[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011203055A - Method of measuring welded connection width, apparatus of measuring potential difference, and system of measuring welded connection width - Google Patents

Method of measuring welded connection width, apparatus of measuring potential difference, and system of measuring welded connection width Download PDF

Info

Publication number
JP2011203055A
JP2011203055A JP2010069715A JP2010069715A JP2011203055A JP 2011203055 A JP2011203055 A JP 2011203055A JP 2010069715 A JP2010069715 A JP 2010069715A JP 2010069715 A JP2010069715 A JP 2010069715A JP 2011203055 A JP2011203055 A JP 2011203055A
Authority
JP
Japan
Prior art keywords
potential difference
width
measuring
joint width
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010069715A
Other languages
Japanese (ja)
Inventor
Yasumoto Sato
康元 佐藤
Natsuki Ogura
夏樹 小倉
Tsunaji Kitayama
綱次 北山
Hisayoshi Fukatsu
尚芳 深津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Boshoku Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Boshoku Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Boshoku Corp, Toyota Central R&D Labs Inc filed Critical Toyota Boshoku Corp
Priority to JP2010069715A priority Critical patent/JP2011203055A/en
Publication of JP2011203055A publication Critical patent/JP2011203055A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To nondestructively, accurately and readily measure a connection width of a lap joint welded portion, in a method of measuring a welded connection width.SOLUTION: In overlapping portions of an upper material and a lower material, a pair of current terminals 18 and 20 are brought into contact with both side positions across a welded portion 28 on one of surfaces of a lap joint test piece 26 welded and connected from an upper material side; and additionally, potential difference terminals 22 and 24 connected with a potentiometer 16 are brought into contact with two points on both sides across the welded portion 28, on a line coupled between contacts of the respective current terminals 18 and 20. A current is made to flow through the pair of current terminals 18 and 20, under the conditions such as to obtain potential difference between the two points on both sides, and a computer acquires the welded connection width W from the acquired potential difference and outputs the welded connection width W.

Description

本発明は、2枚の金属板の重ね合わせ部を溶接接合した重ね継手溶接部の溶接接合幅を測定する溶接接合幅測定方法と電位差計測装置と溶接接合幅測定システムに関する。   The present invention relates to a welded joint width measuring method, a potential difference measuring device, and a welded joint width measuring system for measuring a welded joint width of a lap joint welded portion obtained by welding and joining two metal plate overlapped portions.

従来から、例えば板厚が数mmの2枚の薄板の金属板を重ね合わせた状態で、レーザ溶接等の溶接により溶接して重ね継手部を作製することが行われている。また、このような重ね継手部で、溶接部の品質を評価するための様々な試験が実施されている。例えば、溶接部の接合強度を評価し、所望の接合強度を確保できているか否かを評価することも行われている。   Conventionally, for example, in a state where two thin metal plates having a thickness of several millimeters are superposed, welding is performed by welding such as laser welding to produce a lap joint portion. In addition, various tests for evaluating the quality of the welded portion are performed at such a lap joint portion. For example, it is also performed to evaluate whether or not a desired joint strength can be secured by evaluating the joint strength of a welded portion.

例えば、重ね継手部の1のサンプルを用いて、2枚の金属板を分離するように破断させ、その接合強度を評価することも行われている。ただし、この場合には、作業に手間を要し、しかも全数検査ができないという問題がある。   For example, using one sample of a lap joint part, it is made to fracture so that two metal plates may be separated, and the joint strength is evaluated. However, in this case, there is a problem that work is time-consuming and that 100% inspection cannot be performed.

一方、溶接接合部の強度の大きさには接合幅が大きく関係することが分かっている。すなわち、溶接接合部の強度は、溶接部における欠陥の有無に関連することは勿論であるが、溶接部の幅である接合幅とも密接な関係があり、接合幅を計測することは、溶接品質を評価するための重要な管理項目になっている。   On the other hand, it has been found that the bonding width is greatly related to the strength of the welded joint. In other words, the strength of the welded joint is of course related to the presence or absence of defects in the welded part, but it is also closely related to the joint width, which is the width of the welded part. It is an important management item for evaluating

例えば、2枚の金属板に片側から他側に貫通するように溶接部を設ける貫通溶接を行う場合があり、このような場合には2枚の金属板のいずれの側からも、溶接接合部を確認でき、溶接接合部の幅をいずれの側からも測定することができる。このため、表面に現れる溶接部の接合幅の測定値を用いて、溶接接合部の強度をある程度予測できる可能性はある。   For example, there may be a case where through welding is performed in which two metal plates are welded so as to penetrate from one side to the other side. In such a case, a welded joint portion is formed from either side of the two metal plates. And the width of the welded joint can be measured from either side. For this reason, there is a possibility that the strength of the weld joint can be predicted to some extent using the measured value of the joint width of the weld that appears on the surface.

一方、レーザ溶接等により2枚の金属板である、上材と下材(上材は溶接時に溶接手段を設ける側の板材で、下材は反溶接手段側の板材とする。)とを重ね合わせて溶接接合し、重ね継手部を作製する場合に、施工上の制限や下材側である重ね継手部の裏面側からの外観を損なわないようにするために、上材及び下材を非貫通溶接で接合する場合がある。非貫通溶接は、上材及び下材に上材から下材に貫通しないように溶接部を設けることである。
なお、本発明に関連する先行技術文献として、特許文献1から特許文献3がある。
On the other hand, an upper material and a lower material (the upper material is a plate material on the side where the welding means is provided during welding, and the lower material is a plate material on the anti-welding means side) which are two metal plates by laser welding or the like. In addition, when producing a lap joint part by welding together, the upper material and the lower material should be non-coated in order not to impair the construction restrictions and the appearance from the back side of the lap joint part, which is the lower material side. It may be joined by through welding. Non-penetrating welding is to provide a welded portion in the upper material and the lower material so as not to penetrate from the upper material to the lower material.
Note that Patent Documents 1 to 3 are prior art documents related to the present invention.

特開2006−126085号公報JP 2006-126085 A 特開平7−83645号公報JP-A-7-83645 特開2006−126068号公報JP 2006-126068 A

上記のように非貫通溶接で2枚の板材を接合する場合、両側から溶接部の接合幅を測定することができない。このように接合部の接合幅を正確に測定することが容易ではない場合があり、その場合、接合部の強度を評価することが容易ではない。したがって、現状では、特に非貫通溶接で重ね継手材を構成している場合に、サンプルとして抜き取りした重ね継手材を、2枚の板材を分離するように切断、すなわち破断し、破断面を特定の溶液で腐食させ、その破断面を観察することにより接合幅を計測し、計測した接合幅を用いて接合強度を評価することが多く行われている。ただし、このように重ね継手材を破断する手法は、破壊試験の1種であり、接合幅を計測するのに多くの時間を要し、しかも、全数検査ができないという問題がある。このため、非破壊で精度の高い溶接部の接合幅を測定する方法の実現が望まれている。   As described above, when two plate members are joined by non-penetrating welding, the joining width of the welded portion cannot be measured from both sides. Thus, it may not be easy to accurately measure the joint width of the joint portion, and in that case, it is not easy to evaluate the strength of the joint portion. Therefore, at present, particularly when a lap joint material is formed by non-penetrating welding, the lap joint material extracted as a sample is cut, that is, ruptured so as to separate two plate materials, and the fracture surface is specified. In many cases, the bonding width is measured by corroding with a solution and observing the fracture surface, and the bonding strength is evaluated using the measured bonding width. However, the method of breaking the lap joint material in this way is a kind of destructive test, and it takes a lot of time to measure the joint width, and there is a problem that 100% inspection cannot be performed. For this reason, realization of a method for measuring the joint width of a welded portion that is non-destructive and highly accurate is desired.

これに対して、特許文献1には、渦電流を用いて溶接部を検査する方法が記載されている。この方法では、表材と裏材とをレーザ溶接により接合した重ね継手の溶接部を検査するために、渦流探傷センサを裏材または表材の表面に沿って移動させ、未接合部と接合部とにおける信号高さの変化を検出している。また、接合幅と信号高さの変化量との関係、信号高さの変化量と引っ張り強度との関係を求めて、信号高さの変化量を計測することによって、接合幅と引っ張り強度が所定以上であることを推定できるとされている。このような検査方法の場合、接合幅を非破壊評価できる可能性はあるが、渦電流法を適用するので、計測対象とセンサの検出部である底面との距離であるリフトオフの変化に対する考慮がされていないと、わずかな(例えば数μmメートルの)リフトオフ変化により計測結果が大きく変動するという問題がある。例えば、溶接面側から重ね継手の接合部を計測する場合、溶接ビードがあるため、その凹凸によりリフトオフが変化して、測定精度が悪化する可能性がある。   On the other hand, Patent Document 1 describes a method of inspecting a weld using eddy current. In this method, in order to inspect the welded portion of the lap joint where the front material and the back material are joined by laser welding, the eddy current flaw detection sensor is moved along the surface of the back material or the front material, and the unjoined part and the joined part are detected. Changes in signal height at and are detected. Also, the relationship between the joint width and the change in signal height, the relationship between the change in signal height and the tensile strength, and the change in signal height are measured, so that the joint width and the tensile strength are predetermined. It can be estimated that this is the case. In the case of such an inspection method, there is a possibility that the joint width can be evaluated nondestructively, but since the eddy current method is applied, it is necessary to consider the change in lift-off, which is the distance between the measurement target and the bottom surface that is the sensor detection unit. Otherwise, there is a problem that the measurement result fluctuates greatly due to a slight lift-off change (for example, several μm). For example, when measuring the joint part of a lap joint from the weld surface side, since there exists a weld bead, lift-off changes with the unevenness | corrugation, and a measurement precision may deteriorate.

また、特許文献2には、2枚の金属板を溶接し、一体化した被検対象物における接合部の接合幅を超音波を用いて測定する方法であって、超音波を接合部及び未接合部にわたって走査し、反射エコーを検出し、検出した反射エコーレベルパターンに基づいて閾値を決定し、反射エコーレベルパターンと閾値とに基づき接合幅を測定する方法が記載されている。   Patent Document 2 discloses a method in which two metal plates are welded, and the joint width of the joint portion in the integrated test object is measured using ultrasonic waves. A method is described in which scanning is performed over a joint, a reflected echo is detected, a threshold is determined based on the detected reflected echo level pattern, and a joint width is measured based on the reflected echo level pattern and the threshold.

また、特許文献3には、表材と裏材とをレーザ溶接により接合した重ね継手の溶接部の接合幅や重ね継手の強度を超音波を用いて推定する検査方法が記載されている。この場合、裏材または表材の底面エコー高さの低下量と、レーザ溶接による接合幅や重ね継手の引っ張り強度との間に相関関係があるので、この相関関係を利用して、接合部の幅または引っ張り強度を推定できるとされている。   Further, Patent Document 3 describes an inspection method for estimating the joint width of a welded portion of a lap joint and a strength of a lap joint, which are obtained by joining a front material and a back material by laser welding, using ultrasonic waves. In this case, there is a correlation between the amount of decrease in the bottom echo height of the backing material or the front material, and the joining width by laser welding and the tensile strength of the lap joint. It is said that the width or tensile strength can be estimated.

このような特許文献2、特許文献3のいずれの場合も超音波を用いて接合部の接合幅を測定するものであるが、超音波探触子と計測対象との間に水、グリス等の接触媒質を必要とする。このため、実際の現場でこの測定方法を用いる場合に様々な制約が発生し、測定が困難となる可能性がある。また、この測定方法では平滑面での計測が必要になるが、溶接ビードが存在する溶接面からしか計測できない場合に計測精度が大きく低下する可能性がある。また、測定対象が薄板の接合部である場合、超音波ビームの路程が短くなるため、検出すべき信号が探触子の不感帯に埋もれ、やはり計測精度が大きく低下する可能性がある。   In both cases of Patent Document 2 and Patent Document 3, the bonding width of the bonding portion is measured using ultrasonic waves. However, water, grease, or the like is interposed between the ultrasonic probe and the measurement target. A contact medium is required. For this reason, when this measurement method is used in an actual site, various restrictions may occur and measurement may be difficult. In addition, this measurement method requires measurement on a smooth surface, but the measurement accuracy may be greatly reduced when measurement is possible only from the weld surface where the weld bead exists. In addition, when the measurement target is a thin plate joint, the path of the ultrasonic beam is shortened, so that the signal to be detected is buried in the dead zone of the probe, and the measurement accuracy may be greatly reduced.

本発明の溶接接合幅測定方法及び溶接接合幅測定システムの目的は、重ね継手溶接部での接合幅を非破壊で高精度かつ容易に測定できるようにすることである。また、本発明の電位差計測装置は、重ね継手溶接部での接合幅を非破壊で高精度かつ容易に測定するための電位差を取得する装置を実現することである。   The purpose of the welding joint width measuring method and the welding joint width measuring system of the present invention is to make it possible to measure the joint width at the lap joint welded portion with high accuracy and easily without breaking. In addition, the potential difference measuring device of the present invention is to realize a device for acquiring a potential difference for easily measuring a joint width at a lap joint welded portion with high accuracy and without destruction.

本発明に係る溶接接合幅測定方法は、2枚の金属板の重ね合わせ部を溶接接合した重ね継手溶接部の溶接接合幅を測定する測定方法であって、重ね継手溶接部の片面の溶接部を挟む両側位置に一対の電流供給用端子を接触させるとともに、各電流供給用端子の接触部を結ぶ直線上の、溶接部を挟む両側2点に電位差計に接続された電位差計測用端子を接触させた状態で、一対の電流供給用端子間で電流を流し、両側2点間の電位差を取得(計測)するステップと、コンピュータが、取得した電位差から溶接接合幅を取得するステップとを含むことを特徴とする溶接接合幅測定方法である。   A welding joint width measuring method according to the present invention is a measuring method for measuring a welding joint width of a lap joint welded portion obtained by welding and joining two metal plate overlapped portions, and is a one-side welded portion of a lap joint welded portion. A pair of current supply terminals are brought into contact with both sides of the electrode, and a potential difference measuring terminal connected to the potentiometer is contacted at two points on both sides of the welded portion on the straight line connecting the contact portions of the respective current supply terminals. In this state, a current is passed between the pair of current supply terminals to acquire (measure) a potential difference between two points on both sides, and a computer includes a step of acquiring a welding joint width from the acquired potential difference. This is a welding joint width measuring method characterized by the following.

また、本発明に係る溶接接合幅測定方法において、好ましくは、溶接接合幅を取得するステップは、コンピュータが、記憶手段に記憶させた校正曲線であって、電位差と溶接接合幅との関係を表す校正曲線のデータを参照しつつ、取得した電位差から溶接接合幅を取得する。   In the weld joint width measuring method according to the present invention, preferably, the step of acquiring the weld joint width is a calibration curve stored in the storage means by the computer and represents a relationship between the potential difference and the weld joint width. The welding joint width is acquired from the acquired potential difference while referring to the calibration curve data.

また、本発明に係る電位差計測装置は、本発明に係る溶接接合幅測定方法に使用する電位差計測装置であって、直流電流を外部に印加可能な直流電源と、電位差計と、直流電源に接続される一対の電流供給用端子と、電位差計に接続される一対の電位差計測用端子とを備えることを特徴とする電位差計測装置である。   The potential difference measuring device according to the present invention is a potential difference measuring device used in the welding joint width measuring method according to the present invention, and is connected to a DC power source capable of applying a DC current to the outside, a potentiometer, and a DC power source. And a pair of potential difference measurement terminals connected to a potentiometer.

また、本発明に係る溶接接合幅測定システムは、本発明に係る電位差計測装置と、コンピュータとを備え、コンピュータは、電位差計測装置から電位差を取得する電位差取得手段と、電位差と溶接接合幅との関係を表す校正曲線のデータを記憶した記憶手段と、取得した電位差に基づいて、記憶手段から読み出した校正曲線のデータを参照しつつ、溶接接合幅を取得する接合幅取得手段と、を含むことを特徴とする溶接接合幅測定システムである。   The welding joint width measuring system according to the present invention includes the potential difference measuring device according to the present invention and a computer, and the computer includes a potential difference acquiring unit that acquires a potential difference from the potential difference measuring device, and the potential difference and the welding joint width. A storage means for storing calibration curve data representing the relationship, and a joint width acquisition means for acquiring the weld joint width while referring to the calibration curve data read from the storage means based on the acquired potential difference. This is a welding joint width measuring system characterized by the following.

本発明に係る溶接接合幅測定方法及び溶接接合幅測定システムによれば、重ね継手溶接部での接合幅を非破壊で高精度かつ容易に測定できる。また、本発明に係る電位差計測装置によれば、重ね継手溶接部での接合幅を非破壊で高精度かつ容易に測定するための電位差を取得する装置を実現できる。   According to the welding joint width measuring method and the welding joint width measuring system according to the present invention, the joint width at the lap joint welded portion can be measured with high accuracy and easily without destruction. In addition, according to the potential difference measuring apparatus according to the present invention, it is possible to realize an apparatus that acquires a potential difference for easily measuring a joint width at a lap joint welded portion with high accuracy and without destruction.

本発明の実施の形態の溶接接合幅測定システムを用いて溶接部の接合幅を測定する様子を示す略図である。It is the schematic which shows a mode that the junction width of a welding part is measured using the welding junction width measuring system of embodiment of this invention. 重ね継手試験片の1例に図1のシステムを構成する電流供給用端子及び電位差計測用端子を接触させた様子を示す図である。It is a figure which shows a mode that the terminal for electric current supply and the terminal for potential difference measurement which comprise the system of FIG. 1 were made to contact one example of a lap joint test piece. 図2の構成を上方から下方に見た図である。It is the figure which looked at the structure of FIG. 2 from the upper direction to the downward direction. 図1のシステムを構成するコンピュータの構成を示す図である。It is a figure which shows the structure of the computer which comprises the system of FIG. 溶接部の接合幅が大きい場合の、重ね継手試験片を流れる電流密度を示す模式図である。It is a schematic diagram which shows the current density which flows through the lap joint test piece when the joining width of a welding part is large. 溶接部の接合幅が小さい場合の、重ね継手試験片を流れる電流密度を示す模式図である。It is a schematic diagram which shows the current density which flows through the lap joint test piece when the joining width of a welding part is small. 図3の重ね継手試験片を、2枚の板材を分離するように破断させた場合の1の板材の破断面を示す図である。It is a figure which shows the fracture surface of 1 board | plate material at the time of making the lap joint test piece of FIG. 3 fracture | rupture so that two board | plate materials may be isolate | separated. 本実施の形態で使用する、溶接部の接合幅と電位差計で得られた電位差との関係を表す校正曲線の1例を示す図である。It is a figure which shows an example of the calibration curve showing the relationship between the junction width of a welding part and the potential difference obtained with the potentiometer used by this Embodiment. 本発明の実施の形態の溶接接合幅測定方法を示すフローチャートである。It is a flowchart which shows the welded joint width measuring method of embodiment of this invention.

以下において、図面を用いて本発明に係る実施の形態につき詳細に説明する。図1から図8は、本発明の実施の形態の1例を示している。   Hereinafter, embodiments according to the present invention will be described in detail with reference to the drawings. 1 to 8 show an example of an embodiment of the present invention.

図1に示すように、本実施の形態の溶接接合幅測定方法で使用する溶接接合幅測定システムは、パーソナルコンピュータであるコンピュータ10と、電位差計測装置12とを備える。電位差計測装置12は、一定電流の直流電流を外部に印加可能な直流電源14と、デジタルマルチメータ等の電位差計16と、直流電源14に接続される一対の電流供給用端子である電流端子18,20と、電位差計16に接続される一対の電位差計測用端子である電位差端子22,24とを含む。このような電位差計測装置12は、溶接接合部を有する重ね継手試験片26に比較的低い一定電流の直流電流を流した状態で、溶接部28を挟む2点間の電位差を測定し、コンピュータ10に測定した電位差を出力するために使用する。   As shown in FIG. 1, the weld joint width measurement system used in the weld joint width measurement method of the present embodiment includes a computer 10 that is a personal computer and a potential difference measuring device 12. The potentiometer 12 includes a DC power source 14 that can apply a constant DC current to the outside, a potentiometer 16 such as a digital multimeter, and a current terminal 18 that is a pair of current supply terminals connected to the DC power source 14. , 20 and a pair of potential difference measuring terminals 22, 24 which are a pair of potential difference measuring terminals connected to the potentiometer 16. Such a potential difference measuring device 12 measures a potential difference between two points sandwiching the welded portion 28 in a state in which a relatively low constant direct current is passed through the lap joint test piece 26 having a welded joint. Used to output the measured potential difference.

電位差計測装置12を用いて電位差を測定する場合、図2、図3に示すように、重ね継手試験片26を用意し、この試験片26の予め定めた所定の2点間の電位差を測定する。重ね継手試験片26は、2枚の薄板であり金属板である上材30及び下材32を重ね合わせ、上材30側からレーザ溶接等により非貫通溶接で溶接部28を設けて、上材30及び下材32を溶接接合することにより重ね継ぎ手溶接部である重ね継手試験片26を構成している。なお、「上材」は、溶接時に溶接手段を設ける側の板材で、「下材」は反溶接手段側の板材を意味し、実際の配置の上下を限定する意味ではない。   When measuring a potential difference using the potential difference measuring device 12, as shown in FIGS. 2 and 3, a lap joint test piece 26 is prepared, and a potential difference between two predetermined points of the test piece 26 is measured. . The lap joint test piece 26 is composed of two thin plates, which are an upper member 30 and a lower member 32, which are metal plates, and a weld portion 28 is provided by non-penetrating welding from the upper member 30 side by laser welding or the like. The lap joint test piece 26 which is a lap joint welded portion is formed by welding the 30 and the lower member 32 together. The “upper material” is a plate material on the side where the welding means is provided at the time of welding, and the “lower material” means a plate material on the anti-welding means side, and does not mean that the actual arrangement is limited.

そして、図3に示すように、一対の電流端子18,20を溶接部28が位置する上材30の片面であり表面である溶接面34の、溶接部28を挟む両側位置の2点Pi、Poに一対の電流端子18,20の先端を接触させる。これとともに、各電流端子18,20の溶接面34に対する接触部Pi、Poを結ぶ直線(図3の一点鎖線L)上の、溶接部28を挟む両側2点Q1、Q2に電位差計16(図1)に接続された電位差端子22,24の先端を接触させる。この場合、各電位差端子22,24は、溶接面34の電流端子18,20の接触部Pi、Poのいわゆる直上に接触させている。また、電位差端子22,24は、端子22,24間の中央部に溶接部28が位置するように配置する。また、電流端子18,20は、電流を流した場合に主要な電流が、溶接部28を長さ方向(図3の上下方向)に対し直交する方向(図3の左右方向)に通過するように配置する。   As shown in FIG. 3, two points Pi on both sides of the welded portion 28 of the welded surface 34, which is a surface of the upper member 30 where the welded portion 28 is located on the pair of current terminals 18, 20, The tips of the pair of current terminals 18 and 20 are brought into contact with Po. At the same time, the potentiometer 16 (see FIG. 3) is connected to two points Q1 and Q2 on both sides of the welded portion 28 on a straight line (dotted line L in FIG. 3) connecting the contact portions Pi and Po to the welding surface 34 of the current terminals 18 and 20. The tips of the potential difference terminals 22 and 24 connected to 1) are brought into contact with each other. In this case, each of the potential difference terminals 22 and 24 is in contact with the so-called directly above contact portions Pi and Po of the current terminals 18 and 20 of the welding surface 34. Further, the potential difference terminals 22 and 24 are arranged so that the welded portion 28 is located at the center between the terminals 22 and 24. Further, the current terminals 18 and 20 are configured so that when current flows, main current passes through the welded portion 28 in a direction (left and right direction in FIG. 3) orthogonal to the length direction (up and down direction in FIG. 3). To place.

そしてこの状態で、一対の電流端子18,20間で一定の比較的低い直流電流を接触部Piから接触部Poに向け流し、両側2点Q1、Q2間の電位差を取得、すなわち計測する。計測した電位差は、コンピュータ10(図1)に出力する。このため、図1に示すように、電位差計16とコンピュータ10とをケーブル36で接続している。なお、コンピュータ10と電位差計測装置12とを無線で接続し、電位差を表す信号を無線でコンピュータ10に出力、すなわち送信することもできる。なお、図1に示す例では、一対の電流端子18,20及び一対の電位差端子22,24を、センサユニット38に一体化させ、センサユニット38に設けた各端子18,20,22,24を一度に測定対象に接触できるようにしている。また、図1、図2、後述する図5A、図5Bでは、電流端子18,20、電位差端子22,24を矢印で表しており、電流端子18,20では矢印の向きで電流の流れ方向を表している。   In this state, a constant and relatively low DC current is caused to flow from the contact portion Pi to the contact portion Po between the pair of current terminals 18 and 20, and a potential difference between the two points Q1 and Q2 is acquired, that is, measured. The measured potential difference is output to the computer 10 (FIG. 1). For this reason, as shown in FIG. 1, the potentiometer 16 and the computer 10 are connected by a cable 36. The computer 10 and the potential difference measuring device 12 can be connected wirelessly, and a signal representing the potential difference can be output to the computer 10 wirelessly, that is, transmitted. In the example shown in FIG. 1, the pair of current terminals 18, 20 and the pair of potential difference terminals 22, 24 are integrated with the sensor unit 38, and the terminals 18, 20, 22, 24 provided on the sensor unit 38 are connected. The measurement object can be touched at once. 1 and 2 and FIGS. 5A and 5B to be described later, the current terminals 18 and 20 and the potential difference terminals 22 and 24 are represented by arrows, and the current terminals 18 and 20 indicate the direction of current flow in the direction of the arrows. Represents.

また、図4に示すように、コンピュータ10は、電位差取得手段40と、記憶手段42と、接合幅取得手段44と、出力手段46と、図示しない操作部とを含む。コンピュータ10は、CPU、メモリ等から構成され、電位差、接合幅等のデータの記録及び評価を行う機能を有する。また、電位差取得手段40は、電位差計測装置12から計測された電位差を有線または無線で取得する。記憶手段42は、メモリまたは外部記憶装置としてのハードディスクドライブ装置等により構成され、電位差と溶接接合幅との関係を表す校正曲線のデータを予め記憶している。このような校正曲線は、電位差から溶接接合幅を取得するために利用する。すなわち、上記のように試験片26(図1等)の2点間の電位差を測定した場合に得られる電位差は、溶接部28(図1)の接合幅Wに1対1で対応する。   As shown in FIG. 4, the computer 10 includes a potential difference acquisition unit 40, a storage unit 42, a junction width acquisition unit 44, an output unit 46, and an operation unit (not shown). The computer 10 includes a CPU, a memory, and the like, and has a function of recording and evaluating data such as a potential difference and a junction width. Further, the potential difference acquisition unit 40 acquires the potential difference measured from the potential difference measuring device 12 by wire or wirelessly. The storage means 42 includes a hard disk drive device or the like as a memory or an external storage device, and stores in advance calibration curve data representing the relationship between the potential difference and the weld joint width. Such a calibration curve is used to obtain the weld joint width from the potential difference. That is, the potential difference obtained when the potential difference between two points of the test piece 26 (FIG. 1 and the like) is measured as described above corresponds to the joining width W of the welded portion 28 (FIG. 1) on a one-to-one basis.

この理由について、図5A、図5Bを用いて説明する。図5Aは、溶接部28の接合幅Wが大きい場合の、試験片26を流れる電流密度を示す模式図である。図5Bは、溶接部28の接合幅Wが小さい場合の、試験片26を流れる電流密度を示す模式図である。図5A、図5Bは、いずれも溶接部28を含む部分で切断した断面を示しており、複数の縞状の線により電流密度を表している。なお、接合幅Wとは、上材30及び下材32の接合部での溶接による接合幅Wを意味する。例えば、図5Aに示すように、接合幅Wが大きい場合に、点Piから点Poに電流を流すと、未溶接部では電流が上材30の1枚の厚さ分のみで流れる。ただし、溶接部28を含む接合部では電流が上材30及び下材32の2枚の厚さ分で流れる。この場合、接合部では、下材32の一部にも電流がはみ出して流れる。このため、電位差端子22,24と試験片26との接触部Q1,Q2周辺の電流密度が低下し、溶接部28の電位差は未溶接部と比較して小さくなる。   The reason for this will be described with reference to FIGS. 5A and 5B. FIG. 5A is a schematic diagram showing a current density flowing through the test piece 26 when the joining width W of the welded portion 28 is large. FIG. 5B is a schematic diagram showing a current density flowing through the test piece 26 when the joining width W of the welded portion 28 is small. 5A and 5B each show a cross section cut at a portion including the welded portion 28, and the current density is represented by a plurality of striped lines. In addition, the joining width W means the joining width W by welding in the joining part of the upper material 30 and the lower material 32. For example, as illustrated in FIG. 5A, when a current is passed from the point Pi to the point Po when the joining width W is large, the current flows only in the thickness of one upper material 30 in the unwelded portion. However, in the joint portion including the welded portion 28, the current flows by the thickness of the upper material 30 and the lower material 32. In this case, the current flows out and flows also in part of the lower member 32 at the joint. For this reason, the current density around the contact portions Q1 and Q2 between the potential difference terminals 22 and 24 and the test piece 26 decreases, and the potential difference of the welded portion 28 becomes smaller than that of the unwelded portion.

また、図5Bに示すように、接合幅Wが小さい場合も、図5Aに示した場合と同様に、溶接部28を含む接合部で、下材32の一部にも電流がはみ出して流れ、電位差端子22,24と試験片26との接触部Q1,Q2周辺の電流密度が低下し、溶接部28の電位差は未溶接部と比較して小さくなる。ただし、図5Bに示す場合には、接合幅Wが図5Aの場合よりも小さいため、接合部での下材32への電流のはみ出しが小さくなる。このため、電位差端子22,24と試験片26との接触部Q1,Q2周辺の電流密度の低下分が図5Aの場合と比べて小さくなり、溶接部28での未溶接部に対する電位差の低下分が図5Aの場合と比べて小さくなる。このことから本発明者は、溶接部28の接合幅Wと電位差とに1対1の対応関係があると考えた。すなわち、溶接部28の表面に形成される低電流密度域(図5A、図5Bにαで示す範囲部分)は接合幅Wに対応するため、電流密度を反映した電位差を計測することで、接合幅Wを推測、すなわち計測できると考えた。すなわち、接合幅Wと電位差との関係を表す校正曲線を用いて、計測した電位差から接合幅Wを精度よく計測できると考えた。   Further, as shown in FIG. 5B, even when the joining width W is small, as in the case shown in FIG. The current density around the contact portions Q1 and Q2 between the potential difference terminals 22 and 24 and the test piece 26 decreases, and the potential difference of the welded portion 28 becomes smaller than that of the unwelded portion. However, in the case shown in FIG. 5B, since the joining width W is smaller than that in the case of FIG. 5A, the protrusion of the current to the lower member 32 at the joining portion is reduced. Therefore, the decrease in current density around the contact portions Q1, Q2 between the potential difference terminals 22, 24 and the test piece 26 is smaller than that in the case of FIG. 5A, and the decrease in potential difference with respect to the unwelded portion in the welded portion 28. Is smaller than in the case of FIG. 5A. From this, the inventor considered that there is a one-to-one correspondence between the joint width W of the welded portion 28 and the potential difference. That is, since the low current density region (the range indicated by α in FIGS. 5A and 5B) formed on the surface of the welded portion 28 corresponds to the bonding width W, the potential difference reflecting the current density is measured, so that the bonding It was thought that the width W could be estimated, that is, measured. That is, it was considered that the junction width W can be accurately measured from the measured potential difference using a calibration curve representing the relationship between the junction width W and the potential difference.

次にこの校正曲線を求める方法を説明する。なお、以下の説明では、図1から図4に示した要素と同一または同等の要素には同一の符号を付して説明する。まず複数の試験片26のそれぞれを構成する2枚の上材30、下材32を重ね合わせた状態で、レーザ溶接により溶接接合し、それぞれの試験片26でレーザ照射時の出力を変化させることにより、溶接部28の接合幅Wを異ならせた複数の試験片26を作製した。そしてそれぞれの試験片26で、上記と同様に、電位差計測装置12を用いて電流を流した状態でそれぞれで互いに対応する2点間での電位差を計測し、各試験片26での電位差を得た。その後、それぞれの試験片26を2枚の上材30、下材32を分離させるように破断させる。図6は、図3の試験片26を、2枚の板材を分離するように破断させた場合の1の板材である上材30の裏面である破断面を示す図である。   Next, a method for obtaining this calibration curve will be described. In the following description, the same or equivalent elements as those shown in FIGS. 1 to 4 are denoted by the same reference numerals. First, in a state where two upper members 30 and lower members 32 constituting each of a plurality of test pieces 26 are overlapped, welding is joined by laser welding, and the output at the time of laser irradiation is changed by each test piece 26. Thus, a plurality of test pieces 26 having different joining widths W of the welded portions 28 were produced. Then, in the same manner as described above, with each test piece 26, the potential difference between the two points corresponding to each other is measured in the state where current is passed using the potential difference measuring device 12, and the potential difference at each test piece 26 is obtained. It was. Thereafter, each test piece 26 is broken so that the two upper members 30 and the lower member 32 are separated. FIG. 6 is a view showing a fracture surface that is the back surface of the upper member 30 that is one plate member when the test piece 26 of FIG. 3 is broken so as to separate two plate members.

図6に示すように破断面に現れる接合跡48の幅方向(図6の左右方向)両端縁は実際には微妙にうねり完全な直線とならない可能性がある。また、試験片26を構成したと仮定した状態で、溶接部28を挟む2点A,B間に流れる電流は直線矢印α方向だけでなく、上記うねりによる接合幅W1の変化に応じて矢印α方向からわずかにずれて流れる可能性もある。このため、校正曲線に用いる接合幅として、全体での平均の接合幅を求める。すなわち、図6に示すように上材30の破断面に現れる接合跡48から溶接部28の接合面積を計測等により取得する。この場合、例えば適宜の面積計測装置を用いて、破断面を撮影した画像から接合面積を求めることもできる。そして得られた接合面積を、接合長である上材30の幅方向長さLaで除すことにより、平均の接合幅Wを求めた。勿論、人が上材30の幅方向(図6の上下方向)に離れた等間隔の複数の位置での接合幅W1を計測し、複数の接合幅W1から平均の接合幅Wを求めたり、接合面積を算出する等の他の手段を用いることもできる。   As shown in FIG. 6, both end edges in the width direction (left and right direction in FIG. 6) of the joint mark 48 appearing on the fracture surface may actually be slightly wavy and not be a complete straight line. Also, assuming that the test piece 26 is configured, the current flowing between the two points A and B sandwiching the welded portion 28 is not only in the direction of the straight arrow α, but also according to the change in the joining width W1 due to the swell. There is also the possibility of flowing slightly off the direction. For this reason, the average joint width as a whole is obtained as the joint width used for the calibration curve. That is, as shown in FIG. 6, the joint area of the welded portion 28 is obtained from the joint trace 48 that appears on the fracture surface of the upper member 30 by measurement or the like. In this case, for example, the bonding area can be obtained from an image obtained by photographing the fractured surface using an appropriate area measuring device. And the average joining width W was calculated | required by remove | dividing the obtained joining area by the width direction length La of the upper material 30 which is joining length. Of course, a person measures the bonding width W1 at a plurality of equally spaced positions separated in the width direction (vertical direction in FIG. 6) of the upper member 30, and obtains an average bonding width W from the plurality of bonding widths W1, Other means such as calculating the bonding area can also be used.

図7は、このようにして求めた平均の接合幅Wと電位差計16で実験により取得された電位差との関係を表す校正曲線の1例を示している。図7の場合は、4つの試験片26から校正曲線を求めている。このように接合幅Wと電位差とは1対1の関係にあり、校正曲線を用いることにより取得した電位差から接合幅Wを測定することができることを確認できる。また、この校正曲線は、電位差を接合幅Wに換算するために利用することもできる。   FIG. 7 shows an example of a calibration curve representing the relationship between the average junction width W thus obtained and the potential difference obtained by the experiment with the potentiometer 16. In the case of FIG. 7, calibration curves are obtained from the four test pieces 26. Thus, the junction width W and the potential difference have a one-to-one relationship, and it can be confirmed that the junction width W can be measured from the potential difference obtained by using the calibration curve. This calibration curve can also be used to convert the potential difference into the junction width W.

図4に示すコンピュータ10では、このようにして求めた校正曲線を予め記憶手段42に記憶させている。また、図4に示す接合幅取得手段44は、電位差計測装置12から取得した電位差に基づいて、記憶手段42から読み出した校正曲線のデータを参照しつつ、溶接接合幅Wを取得する。また、出力手段46は、接合幅取得手段44で取得した溶接接合幅Wを、ディスプレイ等の出力部に出力する。   In the computer 10 shown in FIG. 4, the calibration curve obtained in this way is stored in the storage means 42 in advance. 4 obtains the weld joint width W while referring to the calibration curve data read from the storage means 42 based on the potential difference obtained from the potential difference measuring device 12. The output means 46 outputs the weld joint width W acquired by the joint width acquisition means 44 to an output unit such as a display.

このような電位差計測装置12及び溶接接合幅測定システムは、例えばレーザ溶接により2枚の上材30、下材32を非貫通溶接で溶接接合した重ね継手溶接部である試験片26の溶接接合幅Wを測定する測定方法に使用する。図8は、この測定方法を示すフローチャートである。すなわち、溶接接合幅Wを測定する方法を実施する場合、まず、ステップS10(以下、ステップは単にSとする。)で、上記の図1に示すようにセンサユニット38を設置する、すなわちセンサユニット38の各端子18,20,22,24を試験片26上に配置するステップを行う。この場合、上記の図2、図3を用いて説明したように、試験片26の溶接面34の溶接部28を挟む両側位置に一対の電流端子18,20を接触させるとともに、各電流端子18,20の接触部を結ぶ直線上の、溶接部28を挟む両側2点に電位差計16に接続された電位差端子22,24を接触させる。   Such a potential difference measuring device 12 and a welded joint width measuring system include, for example, a welded joint width of a test piece 26 that is a lap joint welded part in which two upper members 30 and a lower member 32 are welded together by non-through welding by laser welding. Used in a measurement method for measuring W. FIG. 8 is a flowchart showing this measurement method. That is, when carrying out the method of measuring the weld joint width W, first, in step S10 (hereinafter, step is simply referred to as S), the sensor unit 38 is installed as shown in FIG. 1, that is, the sensor unit. The step of arranging the 38 terminals 18, 20, 22, 24 on the test piece 26 is performed. In this case, as described with reference to FIGS. 2 and 3 above, the pair of current terminals 18 and 20 are brought into contact with both side positions sandwiching the welded portion 28 of the welding surface 34 of the test piece 26, and each current terminal 18. , 20 are brought into contact with two potential points 22 and 24 connected to the potentiometer 16 at two points on both sides of the welded portion 28 on a straight line connecting the contact portions.

次いで、この状態で、直流電源14を用いて一対の電流端子18,20間で一定の直流電流を流す、すなわち印加するステップを行い(S12)、電位差計16で両側2点間の電位差を取得、すなわち計測し、コンピュータ10に出力し、電位差を表すデータを記憶手段42に記憶させるステップを行う(S14)。次いで、コンピュータ10において、取得した電位差から溶接接合幅Wを取得し、すなわち測定し、記憶手段42に記憶させるとともに、溶接接合幅Wをディスプレイ等の出力部に表示させる等、出力するステップを行う(S16)。このステップでは、コンピュータ10が、予め記憶手段42に記憶させた校正曲線であって、電位差と溶接接合幅Wとの関係を表す校正曲線のデータを参照しつつ、取得した電位差から溶接接合幅Wを取得する。この場合、例えば、校正曲線を表すデータをマップとして記憶手段42に記憶させておき、マップを参照しつつ溶接接合幅Wを取得する。取得した溶接接合幅Wは、出力部に出力させる。   Next, in this state, a step of applying a constant DC current between the pair of current terminals 18 and 20 using the DC power source 14 is performed (S12), and the potential difference between the two points on both sides is obtained by the potentiometer 16. That is, the step of measuring and outputting to the computer 10 and storing the data representing the potential difference in the storage means 42 is performed (S14). Next, in the computer 10, the welding joint width W is obtained from the obtained potential difference, that is, measured and stored in the storage means 42, and the welding joint width W is displayed on an output unit such as a display and output. (S16). In this step, the welding joint width W is calculated from the acquired potential difference while referring to the calibration curve data that the computer 10 stores in advance in the storage means 42 and represents the relationship between the potential difference and the welding joint width W. To get. In this case, for example, data representing a calibration curve is stored in the storage means 42 as a map, and the weld joint width W is acquired while referring to the map. The acquired weld joint width W is output to the output unit.

このような溶接接合幅測定システムを用いた接合幅測定方法によれば、重ね継手溶接部である試験片26での接合幅Wを非破壊で高精度かつ容易に測定できる。すなわち、試験片26で2枚の上材30、下材32のそれぞれでの板厚や材料の違いに対応する校正曲線のデータを用意しておくことで、非破壊で、電流を流しつつ2点間の電位差を測定するだけで接合幅Wを精度よく測定することができる。すなわち、上記の説明から明らかなように溶接接合幅Wに応じて電流密度の低下具合が変化するため、電流密度の変化を電位差として計測することで、接合幅Wを容易にかつ精度よく測定することができる。また、上記の渦電流を用いて溶接部の接合幅を測定する従来構造の場合(特許文献1)と異なり、溶接部28の表面の凹凸にかかわらず、接合幅Wの測定精度を高くできる。また、上記の超音波を用いて溶接接合幅を測定する従来構造の場合(特許文献2,3)と異なり、特別な接触媒質を必要とすることなく測定精度を高くできる。なお、金属板の材料の変化では抵抗率は大きくは変化しないので、板厚に応じた校正曲線のデータを用意しておくことで材料の違いにかかわらず、接合幅Wを測定することもできる。   According to the joint width measuring method using such a weld joint width measuring system, the joint width W of the test piece 26 that is a lap joint welded part can be measured with high accuracy and easily without destruction. That is, by preparing calibration curve data corresponding to the difference in thickness and material of each of the two upper members 30 and the lower member 32 in the test piece 26, the current 2 can be passed while non-destructively. The junction width W can be accurately measured simply by measuring the potential difference between the points. That is, as apparent from the above description, the degree of decrease in the current density changes according to the weld joint width W. Therefore, by measuring the change in current density as a potential difference, the joint width W can be easily and accurately measured. be able to. In addition, unlike the conventional structure in which the joint width of the welded portion is measured using the eddy current (Patent Document 1), the measurement accuracy of the joint width W can be increased regardless of the unevenness of the surface of the welded portion 28. In addition, unlike the conventional structure in which the welding joint width is measured using the above ultrasonic waves (Patent Documents 2 and 3), the measurement accuracy can be increased without requiring a special contact medium. In addition, since the resistivity does not change greatly when the material of the metal plate changes, it is possible to measure the bonding width W regardless of the material difference by preparing calibration curve data according to the plate thickness. .

また、上記の図8のS16で、コンピュータ10で予め設定した基準接合幅と測定された接合幅Wとの比較を行うことで、接合幅Wの良否の評価を行い、接合幅Wとともに、または接合幅Wに変えて、出力部にその評価を出力することもできる。   Further, in S16 of FIG. 8 described above, the quality of the joint width W is evaluated by comparing the reference joint width preset by the computer 10 with the measured joint width W, and together with the joint width W, or The evaluation can be output to the output unit in place of the bonding width W.

また、接合幅Wは試験片26の接合強度に密接に関係する。このため、コンピュータ10に予め接合幅Wと接合強度との関係を表す校正曲線を記憶させておき、計測された接合幅Wからこの校正曲線のデータを参照しつつ接合強度を出力したり、接合強度を予め設定した基準値と比較することで接合強度の良否を評価し、その評価を出力することもできる。   Further, the bonding width W is closely related to the bonding strength of the test piece 26. For this reason, a calibration curve representing the relationship between the bonding width W and the bonding strength is stored in the computer 10 in advance, and the bonding strength is output from the measured bonding width W while referring to the data of the calibration curve. By comparing the strength with a preset reference value, it is possible to evaluate the quality of the bonding strength and output the evaluation.

また、電位差計測装置12によれば、重ね継手溶接部である試験片26での接合幅Wを非破壊で高精度かつ容易に測定するための電位差を取得する装置を実現できる。   Further, according to the potential difference measuring device 12, it is possible to realize a device for acquiring a potential difference for easily and accurately measuring the joining width W of the test piece 26 which is a lap joint welded portion without breaking.

なお、本実施の形態では、試験片26の溶接面34側に電流端子18,20及び電位差端子22,24を接触させて電位差を測定しているが、本発明はこれに限定するものではない。例えば、試験片26の反溶接面側、すなわち図1、図2の下面側に、電流端子18,20及び電位差端子22,24を接触させて溶接部28を挟む両側2点間の電位差を測定することもできる。この場合も測定される電位差は、溶接接合幅Wの変化に応じて変化するので、電位差の測定値を用いて溶接接合幅Wを測定することができる。   In the present embodiment, the potential difference is measured by bringing the current terminals 18 and 20 and the potential difference terminals 22 and 24 into contact with the weld surface 34 side of the test piece 26, but the present invention is not limited to this. . For example, the potential difference between two points on both sides of the welded portion 28 is measured by bringing the current terminals 18 and 20 and the potential difference terminals 22 and 24 into contact with the non-welded surface side of the test piece 26, that is, the lower surface side of FIGS. You can also Also in this case, the measured potential difference changes in accordance with the change in the weld joint width W, so that the weld joint width W can be measured using the measured value of the potential difference.

10 コンピュータ、12 電位差計測装置、14 直流電源、16 電位差計、18 ,20電流端子、22,24 電位差端子、26 重ね継手試験片、28 溶接部、30 上材、32 下材、34 溶接面、36 ケーブル、38 センサユニット、40 電位差取得手段、42 記憶手段、44 接合幅取得手段、46 出力手段、48 接合跡。   10 Computer, 12 Potentiometer, 14 DC power supply, 16 Potentiometer, 18, 20 Current terminal, 22, 24 Potentiometer terminal, 26 Lap joint test piece, 28 Welded part, 30 Upper material, 32 Lower material, 34 Weld surface, 36 cables, 38 sensor units, 40 potential difference acquisition means, 42 storage means, 44 bonding width acquisition means, 46 output means, 48 bonding traces.

Claims (4)

2枚の金属板の重ね合わせ部を溶接接合した重ね継手溶接部の溶接接合幅を測定する測定方法であって、
重ね継手溶接部の片面の溶接部を挟む両側位置に一対の電流供給用端子を接触させるとともに、各電流供給用端子の接触部を結ぶ直線上の、溶接部を挟む両側2点に電位差計に接続された電位差計測用端子を接触させた状態で、一対の電流供給用端子間で電流を流し、両側2点間の電位差を取得するステップと、
コンピュータが、取得した電位差から溶接接合幅を取得するステップとを含むことを特徴とする溶接接合幅測定方法。
It is a measuring method for measuring the weld joint width of a lap joint welded portion obtained by welding and joining the overlapping portions of two metal plates,
A pair of current supply terminals are brought into contact with both side positions sandwiching the welded portion on one side of the lap joint welded portion, and a potentiometer is attached to two points on both sides of the welded portion on the straight line connecting the contact portions of the current supply terminals. A current is passed between a pair of current supply terminals in a state where the connected potential difference measurement terminals are in contact with each other, and a potential difference between two points on both sides is acquired;
A computer comprising a step of obtaining a weld joint width from the obtained potential difference.
請求項1に記載の溶接接合幅測定方法において、
溶接接合幅を取得するステップは、コンピュータが、記憶手段に記憶させた校正曲線であって、電位差と溶接接合幅との関係を表す校正曲線のデータを参照しつつ、取得した電位差から溶接接合幅を取得することを特徴とする溶接接合幅測定方法。
In the welding joint width measuring method according to claim 1,
The step of acquiring the weld joint width is a calibration curve stored in the storage means by the computer, and referring to the calibration curve data representing the relationship between the potential difference and the weld joint width, the weld joint width from the acquired potential difference. A method for measuring a welded joint width, characterized in that:
請求項1に記載の溶接接合幅測定方法に使用する電位差計測装置であって、
直流電流を外部に印加可能な直流電源と、電位差計と、直流電源に接続される一対の電流供給用端子と、電位差計に接続される一対の電位差計測用端子とを備えることを特徴とする電位差計測装置。
A potential difference measuring device used in the welding joint width measuring method according to claim 1,
A DC power supply capable of applying a DC current to the outside, a potentiometer, a pair of current supply terminals connected to the DC power supply, and a pair of potential difference measurement terminals connected to the potentiometer Potential difference measuring device.
請求項3に記載の電位差計測装置と、
コンピュータとを備え、
コンピュータは、
電位差計測装置から電位差を取得する電位差取得手段と、
電位差と溶接接合幅との関係を表す校正曲線のデータを記憶した記憶手段と、
取得した電位差に基づいて、記憶手段から読み出した校正曲線のデータを参照しつつ、溶接接合幅を取得する接合幅取得手段と、を含むことを特徴とする溶接接合幅測定システム。
The potential difference measuring device according to claim 3,
With a computer,
Computer
A potential difference acquiring means for acquiring a potential difference from the potential difference measuring device;
Storage means for storing calibration curve data representing the relationship between the potential difference and the weld joint width;
A welding joint width measuring system comprising: a joining width obtaining unit that obtains a welding joint width while referring to the calibration curve data read from the storage unit based on the obtained potential difference.
JP2010069715A 2010-03-25 2010-03-25 Method of measuring welded connection width, apparatus of measuring potential difference, and system of measuring welded connection width Pending JP2011203055A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010069715A JP2011203055A (en) 2010-03-25 2010-03-25 Method of measuring welded connection width, apparatus of measuring potential difference, and system of measuring welded connection width

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010069715A JP2011203055A (en) 2010-03-25 2010-03-25 Method of measuring welded connection width, apparatus of measuring potential difference, and system of measuring welded connection width

Publications (1)

Publication Number Publication Date
JP2011203055A true JP2011203055A (en) 2011-10-13

Family

ID=44879869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010069715A Pending JP2011203055A (en) 2010-03-25 2010-03-25 Method of measuring welded connection width, apparatus of measuring potential difference, and system of measuring welded connection width

Country Status (1)

Country Link
JP (1) JP2011203055A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023063083A1 (en) * 2021-10-11 2023-04-20 日置電機株式会社 Measuring device, measuring system, and measuring method
US11664342B2 (en) 2020-06-25 2023-05-30 Fuji Electric Co., Ltd. Semiconductor device with a laser-connected terminal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11664342B2 (en) 2020-06-25 2023-05-30 Fuji Electric Co., Ltd. Semiconductor device with a laser-connected terminal
WO2023063083A1 (en) * 2021-10-11 2023-04-20 日置電機株式会社 Measuring device, measuring system, and measuring method

Similar Documents

Publication Publication Date Title
JP3848254B2 (en) Ultrasonic austenitic weld seam inspection method and apparatus
WO2016155403A1 (en) Ultrasonic detection and locating method and device based on tofd and phased array
US7750626B2 (en) Method and apparatus for eddy current detection of material discontinuities
JP5263178B2 (en) Nondestructive inspection method for steel rails for tracks
CN104501750A (en) Ultrasonic phased array measuring U rib welding line fusion depth method
KR101921685B1 (en) Apparatus for inspecting defect and mehtod for inspecting defect using the same
US9612226B2 (en) Method for measuring height of lack of penetration and ultrasonic flaw detector
WO2015001625A1 (en) Ultrasonic flaw-detection device, ultrasonic flaw-detection method, and method for inspecting weld zone of panel structure
JP2007046913A (en) Welded structure flaw detection testing method, and steel welded structure flaw detector
JP2011203055A (en) Method of measuring welded connection width, apparatus of measuring potential difference, and system of measuring welded connection width
JP2001021542A (en) Measuring of weld line transverse crack defect length
JP5564802B2 (en) Joint inspection method and joint inspection apparatus
JP4822545B2 (en) Nugget diameter measuring method and nugget diameter measuring apparatus
JP2007322350A (en) Ultrasonic flaw detector and method
CN113607812A (en) Phased array ultrasonic detection test block structure and detection method for brazing type copper-aluminum transition wire clamp
RU2651431C1 (en) Method of industrial ultrasound diagnostics of vertically oriented defects of prismatic metal products and device for its implementation
JP2008164396A (en) Flaw detection method and flaw detector used therefor
JP2006138672A (en) Method of and device for ultrasonic inspection
Burhan et al. A guideline of ultrasonic inspection on butt welded plates
KR20070044647A (en) Nondestructive inspection system of spot welding
JP4619092B2 (en) Inspection method and inspection apparatus for laser welded joint
JP5001049B2 (en) Spot welding strength evaluation method and apparatus
JP3754669B2 (en) Ultrasonic flaw detection apparatus and ultrasonic flaw detection method
JP2008111742A (en) Method and apparatus for non-destructive inspection of wheel welded part
JP5739649B2 (en) Crack inspection method for pipe welds and crack inspection apparatus for pipe welds