collector component ( For example, since the dissolution of copper) is suppressed, the problem of the inhibition of battery characteristics due to the dissolution and precipitation of the components of the negative electrode current collector can be solved.
また、第2正極活物質は、その初期充電容量が高いほど単位容積内に収容し得る第1正極活物質の相対的な量を増やすことができ、初期充電後の容量を高くすることができるようになる。したがって、第2正極活物質の初期充電容量は、正極電位が2.0V(vs.Li/Li+)から4.0V(vs.Li/Li+)になるまで充電したときに250mAh/g以上であれば好ましく、300mAh/g以上であればさらに好ましい。 Further, the higher the initial charge capacity of the second positive electrode active material, the larger the relative amount of the first positive electrode active material that can be accommodated in the unit volume, and the higher the capacity after the initial charge. It becomes like this. Therefore, the initial charge capacity of the second positive electrode active material is 250 mAh / g or more when the positive electrode potential is charged from 2.0 V (vs. Li / Li + ) to 4.0 V (vs. Li / Li + ). If it is preferable, it is more preferable if it is 300 mAh / g or more.
なお、本発明の非水電解質二次電池で使用し得る負極活物質としては、リチウム金属、リチウム合金、黒鉛、難黒鉛化性炭素及び易黒鉛化性炭素などの炭素原料、LiTiO2及びTiO2などのチタン酸化物、ケイ素及びスズなどの半金属元素、酸化ケイ素(SiOx、0.5≦x<1.6)、又はSn−Co合金等が挙げられる。 In addition, as a negative electrode active material which can be used in the nonaqueous electrolyte secondary battery of the present invention, carbon raw materials such as lithium metal, lithium alloy, graphite, non-graphitizable carbon and graphitizable carbon, LiTiO 2 and TiO 2 are used. Examples thereof include titanium oxides such as, metalloid elements such as silicon and tin, silicon oxide (SiOx, 0.5 ≦ x <1.6), and Sn—Co alloys.
また、本発明の非水電解質二次電池において使用し得る非水溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)などの環状炭酸エステル、フッ素化された環状炭酸エステル、γ−ブチロラクトン(BL)、γ−バレロラクトン(VL)などの環状カルボン酸エステル、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート(MPC)、ジブチルカーボネート(DBC)などの鎖状炭酸エステル、フッ素化された鎖状炭酸エステル、ピバリン酸メチル、ピバリン酸エチル、メチルイソブチレート、メチルプロピオネートなどの鎖状カルボン酸エステル、N、N'−ジメチルホルムアミド、N−メチルオキサゾリジノンなどのアミド化合物、スルホランなどの硫黄化合物、テトラフルオロ硼酸1−エチル−3−メチルイミダゾリウムなどの常温溶融塩などが例示できる。これらは2種以上混合して用いることが望ましい。これらの中では、特に誘電率が大きく、非水電解液のイオン伝導度が大きい環状炭酸エステル及び鎖状炭酸エステルが好ましい。 Nonaqueous solvents that can be used in the nonaqueous electrolyte secondary battery of the present invention include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC), and fluorinated cyclic carbonates. Esters, cyclic carboxylic acid esters such as γ-butyrolactone (BL) and γ-valerolactone (VL), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), methyl propyl carbonate (MPC), dibutyl Chain carbonates such as carbonate (DBC), fluorinated chain carbonates, chain carboxylates such as methyl pivalate, ethyl pivalate, methyl isobutyrate, methyl propionate, N, N′— Dimethylformamide, N-me Amide compounds such as oxazolidinone, sulfur compounds such as sulfolane, etc. ambient temperature molten salt such as tetrafluoroboric acid 1-ethyl-3-methylimidazolium can be exemplified. It is desirable to use a mixture of two or more of these. Among these, cyclic carbonates and chain carbonates having a particularly high dielectric constant and a high ionic conductivity of the nonaqueous electrolytic solution are preferable.
また、本発明の非水電解質二次電池で使用する非水溶媒中に溶解させる電解質塩としては、非水電解質二次電池において一般に電解質塩として用いられるリチウム塩を用いることができる。このようなリチウム塩としては、LiPF6、LiBF4、LiCF3SO3、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiN(CF3SO2)(C4F9SO2)、LiC(CF3SO2)3、LiC(C2F5SO2)3、LiAsF6、LiClO4、Li2B10Cl10、Li2B12Cl12など及びそれらの混合物が例示される。これらの中でも、LiPF6(ヘキサフルオロリン酸リチウム)が特に好ましい。前記非水溶媒に対する電解質塩の溶解量は、0.8〜2.0mol/Lとするのが好ましい。 In addition, as the electrolyte salt dissolved in the non-aqueous solvent used in the non-aqueous electrolyte secondary battery of the present invention, a lithium salt generally used as an electrolyte salt in the non-aqueous electrolyte secondary battery can be used. Such lithium salts include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 , Li 2 B 12 Cl 12 , and mixtures thereof Illustrated. Among these, LiPF 6 (lithium hexafluorophosphate) is particularly preferable. The amount of electrolyte salt dissolved in the non-aqueous solvent is preferably 0.8 to 2.0 mol / L.
また、本発明の非水電解質二次電池で使用する非水電解質中には、さらに、ビニレンカーボネート(VC)、ビニルエチレンカーボネート(VEC)、無水コハク酸(SUCAH)、無水マレイン酸(MAAH)、グリコール酸無水物、エチレンサルファイト(ES)、ジビニルスルホン(VS)、ビニルアセテート(VA)、ビニルピバレート(VP)、カテコールカーボネートなどが少なくとも一種添加されていてもよい。 Further, in the non-aqueous electrolyte used in the non-aqueous electrolyte secondary battery of the present invention, vinylene carbonate (VC), vinyl ethylene carbonate (VEC), succinic anhydride (SUCAH), maleic anhydride (MAAH), At least one kind of glycolic anhydride, ethylene sulfite (ES), divinyl sulfone (VS), vinyl acetate (VA), vinyl pivalate (VP), catechol carbonate or the like may be added.
また、本発明の非水電解質二次電池においては、前記第1正極活物質と前記第2正極活物質との質量比は、90:10〜97:3であることが好ましい。 In the nonaqueous electrolyte secondary battery of the present invention, it is preferable that a mass ratio of the first positive electrode active material to the second positive electrode active material is 90:10 to 97: 3.
第2正極活物質の量は、使用する第2正極活物質材料の初期充電容量に合わせて調整することができる。しかしながら、全正極活物質量に対して第2正極活物質の含有割合が3質量%未満であると、最初の充電時にSEIが良好に形成される前に第1正極活物質の充電が始まってしまう可能性があるため、好ましくない。また、全正極活物質量に対して第2正極活物質の含有割合が10質量%を超えると、最初の充電時にSEIが形成された後にも第1正極活物質の充電が始まらず、しかも、単位容積当たりに含まれる余分な第2正極活物質量に対応する分の第1正極活物質の量が減るため、非水電解質二次電池の平均充放電電圧が低下してしまうため好ましくない。 The amount of the second positive electrode active material can be adjusted according to the initial charge capacity of the second positive electrode active material used. However, if the content ratio of the second positive electrode active material is less than 3% by mass with respect to the total amount of the positive electrode active material, charging of the first positive electrode active material starts before SEI is satisfactorily formed during the first charge. This is not preferable because there is a possibility of being lost. In addition, if the content ratio of the second positive electrode active material exceeds 10% by mass with respect to the total amount of the positive electrode active material, charging of the first positive electrode active material does not start even after SEI is formed during the first charge, Since the amount of the first positive electrode active material corresponding to the excess amount of the second positive electrode active material contained per unit volume is reduced, the average charge / discharge voltage of the nonaqueous electrolyte secondary battery is lowered, which is not preferable.
また、本発明の非水電解質二次電池においては、前記第2正極活物質は、LiXAOY(X/Y>0.6、AはFe、Mn、Co、Ni、Mo、及びCuからなる群から選ばれる少なくとも1種の元素)で表されるリチウム遷移金属複合酸化物の少なくとも1種からなることが好ましい。この場合において、前記第2正極活物質は、Li2MoO3、Li5FeO4、Li6MnO4及びLi6CoO4から選択される少なくとも1種とすることが好ましい。 In the non-aqueous electrolyte secondary battery of the present invention, the second positive electrode active material may be Li X AO Y (X / Y> 0.6, A is Fe, Mn, Co, Ni, Mo, and Cu. And at least one element selected from the group consisting of at least one element selected from the group consisting of lithium transition metal composite oxides. In this case, the second positive electrode active material is preferably at least one selected from Li 2 MoO 3 , Li 5 FeO 4 , Li 6 MnO 4 and Li 6 CoO 4 .
第2正極活物質としてLiXAOY(X/Y>0.6、AはFe、Mn、Co、Ni、Mo、及びCuからなる群から選ばれる少なくとも1つの元素)で表されるリチウム遷移金属複合酸化物の少なくとも1種を用いると、容易に正極電位が2.0〜4.0V(vs.Li/Li+)になるまで充電したときの初期充電容量が200mAh/g以上のものを得ることができる。特に第2正極活物質として、Li2MoO3、Li5FeO4、Li6MnO4及びLi6CoO4から選択される少なくとも1種を用いると、初期充電過程で酸素を放出するため、初期充電後の正極活物質の単位質量当たりのエネルギー密度が増加し、容易に250mAh/g以上のもの,場合によっては300mAh/g以上のものが得られるようになる。 Lithium transition represented by Li X AO Y (X / Y> 0.6, A is at least one element selected from the group consisting of Fe, Mn, Co, Ni, Mo, and Cu) as the second positive electrode active material When at least one metal composite oxide is used, an initial charge capacity of 200 mAh / g or more when easily charged until the positive electrode potential becomes 2.0 to 4.0 V (vs. Li / Li + ) is easily obtained. Can be obtained. In particular, when at least one selected from Li 2 MoO 3 , Li 5 FeO 4 , Li 6 MnO 4 and Li 6 CoO 4 is used as the second positive electrode active material, oxygen is released during the initial charging process. The energy density per unit mass of the subsequent positive electrode active material is increased, and a material having a capacity of 250 mAh / g or more can be easily obtained.
また、本発明の非水電解質二次電池においては、前記第1正極活物質はLiMn1.5Ni0.5O4であることが好ましい。 In the nonaqueous electrolyte secondary battery of the present invention, it is preferable that the first positive electrode active material is LiMn 1.5 Ni 0.5 O 4 .
第1正極活物質としてのLiMn1.5Ni0.5O4は、正極電位が5.0V(vs.Li/Li+)付近で充放電できるので、高電圧かつ高エネルギー密度の非水電解質二次電池が得られる。 Since LiMn 1.5 Ni 0.5 O 4 as the first positive electrode active material can be charged / discharged at a positive electrode potential of around 5.0 V (vs. Li / Li + ), it is a non-aqueous electrolyte with a high voltage and a high energy density. A secondary battery is obtained.
また、本発明の非水電解質二次電池においては、前記正極の充電終止電位は、4.85V(vs.Li/Li+)以上とすることができる。 In the nonaqueous electrolyte secondary battery of the present invention, the charge termination potential of the positive electrode can be 4.85 V (vs. Li / Li + ) or more.
正極の充電終止電圧が高ければ高いほど、高エネルギー密度の非水電解質二次電池が得られるが、電池のサイクル寿命は低下する。本発明の非水電解質二次電池によれば、正極の充電終止電位は、4.85V以上としても、従来例の非水電解質二次電池よりもサイクル寿命が長い非水電解質二次電池が得られる。 The higher the end-of-charge voltage of the positive electrode, the higher the energy density of the nonaqueous electrolyte secondary battery can be obtained, but the cycle life of the battery will decrease. According to the nonaqueous electrolyte secondary battery of the present invention, even when the charge end potential of the positive electrode is 4.85 V or higher, a nonaqueous electrolyte secondary battery having a longer cycle life than the conventional nonaqueous electrolyte secondary battery is obtained. It is done.
以下、本発明を実施するための形態について詳細に説明する。ただし、以下に示す実施形態は、本発明の技術思想を理解するために例示するものであって、本発明をこの実施形態に特定することを意図するものではなく、本発明は特許請求の範囲に示した技術思想を逸脱することなく種々の変更を行ったものにも均しく適用し得るものである。 Hereinafter, embodiments for carrying out the present invention will be described in detail. However, the following embodiment is illustrated for the purpose of understanding the technical idea of the present invention, and is not intended to specify the present invention as the embodiment, and the present invention is not limited to the scope of the claims. The present invention can equally be applied to those in which various modifications are made without departing from the technical idea shown in.
[各正極活物質の初期充電特性の測定]
まず、本発明の第1正極活物質に対応するLiNi0.5Mn1.5O4、第2正極活物質に対応するLi2MoO3及びLi5FeO4を用いた試験セルの初期充電特性を以下のようにして測定した。
[Measurement of initial charge characteristics of each positive electrode active material]
First, initial charge characteristics of a test cell using LiNi 0.5 Mn 1.5 O 4 corresponding to the first positive electrode active material of the present invention, Li 2 MoO 3 and Li 5 FeO 4 corresponding to the second positive electrode active material. Was measured as follows.
〔正極の作製〕
正極活物質としてLiNi0.5Mn1.5O4を用いた正極は、以下のようにして作製した。LiNi0.5Mn1.5O4を90質量部、導電剤としてアセチレンブラックを5質量部、結着剤としてポリフッ化ビニリデン(PVdF)を5質量部の割合となるように秤量し、分散媒としてのN−メチル2−ピロリドン(NMP)と混合して正極合剤スラリーを調製した。この正極合剤スラリーを正極導電体としての厚さ30μmのアルミニウム箔の表面にダイコーターによって塗布し、次いで、乾燥させて有機溶媒となるNMPを除去し、ロールプレスによって所定厚さとなるように圧縮し、所定サイズに切り出すことによって、正極活物質としてLiNi0.5Mn1.5O4を用いた正極を得た。
[Production of positive electrode]
A positive electrode using LiNi 0.5 Mn 1.5 O 4 as the positive electrode active material was produced as follows. 90 parts by mass of LiNi 0.5 Mn 1.5 O 4 , 5 parts by mass of acetylene black as a conductive agent, and 5 parts by mass of polyvinylidene fluoride (PVdF) as a binder were weighed, and the dispersion medium Was mixed with N-methyl 2-pyrrolidone (NMP) as a positive electrode mixture slurry. This positive electrode mixture slurry is applied to the surface of a 30 μm thick aluminum foil as a positive electrode conductor by a die coater, then dried to remove NMP as an organic solvent, and compressed to a predetermined thickness by a roll press. Then, by cutting out to a predetermined size, a positive electrode using LiNi 0.5 Mn 1.5 O 4 as a positive electrode active material was obtained.
同様にして、Li2MoO3ないしLi5FeO4を70質量部、アセチレンブラックを20質量部、ポリテトラフルオロエチレン(PTFE)を10質量部となるように添加した以外は上述の場合と同様にして、それぞれ正極活物質としてLi2MoO3を用いた正極及び正極活物質としてLi5FeO4を用いた正極を作製した。 In the same manner as described above except that 70 parts by mass of Li 2 MoO 3 to Li 5 FeO 4 , 20 parts by mass of acetylene black, and 10 parts by mass of polytetrafluoroethylene (PTFE) were added. Thus, a positive electrode using Li 2 MoO 3 as the positive electrode active material and a positive electrode using Li 5 FeO 4 as the positive electrode active material were prepared.
〔負極の作製〕
負極は、リチウム金属薄膜を負極集電体としての銅箔の表面に貼り付け、所定サイズに切り出すことによって作製した。
(Production of negative electrode)
The negative electrode was produced by attaching a lithium metal thin film to the surface of a copper foil as a negative electrode current collector and cutting it out to a predetermined size.
〔電解液の調製〕
非水電解液は、エチレンカーボネート(EC)とジエチルカーボーネト(DEC)とをそれぞれ体積比(1気圧、25℃)で3:7の割合で混合した非水溶媒に、電解質塩としてヘキサフルオロリン酸リチウム(LiPF6)を1.0mol/Lの割合で溶解させたものを用いた。
(Preparation of electrolyte)
The non-aqueous electrolyte is hexafluoro as an electrolyte salt in a non-aqueous solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio (1 atm, 25 ° C.) in a ratio of 3: 7. lithium phosphate (LiPF 6) was used dissolved in a proportion of 1.0 mol / L.
〔試験セルの作製〕
上述のようにして作製した正極及び負極のそれぞれにリード端子(図示省略)を取り付けて積層した電極体を、アルミニウムラミネート製の電池外装体に挿入し、この電池外装体に非水電解液を注入したのち封止することにより、正極活物質としてLiNi0.5Mn1.5O4、Li2MoO3及びLi5FeO4をそれぞれ用いた3種類の試験セルを作製した。
[Production of test cell]
An electrode body in which lead terminals (not shown) are attached and stacked on each of the positive electrode and the negative electrode manufactured as described above is inserted into an aluminum laminate battery outer body, and a non-aqueous electrolyte is injected into the battery outer body. After sealing, three types of test cells using LiNi 0.5 Mn 1.5 O 4 , Li 2 MoO 3 and Li 5 FeO 4 as the positive electrode active material were produced.
〔初期充電試験〕
正極活物質としてLiNi0.5Mn1.5O4を用いた試験セルの初期充電試験は、充電レート0.1Itで充電終止電圧4.9Vで測定した。結果を図1に示した。
[Initial charging test]
The initial charge test of the test cell using LiNi 0.5 Mn 1.5 O 4 as the positive electrode active material was measured at a charge end rate of 4.9 V at a charge rate of 0.1 It. The results are shown in FIG.
また、正極活物質としてLi2MoO3を用いた試験セルの初期充電試験は、充電レート0.04Itで充電終止電圧4.7Vで測定した。結果を図2に示した。 In addition, an initial charge test of a test cell using Li 2 MoO 3 as a positive electrode active material was measured at a charge end rate of 4.7 V at a charge rate of 0.04 It. The results are shown in FIG.
さらに、正極活物質としてLi5FeO4を用いた試験セルの初期充電試験は、充電レート0.04Itで充電終止電圧4.0Vで測定した。結果を図3に示した。 Furthermore, the initial charge test of the test cell using Li 5 FeO 4 as the positive electrode active material was measured at a charge end rate of 4.0 V at a charge rate of 0.04 It. The results are shown in FIG.
図1〜図3に示した結果より、以下のことがわかる。すなわち、図1に示した結果から、第1正極活物質に対応するLiNi0.5Mn1.5O4を用いた試験セルでは、充電初期より4.8V(vs.Li/Li+)近くまで急激に電位が上昇し、それ以降は実質的に4.8Vの高電位を維持している。また、図2に示した結果から、第2正極活物質に対応するLi2MoO3を用いた試験セルでは、充電初期から充電終期に至るまで4V(vs.Li/Li+)以下の充電電位となっており、充電容量が200mAh/gを超えている。さらに、図3に示した結果から、第2正極活物質に対応するLi5FeO4を用いた試験セルでは、充電初期から充電終期に至るまで4V(vs.Li/Li+)以下の充電電位となっており、充電容量は250mAh/gを超えている。なお、図1〜図3を総合して検討すると、充電初期の充電電位が極めて低い範囲では、第1正極活物質に対応するLiNi0.5Mn1.5O4及び第2正極活物質に対応するLi2MoO3ないしLi5FeO4の充電が競合するが、その後、充電電位は直ちに上昇するので、少なくとも充電電位が2.0V(vs.Li/Li+)以上であれば、第2正極活物質に対応するLi2MoO3ないしLi5FeO4の充電が進むことがわかる。 The following can be understood from the results shown in FIGS. That is, from the result shown in FIG. 1, in the test cell using LiNi 0.5 Mn 1.5 O 4 corresponding to the first positive electrode active material, 4.8 V (vs. Li / Li + ) is close to the initial charge. The potential suddenly rises up to and then remains at a high potential of 4.8V. Further, from the results shown in FIG. 2, in the test cell using Li 2 MoO 3 corresponding to the second positive electrode active material, the charging potential of 4 V (vs. Li / Li + ) or less from the initial charging stage to the final charging stage. The charge capacity exceeds 200 mAh / g. Furthermore, from the results shown in FIG. 3, in the test cell using Li 5 FeO 4 corresponding to the second positive electrode active material, a charging potential of 4 V (vs. Li / Li + ) or less from the initial charging stage to the final charging stage. And the charging capacity exceeds 250 mAh / g. In addition, when considering FIG. 1 to FIG. 3 collectively, LiNi 0.5 Mn 1.5 O 4 and the second positive electrode active material corresponding to the first positive electrode active material are included in the range where the charging potential at the initial stage of charging is extremely low. The charging of the corresponding Li 2 MoO 3 to Li 5 FeO 4 competes, but then the charging potential immediately rises. Therefore, if the charging potential is at least 2.0 V (vs. Li / Li + ), the second no Li 2 MoO 3 corresponding to the positive electrode active material to be seen to proceed to charge the Li 5 FeO 4.
以上のことから、第1正極活物質としてのLiNi0.5Mn1.5O4に対して少なくとも第2正極活物質としてのLi2MoO3ないしLi5FeO4を混合したものを正極活物質として用いると、充電初期の正極電位が2.0〜4.0V(vs.Li/Li+)の範囲では、第2正極活物質のみが充電されることが確認できる。また、第1正極活物質としてのLiNi0.5Mn1.5O4の充電電位は第2正極活物質としてのLi2MoO3ないしLi5FeO4の充電電位よりも高いから、第2正極活物質が全て充電された後に第1正極活物質としてのLiNi0.5Mn1.5O4が充電されることは明白である。 From the above, a mixture of LiNi 0.5 Mn 1.5 O 4 as the first positive electrode active material and at least Li 2 MoO 3 to Li 5 FeO 4 as the second positive electrode active material is used. It can be confirmed that only the second positive electrode active material is charged when the positive electrode potential at the initial stage of charging is in the range of 2.0 to 4.0 V (vs. Li / Li + ). In addition, since the charging potential of LiNi 0.5 Mn 1.5 O 4 as the first positive electrode active material is higher than the charging potential of Li 2 MoO 3 to Li 5 FeO 4 as the second positive electrode active material, the second positive electrode It is obvious that LiNi 0.5 Mn 1.5 O 4 as the first positive electrode active material is charged after all of the active material is charged.
なお、ここでは、第1正極活物質としてLiNi0.5Mn1.5O4、第2正極活物質としてLi2MoO3及びLi5FeO4を用いた場合の初期充電特性を示した。しかしながら、第1活物質が一般式LiaMnxNiyM2−x−yO4(0.9≦a≦1.3、0<x≦1.6、0.4≦y<2、Mは、Fe、Mg、Zn、Co、Al、B、Nb、Mo、Cu及びTiからなる群から選ばれる少なくとも1種の元素)で表されるリチウムマンガンニッケル複合酸化物であれば、実質的にLiNi0.5Mn1.5O4の場合と同様の傾向の初期充電特性を示す。また、第2活物質が一般式LiXAOY(X/Y>0.6、AはFe、Mn、Co、Ni、Mo、及びCuからなる群から選ばれる少なくとも1種の元素)で表されるリチウム遷移金属複合酸化物であれば、実質的に正極電位が2.0〜4.0V(vs.Li/Li+)になるまで充電したときの初期充電容量が200mAh/gを超えるものが得られる。 Here, initial charge characteristics are shown when LiNi 0.5 Mn 1.5 O 4 is used as the first positive electrode active material and Li 2 MoO 3 and Li 5 FeO 4 are used as the second positive electrode active material. However, the first active material formula Li a Mn x Ni y M 2 -x-y O 4 (0.9 ≦ a ≦ 1.3,0 <x ≦ 1.6,0.4 ≦ y <2, M is substantially a lithium manganese nickel composite oxide represented by Fe, Mg, Zn, Co, Al, B, Nb, Mo, Cu and Ti. Shows initial charge characteristics having the same tendency as in the case of LiNi 0.5 Mn 1.5 O 4 . The second active material is represented by the general formula Li X AO Y (X / Y> 0.6, A is at least one element selected from the group consisting of Fe, Mn, Co, Ni, Mo, and Cu). If the lithium transition metal composite oxide is used, the initial charge capacity when charged until the positive electrode potential is substantially 2.0 to 4.0 V (vs. Li / Li + ) exceeds 200 mAh / g Is obtained.
〔非水電解質二次電池の作製〕
<実施例1>
〔正極の作製〕
正極活物質は、第1正極活物質としてLiNi0.5Mn1.5O4、第2正極活物質としてLi2MoO3を用い、LiNi0.5Mn1.5O4とLi2MoO3とを質量比で98:2となるように混合したものを用いた。この正極活物質を90質量部、導電剤としてのアセチレンブラックを5質量部、結着剤としてのポリフッ化ビニリデン(PVdF)を5質量部となるように秤量し、分散媒としてのN−メチル2−ピロリドン(NMP)と混合して正極合剤スラリーを調製した。この正極合剤スラリーを正極導電体としての厚さ30μmのアルミニウム箔の表面にダイコーターによって塗布し、次いで、乾燥させて有機溶媒となるNMPを除去し、ロールプレスによって所定厚さとなるように圧縮し、所定サイズに切り出すことによって、正極を得た。
[Preparation of non-aqueous electrolyte secondary battery]
<Example 1>
[Production of positive electrode]
The positive electrode active material uses LiNi 0.5 Mn 1.5 O 4 as the first positive electrode active material, Li 2 MoO 3 as the second positive electrode active material, and LiNi 0.5 Mn 1.5 O 4 and Li 2 MoO 3. Were mixed so that the mass ratio was 98: 2. The positive electrode active material was weighed to 90 parts by mass, 5 parts by mass of acetylene black as a conductive agent, and 5 parts by mass of polyvinylidene fluoride (PVdF) as a binder, and N-
〔負極の作製〕
負極活物質としての炭素材(黒鉛)と、増粘剤としてのカルボキシメチルセルロースナトリウム(CMC)と、結着剤としてのスチレンブタジエンゴム(SBR)とをそれぞれ質量比で98:1:1となるように秤量し、これらを水に分散させて負極合剤スラリーを調製した。この負極合剤スラリーを負極集電体としての銅箔の表面にダイコーターによって塗布し、乾燥して負極集電体の両面に負極活物質合剤層を形成し、次いで、圧縮ローラーを用いて所定厚さに圧縮し、所定寸法に切り出して負極を得た。
(Production of negative electrode)
Carbon material (graphite) as a negative electrode active material, sodium carboxymethylcellulose (CMC) as a thickener, and styrene butadiene rubber (SBR) as a binder are each in a mass ratio of 98: 1: 1. And were dispersed in water to prepare a negative electrode mixture slurry. This negative electrode mixture slurry is applied to the surface of a copper foil as a negative electrode current collector by a die coater, dried to form a negative electrode active material mixture layer on both sides of the negative electrode current collector, and then using a compression roller The negative electrode was obtained by compressing to a predetermined thickness and cutting out to a predetermined dimension.
〔非水電解液の調製〕
非水電解液は、エチレンカーボネート(EC)とジエチルカーボーネト(DEC)とをそれぞれ体積比(1気圧、25℃)で3:7の割合で混合した非水溶媒に、電解質塩としてヘキサフルオロリン酸リチウム(LiPF6)を1.0mol/Lの割合で溶解させたものを用いた。
(Preparation of non-aqueous electrolyte)
The non-aqueous electrolyte is hexafluoro as an electrolyte salt in a non-aqueous solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a volume ratio (1 atm, 25 ° C.) in a ratio of 3: 7. lithium phosphate (LiPF 6) was used dissolved in a proportion of 1.0 mol / L.
〔セルの作製〕
上述のようにして作製した正極及び負極のそれぞれにリード端子(図示省略)を取り付けて積層した電極体を、アルミニウムラミネート製の電池外装体に挿入し、この電池外装体に非水電解液を注入したのち封止することにより、実施例1の非水電解質二次電池を作製した。
[Production of cell]
An electrode body in which lead terminals (not shown) are attached and stacked on each of the positive electrode and the negative electrode manufactured as described above is inserted into an aluminum laminate battery outer body, and a non-aqueous electrolyte is injected into the battery outer body. After that, the nonaqueous electrolyte secondary battery of Example 1 was produced by sealing.
〔初期充放電試験〕
実施例1の非水電解質二次電池に対して、0.1Itの定電流で充電深度(SOC:State of Charge)10%まで予備充電した後、60℃で16時間放置した。このときの電池電圧と電池電圧降下ΔVを求め、結果を表1に示した。その後、0.1Itの定電流で電池電圧が4.95Vとなるまで充電し、10分休止後、0.1Itの定電流で電池電圧が3.0Vとなるまで放電させた。このときの初期放電エネルギー密度を求め、結果を表1に示した。
なお、初期放電エネルギー密度は、下記の式を用いて算出した。
初期放電エネルギー密度[Wh/L]
=正極活物質充填密度[g/cc]×初期放電容量[mAh/g]×初期平均放電電圧[V]
ただし、
正極充填密度[g/cc]
=(正極極板重量−Al箔重量[mg])×正極活物質の混合比(0.9)/(正極極板面積[cm2]×(極板厚み−Al箔厚み[μm])
(Initial charge / discharge test)
The nonaqueous electrolyte secondary battery of Example 1 was precharged to a charge depth (SOC: State of Charge) of 10% with a constant current of 0.1 It and then left at 60 ° C. for 16 hours. The battery voltage and battery voltage drop ΔV at this time were determined, and the results are shown in Table 1. Thereafter, the battery was charged at a constant current of 0.1 It until the battery voltage reached 4.95 V, and after 10 minutes of rest, the battery voltage was discharged at a constant current of 0.1 It until the battery voltage reached 3.0 V. The initial discharge energy density at this time was determined, and the results are shown in Table 1.
The initial discharge energy density was calculated using the following formula.
Initial discharge energy density [Wh / L]
= Positive electrode active material packing density [g / cc] × initial discharge capacity [mAh / g] × initial average discharge voltage [V]
However,
Positive electrode packing density [g / cc]
= (Positive electrode plate weight−Al foil weight [mg]) × Positive electrode active material mixing ratio (0.9) / (Positive electrode plate area [cm 2 ] × (Electrode plate thickness−Al foil thickness [μm])
〔サイクル試験〕
8サイクル後の容量維持率は、次のようにして測定した。上述のように初期充放電試験を行った非水電解質二次電池を用い、0.1Itの定電流で電池電圧が4.95V(正極電位は5.05V(vs.Li/Li+))となるまで充電した。次いで、0.1Itの定電流で電池電圧が3.0Vとなるまで放電させ、1サイクル目の放電容量を求めた。この充放電操作を繰り返し、8サイクル目の放電容量を求め、以下の計算式により8サイクル目の容量維持率(%)を求め、結果を表1に示した。
容量維持率(%)
=8サイクル目の放電容量[mAh]/1サイクル目の放電容量[mAh]×100
[Cycle test]
The capacity retention rate after 8 cycles was measured as follows. Using the non-aqueous electrolyte secondary battery subjected to the initial charge / discharge test as described above, the battery voltage was 4.95 V (positive electrode potential was 5.05 V (vs. Li / Li + )) at a constant current of 0.1 It. Charged until Next, the battery was discharged at a constant current of 0.1 It until the battery voltage reached 3.0 V, and the discharge capacity at the first cycle was determined. This charge / discharge operation was repeated, the discharge capacity at the eighth cycle was determined, the capacity retention rate (%) at the eighth cycle was determined by the following calculation formula, and the results are shown in Table 1.
Capacity maintenance rate (%)
= 8th cycle discharge capacity [mAh] / 1st cycle discharge capacity [mAh] × 100
<実施例2>
実施例1で用いた正極活物質LiNi0.5Mn1.5O4及びLi2MoO3の含有割合を質量比で95:5とした以外は実施例1と同様にして実施例2の非水電解質二次電池を作製し、実施例1の場合と同様にして、電池電圧と電池電圧降下ΔV、初期放電エネルギー密度及び8サイクル目の容量維持率を測定した。結果をまとめて表1に示すとともに、初期エネルギー密度とLi2MoO3の混合割合の関係を図4にも示した。
<Example 2>
Example 2 is the same as Example 1 except that the content ratio of the positive electrode active materials LiNi 0.5 Mn 1.5 O 4 and Li 2 MoO 3 used in Example 1 is 95: 5 by mass ratio. A water electrolyte secondary battery was prepared, and the battery voltage, the battery voltage drop ΔV, the initial discharge energy density, and the capacity retention ratio at the eighth cycle were measured in the same manner as in Example 1. The results are collectively shown in Table 1, and the relationship between the initial energy density and the mixing ratio of Li 2 MoO 3 is also shown in FIG.
<実施例3>
実施例1で用いた正極活物質LiNi0.5Mn1.5O4及びLi2MoO3の含有割合を質量比で90:10とした以外は実施例1と同様にして実施例3の非水電解質二次電池を作製し、実施例1の場合と同様にして、電池電圧と電池電圧降下ΔV、初期放電エネルギー密度及び8サイクル目の容量維持率を測定した。結果をまとめて表1に示すとともに、初期エネルギー密度とLi2MoO3の混合割合の関係を図4にも示した。
<Example 3>
Example 3 is the same as Example 1 except that the content ratios of the positive electrode active materials LiNi 0.5 Mn 1.5 O 4 and Li 2 MoO 3 used in Example 1 are 90:10 by mass ratio. A water electrolyte secondary battery was prepared, and the battery voltage, the battery voltage drop ΔV, the initial discharge energy density, and the capacity retention ratio at the eighth cycle were measured in the same manner as in Example 1. The results are collectively shown in Table 1, and the relationship between the initial energy density and the mixing ratio of Li 2 MoO 3 is also shown in FIG.
<実施例4>
実施例1で用いた正極活物質LiNi0.5Mn1.5O4及びLi2MoO3の含有割合を質量比で85:15とした以外は実施例1と同様にして実施例4の非水電解質二次電池を作製し、実施例1の場合と同様にして、電池電圧と電池電圧降下ΔV、初期放電エネルギー密度及び8サイクル目の容量維持率を測定した。結果をまとめて表1に示すとともに、初期エネルギー密度とLi2MoO3の混合割合の関係を図4にも示した。
<Example 4>
Except for the positive electrode active materials LiNi 0.5 Mn 1.5 O 4 and Li 2 MoO 3 used in Example 1, the mass ratio was 85:15. A water electrolyte secondary battery was prepared, and the battery voltage, the battery voltage drop ΔV, the initial discharge energy density, and the capacity retention ratio at the eighth cycle were measured in the same manner as in Example 1. The results are collectively shown in Table 1, and the relationship between the initial energy density and the mixing ratio of Li 2 MoO 3 is also shown in FIG.
<比較例1>
正極活物質としてLiNi0.5Mn1.5O4を用いたこと以外は、実施例1と同様にして実施例4の非水電解質二次電池を作製し、実施例1の場合と同様にして、電池電圧と電池電圧降下ΔV、初期放電エネルギー密度及び8サイクル目の容量維持率を測定した。結果をまとめて表1に示すとともに、初期エネルギー密度とLi2MoO3の混合割合の関係を図4にも示した。
<Comparative Example 1>
A nonaqueous electrolyte secondary battery of Example 4 was produced in the same manner as in Example 1 except that LiNi 0.5 Mn 1.5 O 4 was used as the positive electrode active material. Then, the battery voltage, the battery voltage drop ΔV, the initial discharge energy density, and the capacity retention rate at the eighth cycle were measured. The results are collectively shown in Table 1, and the relationship between the initial energy density and the mixing ratio of Li 2 MoO 3 is also shown in FIG.
表1に示した実施例1〜実施例4及び比較例の電池の測定結果から以下のことがわかる。すなわち、Li2MoO3を第2正極活物質として用いた実施例1〜実施例4の電池の場合、高温放置後の電池電圧降下ΔVがLi2MoO3を含有していない比較例の電池の場合に比べて低くなることが確認された。同様に、実施例1〜実施例4の電池のように、正極活物質がLiNi0.5Mn1.5O4である第1正極活物質と正極電位が2.0〜4.0V(vs.Li/Li+)になるまで充電したときの初期充電容量が200mAh/gを超える第2正極活物質とを組み合わせることによって、高温放置後の電池電圧の降下を抑制できることが確認された。このことは、上述のような組成の第1の正極活物質及び第2正極活物質を含む正極活物質を用いると、充電初期に負極活物質の表面に良好なSEIが形成されていることを意味するものである。 The following can be understood from the measurement results of the batteries of Examples 1 to 4 and Comparative Example shown in Table 1. That is, in the case of the batteries of Examples 1 to 4 using Li 2 MoO 3 as the second positive electrode active material, the battery voltage drop ΔV after being left at a high temperature is a battery of a comparative example that does not contain Li 2 MoO 3 . It was confirmed that it was lower than the case. Similarly, as in the batteries of Examples 1 to 4, the positive electrode active material is LiNi 0.5 Mn 1.5 O 4 and the positive electrode potential is 2.0 to 4.0 V (vs. It was confirmed that a drop in battery voltage after leaving at high temperature can be suppressed by combining with a second positive electrode active material having an initial charge capacity of more than 200 mAh / g when charged until .Li / Li + ). This means that when a positive electrode active material including the first positive electrode active material and the second positive electrode active material having the above-described composition is used, good SEI is formed on the surface of the negative electrode active material at the initial stage of charging. That means.
同様に、Li2MoO3を第2正極活物質として用いた実施例1〜実施例4の電池の場合、8サイクル目の容量維持率がLi2MoO3を含有していない比較例の電池に比べて高くなることがわかった。これにより、第2正極活物質の含有割合が全正極活物質量に対して2質量%以上であれば、より好ましくは5質量%以上であれば、第1正極活物質からMnが溶出し易い状況となっても、負極活物質表面上での不要な還元反応の発生を抑制することが可能となり、負極集電体である銅の溶解析出が抑制されて、銅の溶解析出に起因する電池特性の阻害が生じ難くなることがわかった。また、第2正極活物質の含有割合が全正極活物質量に対して15質量%とすると、初期放電エネルギー密度が大きく減少するので、全正極活物質量に対する第2正極活物質の含有割合は5〜10wt%が好ましいことがわかった。 Similarly, in the case of the batteries of Examples 1 to 4 using Li 2 MoO 3 as the second positive electrode active material, the capacity retention rate at the eighth cycle is a battery of a comparative example that does not contain Li 2 MoO 3. It turned out to be higher than that. Accordingly, if the content ratio of the second positive electrode active material is 2% by mass or more with respect to the total amount of the positive electrode active material, and more preferably 5% by mass or more, Mn is easily eluted from the first positive electrode active material. Even in the situation, it is possible to suppress the occurrence of unnecessary reduction reaction on the surface of the negative electrode active material, the dissolution and precipitation of copper as the negative electrode current collector is suppressed, and the battery resulting from the dissolution and precipitation of copper It was found that inhibition of properties is less likely to occur. If the content ratio of the second positive electrode active material is 15% by mass with respect to the total amount of the positive electrode active material, the initial discharge energy density is greatly reduced. It turned out that 5-10 wt% is preferable.
Claims (6)
前記第1正極活物質は、一般式LiaMnxNiyM2−x−yO4(0.9≦a≦1.3、0<x≦1.6、0.4≦y<2、Mは、Fe、Mg、Zn、Co、Al、B、Nb、Mo、Cu及びTiからなる群から選ばれる少なくとも1種の元素)で表されるリチウムマンガンニッケル複合酸化物からなり、
前記第2正極活物質は、正極電位が2.0〜4.0V(vs.Li/Li+)になるまで充電したときの初期充電容量が200mAh/gを超えているリチウム遷移金属複合酸化物からなることを特徴とする非水電解質二次電池。 A non-aqueous electrolyte secondary battery comprising a positive electrode including a first positive electrode active material and a second positive electrode active material, a negative electrode, and a non-aqueous electrolyte,
The first positive electrode active material is represented by the general formula Li a Mn x Ni y M 2 -x-y O 4 (0.9 ≦ a ≦ 1.3,0 <x ≦ 1.6,0.4 ≦ y <2 , M is composed of a lithium manganese nickel composite oxide represented by Fe, Mg, Zn, Co, Al, B, Nb, Mo, Cu, and Ti).
The second positive electrode active material is a lithium transition metal composite oxide having an initial charge capacity exceeding 200 mAh / g when charged until the positive electrode potential becomes 2.0 to 4.0 V (vs. Li / Li + ). A non-aqueous electrolyte secondary battery comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012212925A JP2014067629A (en) | 2012-09-26 | 2012-09-26 | Nonaqueous electrolyte secondary battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012212925A JP2014067629A (en) | 2012-09-26 | 2012-09-26 | Nonaqueous electrolyte secondary battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2014067629A true JP2014067629A (en) | 2014-04-17 |
Family
ID=50743817
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012212925A Pending JP2014067629A (en) | 2012-09-26 | 2012-09-26 | Nonaqueous electrolyte secondary battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2014067629A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015011884A1 (en) * | 2013-07-25 | 2015-01-29 | 株式会社豊田自動織機 | Positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
JPWO2015011883A1 (en) * | 2013-07-25 | 2017-03-02 | 株式会社豊田自動織機 | Pre-doping agent, positive electrode, lithium ion secondary battery, and manufacturing method thereof |
EP3096388A4 (en) * | 2014-01-16 | 2017-06-28 | Kaneka Corporation | Nonaqueous electrolyte secondary battery and battery pack of same |
US20180309159A1 (en) * | 2017-04-24 | 2018-10-25 | Toyota Jidosha Kabushiki Kaisha | Lithium ion secondary battery and method of producing the same |
CN114788043A (en) * | 2020-05-08 | 2022-07-22 | 株式会社Lg新能源 | Positive electrode for secondary battery, method for producing same, and lithium secondary battery comprising same |
CN117133919A (en) * | 2023-10-23 | 2023-11-28 | 宜宾锂宝新材料有限公司 | Modified lithium ion battery positive electrode material, preparation method thereof and lithium battery |
JP7586125B2 (en) | 2022-04-07 | 2024-11-19 | トヨタ自動車株式会社 | Conductive Materials and Batteries |
-
2012
- 2012-09-26 JP JP2012212925A patent/JP2014067629A/en active Pending
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015011884A1 (en) * | 2013-07-25 | 2015-01-29 | 株式会社豊田自動織機 | Positive electrode for non-aqueous secondary battery, and non-aqueous secondary battery |
JPWO2015011883A1 (en) * | 2013-07-25 | 2017-03-02 | 株式会社豊田自動織機 | Pre-doping agent, positive electrode, lithium ion secondary battery, and manufacturing method thereof |
EP3096388A4 (en) * | 2014-01-16 | 2017-06-28 | Kaneka Corporation | Nonaqueous electrolyte secondary battery and battery pack of same |
KR102050208B1 (en) * | 2017-04-24 | 2019-11-29 | 도요타 지도샤(주) | Lithium ion secondary battery and method of producing the same |
EP3396741A1 (en) | 2017-04-24 | 2018-10-31 | Toyota Jidosha Kabushiki Kaisha | Lithium ion secondary battery and method of producing the same |
KR20180119130A (en) * | 2017-04-24 | 2018-11-01 | 도요타 지도샤(주) | Lithium ion secondary battery and method of producing the same |
CN108736060A (en) * | 2017-04-24 | 2018-11-02 | 丰田自动车株式会社 | Lithium rechargeable battery and its manufacturing method |
JP2018185905A (en) * | 2017-04-24 | 2018-11-22 | トヨタ自動車株式会社 | Lithium ion secondary battery and manufacturing method thereof |
US20180309159A1 (en) * | 2017-04-24 | 2018-10-25 | Toyota Jidosha Kabushiki Kaisha | Lithium ion secondary battery and method of producing the same |
US10804568B2 (en) | 2017-04-24 | 2020-10-13 | Toyota Jidosha Kabushiki Kaisha | Lithium ion secondary battery and method of producing the same |
CN108736060B (en) * | 2017-04-24 | 2021-12-28 | 丰田自动车株式会社 | Lithium ion secondary battery and method for manufacturing same |
CN114788043A (en) * | 2020-05-08 | 2022-07-22 | 株式会社Lg新能源 | Positive electrode for secondary battery, method for producing same, and lithium secondary battery comprising same |
CN114788043B (en) * | 2020-05-08 | 2024-01-09 | 株式会社Lg新能源 | Positive electrode for secondary battery, method for manufacturing same, and lithium secondary battery comprising same |
JP7586125B2 (en) | 2022-04-07 | 2024-11-19 | トヨタ自動車株式会社 | Conductive Materials and Batteries |
CN117133919A (en) * | 2023-10-23 | 2023-11-28 | 宜宾锂宝新材料有限公司 | Modified lithium ion battery positive electrode material, preparation method thereof and lithium battery |
CN117133919B (en) * | 2023-10-23 | 2024-01-19 | 宜宾锂宝新材料有限公司 | Modified lithium-ion battery cathode material and preparation method thereof and lithium battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7027629B2 (en) | Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery containing it | |
CN110998959B (en) | Lithium secondary battery having improved high-temperature storage characteristics | |
JP6030070B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2022529793A (en) | Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery containing it | |
WO2016054843A1 (en) | Nonaqueous electrolyte for lithium ion battery, and lithium ion battery | |
CN103367804B (en) | A kind of lithium ion battery nonaqueous electrolytic solution and use the lithium ion battery of this nonaqueous electrolytic solution | |
CN103151559A (en) | Non-aqueous electrolyte solution for lithium ion battery and corresponding lithium ion battery | |
JP2008243642A (en) | Nonaqueous electrolyte secondary battery | |
JP7378601B2 (en) | Non-aqueous electrolyte for lithium secondary batteries and lithium secondary batteries containing the same | |
KR102053313B1 (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising the same | |
CN103594727B (en) | A kind of lithium ion battery nonaqueous electrolytic solution and use the lithium ion battery of this nonaqueous electrolytic solution | |
JP2012169249A (en) | Cathode for nonaqueous electrolyte secondary battery, method for manufacturing the same, and nonaqueous electrolyte secondary battery | |
KR20100087679A (en) | Nonaqueous electrolyte secondary battery | |
JP2014067629A (en) | Nonaqueous electrolyte secondary battery | |
JP2007265831A (en) | Nonaqueous electrolyte secondary battery | |
JPWO2012133027A1 (en) | Non-aqueous electrolyte secondary battery system | |
JP2015170542A (en) | Nonaqueous electrolyte secondary battery | |
JP2008091041A (en) | Nonaqueous secondary battery | |
US8563179B2 (en) | Nonaqueous secondary battery | |
CN110024198B (en) | Non-aqueous electrolyte secondary battery | |
JP6072689B2 (en) | Nonaqueous electrolyte secondary battery | |
JP2022528246A (en) | Non-aqueous electrolyte solution additive for lithium secondary batteries, non-aqueous electrolyte solution for lithium secondary batteries and lithium secondary batteries containing this | |
CN100424925C (en) | Non-aqueous electrolyte secondary battery | |
WO2013031712A1 (en) | Non-aqueous electrolyte secondary cell and method for manufacturing same | |
KR20220009894A (en) | Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20140401 |
|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7421 Effective date: 20140407 |