JP2013138014A - Nonaqueous electrolyte battery and battery system - Google Patents
Nonaqueous electrolyte battery and battery system Download PDFInfo
- Publication number
- JP2013138014A JP2013138014A JP2013025280A JP2013025280A JP2013138014A JP 2013138014 A JP2013138014 A JP 2013138014A JP 2013025280 A JP2013025280 A JP 2013025280A JP 2013025280 A JP2013025280 A JP 2013025280A JP 2013138014 A JP2013138014 A JP 2013138014A
- Authority
- JP
- Japan
- Prior art keywords
- battery
- nonaqueous electrolyte
- positive electrode
- lithium carbonate
- overcharge
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 44
- 235000010290 biphenyl Nutrition 0.000 claims abstract description 27
- 239000000203 mixture Substances 0.000 claims abstract description 19
- 230000004044 response Effects 0.000 claims abstract description 4
- 150000001875 compounds Chemical class 0.000 claims description 14
- 150000004074 biphenyls Chemical class 0.000 claims description 6
- 238000012544 monitoring process Methods 0.000 claims description 5
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 abstract description 42
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 abstract description 30
- 229910052808 lithium carbonate Inorganic materials 0.000 abstract description 29
- 239000004305 biphenyl Substances 0.000 abstract description 21
- 238000007600 charging Methods 0.000 abstract description 12
- 230000007246 mechanism Effects 0.000 abstract description 6
- 238000000354 decomposition reaction Methods 0.000 abstract description 4
- 238000006116 polymerization reaction Methods 0.000 abstract description 4
- 230000015572 biosynthetic process Effects 0.000 abstract 2
- 239000011248 coating agent Substances 0.000 abstract 2
- 238000000576 coating method Methods 0.000 abstract 2
- 238000004806 packaging method and process Methods 0.000 abstract 1
- -1 nickel metal hydride Chemical class 0.000 description 19
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 18
- 238000009783 overcharge test Methods 0.000 description 17
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 16
- 239000010408 film Substances 0.000 description 13
- 229910052744 lithium Inorganic materials 0.000 description 13
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 12
- 239000000654 additive Substances 0.000 description 11
- 229910052782 aluminium Inorganic materials 0.000 description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 11
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 10
- 229910052799 carbon Inorganic materials 0.000 description 10
- 239000007789 gas Substances 0.000 description 10
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 10
- 230000000996 additive effect Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 239000011888 foil Substances 0.000 description 8
- 229910052759 nickel Inorganic materials 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 7
- 239000003575 carbonaceous material Substances 0.000 description 7
- 239000010949 copper Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 229920000642 polymer Polymers 0.000 description 7
- CRMJLJFDPNJIQA-UHFFFAOYSA-N 2,4-difluoro-1-methoxybenzene Chemical compound COC1=CC=C(F)C=C1F CRMJLJFDPNJIQA-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 239000011230 binding agent Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 150000002736 metal compounds Chemical class 0.000 description 6
- 239000007774 positive electrode material Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 239000000835 fiber Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000010936 titanium Substances 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- 239000002033 PVDF binder Substances 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 230000002411 adverse Effects 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 239000007772 electrode material Substances 0.000 description 4
- 239000003792 electrolyte Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000010248 power generation Methods 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 150000003839 salts Chemical class 0.000 description 4
- 239000004332 silver Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N Furan Chemical compound C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- 239000006230 acetylene black Substances 0.000 description 3
- 229910021383 artificial graphite Inorganic materials 0.000 description 3
- JFDZBHWFFUWGJE-UHFFFAOYSA-N benzonitrile Chemical compound N#CC1=CC=CC=C1 JFDZBHWFFUWGJE-UHFFFAOYSA-N 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 229910052798 chalcogen Inorganic materials 0.000 description 3
- 150000001787 chalcogens Chemical class 0.000 description 3
- 229920001940 conductive polymer Polymers 0.000 description 3
- 239000002003 electrode paste Substances 0.000 description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000005470 impregnation Methods 0.000 description 3
- 229910052806 inorganic carbonate Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000007784 solid electrolyte Substances 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- 229910015643 LiMn 2 O 4 Inorganic materials 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- PHXQIAWFIIMOKG-UHFFFAOYSA-N NClO Chemical compound NClO PHXQIAWFIIMOKG-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000006258 conductive agent Substances 0.000 description 2
- 238000010280 constant potential charging Methods 0.000 description 2
- 238000010277 constant-current charging Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000020169 heat generation Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000012046 mixed solvent Substances 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 229920006284 nylon film Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- JHJLBTNAGRQEKS-UHFFFAOYSA-M sodium bromide Chemical compound [Na+].[Br-] JHJLBTNAGRQEKS-UHFFFAOYSA-M 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- VDFVNEFVBPFDSB-UHFFFAOYSA-N 1,3-dioxane Chemical compound C1COCOC1 VDFVNEFVBPFDSB-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- GSFNQBFZFXUTBN-UHFFFAOYSA-N 2-chlorothiophene Chemical compound ClC1=CC=CS1 GSFNQBFZFXUTBN-UHFFFAOYSA-N 0.000 description 1
- OYOKPDLAMOMTEE-UHFFFAOYSA-N 4-chloro-1,3-dioxolan-2-one Chemical compound ClC1COC(=O)O1 OYOKPDLAMOMTEE-UHFFFAOYSA-N 0.000 description 1
- 229920003026 Acene Polymers 0.000 description 1
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- 229910015902 Bi 2 O 3 Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910000925 Cd alloy Inorganic materials 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical class CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- JGFBQFKZKSSODQ-UHFFFAOYSA-N Isothiocyanatocyclopropane Chemical compound S=C=NC1CC1 JGFBQFKZKSSODQ-UHFFFAOYSA-N 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013733 LiCo Inorganic materials 0.000 description 1
- 229910013578 LiCo0.33Ni0.33Mn0.33O2 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical class C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 1
- PWLNAUNEAKQYLH-UHFFFAOYSA-N butyric acid octyl ester Natural products CCCCCCCCOC(=O)CCC PWLNAUNEAKQYLH-UHFFFAOYSA-N 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011335 coal coke Substances 0.000 description 1
- CKFRRHLHAJZIIN-UHFFFAOYSA-N cobalt lithium Chemical compound [Li].[Co] CKFRRHLHAJZIIN-UHFFFAOYSA-N 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 150000005676 cyclic carbonates Chemical class 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 125000002228 disulfide group Chemical group 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000011262 electrochemically active material Substances 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 239000011532 electronic conductor Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 125000001153 fluoro group Chemical group F* 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 229910001959 inorganic nitrate Inorganic materials 0.000 description 1
- 229910003480 inorganic solid Inorganic materials 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- JWZCKIBZGMIRSW-UHFFFAOYSA-N lead lithium Chemical compound [Li].[Pb] JWZCKIBZGMIRSW-UHFFFAOYSA-N 0.000 description 1
- 229910003002 lithium salt Inorganic materials 0.000 description 1
- 159000000002 lithium salts Chemical class 0.000 description 1
- UIDWHMKSOZZDAV-UHFFFAOYSA-N lithium tin Chemical compound [Li].[Sn] UIDWHMKSOZZDAV-UHFFFAOYSA-N 0.000 description 1
- IRDCEJVOXCGYAV-UHFFFAOYSA-M lithium;2-dodecylbenzenesulfonate Chemical compound [Li+].CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O IRDCEJVOXCGYAV-UHFFFAOYSA-M 0.000 description 1
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 1
- NTWKDFWKALPPII-UHFFFAOYSA-M lithium;octadecane-1-sulfonate Chemical compound [Li+].CCCCCCCCCCCCCCCCCCS([O-])(=O)=O NTWKDFWKALPPII-UHFFFAOYSA-M 0.000 description 1
- JFNAJRJKQQEFNH-UHFFFAOYSA-M lithium;octane-1-sulfonate Chemical compound [Li+].CCCCCCCCS([O-])(=O)=O JFNAJRJKQQEFNH-UHFFFAOYSA-M 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- UUIQMZJEGPQKFD-UHFFFAOYSA-N n-butyric acid methyl ester Natural products CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000000088 plastic resin Substances 0.000 description 1
- 229920002627 poly(phosphazenes) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920002717 polyvinylpyridine Polymers 0.000 description 1
- ZNNZYHKDIALBAK-UHFFFAOYSA-M potassium thiocyanate Chemical compound [K+].[S-]C#N ZNNZYHKDIALBAK-UHFFFAOYSA-M 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 150000003222 pyridines Chemical class 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- FVAUCKIRQBBSSJ-UHFFFAOYSA-M sodium iodide Chemical compound [Na+].[I-] FVAUCKIRQBBSSJ-UHFFFAOYSA-M 0.000 description 1
- VGTPCRGMBIAPIM-UHFFFAOYSA-M sodium thiocyanate Chemical compound [Na+].[S-]C#N VGTPCRGMBIAPIM-UHFFFAOYSA-M 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229920005608 sulfonated EPDM Polymers 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 150000008053 sultones Chemical class 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
Description
本発明は、過充電時の安全性に優れた非水電解質電池に関する。 The present invention relates to a nonaqueous electrolyte battery excellent in safety during overcharge.
近年、HEV(ハイブリッド車)用など、電池容量が大きく、高出力の電池システムの
開発が盛んである。また、従来のニッケル水素電池に替えてリチウム電池等の非水電解質
電池をかかる電池システムに採用することが検討されている。
In recent years, battery systems with large battery capacity and high output, such as for HEV (hybrid vehicles), have been actively developed. In addition, it has been studied to employ a nonaqueous electrolyte battery such as a lithium battery in such a battery system in place of the conventional nickel metal hydride battery.
例えば特許文献1、2にみられるように、非水電解質電池の過充電に対応する技術が多
数開示されている。しかしながら、従来用いられてきた小型民生用の非水電解質電池の容
量は、特許文献1〜3の記載からもわかるように、せいぜい1.5Ah程度であり、急速
充電のレベルも高々4It未満である。しかしながら、HEV用、非常用、電力貯蔵用な
どの用途には、極めて大容量、高出力の非水電解質電池が用いられるため、従来想定して
いなかった使用条件に対応する必要がある。
For example, as seen in Patent Documents 1 and 2, a number of technologies corresponding to overcharging of nonaqueous electrolyte batteries are disclosed. However, as can be seen from the descriptions in Patent Documents 1 to 3, the capacity of a small non-aqueous electrolyte battery for consumer use that has been conventionally used is about 1.5 Ah at most, and the level of rapid charging is less than 4 It at most. . However, for applications such as HEV, emergency, and power storage, non-aqueous electrolyte batteries with extremely large capacity and high output are used, so it is necessary to cope with usage conditions that have not been assumed in the past.
例えば、制御システムの故障等により充電が終了すべき場合であるにもかかわらず充電
電流が流れ続けた場合を想定すると、単電池に収納されている電極材料や電解質材料の絶
対量が大きいため、蓄熱効果も相まって、電池が短時間のうちに電池電圧や電池温度の急
激な上昇を伴う極度の過充電状態に陥り、電池システムの安全性が損なわれることとなる
。
For example, assuming a case where charging current continues to flow even though charging should be terminated due to a failure of the control system, etc., because the absolute amount of electrode material and electrolyte material stored in the unit cell is large, Combined with the heat storage effect, the battery falls into an extreme overcharged state with a sudden rise in battery voltage or battery temperature in a short time, and the safety of the battery system is impaired.
例えば、HEV用途において、下りの坂道が続き、ハイブリッドシステムに回生(充電
)され続けた場合や、乗用車に搭載した電池システムの制御回路の故障により電池が過充
電状態となった場合、さらにその乗用車が衝突事故等による衝撃によって電池の内部短絡
を引き起こした場合、非常用電源システムの制御回路の故障により過充電状態となった電
池を作業員が交換しようとする場合、電力貯蔵システムの制御回路の故障により電池が過
充電状態となり、さらに地震等の災害を被った場合等を想定すると、必ずしも安全性が十
分に保たれているとはいえない。
For example, in HEV applications, if a downhill road continues and regeneration (charging) continues in the hybrid system, or if the battery is overcharged due to a failure in the control circuit of the battery system installed in the passenger car, the passenger car If the battery causes an internal short circuit due to an impact due to a collision accident, etc., when an operator tries to replace the battery that has been overcharged due to a failure in the control circuit of the emergency power system, the control circuit of the power storage system If it is assumed that the battery is overcharged due to a failure and suffers a disaster such as an earthquake, the safety cannot always be kept sufficiently.
従って、仮に制御システムが故障しても、電池が過充電状態とならないよう、早期に充
電電流を遮断することのできる電池又は電池システムが求められていた。
Therefore, there has been a demand for a battery or a battery system that can interrupt the charging current at an early stage so that the battery is not overcharged even if the control system fails.
特許文献1には、正極活物質(LiCoO2)に対して0.5〜20重量%の炭酸リチ
ウムを添加した正極を備え、電池内圧の上昇に応じて作動する電流遮断手段を備えた直径
14mm、高さ50mm円筒型の非水電解質二次電池が記載され、「電流1.5Aで過充
電状態にすることによって電池の急速な温度上昇を伴う発熱や比較的急速な破損が生じる
といった電池の損傷品の発生率を調査した」(段落0032参照)ことが記載され、「リ
チウム複合酸化物を主体とする正極に炭酸リチウムを添加すると、過充電で電池内圧がそ
れほど上昇する前での急激な温度上昇を伴う発熱や比較的急速な破損が起こらず、そして
、比較的緩やかに電池内圧が上昇することにより電流遮断手段が確実に作動し、充電電流
を遮断させる。理由については明らかではないが、正極での炭酸リチウムが電気化学的に
分解されて炭酸ガスを発生することから、何らかの形で過充電中での異常反応を炭酸ガス
が抑制し、また発生した炭酸ガスにより電流遮断手段を確実に作動させるために、急激な
温度上昇を伴う発熱や比故的急速な破損を防止したものと思われる。」(段落0015参
照)と記載されている。
Patent Document 1 includes a positive electrode in which 0.5 to 20% by weight of lithium carbonate is added to a positive electrode active material (LiCoO 2 ), and has a diameter of 14 mm including a current interrupting unit that operates in accordance with an increase in battery internal pressure. , A non-aqueous electrolyte secondary battery having a 50 mm height is described, and “a battery that generates heat or a relatively rapid breakage due to a rapid temperature rise of the battery by being overcharged at a current of 1.5 A” is described. “The rate of occurrence of damaged products was investigated” (see paragraph 0032). “When lithium carbonate was added to the positive electrode mainly composed of lithium composite oxide, the battery internal pressure increased rapidly due to overcharge. Heat generation with temperature rise and relatively rapid damage do not occur, and the battery internal pressure rises relatively slowly so that the current interrupting means operates reliably and interrupts the charging current. Although it is not obvious, since lithium carbonate at the positive electrode is electrochemically decomposed to generate carbon dioxide, carbon dioxide suppresses abnormal reactions during overcharge in some way, and the generated carbon dioxide It seems that in order to operate the current interrupting means reliably, heat generation accompanied by a rapid temperature rise and comparatively rapid breakage are prevented "(see paragraph 0015).
特許文献2には、正極活物質にLiMn2O4を用い、負極に球状黒鉛を用い、電解質
に添加剤として2.5重量%のビフェニルを配合した18650型の非水系再充電可能電
池が記載され、「10ボルトで3アンペアの能力のある電源を使用して、45℃の周囲温
度で過充電試験を実施した」(段落0038参照)ことが記載され、「少量の添加剤ビフ
ェニル、3−クロロチオフェン、およびフランが、ある種の特定な電池系に対して、その
サイクル寿命特性に悪影響を与えずに、過充電保護を与えることが確認できる。」(段落
0046参照)と記載されている。
Patent Document 2 describes a 18650 type non-aqueous rechargeable battery in which LiMn 2 O 4 is used as a positive electrode active material, spherical graphite is used as a negative electrode, and 2.5% by weight of biphenyl is added as an additive to an electrolyte. Was described as “overcharge testing was performed at an ambient temperature of 45 ° C. using a power supply capable of 3 amps at 10 volts” (see paragraph 0038). It can be seen that chlorothiophene and furan provide overcharge protection for certain battery systems without adversely affecting their cycle life characteristics "(see paragraph 0046). .
特許文献3には、「高いエネルギー密度を得ることができ。かつ充放電サイクル特性を
向上させることができる二次電池を提供すること」を目的として、リチウムコバルト複合
酸化物粉末95重量部に対して炭酸リチウム粉末5重量部を混合している正極と、人造黒
鉛を用いた負極と、2,4−ジフルオロアニソール(DFA)を0.1〜15.8重量%
含ませた電解液を用いた、直径14mm、高さ65mmの円筒型二次電池が記載され、4
00mAの電流で充放電サイクル試験を行ったことが記載されている(実施例2−12〜
2−16参照)。
Patent Document 3 discloses that for the purpose of “providing a secondary battery capable of obtaining a high energy density and improving charge / discharge cycle characteristics”, 95 parts by weight of lithium cobalt composite oxide powder. 0.1 to 15.8 wt% of a positive electrode mixed with 5 parts by weight of lithium carbonate powder, a negative electrode using artificial graphite, and 2,4-difluoroanisole (DFA)
A cylindrical secondary battery having a diameter of 14 mm and a height of 65 mm using the contained electrolyte is described.
It is described that a charge / discharge cycle test was performed at a current of 00 mA (Examples 2-12 to
2-16).
しかし、いずれの文献にも、正極に炭酸リチウムを混合することと、電解液添加剤とし
てビフェニルを選択して添加することの組み合わせについては記載がない。
過充電に対する安全性に優れた非水電解質電池を提供することを目的とする。 It aims at providing the nonaqueous electrolyte battery excellent in the safety | security with respect to an overcharge.
本発明は、負極、過充電状態の正極電位においてガスを発生しうる化合物を含有する正
極合剤を備えた正極及びビフェニルを含有する非水電解質が外装容器内に収納されてなる
非水電解質電池である。
The present invention relates to a nonaqueous electrolyte battery in which a nonaqueous electrolyte containing a negative electrode, a positive electrode mixture containing a compound capable of generating a gas at an overcharged positive electrode potential, and a biphenyl is housed in an outer container. It is.
また、本発明の非水電解質電池は、前記外装容器内の内圧上昇に応じて作動する電流遮
断手段を備えたことを特徴としている。
The nonaqueous electrolyte battery of the present invention is characterized in that it includes a current interrupting means that operates in response to an increase in internal pressure in the outer container.
また、本発明は、前記非水電解質電池を一個又は複数個備えてなる電池部と電圧監視及
び制御手段を備えた電池システムである。
In addition, the present invention is a battery system including a battery unit including one or a plurality of the nonaqueous electrolyte batteries and a voltage monitoring and control unit.
過充電に対する安全性に優れた非水電解質電池を提供することができる。 A nonaqueous electrolyte battery excellent in safety against overcharging can be provided.
本発明は、正極合剤が過充電状態の正極電位においてガスを発生しうる化合物を含有す
ることにより、急速な過充電に対応して分解ガスを発生し、電流遮断機構を作動させる効
果を発現する。
In the present invention, the positive electrode mixture contains a compound capable of generating gas at the positive electrode potential in an overcharged state, thereby generating a decomposition gas in response to rapid overcharge and exerting an effect of operating a current interruption mechanism. To do.
ここで、過充電状態の正極電位においてガスを発生しうる化合物としては、炭酸無機化
合物、蓚酸無機化合物、又は、硝酸無機化合物が好ましく、中でも炭酸無機化合物が好ま
しい。炭酸無機化合物としては、例えば炭酸リチウムが挙げられる。
Here, as a compound that can generate gas at the positive electrode potential in an overcharged state, an inorganic carbonate compound, an inorganic oxalate compound, or an inorganic nitrate compound is preferable, and an inorganic carbonate compound is particularly preferable. Examples of the inorganic carbonate compound include lithium carbonate.
例えばコバルト酸リチウム等の正極活物質粉末中には微量の炭酸リチウムが不可避的に
存在するが、本発明において前記効果を発現させるためには、正極合剤中の炭酸リチウム
の量は前記不可避量を超えて含有することが必要である。具体的には、正極合剤中に占め
る炭酸リチウムの量は1重量%以上が好ましく、2重量%以上がより好ましく、4重量%
以上が最も好ましい。正極合剤が含有する炭酸リチウムの量は10重量%以下とすること
により、電池のエネルギー密度が低下する虞を低減できるため、好ましい。
For example, a small amount of lithium carbonate is unavoidably present in the positive electrode active material powder such as lithium cobaltate. In order to achieve the above effect in the present invention, the amount of lithium carbonate in the positive electrode mixture is the unavoidable amount. It is necessary to contain more than. Specifically, the amount of lithium carbonate in the positive electrode mixture is preferably 1% by weight or more, more preferably 2% by weight or more, and 4% by weight.
The above is most preferable. The amount of lithium carbonate contained in the positive electrode mixture is preferably 10% by weight or less because the possibility that the energy density of the battery is lowered can be reduced.
また、本発明は、非水電解質がビフェニル類を含有することにより、急速な過充電が開
始された場合にビフェニル類が重合して電極表面に抵抗被膜を形成することにより、過充
電深度の進行を抑制すると共に、前記抵抗被膜が形成された電極を通じて充電電流が流れ
ることで生じる発熱が正極合剤中の炭酸リチウムの分解とこれに伴うガス発生を促進し、
相乗して電流遮断機構を早期に作動させる効果を発現する。このようにして、電池の過充
電深度が低い段階にて充電を停止させることができる。非水電解質が含有するビフェニル
類の量は2重量%以上とすると、前記効果が確実に発現するため好ましい。非水電解質が
含有するビフェニル類の量は10重量%以下とすることにより、電池の内部抵抗が大きな
ものとなる虞を低減できるため好ましく、5重量%以下がより好ましい。
In addition, the present invention provides a non-aqueous electrolyte containing biphenyls, and when rapid overcharge is initiated, the biphenyls are polymerized to form a resistance film on the electrode surface, thereby increasing the overcharge depth. And the heat generated by the charging current flowing through the electrode on which the resistance film is formed promotes the decomposition of lithium carbonate in the positive electrode mixture and the accompanying gas generation,
Synergistically, the effect of operating the current interruption mechanism early is expressed. In this way, charging can be stopped at a stage where the overcharge depth of the battery is low. The amount of biphenyl contained in the non-aqueous electrolyte is preferably 2% by weight or more, because the above-described effect is surely exhibited. The amount of biphenyls contained in the non-aqueous electrolyte is preferably 10% by weight or less because the risk of increasing the internal resistance of the battery can be reduced, and more preferably 5% by weight or less.
ここで、ビフェニル類としては、限定されるものではないが、ビフェニル又はビフェニ
ルを構成する水素原子の一部がフッ素原子で置換された構造の化合物を例示できる。
Here, biphenyls are not limited, and examples thereof include biphenyl or a compound having a structure in which part of hydrogen atoms constituting biphenyl is substituted with a fluorine atom.
本発明に係る非水電解質電池が備える正極は、正極合剤が過充電状態の正極電位におい
てガスを発生しうる化合物を含有したものである限りにおいて、限定されるものではない
。
The positive electrode included in the nonaqueous electrolyte battery according to the present invention is not limited as long as the positive electrode mixture contains a compound capable of generating gas at the positive electrode potential in an overcharged state.
正極活物質としては周知の材料を周知の処方で用いることができる。例えば、LiCo
O2や前記Coの一部がNi,Mnその他の遷移金属あるいはホウ素で置換されたα−N
aFeO2構造を有するリチウム含有遷移金属酸化物、LiMn2O4に代表されるスピ
ネル型結晶構造を有する化合物、LiFePO4、LiFeSO4あるいは前記Feの一
部がCo,Mn等で置換されたポリアニオン型化合物等を用いることができる。正極には
さらに、CuO、Cu2O、Ag2O、CuS、CuSO4などのI族金属化合物、Ti
S2、SiO2、SnOなどのIV族金属化合物、V2O5、V6O12、VOx、Nb2
O5、Bi2O3、Sb2O3などのV族金属化合物、CrO3、Cr2O3、MoO3
、MoS2、WO3、SeO2などのVI族金属化合物、MnO2、Mn2O3などのVII
族金属化合物、Fe2O3、FeO、Fe3O4、FePO4、Ni2O3、NiO、C
oO3、CoOなどのVIII族金属化合物等が添加されていてもよい。さらに、ジスルフィ
ド、ポリピロール、ポリアニリン、ポリパラフェニレン、ポリアセチレン、ポリアセン系
材料などの導電性高分子化合物、擬グラファイト構造炭素質材料等を用いてもよい。
As the positive electrode active material, a known material can be used in a known formulation. For example, LiCo
Α-N in which part of O 2 or Co is substituted with Ni, Mn or other transition metal or boron
a lithium-containing transition metal oxide having an aFeO 2 structure, a compound having a spinel crystal structure typified by LiMn 2 O 4 , LiFePO 4 , LiFeSO 4, or a polyanion type in which a part of the Fe is substituted with Co, Mn, or the like A compound or the like can be used. The positive electrode further includes a group I metal compound such as CuO, Cu 2 O, Ag 2 O, CuS, CuSO 4 , Ti
S 2, SiO 2, IV group metal compounds such as SnO, V 2 O 5, V 6 O 12, VOx, Nb 2
O 5, Bi 2 O 3, Sb V metal compounds such as 2 O 3, CrO 3, Cr 2 O 3, MoO 3
Group VI metal compounds such as MoS 2 , WO 3 and SeO 2, and VII such as MnO 2 and Mn 2 O 3
Group metal compounds, Fe 2 O 3 , FeO, Fe 3 O 4 , FePO 4 , Ni 2 O 3 , NiO, C
Group VIII metal compounds such as oO 3 and CoO may be added. Furthermore, conductive polymer compounds such as disulfide, polypyrrole, polyaniline, polyparaphenylene, polyacetylene, and polyacene materials, pseudographite-structured carbonaceous materials, and the like may be used.
本発明に係る非水電解質電池が備える負極は、何ら限定されるものではなく、負極活物
質としては、スピネル型結晶構造を有するチタン酸リチウム、リチウム金属、リチウム−
アルミニウム、リチウム−鉛、リチウム−スズ、リチウム−アルミニウム−スズ、リチウ
ム−ガリウム、およびウッド合金などのリチウム含有合金、さらに、以下のような炭素材
料が挙げられる。例えば、天然黒鉛、人造黒鉛、無定形炭素、繊維状炭素、粉末状炭素、
石油ピッチ系炭素、石炭コークス系炭素がある。これら炭素材料は、直径あるいは繊維径
が0.01〜10ミクロン、繊維長が数μmから数mmまでの粒子あるいは繊維が好まし
い。特に上記炭素材料が、X線回折等による分析結果;格子面間隔(d002)0.33
から0.35nm、a軸方向の結晶子の大きさLa20nm以上、c軸方向の結晶子の大
きさLc20nm以上、真密度2.00〜2.25g/cm3のグラファイトは高容量を
示すことから好ましい。しかしながら、もちろんこれらの範囲に限定されるものではない
。
The negative electrode included in the nonaqueous electrolyte battery according to the present invention is not limited in any way, and examples of the negative electrode active material include lithium titanate having a spinel crystal structure, lithium metal, lithium-
Examples include lithium-containing alloys such as aluminum, lithium-lead, lithium-tin, lithium-aluminum-tin, lithium-gallium, and wood alloys, and the following carbon materials. For example, natural graphite, artificial graphite, amorphous carbon, fibrous carbon, powdered carbon,
There are petroleum pitch carbon and coal coke carbon. These carbon materials are preferably particles or fibers having a diameter or fiber diameter of 0.01 to 10 microns and a fiber length of several μm to several mm. In particular, the above carbon material is analyzed by X-ray diffraction or the like; lattice spacing (d002) 0.33
From 0.35 nm, a crystallite size La of 20 nm or more in the a-axis direction, a crystallite size Lc of 20 nm or more in the c-axis direction, and a true density of 2.00 to 2.25 g / cm 3 has high capacity. preferable. However, of course, it is not limited to these ranges.
さらに、炭素材料にはスズ酸化物や珪素酸化物といった金属酸化物の添加や、リンやホ
ウ素を添加し改質を行うことも可能である。また、グラファイトとリチウム金属、リチウ
ム含有合金などを併用することや、あらかじめ電気化学的に還元することによって、本発
明に用いる炭素質材料にあらかじめリチウムを挿入することも可能である。
Further, it is possible to modify the carbon material by adding a metal oxide such as tin oxide or silicon oxide, or by adding phosphorus or boron. Moreover, it is also possible to insert lithium in advance into the carbonaceous material used in the present invention by using graphite and lithium metal, a lithium-containing alloy or the like in combination or by electrochemical reduction in advance.
正極や負極には、その電極合剤に必要に応じて導電剤や結着剤やフィラー等を添加する
ことができる。導電剤としては、電池性能に悪影響を及ぼさない電子伝導性材料であれば
何でも良い。通常、天然黒鉛(鱗状黒鉛、鱗片状黒鉛、土状黒鉛など)、人造黒鉛、カー
ボンブラック、アセチレンブラック、ケッチェンブラック、カーボンウイスカー、炭素繊
維や金属(銅、ニッケル、アルミニウム、銀、金など)粉、金属繊維、導電性セラミック
ス材料等の導電性材料を1種またはそれらの混合物として含ませることができる。これら
の中で、導電性及び塗工性の観点よりアセチレンブラックが望ましい。その添加量は1〜
50重量%が好ましく、特に2〜30重量%が好ましい。これらの混合方法は、物理的な
混合であり、その理想とするところは均一混合である。そのため、V型混合機、S型混合
機、擂かい機、ボールミル、遊星ボールミルといったような粉体混合機を乾式、あるいは
湿式で混合することが可能である。
A conductive agent, a binder, a filler, and the like can be added to the positive electrode and the negative electrode as necessary in the electrode mixture. As the conductive agent, any electronic conductive material that does not adversely affect battery performance may be used. Usually, natural graphite (scale-like graphite, scale-like graphite, earth-like graphite, etc.), artificial graphite, carbon black, acetylene black, ketjen black, carbon whisker, carbon fiber and metal (copper, nickel, aluminum, silver, gold, etc.) Conductive materials such as powders, metal fibers, and conductive ceramic materials can be included as one type or a mixture thereof. Among these, acetylene black is desirable from the viewpoints of conductivity and coatability. The amount added is 1 to
50% by weight is preferable, and 2 to 30% by weight is particularly preferable. These mixing methods are physical mixing, and the ideal is uniform mixing. Therefore, powder mixers such as V-type mixers, S-type mixers, crackers, ball mills, and planetary ball mills can be mixed dry or wet.
上記結着剤としては、通常、テトラフルオロエチレン、ポリフッ化ビニリデン、ポリエ
チレン、ポリプロピレン、エチレン−プロピレンジエンターポリマー(EPDM)、スル
ホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム、カルボキシメチルセ
ルロース等といった熱可塑性樹脂、ゴム弾性を有するポリマー、多糖類等を1種または2
種以上の混合物として用いることができる。また、多糖類の様にリチウムと反応する官能
基を有する結着剤は、例えばメチル化するなどしてその官能基を失活させておくことが望
ましい。その添加量としては、1〜50重量%が好ましく、特に2〜30重量%が好まし
い。
As the binder, heat such as tetrafluoroethylene, polyvinylidene fluoride, polyethylene, polypropylene, ethylene-propylene diene terpolymer (EPDM), sulfonated EPDM, styrene butadiene rubber (SBR), fluorine rubber, carboxymethyl cellulose, etc. One or two types of plastic resin, polymer having rubber elasticity, polysaccharide, etc.
It can be used as a mixture of seeds or more. In addition, it is desirable that a binder having a functional group that reacts with lithium, such as a polysaccharide, be deactivated by, for example, methylation. The addition amount is preferably 1 to 50% by weight, particularly preferably 2 to 30% by weight.
フィラーとしては、電池性能に悪影響を及ぼさない材料であれば何でも良い。通常、ポ
リプロピレン、ポリエチレン等のオレフィン系ポリマー、アエロジル、ゼオライト、ガラ
ス、炭素等が用いられる。フィラーの添加量は0〜30重量%が好ましい。
As the filler, any material that does not adversely affect the battery performance may be used. Usually, olefin polymers such as polypropylene and polyethylene, aerosil, zeolite, glass, carbon and the like are used. The amount of filler added is preferably 0 to 30% by weight.
さらに、高容量化を目的として、硫黄、セレン、テルルなどのカルコゲン元素を添加す
ることも可能である。添加されたカルコゲン元素は電極材料が有するジスルフィド基のS
−S結合に付加し、更なる充放電容量を与える。カルコゲン元素の添加量は0〜30重量
%が好ましい。
Furthermore, chalcogen elements such as sulfur, selenium, and tellurium can be added for the purpose of increasing the capacity. The added chalcogen element is S of disulfide group of the electrode material.
Add to -S bond to give additional charge / discharge capacity. The amount of chalcogen element added is preferably 0 to 30% by weight.
電気化学的活性物質の集電体としては、構成された電池において悪影響を及ぼさない電
子伝導体であれば何でもよい。例えば、正極用集電体としては、アルミニウム、チタン、
ステンレス鋼、ニッケル、焼成炭素、導電性高分子、導電性ガラス等の他に、接着性、導
電性、耐酸化性向上の目的で、アルミニウムや銅等の表面をカーボン、ニッケル、チタン
や銀等で処理した物を用いることができる。負極用集電体としては、銅、ニッケル、鉄、
ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラス、Al−
Cd合金等の他に、接着性、導電性、耐酸化性向上の目的で、銅等の表面をカーボン、ニ
ッケル、チタンや銀等で処理した物を用いることができる。これらの材料については表面
を酸化処理することも可能である。これらの形状については、フォイル状の他、フィルム
状、シート状、ネット状、パンチ又はエキスパンドされた物、ラス体、多孔質体、発泡体
、繊維群の形成体等が用いられる。厚みは特に限定はないが、1〜500μmのものが用
いられる。これらの集電体の中で、正極には耐酸化性に優れているアルミニウム箔が、負
極には還元場において安定であり、且つ電導性に優れ、安価な銅箔、ニッケル箔、鉄箔、
およびそれらの一部を含む合金箔が好ましい。さらに、電気化学的活性物質層と集電体と
の密着性が優れている粗面表面粗さが0.2μmRa以上の箔であることが望ましい。こ
のような粗面を得る目的で電解箔は優れている。
The current collector of the electrochemically active substance may be any electronic conductor that does not adversely affect the battery constructed. For example, current collectors for positive electrodes include aluminum, titanium,
In addition to stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, etc., the surface of aluminum, copper, etc. is made of carbon, nickel, titanium, silver, etc. for the purpose of improving adhesion, conductivity, and oxidation resistance. The thing processed by can be used. As the current collector for the negative electrode, copper, nickel, iron,
Stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, Al-
In addition to a Cd alloy or the like, a material obtained by treating the surface of copper or the like with carbon, nickel, titanium, silver or the like for the purpose of improving adhesiveness, conductivity, or oxidation resistance can be used. The surface of these materials can be oxidized. As for these shapes, in addition to the foil shape, a film shape, a sheet shape, a net shape, a punched or expanded product, a lath body, a porous body, a foamed body, a formed body of a fiber group, and the like are used. The thickness is not particularly limited, but a thickness of 1 to 500 μm is used. Among these current collectors, an aluminum foil excellent in oxidation resistance is used for the positive electrode, and a copper foil, nickel foil, iron foil, which is inexpensive and stable in a reduction field and has excellent electrical conductivity,
And the alloy foil containing those parts is preferable. Furthermore, it is desirable that the surface roughness of the rough surface with excellent adhesion between the electrochemically active material layer and the current collector is 0.2 μmRa or more. The electrolytic foil is excellent for the purpose of obtaining such a rough surface.
本発明の電極材料を用いた電池の外装材としては、鉄、ステンレススチール、アルミニ
ウム等の金属缶を用いることが可能であるが、重量エネルギー密度の観点から、金属箔と
樹脂フィルムの金属樹脂複合剤が好ましい。金属箔の例として、アルミニウム、鉄、ニッ
ケル、銅、SUS、チタン、金、銀等、ピンホールのない箔であれば何れでもかまわない
が、好ましく軽量且つ安価なアルミニウム箔が好ましい。また、樹脂フィルムとしては外
面にはポリエチレンテレフタレートフィルム、ナイロンフィルム等の突き刺し強度が優れ
た樹脂フィルムを、内面にはポリエチレンフィルム、ナイロンフィルム等の熱可塑性であ
って融着可能なフィルムが好ましい。耐溶剤性の観点からこのような樹脂フィルムの開口
部を熱可塑性樹脂で封止することが望ましい。
As a battery exterior material using the electrode material of the present invention, a metal can such as iron, stainless steel, and aluminum can be used. From the viewpoint of weight energy density, a metal-resin composite of a metal foil and a resin film. Agents are preferred. As an example of the metal foil, any foil such as aluminum, iron, nickel, copper, SUS, titanium, gold, silver and the like having no pinhole may be used, but a lightweight and inexpensive aluminum foil is preferable. The resin film is preferably a resin film having excellent piercing strength such as a polyethylene terephthalate film or nylon film on the outer surface, and a thermoplastic and fusible film such as a polyethylene film or nylon film on the inner surface. From the viewpoint of solvent resistance, it is desirable to seal the opening of such a resin film with a thermoplastic resin.
本発明の電極材料を用いた電池のセパレータはポリオレフィン系、ポリエステル系、ポ
リアクリロニトリル系、ポリフェニレンサルファイド系、ポリイミド系、及びフッ素樹脂
系の微孔膜や不織布を用いることが可能である。それらの中で、濡れ性の悪い微孔膜には
界面活性剤等の処理を施すことが必要となる。
As separators for batteries using the electrode material of the present invention, polyolefin-based, polyester-based, polyacrylonitrile-based, polyphenylene sulfide-based, polyimide-based, and fluororesin-based microporous membranes and nonwoven fabrics can be used. Among them, it is necessary to treat the microporous film with poor wettability with a surfactant or the like.
上記セパレータの空孔率は強度の観点から98体積%以下が好ましい。また、充放電特
性の観点から空孔率は20体積%以上が好ましい。
The porosity of the separator is preferably 98% by volume or less from the viewpoint of strength. Further, the porosity is preferably 20% by volume or more from the viewpoint of charge / discharge characteristics.
本発明に係る非水電解質電池に用いる非水電解質は、ビフェニル類を含有する限りにお
いて、限定されるものではない。例えば、エチレンカーボネート、プロピレンカーボネー
ト、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネートなどの
環状炭酸エステル;γ−ブチロラクトン、γ−バレロラクトンなどの環状エステル;ジメ
チルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどの鎖状炭酸エ
ステル;酢酸メチル、酪酸メチルなどの鎖状エステル;テトラヒドロフランまたはその誘
導体、1,3−ジオキサン、1,2−ジメトキシエタン、メチルジグライムなどのエーテ
ル類;アセトニトリル、ベンゾニトリルなどのニトリル類;ジオキサランまたはその誘導
体;スルホラン、スルトンまたはその誘導体などの単独またはそれら2種以上の混合溶媒
に、LiClO4、LiBF4、LiAsF6、LiPF6、LiCF3SO3、LiC
F3CO2、LiSCN、LiBr、LiI、Li2SO4、Li2B10Cl10、N
aClO4、NaI、NaSCN、NaBr、KClO4、KSCN等のLi、Na、ま
たはKの1種を含む無機イオン塩、LiN(CF3SO2)2、LiN(C2F5SO2
)2、(CH3)4NBF4、(CH3)4NBr、(C2H5)4NClO4、(C2
H5)4NI、(C3H7)4NBr、(n−C4H9)4NClO4、(n−C4H9
)4NI、(C2H5)4N−maleate、(C2H5)4N−benzoate、
(C2H5)4N−phtalateなどの四級アンモニウム塩、ステアリルスルホン酸
リチウム、オクチルスルホン酸リチウム、ドデシルベンゼンスルホン酸リチウムなどの有
機イオン塩等を1種又は2種以上混合したもの等を用いることができる。
The nonaqueous electrolyte used for the nonaqueous electrolyte battery according to the present invention is not limited as long as it contains biphenyls. For example, cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, chloroethylene carbonate and vinylene carbonate; cyclic esters such as γ-butyrolactone and γ-valerolactone; chain carbonates such as dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate Esters; chain esters such as methyl acetate and methyl butyrate; ethers such as tetrahydrofuran or derivatives thereof, 1,3-dioxane, 1,2-dimethoxyethane, and methyldiglyme; nitriles such as acetonitrile and benzonitrile; dioxalane or Derivatives thereof; such as sulfolane, sultone, or derivatives thereof alone or in a mixed solvent of two or more thereof, LiClO 4 , LiBF 4 , LiAsF 6 , LiPF 6 , L iCF 3 SO 3 , LiC
F 3 CO 2 , LiSCN, LiBr, LiI, Li 2 SO 4 , Li 2 B 10 Cl 10 , N
Inorganic ion salts containing one of Li, Na, or K, such as aClO 4 , NaI, NaSCN, NaBr, KClO 4 , KSCN, LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2
) 2 , (CH 3 ) 4 NBF 4 , (CH 3 ) 4 NBr, (C 2 H 5 ) 4 NClO 4 , (C 2
H 5 ) 4 NI, (C 3 H 7 ) 4 NBr, (n-C 4 H 9 ) 4 NClO 4 , (n-C 4 H 9
) 4 NI, (C 2 H 5 ) 4 N-maleate, (C 2 H 5 ) 4 N-benzoate,
(C 2 H 5 ) A mixture of quaternary ammonium salts such as 4 N-phtalate, organic ionic salts such as lithium stearyl sulfonate, lithium octyl sulfonate, lithium dodecylbenzene sulfonate, etc. Can be used.
上記の電解液は、電極間に本発明のセパレータを挟み込み積層したり、巻き込んだりし
た後に上記電解液を注液することが可能である。注液法としては、常圧で注液することも
可能であるが真空含浸方法や加圧含浸方法も可能である。
The electrolytic solution can be injected after the separator of the present invention is sandwiched between electrodes and stacked or wound. As an injection method, it is possible to inject at normal pressure, but a vacuum impregnation method and a pressure impregnation method are also possible.
本発明電池の非水電解質として、イオン液体やリチウム伝導性の固体電解質(−20〜
60℃にあって固体あるいは固形状である)を用いることもできる。この固体電解質は上
記塩を含む高分子で構成される。これらを含む高分子電解質としては、該リチウム塩を溶
解させたポリエチレンオキサイド誘導体か少なくとも該誘導体を含むポリマー、ポリプロ
ピレンオキサイド誘導体か少なくとも該誘導体を含むポリマー、ポリフォスファゼンや該
誘導体、イオン解離基を含むポリマー、リン酸エステルポリマー誘導体、さらにポリビニ
ルピリジン誘導体、ビスフェノールA誘導体、ポリアクリロニトリル、ポリビニリデンフ
ルオライド、フッ素ゴム等に非水電解液を含有させた高分子マトリックス材料(ゲル電解
質)及び無機固体電解質等のイオン伝導性化合物からなるものが用いられる。
As the non-aqueous electrolyte of the battery of the present invention, an ionic liquid or a lithium conductive solid electrolyte (-20 to 20)
It is also possible to use a solid or solid at 60 ° C. This solid electrolyte is composed of a polymer containing the salt. Examples of the polymer electrolyte containing these include a polyethylene oxide derivative in which the lithium salt is dissolved or a polymer containing at least the derivative, a polypropylene oxide derivative or a polymer containing at least the derivative, polyphosphazene or the derivative, and an ion dissociation group. Polymer matrix materials (gel electrolytes) and inorganic solid electrolytes containing non-aqueous electrolytes in polymers, phosphate ester polymer derivatives, polyvinyl pyridine derivatives, bisphenol A derivatives, polyacrylonitrile, polyvinylidene fluoride, fluororubber, etc. Those composed of an ion conductive compound are used.
(実施例1)
N−メチルピロリドンを溶媒とする正極ペーストを帯状のアルミニウム製集電体の両面
に塗布し、乾燥後、プレスして、正極を作製した。ここで、前記正極ペーストは、前記溶
媒以外に、正極活物質であるLiCo0.33Ni0.33Mn0.33O2、導電材で
あるアセチレンブラック、結着剤であるポリフッ化ビニリデン及び炭酸リチウムを含有し
ており、前記正極活物質、導電材及び結着剤の固形物換算質量比は91:5:4であり、
これに炭酸リチウムを加えた全固形物中に占める炭酸リチウムの質量比が4%である。
Example 1
A positive electrode paste using N-methylpyrrolidone as a solvent was applied to both sides of a strip-shaped aluminum current collector, dried and pressed to prepare a positive electrode. Here, the positive electrode paste contains LiCo 0.33 Ni 0.33 Mn 0.33 O 2 as a positive electrode active material, acetylene black as a conductive material, polyvinylidene fluoride as a binder, and lithium carbonate in addition to the solvent. The mass ratio in terms of solids of the positive electrode active material, the conductive material and the binder is 91: 5: 4,
The mass ratio of lithium carbonate in the total solid material to which lithium carbonate is added is 4%.
負極活物質である炭素材料としてのハードカーボン及び結着剤であるポリフッ化ビニリ
デンが92:8の固形物換算質量比で含有しているN−メチルピロリドンを溶媒とする負
極ペーストを、帯状の銅製集電体の両面に塗布し、乾燥後、プレスして、負極を作製した
。
A negative electrode paste containing N-methylpyrrolidone containing hard carbon as a negative electrode active material as a carbon material and polyvinylidene fluoride as a binder in a solid-converted mass ratio of 92: 8 as a solvent is made of a strip-like copper. It apply | coated on both surfaces of the electrical power collector, and after drying, it pressed and produced the negative electrode.
エチレンカーボネート(EC)、ジメチルカーボネート(DMC)及びエチルメチルカ
ーボネート(EMC)を等体積比で混合した混合溶媒に電解質塩としてLiPF6を1モ
ル/リットルの濃度で混合し、さらに、これに対して、添加剤として、2重量%のビフェ
ニルを添加して非水電解質を調整した。
LiPF 6 as an electrolyte salt was mixed at a concentration of 1 mol / liter in a mixed solvent in which ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) were mixed at an equal volume ratio. As an additive, 2% by weight of biphenyl was added to prepare a nonaqueous electrolyte.
セパレータとして帯状のポリエチレン製微多孔膜を介して前記帯状正極及び帯状負極を
偏平に捲回することにより極群を作製し、外装容器である角形電槽に収容し、前記非水電
解質を注液、含浸し、初期充放電サイクル工程を経て、設計容量6Ahの非水電解質電池
を作製した。
As a separator, the strip positive electrode and the strip negative electrode are wound flatly through a strip-shaped polyethylene microporous membrane, and a pole group is prepared, accommodated in a rectangular battery case which is an exterior container, and the non-aqueous electrolyte is injected. The nonaqueous electrolyte battery having a design capacity of 6 Ah was manufactured through impregnation and an initial charge / discharge cycle process.
なお、前記角形電槽には、正極端子及び負極端子の他、内圧が300〜900kPaの
範囲のときに電槽に設けられた電極端子と電槽内の発電要素との電気的接続を遮断しうる
電流遮断手段が設けられ、さらに、内圧が900kPaを超えた場合に電槽内のガスを外
部へ排気しうる圧力解放弁が設けられている。正極端子は、前記電流遮断手段を介して正
極と電気的に接続され、負極端子は電流遮断手段を介することなく負極と電気的に接続さ
れている。前記電流遮断手段は、正極と電気的に接続された部材とその上方に設置された
金属薄膜とがスポット溶接されてなり、内圧上昇によって前記金属薄膜が上方に膨れ上が
ることにより、前記スポット溶接部が断絶され、これによって正極と正極端子との導通が
遮断されるものである。
In addition to the positive electrode terminal and the negative electrode terminal, the rectangular battery case cuts off the electrical connection between the electrode terminal provided in the battery case and the power generation element in the battery case when the internal pressure is in the range of 300 to 900 kPa. A current release means is provided, and further, a pressure release valve is provided that can exhaust the gas in the battery case to the outside when the internal pressure exceeds 900 kPa. The positive terminal is electrically connected to the positive electrode via the current interrupting means, and the negative terminal is electrically connected to the negative electrode without passing through the current interrupting means. The current interrupting means is formed by spot welding a member electrically connected to the positive electrode and a metal thin film installed thereabove, and the metal thin film swells upward due to an increase in internal pressure. Is interrupted, and thereby the conduction between the positive electrode and the positive electrode terminal is interrupted.
(実施例2)
非水電解質におけるビフェニルの添加量を4重量%としたことを除いては、実施例1と
同様にして、非水電解質電池を作製した。
(Example 2)
A nonaqueous electrolyte battery was fabricated in the same manner as in Example 1 except that the amount of biphenyl added to the nonaqueous electrolyte was 4% by weight.
(比較例1〜16)
正極における炭酸リチウムの量及び非水電解質における添加剤の種類と量を表1に示す
通りの処方としたことを除いては、実施例1と同様にして、非水電解質電池を作製した。
なお、表1において横線で示した欄は、炭酸リチウム又は添加剤を含有しないことを示す
。表1において用いた記号の意味は次の通りである。
BP : ビフェニル
TOL : トルエン
DFA : 2,4−ジフルオロアニソール
(Comparative Examples 1-16)
A nonaqueous electrolyte battery was produced in the same manner as in Example 1 except that the amount of lithium carbonate in the positive electrode and the type and amount of additives in the nonaqueous electrolyte were set as shown in Table 1.
In addition, the column shown with the horizontal line in Table 1 shows that lithium carbonate or an additive is not contained. The meanings of the symbols used in Table 1 are as follows.
BP: biphenyl TOL: toluene DFA: 2,4-difluoroanisole
(過充電試験1)
実施例1,2、比較例1〜16に係る非水電解質電池に対して過充電試験を行った。全
ての電池は、供試前、0.2ItA、4.2V、10時間の定電流定電圧充電により充電
末状態とした。温度20℃にて、それぞれの電池に対して、通電された積算電気量を知る
ことのできる直流電源を用いて、15V、6Aの直流を印可した。電池温度が150℃を
超えるか、又は、電池温度が150℃を超えなかったものについては電流遮断手段が作動
することをもって試験の終了とした。
(Overcharge test 1)
An overcharge test was performed on the nonaqueous electrolyte batteries according to Examples 1 and 2 and Comparative Examples 1 to 16. All the batteries were put into the end-of-charge state by constant current and constant voltage charging for 0.2 hours, 4.2 V, and 10 hours before the test. At a temperature of 20 ° C., a direct current of 15 V and 6 A was applied to each battery using a direct current power source capable of knowing the accumulated amount of electricity supplied. For batteries whose battery temperature exceeded 150 ° C. or whose battery temperature did not exceed 150 ° C., the test was terminated when the current interrupting means was activated.
(過充電試験2)
別途用意した実施例1,2、比較例1〜16に係る非水電解質電池に対して過充電試験
を行った。全ての電池は、供試前、0.2ItA、4.2V、10時間の定電流定電圧充
電により充電末状態とした。温度20℃にて、それぞれの電池に対して、通電された積算
電気量を知ることのできる直流電源を用いて、15V、200Aの直流を印可した。電池
温度が150℃を超えるか、又は、電池温度が150℃を超えなかったものについては電
流遮断手段が作動することをもって試験の終了とした。
(Overcharge test 2)
An overcharge test was performed on the nonaqueous electrolyte batteries according to Examples 1 and 2 and Comparative Examples 1 to 16 that were separately prepared. All the batteries were put into the end-of-charge state by constant current and constant voltage charging for 0.2 hours, 4.2 V, and 10 hours before the test. At a temperature of 20 ° C., a direct current of 15 V and 200 A was applied to each battery using a direct current power source capable of knowing the accumulated amount of electricity supplied. For batteries whose battery temperature exceeded 150 ° C. or whose battery temperature did not exceed 150 ° C., the test was terminated when the current interrupting means was activated.
表1に、過充電試験1及び過充電試験2の評価結果をA、B及びCの記号で示した。記
号A、B、Cの意味は次の通りである。
A : 電流遮断手段が作動し、圧力解放弁の作動には至らなかった
B : 電流遮断手段が作動したが、圧力解放弁も作動した
C : 電池温度が150℃を超えるに至った
In Table 1, the evaluation results of the overcharge test 1 and the overcharge test 2 are indicated by symbols A, B, and C. The meanings of symbols A, B, and C are as follows.
A: The current interrupting means was activated and the pressure release valve was not activated. B: The current interrupting means was activated, but the pressure release valve was activated. C: The battery temperature exceeded 150 ° C.
また、それぞれの過充電試験の結果、電池温度の上昇が150℃を超えなかった、評価
結果がA又はBの電池については、通電された積算電気量の値に基づき、試験終了時にお
けるそれぞれの電池の充電深度をSOC%にて示した。なお、SOC100%は過充電試
験供試前の状態と対応している。
In addition, as a result of each overcharge test, the battery temperature rise did not exceed 150 ° C., and the battery with an evaluation result of A or B is based on the value of the accumulated electric quantity energized. The charge depth of the battery is indicated by SOC%. Note that SOC 100% corresponds to the state before the overcharge test.
比較例11〜16の結果から、添加剤を含有しない非水電解質を用いた場合、正極合剤
中の炭酸リチウムの含有量が1重量%以下であると、過充電試験の結果、電池温度が15
0℃を超えるに至った。正極合剤中の炭酸リチウムの含有量を2重量%以上とすることに
より、過充電試験1の結果においては、電流遮断手段が作動し、圧力解放弁の作動には至
らないものとすることができたものの、15V200Aを印加する過充電試験2の結果に
おいては、電流遮断手段は作動させることができたものの、内圧が上昇しすぎ、圧力解放
弁の作動に至った。
From the results of Comparative Examples 11 to 16, when a non-aqueous electrolyte that does not contain an additive is used, if the lithium carbonate content in the positive electrode mixture is 1% by weight or less, the result of the overcharge test is that the battery temperature is 15
It reached over 0 ° C. By setting the content of lithium carbonate in the positive electrode mixture to 2% by weight or more, in the result of the overcharge test 1, the current interruption means is activated and the pressure release valve is not activated. Although it was possible, in the result of the overcharge test 2 in which 15V200A was applied, the current interrupting means could be operated, but the internal pressure increased too much, leading to the operation of the pressure release valve.
添加剤としてビフェニル、トルエン又は2,4−ジフルオロアニソールを添加した非水
電解質を用いる一方、炭酸リチウムを含有させなかった正極を用いた比較例5〜10の電
池においては、添加剤の量を最大4重量%としても、過充電試験の結果、電池温度が15
0℃を超えるに至った。
In the batteries of Comparative Examples 5 to 10 using the positive electrode not containing lithium carbonate, while using a non-aqueous electrolyte to which biphenyl, toluene or 2,4-difluoroanisole was added as an additive, the amount of the additive was maximized. Even if it is 4% by weight, the battery temperature is 15 as a result of the overcharge test.
It reached over 0 ° C.
正極合剤が炭酸リチウムを含有すると共に、非水電解質が添加剤を含有している実施例
1,2及び比較例1〜4の結果から、正極合剤が炭酸リチウムを含有し、非水電解質に用
いる添加剤の種類がビフェニルである場合に限り、15V200Aを印加する過充電試験
2を行っても、電池温度が150℃を超えることがなく、圧力解放弁が作動する状態未満
に内圧上昇を抑えることができ、電流遮断手段を安全に作動させることができた。
From the results of Examples 1 and 2 and Comparative Examples 1 to 4 in which the positive electrode mixture contains lithium carbonate and the nonaqueous electrolyte contains an additive, the positive electrode mixture contains lithium carbonate, and the nonaqueous electrolyte As long as the type of additive used for biphenyl is biphenyl, the battery temperature does not exceed 150 ° C. even when the overcharge test 2 is applied with 15V200A, and the internal pressure rises below the state in which the pressure release valve operates. The current interrupting means could be operated safely.
ここで、過充電試験2終了時におけるSOC%を比べると、実施例1,2の電池ではS
OC%の値が小さく、15V200Aの急速充電条件下において、充電深度の浅い段階で
電流遮断機構が作動したことがわかる。また炭酸リチウムにトルエン又は2,4−ジフル
オロアニソールを添加したものに関してはビフェニルほどの効果は得られないものの電流
遮断時のSOC%は炭酸リチウム単体のものに比べ大きく低下しており、ハイレート時の
過充電による早急な電流遮断は可能であり、安全性は向上することがわかる。
Here, when the SOC% at the end of the overcharge test 2 is compared, the batteries of Examples 1 and 2 have S
It can be seen that the current interruption mechanism was activated at a shallow depth of charge under a fast charge condition of 15V200A with a small OC% value. Moreover, although the effect as biphenyl is not acquired about what added toluene or 2, 4- difluoroanisole to lithium carbonate, SOC% at the time of current interruption has fallen greatly compared with the thing of lithium carbonate simple substance, and at the time of high rate It can be seen that the current can be interrupted quickly by overcharging, and the safety is improved.
電流遮断手段を安全に作動させるために内圧を上昇させる作用は、主に正極合剤が含有
している炭酸リチウムによるガス発生の効果であるが、電解液がビフェニルを含有するこ
とにより、ビフェニルが重合して電極表面に高抵抗の被膜が形成されることで、充電反応
の進行を抑制すると共に、前記高抵抗被膜が形成されることにより、充電電流により電極
が発熱し、一層炭酸リチウムの分解を相乗的に促進する結果となり、ガス発生を促進し、
電流遮断手段が作動されやすくする。上記試験に用いた非水電解質に対する添加剤である
ビフェニル、トルエン及び2,4−ジフルオロアニソールの中で、ビフェニルは重合熱が
最も大きいことが知られており、また、ビフェニルは重合に伴ってそれ自体がガス発生す
る。このように、発熱量が大きいという一見安全性に逆行するかのような性質を有するビ
フェニルを選択して炭酸リチウムと組み合わせて用いることによって、過充電時において
も電池温度が過度に上昇することを抑え、安全機構である電流遮断手段の作動を促進する
結果となった。
The action of increasing the internal pressure in order to operate the current interrupting means safely is mainly the effect of gas generation by the lithium carbonate contained in the positive electrode mixture, but since the electrolyte contains biphenyl, Polymerization forms a high-resistance film on the electrode surface, which suppresses the progress of the charging reaction, and by forming the high-resistance film, the electrode generates heat due to the charging current, further decomposing lithium carbonate. As a result, the gas generation is promoted,
The current interrupting means is easily operated. Among biphenyl, toluene and 2,4-difluoroanisole, which are additives for the non-aqueous electrolyte used in the above test, biphenyl is known to have the highest heat of polymerization, and biphenyl increases with polymerization. It generates gas itself. In this way, by selecting biphenyl having a property that seems to go against safety at a glance that the calorific value is large, and using it in combination with lithium carbonate, the battery temperature rises excessively even during overcharge. As a result, the operation of the current interrupting means which is a safety mechanism is promoted.
また、比較的緩やかな過充電条件である過充電試験1終了時におけるSOC%の値はい
ずれも200%を超えているのに対し、33ItAという極めて過酷な急速充電条件を採
用した過充電試験2終了時におけるSOC%の値は、特に実施例電池において低いものと
なっていることからわかるように、ビフェニルと炭酸リチウムを組み合わせて用いる本発
明の構成により、過酷な充電条件の印加が、本発明の効果をより顕著に引き出したことは
、極めて興味深い。
In addition, the SOC% value at the end of the overcharge test 1 which is a relatively gradual overcharge condition exceeds 200%, while the overcharge test 2 adopts an extremely severe rapid charge condition of 33 ItA. As can be seen from the fact that the SOC% value at the end of the battery is low particularly in the battery of the example, the application of severe charging conditions is possible according to the present invention using the combination of biphenyl and lithium carbonate. It is very interesting to draw out the effect of.
本発明の非水電解質電池を一個又は複数個備えてなる電池部と電圧監視及び制御手段を
備えた電池システムを構成することができる。
A battery system including a battery unit including one or a plurality of nonaqueous electrolyte batteries of the present invention and voltage monitoring and control means can be configured.
図1は、本発明電池の外装容器5内部の接続状態及び本発明電池を用いた電池システム
の構成を示す概念図である。図1には、電池部が非水電解質電池を一個備えた場合の電池
システムを例示した。前記したように、正極端子1が、電池の状態を検知して電気的導通
を遮断しうる電流遮断手段4を介して発電要素6を構成している正極と電気的に接続され
ていると共に、前記正極は、前記電流遮断手段4を介することなく補助端子3と電気的に
接続されている。なお、本実施例においては、負極端子2は前記電流遮断手段4を介する
ことなく発電要素6を構成している負極と電気的に接続されている。なお、本実施例電池
はHEV用であるため、正極はアルミニウム製の外装容器5とも電気的に接続されている
。
FIG. 1 is a conceptual diagram showing the connection state inside the outer container 5 of the battery of the present invention and the configuration of a battery system using the battery of the present invention. FIG. 1 illustrates a battery system in which the battery unit includes one nonaqueous electrolyte battery. As described above, the positive electrode terminal 1 is electrically connected to the positive electrode constituting the power generation element 6 through the current interrupting means 4 that can detect the state of the battery and interrupt electrical conduction, The positive electrode is electrically connected to the auxiliary terminal 3 without passing through the current interrupting means 4. In the present embodiment, the negative electrode terminal 2 is electrically connected to the negative electrode constituting the power generation element 6 without the current interrupting means 4 interposed therebetween. Since the battery of this example is for HEV, the positive electrode is also electrically connected to the aluminum outer container 5.
図1に例示した本発明の電池システムにおいては、正極端子1と負極端子2との間に設
けられた電圧監視及び制御手段8が、端子間電圧の急変動又は電圧値を検出することによ
り電流遮断手段4が作動したと判断し、切換器7を制御して負極端子2と補助端子3との
間に負荷抵抗9を接続することにより、発電要素を放電させる。
In the battery system of the present invention illustrated in FIG. 1, the voltage monitoring and control means 8 provided between the positive electrode terminal 1 and the negative electrode terminal 2 detects a sudden change in voltage between terminals or a voltage value to detect current. It is determined that the shut-off means 4 has been activated, and the switch 7 is controlled to connect the load resistor 9 between the negative terminal 2 and the auxiliary terminal 3, thereby discharging the power generation element.
前記電圧監視及び制御手段においては、CS(電圧検出システム)が電池部の電圧信号
を検知して電池制御部(BMU=Battery Management Unit)に伝達する。電池制御部は
、例えばセルバランサーを制御して電池の強制放電制御を行うようにしてもよい。
In the voltage monitoring and control means, CS (voltage detection system) detects the voltage signal of the battery unit and transmits it to the battery control unit (BMU = Battery Management Unit). For example, the battery control unit may control the cell balancer to perform forced discharge control of the battery.
極めて安全性に優れた電池を提供できる本発明の技術は、大型で高出力用途の電池が使
用されるHEV用電池、非常用電源システム、電力貯蔵システム等の技術領域において特
に有効に適用することができる。
The technology of the present invention that can provide an extremely safe battery should be applied particularly effectively in the technical fields of HEV batteries, emergency power supply systems, power storage systems, etc. where large-sized and high-power batteries are used. Can do.
1 正極端子
2 負極端子
3 補助端子
4 電流遮断手段
5 正極
DESCRIPTION OF SYMBOLS 1 Positive terminal 2 Negative terminal 3 Auxiliary terminal 4 Current interruption means 5 Positive electrode
Claims (3)
た正極及びビフェニル類を含有する非水電解質が外装容器内に収納されてなる非水電解質
電池。 A nonaqueous electrolyte battery comprising a negative electrode, a positive electrode provided with a positive electrode mixture containing a compound capable of generating a gas at an overcharged positive electrode potential, and a nonaqueous electrolyte containing biphenyls contained in an outer container.
解質電池。 The nonaqueous electrolyte battery according to claim 1, further comprising current interrupting means that operates in response to an increase in internal pressure in the outer container.
段を備えた電池システム。 A battery system comprising a battery unit comprising one or a plurality of nonaqueous electrolyte batteries according to claim 2 and voltage monitoring and control means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013025280A JP2013138014A (en) | 2007-04-27 | 2013-02-13 | Nonaqueous electrolyte battery and battery system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007118814A JP5303857B2 (en) | 2007-04-27 | 2007-04-27 | Nonaqueous electrolyte battery and battery system |
JP2013025280A JP2013138014A (en) | 2007-04-27 | 2013-02-13 | Nonaqueous electrolyte battery and battery system |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007118814A Division JP5303857B2 (en) | 2007-04-27 | 2007-04-27 | Nonaqueous electrolyte battery and battery system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013138014A true JP2013138014A (en) | 2013-07-11 |
Family
ID=40054832
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007118814A Active JP5303857B2 (en) | 2007-04-27 | 2007-04-27 | Nonaqueous electrolyte battery and battery system |
JP2013025280A Pending JP2013138014A (en) | 2007-04-27 | 2013-02-13 | Nonaqueous electrolyte battery and battery system |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007118814A Active JP5303857B2 (en) | 2007-04-27 | 2007-04-27 | Nonaqueous electrolyte battery and battery system |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP5303857B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015088354A (en) * | 2013-10-31 | 2015-05-07 | 株式会社豊田自動織機 | Lithium ion secondary battery |
JP2017514296A (en) * | 2014-03-10 | 2017-06-01 | マックスウェル テクノロジーズ インコーポレイテッド | Method and apparatus for fibrillation of polymer compound under electric field |
KR20190044579A (en) * | 2017-10-20 | 2019-04-30 | 주식회사 엘지화학 | Positive electrode for lithium secondary battery and lithium secondary battery including the same |
EP3627592A4 (en) * | 2017-11-23 | 2020-08-26 | LG Chem, Ltd. | Battery module having improved safety, battery pack including battery module, and vehicle including battery pack |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2416411B1 (en) | 2009-03-31 | 2020-02-26 | JX Nippon Mining & Metals Corporation | Positive electrode active material for lithium ion battery |
JP5661646B2 (en) | 2009-12-18 | 2015-01-28 | Jx日鉱日石金属株式会社 | Positive electrode for lithium ion battery, method for producing the same, and lithium ion battery |
US20120231343A1 (en) | 2009-12-22 | 2012-09-13 | Jx Nippon Mining & Metals Corporation | Positive Electrode Active Material For A Lithium-Ion Battery, Positive Electrode For A Lithium-Ion Battery, Lithium-Ion Battery Using Same, And Precursor To A Positive Electrode Active Material For A Lithium-Ion Battery |
JP2011150873A (en) * | 2010-01-21 | 2011-08-04 | Sanyo Electric Co Ltd | Nonaqueous electrolyte secondary battery |
WO2011096525A1 (en) | 2010-02-05 | 2011-08-11 | Jx日鉱日石金属株式会社 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
CN102804461B (en) | 2010-02-05 | 2016-03-02 | Jx日矿日石金属株式会社 | Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery |
KR101445954B1 (en) | 2010-03-04 | 2014-09-29 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
US9090481B2 (en) | 2010-03-04 | 2015-07-28 | Jx Nippon Mining & Metals Corporation | Positive electrode active material for lithium-ion battery, positive electrode for lithium-ion battery, and lithium-ion battery |
KR101450421B1 (en) | 2010-03-04 | 2014-10-13 | 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 | Positive electrode active substance for lithium ion batteries, positive electrode for lithium ion batteries, and lithium ion battery |
JP5923036B2 (en) | 2010-03-04 | 2016-05-24 | Jx金属株式会社 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
US8623551B2 (en) | 2010-03-05 | 2014-01-07 | Jx Nippon Mining & Metals Corporation | Positive-electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
JP2012079523A (en) * | 2010-09-30 | 2012-04-19 | Gs Yuasa Corp | Nonaqueous electrolyte secondary battery and battery pack |
CN102714312A (en) | 2010-12-03 | 2012-10-03 | Jx日矿日石金属株式会社 | Positive electrode active material for lithium-ion battery, a positive electrode for lithium-ion battery, and lithium-ion battery |
JP5389772B2 (en) * | 2010-12-07 | 2014-01-15 | 株式会社日立製作所 | Lithium secondary battery |
EP2696406B1 (en) | 2011-01-21 | 2018-05-30 | JX Nippon Mining & Metals Corporation | Method for producing positive-electrode active material for lithium-ion battery |
WO2012132071A1 (en) | 2011-03-29 | 2012-10-04 | Jx日鉱日石金属株式会社 | Production method for positive electrode active material for lithium ion batteries and positive electrode active material for lithium ion batteries |
CN103299456B (en) | 2011-03-31 | 2016-01-13 | Jx日矿日石金属株式会社 | Positive electrode active material for lithium ion battery, lithium ion battery positive pole and lithium ion battery |
JPWO2012172586A1 (en) * | 2011-06-13 | 2015-02-23 | 株式会社日立製作所 | Lithium secondary battery |
KR101568563B1 (en) * | 2011-06-13 | 2015-11-11 | 가부시키가이샤 히타치세이사쿠쇼 | Lithium secondary battery |
US20140170448A1 (en) * | 2011-06-13 | 2014-06-19 | Norio Iwayasu | Lithium-ion secondary battery |
CN103814462B (en) * | 2011-09-21 | 2016-05-04 | 丰田自动车株式会社 | Secondary cell |
JP5822089B2 (en) * | 2011-10-06 | 2015-11-24 | トヨタ自動車株式会社 | Sealed lithium secondary battery |
WO2013069074A1 (en) * | 2011-11-07 | 2013-05-16 | トヨタ自動車株式会社 | Non-aqueous electrolyte secondary cell |
JP6292738B2 (en) | 2012-01-26 | 2018-03-14 | Jx金属株式会社 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
JP6292739B2 (en) | 2012-01-26 | 2018-03-14 | Jx金属株式会社 | Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery |
JP5916401B2 (en) * | 2012-01-27 | 2016-05-11 | 三洋電機株式会社 | Non-aqueous electrolyte secondary battery, manufacturing method thereof, and vehicle including the non-aqueous electrolyte secondary battery |
WO2013125030A1 (en) * | 2012-02-24 | 2013-08-29 | トヨタ自動車株式会社 | Hermetically-sealed secondary battery |
JPWO2013125030A1 (en) * | 2012-02-24 | 2015-07-30 | トヨタ自動車株式会社 | Sealed secondary battery |
JP5962961B2 (en) * | 2012-03-27 | 2016-08-03 | トヨタ自動車株式会社 | Positive electrode, manufacturing method thereof, and nonaqueous electrolyte secondary battery using the positive electrode |
JP2013239374A (en) * | 2012-05-16 | 2013-11-28 | Toyota Motor Corp | Lithium ion secondary battery and method for manufacturing the same |
JP2013239375A (en) * | 2012-05-16 | 2013-11-28 | Toyota Motor Corp | Lithium ion secondary battery and method for manufacturing the same |
TWI547001B (en) | 2012-09-28 | 2016-08-21 | Jx Nippon Mining & Metals Corp | A positive electrode active material for a lithium ion battery, a positive electrode for a lithium ion battery, and a lithium ion battery |
JP2014235943A (en) * | 2013-06-04 | 2014-12-15 | シャープ株式会社 | Secondary battery |
GB2517460A (en) * | 2013-08-21 | 2015-02-25 | Univ Newcastle | Metal-air batteries |
JP6636448B2 (en) * | 2014-11-28 | 2020-01-29 | 三洋電機株式会社 | Non-aqueous electrolyte secondary battery |
JP6519575B2 (en) * | 2016-12-07 | 2019-05-29 | トヨタ自動車株式会社 | Lithium ion secondary battery |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3010781B2 (en) * | 1991-04-26 | 2000-02-21 | ソニー株式会社 | Non-aqueous electrolyte secondary battery |
CA2156800C (en) * | 1995-08-23 | 2003-04-29 | Huanyu Mao | Polymerizable aromatic additives for overcharge protection in non-aqueous rechargeable lithium batteries |
JP3575735B2 (en) * | 1997-05-16 | 2004-10-13 | Necトーキン栃木株式会社 | Non-aqueous rechargeable lithium battery |
JP3448544B2 (en) * | 2000-04-19 | 2003-09-22 | 三洋ジ−エスソフトエナジー株式会社 | Non-aqueous electrolyte battery |
JP4934914B2 (en) * | 2001-06-11 | 2012-05-23 | 三菱化学株式会社 | Electrolyte and secondary battery |
JP3555623B2 (en) * | 2003-04-08 | 2004-08-18 | ソニー株式会社 | battery pack |
JP2006352998A (en) * | 2005-06-15 | 2006-12-28 | Nec Tokin Corp | Battery pack |
-
2007
- 2007-04-27 JP JP2007118814A patent/JP5303857B2/en active Active
-
2013
- 2013-02-13 JP JP2013025280A patent/JP2013138014A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015088354A (en) * | 2013-10-31 | 2015-05-07 | 株式会社豊田自動織機 | Lithium ion secondary battery |
WO2015064179A1 (en) * | 2013-10-31 | 2015-05-07 | 株式会社豊田自動織機 | Lithium ion secondary battery |
JP2017514296A (en) * | 2014-03-10 | 2017-06-01 | マックスウェル テクノロジーズ インコーポレイテッド | Method and apparatus for fibrillation of polymer compound under electric field |
KR20190044579A (en) * | 2017-10-20 | 2019-04-30 | 주식회사 엘지화학 | Positive electrode for lithium secondary battery and lithium secondary battery including the same |
KR102643520B1 (en) | 2017-10-20 | 2024-03-05 | 주식회사 엘지에너지솔루션 | Positive electrode for lithium secondary battery and lithium secondary battery including the same |
EP3627592A4 (en) * | 2017-11-23 | 2020-08-26 | LG Chem, Ltd. | Battery module having improved safety, battery pack including battery module, and vehicle including battery pack |
US11749843B2 (en) | 2017-11-23 | 2023-09-05 | Lg Energy Solution, Ltd. | Battery module having improved safety, battery pack including battery module, and vehicle including battery pack |
Also Published As
Publication number | Publication date |
---|---|
JP5303857B2 (en) | 2013-10-02 |
JP2008277106A (en) | 2008-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5303857B2 (en) | Nonaqueous electrolyte battery and battery system | |
US10573879B2 (en) | Electrolytes and methods for using the same | |
JP5055350B2 (en) | Nonaqueous electrolyte secondary battery and electrode for nonaqueous electrolyte secondary battery | |
JP5264099B2 (en) | Nonaqueous electrolyte secondary battery | |
CN106063019B (en) | Nonaqueous electrolyte secondary battery | |
JP6591404B2 (en) | Negative electrode for secondary battery containing additive for improving low temperature characteristics and secondary battery containing the same | |
US10971752B2 (en) | Composite cathode and lithium-ion battery comprising same, and method for producing said composite cathode | |
US8431267B2 (en) | Nonaqueous secondary battery | |
CN107851838B (en) | Lithium ion secondary battery | |
JP2011029079A (en) | Nonaqueous electrolyte secondary battery | |
KR101906022B1 (en) | Process for producing lithium ion secondary battery | |
JP2012022888A (en) | Nonaqueous electrolyte secondary battery and battery system including the same | |
CN108370064B (en) | Secondary battery, battery pack, electric vehicle, power storage system, electric power tool, and electronic device | |
KR101900149B1 (en) | Non-Aqueous Electrolyte Secondary Battery | |
CN106910933B (en) | Lithium ion secondary battery | |
CN110476288B (en) | Nonaqueous electrolyte storage element and method for manufacturing same | |
JP2013197052A (en) | Lithium ion power storage device | |
JP6885252B2 (en) | Lithium ion secondary battery | |
CN100466364C (en) | Safety lithium-ion battery | |
KR20230054313A (en) | Electrode assemblies, secondary batteries, battery modules, battery packs, and devices for power consumption | |
KR20220004305A (en) | Electrolyte for lithium secondary battery and lithium secondary battery comprising the same | |
CN111164799A (en) | Electrode and electricity storage element | |
US20230019313A1 (en) | Lithium alloy reservoir for use in electrochemical cells that cycle lithium ions | |
JP6773119B2 (en) | Negative electrode for lithium ion secondary battery, lithium ion secondary battery, battery pack, electric vehicle, power storage system, power tool and electronic equipment | |
JP6634676B2 (en) | Battery and manufacturing method thereof |