[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2011049196A - 静電チャック - Google Patents

静電チャック Download PDF

Info

Publication number
JP2011049196A
JP2011049196A JP2009193889A JP2009193889A JP2011049196A JP 2011049196 A JP2011049196 A JP 2011049196A JP 2009193889 A JP2009193889 A JP 2009193889A JP 2009193889 A JP2009193889 A JP 2009193889A JP 2011049196 A JP2011049196 A JP 2011049196A
Authority
JP
Japan
Prior art keywords
insulating plate
ceramic insulating
electrode layer
heater electrode
main surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009193889A
Other languages
English (en)
Other versions
JP5554525B2 (ja
Inventor
Kaname Miwa
要 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2009193889A priority Critical patent/JP5554525B2/ja
Publication of JP2011049196A publication Critical patent/JP2011049196A/ja
Application granted granted Critical
Publication of JP5554525B2 publication Critical patent/JP5554525B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

【課題】吸着面の温度分布を均一にすることにより、吸着面に吸着された被吸着物を均一に加熱または冷却することができる静電チャックを提供すること。
【解決手段】静電チャック1は、セラミック絶縁板10及び金属ベース30を備え、吸着用電極層51に電圧を印加させた際に生じる静電引力を用いて被吸着物2を吸着面11に吸着させる。セラミック絶縁板10は、ヒータ電極層61及び冷却用ガス流路41を内部に有する。冷却用ガス流路41は、セラミック絶縁板10の平面方向に延びる横穴42を備える。吸着用電極層51は、セラミック絶縁板10内において横穴42よりも吸着面11側に配置され、ヒータ電極層61は、セラミック絶縁板10内において横穴42よりも接合面12側に配置される。
【選択図】図1

Description

本発明は、半導体ウェハの固定、半導体ウェハの平面度の矯正、半導体ウェハの搬送などに用いられる静電チャックに関するものである。
従来より、半導体製造装置では、半導体ウェハ(例えばシリコンウェハ)に対してドライエッチング等の処理が行われている。ドライエッチングの精度を高めるためには、半導体ウェハを確実に固定しておく必要がある。そこで、半導体ウェハを固定する固定手段として、静電引力によって半導体ウェハを固定する静電チャックが提案されている(例えば、特許文献1参照)。
具体的に言うと、特許文献1に記載の静電チャックは、セラミック絶縁板の内部に吸着用電極層を有しており、その吸着用電極層に電圧を印加させた際に生じる静電引力を用いて、半導体ウェハをセラミック絶縁板の上面(吸着面)に吸着させるようになっている。この静電チャックは、セラミック絶縁板の下面(接合面)に金属ベースを接合することによって構成されている。
また近年では、静電チャックに対して、吸着面に吸着された半導体ウェハの温度を調節(加熱または冷却)する機能を持たせることも考えられている。例えば、セラミック絶縁板内にヒータ電極層を設け、ヒータ電極層でセラミック絶縁板を加熱することにより、吸着面上の半導体ウェハを加熱する技術がある。また特許文献1には、セラミック絶縁板内に吸着面にて開口する冷却用ガス流路を設け、冷却用ガス流路を流れる冷却用ガス(例えばヘリウムガス)を吸着面上の半導体ウェハに接触させることにより、半導体ウェハを冷却する技術が開示されている。さらに特許文献1には、金属ベース内に冷却用流体流路を設け、冷却用流体流路を流れる冷却用流体(例えば冷却水)でセラミック絶縁板を冷却することにより、吸着面上の半導体ウェハを冷却する技術も開示されている。
特開2008−205510号公報(図1など)
ところで、上記の温度調節機能を静電チャックに持たせる場合、即ち図5に示されるように、ヒータ電極層81、冷却用ガス流路82及び冷却用流体流路83を静電チャック80に設ける場合、セラミック絶縁板84内における吸着用電極層85の下層側にヒータ電極層81が配置され、ヒータ電極層81の下層側に冷却用ガス流路82が配置されることが多い。なお、セラミック絶縁板84を厚さ方向から見たときに冷却用ガス流路82が存在する領域が存在領域A1であり、冷却用ガス流路82が存在しない領域が非存在領域A2である。
しかしながら、上記の場合、冷却用ガス流路82がヒータ電極層81と冷却用流体流路83との間に配置されるようになる。この場合、非存在領域A2では、ヒータ電極層81から発生した熱が冷却用流体流路83側に伝達されるため(図5の矢印F1参照)、冷却用流体流路83を流れる冷却用流体によってセラミック絶縁板84を確実に冷却することができる。しかし、存在領域A1では、ヒータ電極層81から発生した熱の伝達が冷却用ガス流路82に遮られてしまうため(図5の矢印F2参照)、冷却用流体によってセラミック絶縁板84を冷却することが困難である。即ち、存在領域A1は非存在領域A2よりも冷却されにくいため、吸着面86の温度分布が不均一となり、吸着面86に吸着された半導体ウェハを均一に加熱または冷却できなくなってしまう。よって、例えばドライエッチングを行って半導体ウェハ上にパターンを形成する場合に、処理の度合いがばらつくなどの問題が生じやすいため、歩留まりが低下してしまう。
しかも、ヒータ電極層81は、冷却用ガス流路82よりも吸着面86側に配置されており、ヒータ電極層81と吸着面86との距離が短い。よって、ヒータ電極層81から発生した熱は、殆ど拡散しないまま吸着面86に到達する(図5の矢印F3参照)。その結果、ヒータ電極層81が存在する内層部での温度分布が、そのまま吸着面86の温度分布として反映されてしまう。即ち、冷却用ガス流路82の配置に加えて、ヒータ電極層81の配置にも問題があることで、吸着面86の温度分布が不均一となるため、吸着面86に吸着された半導体ウェハを均一に加熱または冷却することが非常に困難になる。
本発明は上記の課題に鑑みてなされたものであり、その目的は、吸着面の温度分布を均一にすることにより、吸着面に吸着された被吸着物を均一に加熱または冷却することができる静電チャックを提供することにある。
そして上記課題を解決するための手段としては、第1主面及び第2主面を有するとともに複数のセラミック層を積層してなり、内部に吸着用電極層を有するセラミック絶縁板と、前記セラミック絶縁板の前記第2主面側に接着剤層を介して接合される金属ベースとを備え、前記吸着用電極層に電圧を印加させた際に生じる静電引力を用いて被吸着物を前記第1主面に吸着させる静電チャックにおいて、前記セラミック絶縁板は、前記セラミック絶縁板を加熱するヒータ電極層と、前記第1主面に吸着された被吸着物を冷却する冷却用ガスが流れる冷却用ガス流路とを内部に有し、前記金属ベースは、前記セラミック絶縁板を冷却する冷却用流体が流れる冷却用流体流路を内部に有し、前記冷却用ガス流路は、前記セラミック絶縁板の平面方向に延びる横穴を備え、前記吸着用電極層が、前記セラミック絶縁板内において前記横穴よりも前記第1主面側に配置されるとともに、前記ヒータ電極層が、前記セラミック絶縁板内において前記横穴よりも前記第2主面側に配置されることを特徴とする静電チャックがある。
従って、上記手段の静電チャックによると、ヒータ電極層が、冷却用ガス流路の横穴よりも第2主面側(吸着面である第1主面側の反対側)に配置されるため、ヒータ電極層と冷却用流体流路との間に空間となる層(横穴)が存在しなくなる。これにより、ヒータ電極層から発生した熱は、横穴に遮られることなく冷却用流体流路側に伝達されるため、冷却用流体流路を流れる冷却用流体によってセラミック絶縁板を確実に冷却することができる。その結果、第1主面の温度分布が均一となるため、第1主面に吸着された被吸着物を均一に加熱または冷却することができる。
しかも、上記したように、ヒータ電極層は、横穴よりも第2主面側に配置されており、ヒータ電極層と第1主面との距離が長くなるため、ヒータ電極層から発生した熱が拡散するのに十分な距離が確保されている。よって、ヒータ電極層から発生した熱は、第1主面側に伝達されるに従って確実に拡散していく。その結果、第1主面では、ヒータ電極層の直上となる領域の温度と、ヒータ電極層の直上とはならない領域の温度との差が小さくなる。即ち、ヒータ電極層と横穴との位置関係を工夫するだけでなく、ヒータ電極層と第1主面との位置関係を工夫することによっても、第1主面の温度分布が均一になるため、第1主面に吸着された被吸着物をより均一に加熱または冷却することができる。
ここで、前記セラミック絶縁板の厚さは特に限定されないが、例えば2mm以上7mm以下であってもよい。なお、セラミック絶縁板の厚さが2mm未満になると、セラミック絶縁板中を伝達する熱が十分に拡散しないため、第1主面の温度分布が不均一になる可能性がある。また、セラミック絶縁板が薄くなりすぎるため、セラミック絶縁板の強度が低下して破損する可能性がある。一方、セラミック絶縁板の厚さが7mmよりも大きくなると、熱がセラミック絶縁板中を伝達しにくくなるため、第1主面の加熱効率や冷却効率が低下する可能性がある。この場合、第1主面に吸着された被吸着物の温度調節に時間が掛かってしまう。
なお、セラミック絶縁板(前記セラミック層)を構成する材料としては、アルミナ、イットリア(酸化イットリウム)、窒化アルミニウム、窒化ほう素、炭化珪素、窒化珪素などといった高温焼成セラミックを主成分とする焼結体などが挙げられる。また、用途に応じて、ホウケイ酸系ガラスやホウケイ酸鉛系ガラスにアルミナ等の無機セラミックフィラーを添加したガラスセラミックのような低温焼成セラミックを主成分とする焼結体を選択してもよいし、チタン酸バリウム、チタン酸鉛、チタン酸ストロンチウムなどの誘電体セラミックを主成分とする焼結体を選択してもよい。
なお、半導体製造におけるドライエッチングなどの各処理においては、プラズマを用いた技術が種々採用され、プラズマを用いた処理においては、ハロゲンガスなどの腐食性ガスが多用されている。このため、腐食性ガスやプラズマに晒される静電チャックには、高い耐食性が要求される。従って、前記セラミック絶縁板は、腐食性ガスやプラズマに対する耐食性がある材料、例えば、アルミナやイットリアを主成分とする材料からなることが好ましい。このようにすれば、セラミック絶縁板の第1主面の腐食を防止できるため、第1主面の平面度が低下しにくくなり、静電チャックの長寿命化を図ることができる。
なお、前記セラミック絶縁板は、前記吸着用電極層及び前記ヒータ電極層を内部に有している。吸着用電極層及びヒータ電極層を構成する材料としては特に限定されないが、同時焼成法によってこれらの導体及びセラミック層を形成する場合、導体中の金属粉末は、セラミック層の焼成温度よりも高融点である必要がある。例えば、セラミック層がいわゆる高温焼成セラミック(例えばアルミナ等)からなる場合には、導体中の金属粉末として、ニッケル(Ni)、タングステン(W)、モリブデン(Mo)、マンガン(Mn)等やそれらの合金が選択可能である。セラミック層がいわゆる低温焼成セラミック(例えばガラスセラミック等)からなる場合には、導体中の金属粉末として、銅(Cu)または銀(Ag)等やそれらの合金が選択可能である。また、セラミック層が高誘電率セラミック(例えばチタン酸バリウム等)からなる場合には、ニッケル(Ni)、銅(Cu)、銀(Ag)、パラジウム(Pd)、白金(Pt)等やそれらの合金が選択可能である。なお、吸着用電極層及びヒータ電極層は、金属粉末を含む導体ペーストを用い、従来周知の手法、例えば印刷法等により塗布された後、焼成することで形成される。
なお、ヒータ電極層の断面形状としては特に限定されないが、一般的な形状である断面矩形状であることが好ましい。ヒータ電極層が断面矩形状であれば、ヒータ電極層が発生する熱を第1主面側に放出しやすくなるため、第1主面の加熱効率が向上する。また、ヒータ電極層の平面視での形状としては特に限定されないが、例えば平面視渦巻き状であってもよいし、平面視同心円状であってもよい。
さらに、ヒータ電極層の面積抵抗率は特に限定されないが、例えば0.1mΩ/cm以上50Ω/cm以下であってもよい。なお、面積抵抗率が0.1mΩ/cm未満になると、抵抗率が小さすぎて発熱量が小さくなるため、ヒータ電極層によってセラミック絶縁板を上手く加熱できなくなる可能性がある。一方、面積抵抗率が50Ω/cmよりも大きくなると、印加した電圧に対して得られる発熱量が大きすぎて発熱量を制御しにくくなる可能性がある。
また、前記セラミック絶縁板は、冷却用ガスが流れる冷却用ガス流路を内部に有している。ここで、冷却用ガスとしては、ヘリウムガスや窒素ガスなどの不活性ガスを挙げることができる。なお、セラミック絶縁板が備える前記横穴が、前記セラミック絶縁板の中心部から外周部に向かって放射状に延びている場合、前記ヒータ電極層は、前記セラミック絶縁板を厚さ方向から見たときに前記横穴と重ならない領域に主として配置されていることが好ましく、特には、前記セラミック絶縁板を厚さ方向から見たときに前記横穴と全く重ならないように配置されていることがより好ましい。このようにすれば、ヒータ電極層から発生した熱が横穴に遮られることなく第1主面に伝達されるため、第1主面に吸着された被吸着物を効率良く加熱することができる。
また、前記冷却用ガス流路は、前記横穴に連通して前記セラミック絶縁板の厚さ方向に延びる縦穴をさらに備え、前記金属ベースは、前記縦穴に連通して前記金属ベースの厚さ方向に延びる連通穴を備え、前記縦穴は前記ヒータ電極層を避けて配置され、前記連通穴は前記冷却用流体流路を避けて配置されていてもよい。このようにした場合、ヒータ電極層を配置する際に縦穴の位置を考慮しなくても済み、冷却用流体流路を配置する際に連通穴の位置を考慮しなくても済むため、静電チャックの設計の自由度が高くなる。
さらに、前記金属ベースを形成する材料としては、銅、アルミニウム、鉄、チタンなどを挙げることができる。また、接着剤層を形成する材料は、セラミック絶縁板と金属ベースとを接合させる力が大きい材料であることが好ましく、例えばインジウムなどの金属材料や、シリコーン樹脂、アクリル樹脂、エポキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂などの樹脂材料を選択することができる。しかし、セラミック絶縁板の熱膨張係数と金属ベースの熱膨張係数との差が大きいため、接着剤層は、緩衝材としての機能を有する弾性変形可能な樹脂材料からなることが特に好ましい。
本発明を具体化した一実施形態の静電チャックを一部破断して示す斜視図。 静電チャックを一部破断して示す斜視図。 静電チャックを示す概略断面図。 ヒータ電極層と冷却用ガス流路との位置関係を示す説明図。 従来技術における静電チャックを示す概略断面図。
以下、本発明を具体化した一実施形態を図面に基づき詳細に説明する。
図1に示されるように、本実施形態の静電チャック1は、吸着面11に半導体ウェハ2(被吸着物)を吸着するための装置である。静電チャック1は、セラミック絶縁板10と、セラミック絶縁板10の接合面12側に接着剤層20を介して接合される金属ベース30とを備えている。なお、本実施形態の接着剤層20は、シリコーン樹脂(樹脂材料)からなる接着剤であり、接着剤層20の厚さは300μmに設定されている。本実施形態において、接着剤層20の熱伝導率は0.16W/(m・K)、熱膨張係数は約200ppm/℃となっている。なお、接着剤層20の熱膨張係数は、0℃〜ガラス転移温度(Tg)間の測定値の平均値をいう。
図1〜図3に示されるように、セラミック絶縁板10は、直径300mm×厚さ3.0mmの略円板状である。セラミック絶縁板10は、第1主面である吸着面11、及び、第2主面である接合面12を有している。セラミック絶縁板10は、アルミナを主成分とする焼結体からなり、6層のセラミック層13〜18を積層した構造を有している。本実施形態において、セラミック絶縁板10の熱伝導率は32W/(m・K)、熱膨張係数は7.7ppm/℃となっている。なお、セラミック絶縁板10の熱膨張係数は、30℃〜250℃間の測定値の平均値をいう。
また、セラミック絶縁板10は、冷却用ガス流路41を内部に有している。冷却用ガス流路41には、吸着面11に吸着された前記半導体ウェハ2を冷却するヘリウムガス(冷却用ガス)が流れるようになっている。そして、冷却用ガス流路41は、第3層のセラミック層15内に、セラミック絶縁板10の平面方向に延びる複数の横穴42を備えている。各横穴42は、後述するヒータ電極層61よりも吸着面11に近い層に配置されている。各横穴42は、断面矩形状をなし、セラミック絶縁板10の厚さ方向の長さが0.5mm以上1.5mm以下(本実施形態では1.0mm)に設定されるとともに、セラミック絶縁板10の平面方向の長さが1.0mmに設定されている。各横穴42は、セラミック絶縁板10の中心部C1を基準として等角度(60°)間隔で配置されるとともに、中心部C1から外周部に向かって放射状に延びている(図4参照)。
図1,図3に示されるように、冷却用ガス流路41は、第1層のセラミック層13内に、一対の円環状ガス流路43,44と、両円環状ガス流路43,44同士を連結する複数の連結ガス流路45とを備えている。両円環状ガス流路43,44は、厚さ方向の長さが0.05mmであって、平面方向の長さが1.5mmとなる断面矩形状をなし、中心部C1に対して平面視同心円状に配置されている。また、外周側の円環状ガス流路44には、前記吸着面11にて開口する複数のガス噴出口46が設けられている。各ガス噴出口46は、円形状をなし、中心部C1を基準として等角度間隔で配置されている。また、各連結ガス流路45は、厚さ方向の長さが0.05mmであって、平面方向の長さが1.5mmとなる断面矩形状をなし、中心部C1を基準として等角度(120°)間隔で配置されるとともに、中心部C1から外周部に向かって放射状に延びている。
さらに図1,図3に示されるように、冷却用ガス流路41は、前記セラミック絶縁板10の厚さ方向に延びる縦穴47,48,49をさらに備えている。内周側の縦穴47は、直径が0.5mmであり、吸着面11側の端部が円環状ガス流路43に連通する一方、接合面12側の端部が横穴42に連通している。同じく内周側の縦穴49は、直径が2.0mmであり、吸着面11側の端部が縦穴47と横穴42との連通部分に連通する一方、接合面12側の端部が接合面12にて開口している。また、外周側の縦穴48は、直径が0.5mmであり、吸着面11側の端部が円環状ガス流路44に連通する一方、接合面12側の端部が横穴42に連通している。そして、縦穴47〜49は、後述するヒータ電極層61を避けて配置されている。
図1〜図3に示されるように、セラミック絶縁板10は、吸着用電極層51を内部に有している。吸着用電極層51は、タングステンを主成分として形成された層であって、セラミック絶縁板10内において横穴42よりも吸着面11側(具体的には、前記第3層のセラミック層15上)に配置されている。なお図2に示されるように、吸着用電極層51は、第3層〜第5層のセラミック層15〜17を貫通するスルーホール導体52の上端面に電気的に接続され、スルーホール導体52の下端面は、セラミック層17の下面上に形成された第1パッド(図示略)に電気的に接続されている。さらに、第6層のセラミック層18の所定箇所には、第1パッドを露出させる第1開口部53が形成され、第1パッドの表面上には、第1端子ピン54がロウ付けまたははんだ付けによって接合されている。第1端子ピン54は、前記金属ベース30に設けられた凹部55内に収容されている。そして、第1端子ピン54には、外部端子(図示略)が接合された状態で電圧が印加されるようになっている。
図1〜図3に示されるように、セラミック絶縁板10は、同セラミック絶縁板10を加熱する複数のヒータ電極層61を内部に有している。各ヒータ電極層61は、タングステンを主成分として形成された層であって、セラミック絶縁板10内において横穴42よりも前記接合面12側(具体的には、第6層のセラミック層18上)に配置されている。これにより、ヒータ電極層61から吸着面11までの距離は、ヒータ電極層61から接合面12までの距離より長くなっている。また図4に示されるように、各ヒータ電極層61は、前記中心部C1に対して平面視渦巻き状に配置されている。これにより、各ヒータ電極層61は、横穴42と交差するため、セラミック絶縁板10を厚さ方向から見たときに横穴42と殆ど重ならないようになっている。なお図2に示されるように、ヒータ電極層61は、セラミック層17の下面上に形成された第2パッド(図示略)に電気的に接続されている。さらに、第6層のセラミック層18の所定箇所には、第2パッドを露出させる第2開口部62が形成され、第2パッドの表面上には、第2端子ピン63がロウ付けまたははんだ付けによって接合されている。第2端子ピン63は、金属ベース30に設けられた凹部64内に収容されている。そして、第2端子ピン63には、外部端子(図示略)が接合された状態で電圧が印加されるようになっている。
図1〜図3に示されるように、金属ベース30は、アルミニウムを主成分とする材料からなっている。本実施形態において、金属ベース30の熱伝導率は236W/(m・K)、熱膨張係数は約23ppm/℃となっている。なお、金属ベース30の熱膨張係数は、0℃〜ガラス転移温度(Tg)間の測定値の平均値をいう。また、金属ベース30は、直径340mm×厚さ20mmの略円板状である。即ち、金属ベース30の直径は、セラミック絶縁板10の直径(300mm)よりも大きく設定されている。金属ベース30は、セラミック絶縁板10が接合される第1面31と、第1面31の反対側に位置する第2面32とを有している。
また、金属ベース30は、冷却用流体流路71,72を内部に有している。冷却用流体流路71,72には、セラミック絶縁板10を冷却する冷却水(冷却用流体)が流れるようになっている。各冷却用流体流路71,72は、前記中心部C1に対して平面視渦巻き状に配置されている。内周側の冷却用流体流路71には、第2面32にて開口する複数の冷却水通路73が設けられている。また、外周側の冷却用流体流路72は、セラミック絶縁板10及び金属ベース30を厚さ方向から見たときに、セラミック絶縁板10よりも外周側に延びている。
さらに図1,図3に示されるように、金属ベース30は、同金属ベース30の厚さ方向に延びる直径3.0mmの連通穴33を備えている。この連通穴33には、外部配管(図示略)を介してヘリウムガスが供給されるようになっている。連通穴33は、第1面31側の端部が前記縦穴49に連通する一方、第2面32側の端部が第2面32にて開口している。そして、連通穴33は、冷却用流体流路71,72を避けて配置されている。具体的に言うと、連通穴33は、冷却用流体流路71と冷却用流体流路72との間に配置されている。
なお、本実施形態の静電チャック1を使用する場合には、吸着用電極層51に3kVの電圧を印加して静電引力を発生させ、発生した静電引力を用いて半導体ウェハ2を吸着面11に吸着させる。このとき、冷却用ガス流路41を流れるヘリウムガスが、ガス噴出口46から吸着面11と半導体ウェハ2の裏面との間に供給され、半導体ウェハ2が冷却される。また、ヒータ電極層61に電圧を印加してセラミック絶縁板10を加熱することにより、吸着面11に吸着されている半導体ウェハ2が加熱される。
次に、静電チャック1の製造方法を説明する。
まず以下の手順でスラリーを調製する。アルミナ粉末(92重量%)に、MgO(1重量%)、CaO(1重量%)、SiO(6重量%)を混合し、ボールミルで50〜80時間湿式粉砕した後、脱水乾燥することにより、粉末を得る。次に、得られた粉末に、メタクリル酸イソブチルエステル(3重量%)、ブチルエステル(3重量%)、ニトロセルロース(1重量%)、ジオクチルフタレート(0.5重量%)を加え、さらにトリクロロエチレン、n−ブタノールを溶剤として加えた後、ボールミルで湿式混合することにより、アルミナグリーンシートを形成する際の出発材料となるスラリーを得る。
次に、このスラリーを、減圧脱泡した後、離型性の支持体(図示略)上に流し出して冷却することにより、溶剤を発散させる。その結果、厚さ0.8mmの第1層〜第6層のアルミナグリーンシート(セラミック層13〜18となるべき未焼結セラミック層)が形成される。なお、第2層,第3層のアルミナグリーンシートには、縦穴47,48を形成するための貫通孔が設けられ、第5層,第6層のアルミナグリーンシートには、縦穴49を形成するための貫通孔が設けられる。また、第1層のアルミナグリーンシートには、円環状ガス流路43,44及び連結ガス流路45を形成するための貫通孔が設けられ、第4層のアルミナグリーンシートには、横穴42を形成するための貫通孔が設けられる。さらに、第6層のアルミナグリーンシートには、凹部55,64を形成するための貫通孔が設けられる。また、第3層〜第5層のアルミナグリーンシートには、スルーホール導体52を形成するための貫通孔が設けられる。なお、各貫通孔は、アルミナグリーンシートを型抜きまたは機械加工することにより形成される。
また、上記したアルミナグリーンシート用の粉末にタングステン粉末を混合する。これをアルミナグリーンシートの作製時と同様の方法によってスラリー状にし、メタライズペーストを得る。
次に、第3層のアルミナグリーンシートの上面上に、従来周知のペースト印刷装置(例えばスクリーン印刷装置)を用いて、吸着用電極層51となるメタライズペーストを印刷塗布する。また、第6層のアルミナグリーンシートの上面上に、ペースト印刷装置を用いて、ヒータ電極層61となるメタライズペーストを印刷塗布する。さらに、第3層〜第5層のアルミナグリーンシートに設けられた貫通孔内に、スルーホール導体52となるメタライズペーストを印刷塗布する。また、第6層のアルミナグリーンシートの下面上に、第1パッド及び第2パッドとなるメタライズペーストを印刷塗布する。この後、印刷されたメタライズペーストを乾燥する。
次に、冷却用ガス流路41、開口部53,62及びスルーホール導体52が形成されるように各貫通孔を位置合わせした状態で、第1層〜第6層のアルミナグリーンシートを熱圧着し、厚さを約5mmとしたグリーンシート積層体を形成する。さらに、グリーンシート積層体を、所定の円板状(本実施形態では、直径300mmの円板状)にカットする。
次に、上記グリーンシート積層体を大気中にて250℃で10時間脱脂し、さらに還元雰囲気中1400〜1600℃にて所定時間焼成する。その結果、アルミナ及びタングステンが同時焼結し、所望構造のセラミック絶縁板10が得られる。この焼成により、寸法が約20%小さくなるため、セラミック絶縁板10の厚さは約4mmとなる。その後、セラミック絶縁板10の表裏両面を研磨することにより、セラミック絶縁板10の厚さを3mmにする加工を行うとともに、吸着面11の平面度を30μm以下とする加工を行う。
次に、端子ピン54,63にニッケルめっきを施し、ニッケルめっきを施した端子ピン54,63を第1,第2パッドに対してロウ付けまたははんだ付けすることにより、セラミック絶縁板10を完成させる。その後、接着剤層20を介してセラミック絶縁板10を金属ベース30に接合すれば、静電チャック1が完成する。
従って、本実施形態によれば以下の効果を得ることができる。
(1)本実施形態の静電チャック1によれば、ヒータ電極層61が、冷却用ガス流路41の横穴42よりも接合面12側に配置されるため、ヒータ電極層61と冷却用流体流路71,72との間に空間となる層(横穴42)が存在しなくなる。これにより、ヒータ電極層61から発生した熱は、横穴42に遮られることなく冷却用流体流路71,72側に伝達されるため、冷却用流体流路71,72を流れる冷却水によってセラミック絶縁板10を確実に冷却することができる。その結果、吸着面11の温度分布が均一となるため、吸着面11に吸着された半導体ウェハ2を均一に加熱または冷却することができる。
しかも、上記したように、ヒータ電極層61は、横穴42よりも接合面12側に配置されており、ヒータ電極層61と吸着面11との距離が長くなるため、ヒータ電極層61から発生した熱が拡散するのに十分な距離が確保されている。よって、ヒータ電極層61から発生した熱は、吸着面11側に伝達されるに従って確実に拡散していく。その結果、吸着面11では、ヒータ電極層61の直上となる領域の温度と、ヒータ電極層61の直上とはならない領域の温度との差が小さくなる。即ち、ヒータ電極層61と横穴42との位置関係を工夫するだけでなく、ヒータ電極層61と吸着面11との位置関係を工夫することによっても、吸着面11の温度分布が均一になる。具体的に言うと、ヒータ電極層61の直上となる領域と直上とはならない領域との温度差が、本実施形態においては0.04℃(従来は0.72℃)となる。従って、吸着面11に吸着された半導体ウェハ2をより均一に加熱または冷却することができる。
(2)本実施形態のセラミック絶縁板10は、セラミックグリーンシートの成形技術(即ち、セラミック層13〜18の成形技術)が確立されているアルミナを主成分とする材料からなるため、冷却用ガス流路41、吸着用電極層51及びヒータ電極層61などを容易に形成することができる。また、本実施形態の金属ベース30は、微細加工が可能な金属材料(本実施形態ではアルミニウム)からなるため、冷却用流体流路71,72を容易に形成することができる。また、金属材料は熱伝導性に優れているため、冷却用流体流路71,72を流れる冷却水を用いてセラミック絶縁板10を効果的に冷却することができる。
(3)本実施形態の接着剤層20は、熱伝導率が比較的低いシリコーン樹脂からなっている。これにより、セラミック絶縁板10と金属ベース30との間で熱が伝達されにくくなるため、冷却用流体流路71,72を流れる冷却水によってセラミック絶縁板10が過度に冷却されることがない。即ち、セラミック絶縁板10を確実に冷却するためには、ヒータ電極層61の出力を抑える必要があるため、結果としてヒータ電極層61の直上となる領域と直上とはならない領域との温度差がよりいっそう小さくなる。従って、吸着面11に吸着された半導体ウェハ2をより均一に加熱または冷却することができる。
なお、本実施形態を以下のように変更してもよい。
・上記実施形態のセラミック絶縁板10は、アルミナを主成分とする材料からなっていたが、例えばイットリアを主成分とする材料からなっていてもよい。なお、イットリアは、半導体の製造時に多用されるプラズマや腐食性ガスに対する耐食性が、アルミナよりも優れている。よって、セラミック絶縁板10をイットリアによって形成すれば、吸着面11の腐食をより確実に防止でき、吸着面11の平面度がよりいっそう低下しにくくなるため、静電チャックのさらなる長寿命化を図ることができる。
・上記実施形態の静電チャック1では、半導体ウェハ2を被吸着物としていたが、液晶パネルなどの他の部材を被吸着物としてもよい。
次に、前述した実施形態によって把握される技術的思想を以下に列挙する。
(1)第1主面及び第2主面を有するとともに複数のセラミック層を積層してなり、内部に吸着用電極層を有するセラミック絶縁板と、前記セラミック絶縁板の前記第2主面側に接着剤層を介して接合される金属ベースとを備え、前記吸着用電極層に電圧を印加させた際に生じる静電引力を用いて被吸着物を前記第1主面に吸着させる静電チャックにおいて、前記セラミック絶縁板は、前記セラミック絶縁板を加熱するヒータ電極層と、前記第1主面に吸着された被吸着物を冷却する冷却用ガスが流れる冷却用ガス流路とを内部に有し、前記金属ベースは、前記セラミック絶縁板を冷却する冷却用流体が流れる冷却用流体流路を内部に有し、前記冷却用ガス流路は、前記セラミック絶縁板の平面方向に延びる横穴を備え、前記吸着用電極層が、前記セラミック絶縁板内において前記横穴よりも前記第1主面側に配置されるとともに、前記ヒータ電極層が、前記セラミック絶縁板内において前記横穴よりも前記第2主面側に配置され、前記セラミック絶縁板及び前記金属ベースは円板状をなし、前記金属ベースの直径は前記セラミック絶縁板の直径よりも大きく設定され、前記セラミック絶縁板及び前記金属ベースを厚さ方向から見たときに、前記冷却用流体流路が、前記セラミック絶縁板よりも外周側に延びていることを特徴とする静電チャック。
(2)第1主面及び第2主面を有するとともに複数のセラミック層を積層してなり、内部に吸着用電極層を有するセラミック絶縁板と、前記セラミック絶縁板の前記第2主面側に接着剤層を介して接合される金属ベースとを備え、前記吸着用電極層に電圧を印加させた際に生じる静電引力を用いて被吸着物を前記第1主面に吸着させる静電チャックにおいて、前記セラミック絶縁板は、アルミナを主成分とする材料からなるとともに、前記セラミック絶縁板を加熱するヒータ電極層と、前記第1主面に吸着された被吸着物を冷却する冷却用ガスが流れる冷却用ガス流路とを内部に有し、前記接着剤層は、シリコーン樹脂からなる接着剤であり、前記金属ベースは、アルミニウムを主成分とする材料からなるとともに、前記セラミック絶縁板を冷却する冷却用流体が流れる冷却用流体流路を内部に有し、前記冷却用ガス流路は、前記セラミック絶縁板の平面方向に延びる横穴を備え、前記吸着用電極層が、前記セラミック絶縁板内において前記横穴よりも前記第1主面側に配置されるとともに、前記ヒータ電極層が、前記セラミック絶縁板内において前記横穴よりも前記第2主面側に配置されることを特徴とする静電チャック。
1…静電チャック
2…被吸着物としての半導体ウェハ
10…セラミック絶縁板
11…第1主面としての吸着面
12…第2主面としての接合面
13,14,15,16,17,18…セラミック層
20…接着剤層
30…金属ベース
33…連通穴
41…冷却用ガス流路
42…横穴
47,48,49…縦穴
51…吸着用電極層
61…ヒータ電極層
71,72…冷却用流体流路
C1…中心部

Claims (5)

  1. 第1主面及び第2主面を有するとともに複数のセラミック層を積層してなり、内部に吸着用電極層を有するセラミック絶縁板と、前記セラミック絶縁板の前記第2主面側に接着剤層を介して接合される金属ベースとを備え、前記吸着用電極層に電圧を印加させた際に生じる静電引力を用いて被吸着物を前記第1主面に吸着させる静電チャックにおいて、
    前記セラミック絶縁板は、前記セラミック絶縁板を加熱するヒータ電極層と、前記第1主面に吸着された被吸着物を冷却する冷却用ガスが流れる冷却用ガス流路とを内部に有し、
    前記金属ベースは、前記セラミック絶縁板を冷却する冷却用流体が流れる冷却用流体流路を内部に有し、
    前記冷却用ガス流路は、前記セラミック絶縁板の平面方向に延びる横穴を備え、
    前記吸着用電極層が、前記セラミック絶縁板内において前記横穴よりも前記第1主面側に配置されるとともに、前記ヒータ電極層が、前記セラミック絶縁板内において前記横穴よりも前記第2主面側に配置される
    ことを特徴とする静電チャック。
  2. 前記冷却用ガス流路は、前記横穴に連通して前記セラミック絶縁板の厚さ方向に延びる縦穴をさらに備え、
    前記金属ベースは、前記縦穴に連通して前記金属ベースの厚さ方向に延びる連通穴を備え、
    前記縦穴は前記ヒータ電極層を避けて配置され、前記連通穴は前記冷却用流体流路を避けて配置されている
    ことを特徴とする請求項1に記載の静電チャック。
  3. 前記セラミック絶縁板は、アルミナを主成分とする材料からなることを特徴とする請求項1または2に記載の静電チャック。
  4. 前記接着剤層は樹脂材料からなること特徴とする請求項1乃至3のいずれか1項に記載の静電チャック。
  5. 前記横穴は、前記セラミック絶縁板の中心部から外周部に向かって放射状に延びており、
    前記ヒータ電極層は、前記セラミック絶縁板を厚さ方向から見たときに前記横穴と重ならない領域に主として配置されている
    ことを特徴とする請求項1乃至5のいずれか1項に記載の静電チャック。
JP2009193889A 2009-08-25 2009-08-25 静電チャック Active JP5554525B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009193889A JP5554525B2 (ja) 2009-08-25 2009-08-25 静電チャック

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009193889A JP5554525B2 (ja) 2009-08-25 2009-08-25 静電チャック

Publications (2)

Publication Number Publication Date
JP2011049196A true JP2011049196A (ja) 2011-03-10
JP5554525B2 JP5554525B2 (ja) 2014-07-23

Family

ID=43835294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009193889A Active JP5554525B2 (ja) 2009-08-25 2009-08-25 静電チャック

Country Status (1)

Country Link
JP (1) JP5554525B2 (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013008746A (ja) * 2011-06-22 2013-01-10 Ulvac Japan Ltd 基板保持装置
JP2013120835A (ja) * 2011-12-07 2013-06-17 Shinko Electric Ind Co Ltd 基板温調固定装置及びその製造方法
JP2014049685A (ja) * 2012-09-03 2014-03-17 Ngk Spark Plug Co Ltd 半導体製造用部品
JP2014131015A (ja) * 2012-11-30 2014-07-10 Kyocera Corp セラミック焼結体、これを用いた流路部材ならびに半導体検査装置および半導体製造装置
JP2014175491A (ja) * 2013-03-08 2014-09-22 Nhk Spring Co Ltd 基板支持装置
JPWO2013111363A1 (ja) * 2012-01-26 2015-05-11 京セラ株式会社 静電チャック
JP2015103550A (ja) * 2013-11-21 2015-06-04 日本特殊陶業株式会社 静電チャック
CN104835764A (zh) * 2015-04-27 2015-08-12 沈阳拓荆科技有限公司 一种蜘蛛网形表面结构的可控温加热盘
JP2016072478A (ja) * 2014-09-30 2016-05-09 日本特殊陶業株式会社 静電チャック
CN106952843A (zh) * 2015-10-16 2017-07-14 日本特殊陶业株式会社 加热构件、静电卡盘及陶瓷加热器
JP2017183381A (ja) * 2016-03-29 2017-10-05 日本特殊陶業株式会社 保持装置
JP2017228360A (ja) * 2016-06-20 2017-12-28 日本特殊陶業株式会社 加熱部材及び静電チャック
KR20200083612A (ko) * 2017-11-28 2020-07-08 도쿄엘렉트론가부시키가이샤 처리 장치
JP2020205294A (ja) * 2019-06-14 2020-12-24 日本特殊陶業株式会社 保持装置および保持装置の製造方法
WO2021252276A1 (en) * 2020-06-09 2021-12-16 Lam Research Corporation Pedestal thermal profile tuning using multiple heated zones and thermal voids
JP2022033183A (ja) * 2018-02-19 2022-02-28 日本特殊陶業株式会社 保持装置
US11688590B2 (en) 2018-03-26 2023-06-27 Ngk Insulators, Ltd. Electrostatic-chuck heater
US11915950B2 (en) 2017-05-17 2024-02-27 Applied Materials, Inc. Multi-zone semiconductor substrate supports
JP7577558B2 (ja) 2021-02-15 2024-11-05 日本特殊陶業株式会社 保持部材

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6463936B2 (ja) * 2014-10-01 2019-02-06 日本特殊陶業株式会社 半導体製造装置用部品の製造方法
JP6530701B2 (ja) * 2015-12-01 2019-06-12 日本特殊陶業株式会社 静電チャック

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006505A (ja) * 2002-05-31 2004-01-08 Ngk Spark Plug Co Ltd 静電チャック
JP2008205510A (ja) * 2008-05-15 2008-09-04 Ngk Spark Plug Co Ltd 静電チャック及び静電チャック装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006505A (ja) * 2002-05-31 2004-01-08 Ngk Spark Plug Co Ltd 静電チャック
JP2008205510A (ja) * 2008-05-15 2008-09-04 Ngk Spark Plug Co Ltd 静電チャック及び静電チャック装置

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013008746A (ja) * 2011-06-22 2013-01-10 Ulvac Japan Ltd 基板保持装置
JP2013120835A (ja) * 2011-12-07 2013-06-17 Shinko Electric Ind Co Ltd 基板温調固定装置及びその製造方法
JPWO2013111363A1 (ja) * 2012-01-26 2015-05-11 京セラ株式会社 静電チャック
US9543184B2 (en) 2012-01-26 2017-01-10 Kyocera Corporation Electrostatic chuck
JP2014049685A (ja) * 2012-09-03 2014-03-17 Ngk Spark Plug Co Ltd 半導体製造用部品
JP2014131015A (ja) * 2012-11-30 2014-07-10 Kyocera Corp セラミック焼結体、これを用いた流路部材ならびに半導体検査装置および半導体製造装置
JP2014175491A (ja) * 2013-03-08 2014-09-22 Nhk Spring Co Ltd 基板支持装置
US9551071B2 (en) 2013-03-08 2017-01-24 Nhk Spring Co., Ltd. Substrate support device
JP2015103550A (ja) * 2013-11-21 2015-06-04 日本特殊陶業株式会社 静電チャック
JP2016072478A (ja) * 2014-09-30 2016-05-09 日本特殊陶業株式会社 静電チャック
CN104835764A (zh) * 2015-04-27 2015-08-12 沈阳拓荆科技有限公司 一种蜘蛛网形表面结构的可控温加热盘
CN106952843A (zh) * 2015-10-16 2017-07-14 日本特殊陶业株式会社 加热构件、静电卡盘及陶瓷加热器
CN106952843B (zh) * 2015-10-16 2020-11-17 日本特殊陶业株式会社 加热构件、静电卡盘及陶瓷加热器
JP2017183381A (ja) * 2016-03-29 2017-10-05 日本特殊陶業株式会社 保持装置
JP2017228360A (ja) * 2016-06-20 2017-12-28 日本特殊陶業株式会社 加熱部材及び静電チャック
US11915950B2 (en) 2017-05-17 2024-02-27 Applied Materials, Inc. Multi-zone semiconductor substrate supports
KR20200083612A (ko) * 2017-11-28 2020-07-08 도쿄엘렉트론가부시키가이샤 처리 장치
KR102548233B1 (ko) * 2017-11-28 2023-06-27 도쿄엘렉트론가부시키가이샤 처리 장치
JP2022033183A (ja) * 2018-02-19 2022-02-28 日本特殊陶業株式会社 保持装置
JP7308254B2 (ja) 2018-02-19 2023-07-13 日本特殊陶業株式会社 保持装置
US11688590B2 (en) 2018-03-26 2023-06-27 Ngk Insulators, Ltd. Electrostatic-chuck heater
JP2020205294A (ja) * 2019-06-14 2020-12-24 日本特殊陶業株式会社 保持装置および保持装置の製造方法
JP7386624B2 (ja) 2019-06-14 2023-11-27 日本特殊陶業株式会社 保持装置および保持装置の製造方法
WO2021252276A1 (en) * 2020-06-09 2021-12-16 Lam Research Corporation Pedestal thermal profile tuning using multiple heated zones and thermal voids
JP7577558B2 (ja) 2021-02-15 2024-11-05 日本特殊陶業株式会社 保持部材

Also Published As

Publication number Publication date
JP5554525B2 (ja) 2014-07-23

Similar Documents

Publication Publication Date Title
JP5554525B2 (ja) 静電チャック
JP6463938B2 (ja) 静電チャック
JP6001402B2 (ja) 静電チャック
JP6077301B2 (ja) 静電チャック
US10483136B2 (en) Ceramic heater and electrostatic chuck
US7071551B2 (en) Device used to produce or examine semiconductors
JP5394186B2 (ja) 半導体製造装置用部品
US6717116B1 (en) Semiconductor production device ceramic plate
JP2011061049A (ja) 静電チャック
JP6718318B2 (ja) 加熱部材及び静電チャック
JP6725677B2 (ja) 保持装置
US20170110357A1 (en) Heating member, electrostatic chuck, and ceramic heater
JP6325424B2 (ja) 静電チャック
KR20020092967A (ko) 세라믹 기판 및 그 제조 방법
JP6730084B2 (ja) 加熱部材及び静電チャック
JP2011256072A (ja) 発熱体を有するセラミック基板及びその製造方法
JP4331983B2 (ja) ウェハ支持部材およびその製造方法
EP1231820A1 (en) Ceramic heater
JP2005032842A (ja) 電極構造およびセラミック接合体
JP2004071647A (ja) 複合ヒータ
KR20230030050A (ko) 유지 장치
JP6054696B2 (ja) 静電チャック
JP2020004809A (ja) 保持装置
JP2004071182A (ja) 複合ヒータ
JP2022123591A (ja) 保持装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140529

R150 Certificate of patent or registration of utility model

Ref document number: 5554525

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250